Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Broadcom GENET (Gigabit Ethernet) controller driver
0004  *
0005  * Copyright (c) 2014-2020 Broadcom
0006  */
0007 
0008 #define pr_fmt(fmt)             "bcmgenet: " fmt
0009 
0010 #include <linux/acpi.h>
0011 #include <linux/kernel.h>
0012 #include <linux/module.h>
0013 #include <linux/sched.h>
0014 #include <linux/types.h>
0015 #include <linux/fcntl.h>
0016 #include <linux/interrupt.h>
0017 #include <linux/string.h>
0018 #include <linux/if_ether.h>
0019 #include <linux/init.h>
0020 #include <linux/errno.h>
0021 #include <linux/delay.h>
0022 #include <linux/platform_device.h>
0023 #include <linux/dma-mapping.h>
0024 #include <linux/pm.h>
0025 #include <linux/clk.h>
0026 #include <net/arp.h>
0027 
0028 #include <linux/mii.h>
0029 #include <linux/ethtool.h>
0030 #include <linux/netdevice.h>
0031 #include <linux/inetdevice.h>
0032 #include <linux/etherdevice.h>
0033 #include <linux/skbuff.h>
0034 #include <linux/in.h>
0035 #include <linux/ip.h>
0036 #include <linux/ipv6.h>
0037 #include <linux/phy.h>
0038 #include <linux/platform_data/bcmgenet.h>
0039 
0040 #include <asm/unaligned.h>
0041 
0042 #include "bcmgenet.h"
0043 
0044 /* Maximum number of hardware queues, downsized if needed */
0045 #define GENET_MAX_MQ_CNT    4
0046 
0047 /* Default highest priority queue for multi queue support */
0048 #define GENET_Q0_PRIORITY   0
0049 
0050 #define GENET_Q16_RX_BD_CNT \
0051     (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
0052 #define GENET_Q16_TX_BD_CNT \
0053     (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
0054 
0055 #define RX_BUF_LENGTH       2048
0056 #define SKB_ALIGNMENT       32
0057 
0058 /* Tx/Rx DMA register offset, skip 256 descriptors */
0059 #define WORDS_PER_BD(p)     (p->hw_params->words_per_bd)
0060 #define DMA_DESC_SIZE       (WORDS_PER_BD(priv) * sizeof(u32))
0061 
0062 #define GENET_TDMA_REG_OFF  (priv->hw_params->tdma_offset + \
0063                 TOTAL_DESC * DMA_DESC_SIZE)
0064 
0065 #define GENET_RDMA_REG_OFF  (priv->hw_params->rdma_offset + \
0066                 TOTAL_DESC * DMA_DESC_SIZE)
0067 
0068 /* Forward declarations */
0069 static void bcmgenet_set_rx_mode(struct net_device *dev);
0070 
0071 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
0072 {
0073     /* MIPS chips strapped for BE will automagically configure the
0074      * peripheral registers for CPU-native byte order.
0075      */
0076     if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
0077         __raw_writel(value, offset);
0078     else
0079         writel_relaxed(value, offset);
0080 }
0081 
0082 static inline u32 bcmgenet_readl(void __iomem *offset)
0083 {
0084     if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
0085         return __raw_readl(offset);
0086     else
0087         return readl_relaxed(offset);
0088 }
0089 
0090 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
0091                          void __iomem *d, u32 value)
0092 {
0093     bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
0094 }
0095 
0096 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
0097                     void __iomem *d,
0098                     dma_addr_t addr)
0099 {
0100     bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
0101 
0102     /* Register writes to GISB bus can take couple hundred nanoseconds
0103      * and are done for each packet, save these expensive writes unless
0104      * the platform is explicitly configured for 64-bits/LPAE.
0105      */
0106 #ifdef CONFIG_PHYS_ADDR_T_64BIT
0107     if (priv->hw_params->flags & GENET_HAS_40BITS)
0108         bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
0109 #endif
0110 }
0111 
0112 /* Combined address + length/status setter */
0113 static inline void dmadesc_set(struct bcmgenet_priv *priv,
0114                    void __iomem *d, dma_addr_t addr, u32 val)
0115 {
0116     dmadesc_set_addr(priv, d, addr);
0117     dmadesc_set_length_status(priv, d, val);
0118 }
0119 
0120 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
0121                       void __iomem *d)
0122 {
0123     dma_addr_t addr;
0124 
0125     addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
0126 
0127     /* Register writes to GISB bus can take couple hundred nanoseconds
0128      * and are done for each packet, save these expensive writes unless
0129      * the platform is explicitly configured for 64-bits/LPAE.
0130      */
0131 #ifdef CONFIG_PHYS_ADDR_T_64BIT
0132     if (priv->hw_params->flags & GENET_HAS_40BITS)
0133         addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
0134 #endif
0135     return addr;
0136 }
0137 
0138 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
0139 
0140 #define GENET_MSG_DEFAULT   (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
0141                 NETIF_MSG_LINK)
0142 
0143 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
0144 {
0145     if (GENET_IS_V1(priv))
0146         return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
0147     else
0148         return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
0149 }
0150 
0151 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
0152 {
0153     if (GENET_IS_V1(priv))
0154         bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
0155     else
0156         bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
0157 }
0158 
0159 /* These macros are defined to deal with register map change
0160  * between GENET1.1 and GENET2. Only those currently being used
0161  * by driver are defined.
0162  */
0163 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
0164 {
0165     if (GENET_IS_V1(priv))
0166         return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
0167     else
0168         return bcmgenet_readl(priv->base +
0169                       priv->hw_params->tbuf_offset + TBUF_CTRL);
0170 }
0171 
0172 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
0173 {
0174     if (GENET_IS_V1(priv))
0175         bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
0176     else
0177         bcmgenet_writel(val, priv->base +
0178                 priv->hw_params->tbuf_offset + TBUF_CTRL);
0179 }
0180 
0181 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
0182 {
0183     if (GENET_IS_V1(priv))
0184         return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
0185     else
0186         return bcmgenet_readl(priv->base +
0187                       priv->hw_params->tbuf_offset + TBUF_BP_MC);
0188 }
0189 
0190 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
0191 {
0192     if (GENET_IS_V1(priv))
0193         bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
0194     else
0195         bcmgenet_writel(val, priv->base +
0196                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
0197 }
0198 
0199 /* RX/TX DMA register accessors */
0200 enum dma_reg {
0201     DMA_RING_CFG = 0,
0202     DMA_CTRL,
0203     DMA_STATUS,
0204     DMA_SCB_BURST_SIZE,
0205     DMA_ARB_CTRL,
0206     DMA_PRIORITY_0,
0207     DMA_PRIORITY_1,
0208     DMA_PRIORITY_2,
0209     DMA_INDEX2RING_0,
0210     DMA_INDEX2RING_1,
0211     DMA_INDEX2RING_2,
0212     DMA_INDEX2RING_3,
0213     DMA_INDEX2RING_4,
0214     DMA_INDEX2RING_5,
0215     DMA_INDEX2RING_6,
0216     DMA_INDEX2RING_7,
0217     DMA_RING0_TIMEOUT,
0218     DMA_RING1_TIMEOUT,
0219     DMA_RING2_TIMEOUT,
0220     DMA_RING3_TIMEOUT,
0221     DMA_RING4_TIMEOUT,
0222     DMA_RING5_TIMEOUT,
0223     DMA_RING6_TIMEOUT,
0224     DMA_RING7_TIMEOUT,
0225     DMA_RING8_TIMEOUT,
0226     DMA_RING9_TIMEOUT,
0227     DMA_RING10_TIMEOUT,
0228     DMA_RING11_TIMEOUT,
0229     DMA_RING12_TIMEOUT,
0230     DMA_RING13_TIMEOUT,
0231     DMA_RING14_TIMEOUT,
0232     DMA_RING15_TIMEOUT,
0233     DMA_RING16_TIMEOUT,
0234 };
0235 
0236 static const u8 bcmgenet_dma_regs_v3plus[] = {
0237     [DMA_RING_CFG]      = 0x00,
0238     [DMA_CTRL]      = 0x04,
0239     [DMA_STATUS]        = 0x08,
0240     [DMA_SCB_BURST_SIZE]    = 0x0C,
0241     [DMA_ARB_CTRL]      = 0x2C,
0242     [DMA_PRIORITY_0]    = 0x30,
0243     [DMA_PRIORITY_1]    = 0x34,
0244     [DMA_PRIORITY_2]    = 0x38,
0245     [DMA_RING0_TIMEOUT] = 0x2C,
0246     [DMA_RING1_TIMEOUT] = 0x30,
0247     [DMA_RING2_TIMEOUT] = 0x34,
0248     [DMA_RING3_TIMEOUT] = 0x38,
0249     [DMA_RING4_TIMEOUT] = 0x3c,
0250     [DMA_RING5_TIMEOUT] = 0x40,
0251     [DMA_RING6_TIMEOUT] = 0x44,
0252     [DMA_RING7_TIMEOUT] = 0x48,
0253     [DMA_RING8_TIMEOUT] = 0x4c,
0254     [DMA_RING9_TIMEOUT] = 0x50,
0255     [DMA_RING10_TIMEOUT]    = 0x54,
0256     [DMA_RING11_TIMEOUT]    = 0x58,
0257     [DMA_RING12_TIMEOUT]    = 0x5c,
0258     [DMA_RING13_TIMEOUT]    = 0x60,
0259     [DMA_RING14_TIMEOUT]    = 0x64,
0260     [DMA_RING15_TIMEOUT]    = 0x68,
0261     [DMA_RING16_TIMEOUT]    = 0x6C,
0262     [DMA_INDEX2RING_0]  = 0x70,
0263     [DMA_INDEX2RING_1]  = 0x74,
0264     [DMA_INDEX2RING_2]  = 0x78,
0265     [DMA_INDEX2RING_3]  = 0x7C,
0266     [DMA_INDEX2RING_4]  = 0x80,
0267     [DMA_INDEX2RING_5]  = 0x84,
0268     [DMA_INDEX2RING_6]  = 0x88,
0269     [DMA_INDEX2RING_7]  = 0x8C,
0270 };
0271 
0272 static const u8 bcmgenet_dma_regs_v2[] = {
0273     [DMA_RING_CFG]      = 0x00,
0274     [DMA_CTRL]      = 0x04,
0275     [DMA_STATUS]        = 0x08,
0276     [DMA_SCB_BURST_SIZE]    = 0x0C,
0277     [DMA_ARB_CTRL]      = 0x30,
0278     [DMA_PRIORITY_0]    = 0x34,
0279     [DMA_PRIORITY_1]    = 0x38,
0280     [DMA_PRIORITY_2]    = 0x3C,
0281     [DMA_RING0_TIMEOUT] = 0x2C,
0282     [DMA_RING1_TIMEOUT] = 0x30,
0283     [DMA_RING2_TIMEOUT] = 0x34,
0284     [DMA_RING3_TIMEOUT] = 0x38,
0285     [DMA_RING4_TIMEOUT] = 0x3c,
0286     [DMA_RING5_TIMEOUT] = 0x40,
0287     [DMA_RING6_TIMEOUT] = 0x44,
0288     [DMA_RING7_TIMEOUT] = 0x48,
0289     [DMA_RING8_TIMEOUT] = 0x4c,
0290     [DMA_RING9_TIMEOUT] = 0x50,
0291     [DMA_RING10_TIMEOUT]    = 0x54,
0292     [DMA_RING11_TIMEOUT]    = 0x58,
0293     [DMA_RING12_TIMEOUT]    = 0x5c,
0294     [DMA_RING13_TIMEOUT]    = 0x60,
0295     [DMA_RING14_TIMEOUT]    = 0x64,
0296     [DMA_RING15_TIMEOUT]    = 0x68,
0297     [DMA_RING16_TIMEOUT]    = 0x6C,
0298 };
0299 
0300 static const u8 bcmgenet_dma_regs_v1[] = {
0301     [DMA_CTRL]      = 0x00,
0302     [DMA_STATUS]        = 0x04,
0303     [DMA_SCB_BURST_SIZE]    = 0x0C,
0304     [DMA_ARB_CTRL]      = 0x30,
0305     [DMA_PRIORITY_0]    = 0x34,
0306     [DMA_PRIORITY_1]    = 0x38,
0307     [DMA_PRIORITY_2]    = 0x3C,
0308     [DMA_RING0_TIMEOUT] = 0x2C,
0309     [DMA_RING1_TIMEOUT] = 0x30,
0310     [DMA_RING2_TIMEOUT] = 0x34,
0311     [DMA_RING3_TIMEOUT] = 0x38,
0312     [DMA_RING4_TIMEOUT] = 0x3c,
0313     [DMA_RING5_TIMEOUT] = 0x40,
0314     [DMA_RING6_TIMEOUT] = 0x44,
0315     [DMA_RING7_TIMEOUT] = 0x48,
0316     [DMA_RING8_TIMEOUT] = 0x4c,
0317     [DMA_RING9_TIMEOUT] = 0x50,
0318     [DMA_RING10_TIMEOUT]    = 0x54,
0319     [DMA_RING11_TIMEOUT]    = 0x58,
0320     [DMA_RING12_TIMEOUT]    = 0x5c,
0321     [DMA_RING13_TIMEOUT]    = 0x60,
0322     [DMA_RING14_TIMEOUT]    = 0x64,
0323     [DMA_RING15_TIMEOUT]    = 0x68,
0324     [DMA_RING16_TIMEOUT]    = 0x6C,
0325 };
0326 
0327 /* Set at runtime once bcmgenet version is known */
0328 static const u8 *bcmgenet_dma_regs;
0329 
0330 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
0331 {
0332     return netdev_priv(dev_get_drvdata(dev));
0333 }
0334 
0335 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
0336                       enum dma_reg r)
0337 {
0338     return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
0339                   DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
0340 }
0341 
0342 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
0343                     u32 val, enum dma_reg r)
0344 {
0345     bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
0346             DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
0347 }
0348 
0349 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
0350                       enum dma_reg r)
0351 {
0352     return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
0353                   DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
0354 }
0355 
0356 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
0357                     u32 val, enum dma_reg r)
0358 {
0359     bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
0360             DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
0361 }
0362 
0363 /* RDMA/TDMA ring registers and accessors
0364  * we merge the common fields and just prefix with T/D the registers
0365  * having different meaning depending on the direction
0366  */
0367 enum dma_ring_reg {
0368     TDMA_READ_PTR = 0,
0369     RDMA_WRITE_PTR = TDMA_READ_PTR,
0370     TDMA_READ_PTR_HI,
0371     RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
0372     TDMA_CONS_INDEX,
0373     RDMA_PROD_INDEX = TDMA_CONS_INDEX,
0374     TDMA_PROD_INDEX,
0375     RDMA_CONS_INDEX = TDMA_PROD_INDEX,
0376     DMA_RING_BUF_SIZE,
0377     DMA_START_ADDR,
0378     DMA_START_ADDR_HI,
0379     DMA_END_ADDR,
0380     DMA_END_ADDR_HI,
0381     DMA_MBUF_DONE_THRESH,
0382     TDMA_FLOW_PERIOD,
0383     RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
0384     TDMA_WRITE_PTR,
0385     RDMA_READ_PTR = TDMA_WRITE_PTR,
0386     TDMA_WRITE_PTR_HI,
0387     RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
0388 };
0389 
0390 /* GENET v4 supports 40-bits pointer addressing
0391  * for obvious reasons the LO and HI word parts
0392  * are contiguous, but this offsets the other
0393  * registers.
0394  */
0395 static const u8 genet_dma_ring_regs_v4[] = {
0396     [TDMA_READ_PTR]         = 0x00,
0397     [TDMA_READ_PTR_HI]      = 0x04,
0398     [TDMA_CONS_INDEX]       = 0x08,
0399     [TDMA_PROD_INDEX]       = 0x0C,
0400     [DMA_RING_BUF_SIZE]     = 0x10,
0401     [DMA_START_ADDR]        = 0x14,
0402     [DMA_START_ADDR_HI]     = 0x18,
0403     [DMA_END_ADDR]          = 0x1C,
0404     [DMA_END_ADDR_HI]       = 0x20,
0405     [DMA_MBUF_DONE_THRESH]      = 0x24,
0406     [TDMA_FLOW_PERIOD]      = 0x28,
0407     [TDMA_WRITE_PTR]        = 0x2C,
0408     [TDMA_WRITE_PTR_HI]     = 0x30,
0409 };
0410 
0411 static const u8 genet_dma_ring_regs_v123[] = {
0412     [TDMA_READ_PTR]         = 0x00,
0413     [TDMA_CONS_INDEX]       = 0x04,
0414     [TDMA_PROD_INDEX]       = 0x08,
0415     [DMA_RING_BUF_SIZE]     = 0x0C,
0416     [DMA_START_ADDR]        = 0x10,
0417     [DMA_END_ADDR]          = 0x14,
0418     [DMA_MBUF_DONE_THRESH]      = 0x18,
0419     [TDMA_FLOW_PERIOD]      = 0x1C,
0420     [TDMA_WRITE_PTR]        = 0x20,
0421 };
0422 
0423 /* Set at runtime once GENET version is known */
0424 static const u8 *genet_dma_ring_regs;
0425 
0426 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
0427                        unsigned int ring,
0428                        enum dma_ring_reg r)
0429 {
0430     return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
0431                   (DMA_RING_SIZE * ring) +
0432                   genet_dma_ring_regs[r]);
0433 }
0434 
0435 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
0436                          unsigned int ring, u32 val,
0437                          enum dma_ring_reg r)
0438 {
0439     bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
0440             (DMA_RING_SIZE * ring) +
0441             genet_dma_ring_regs[r]);
0442 }
0443 
0444 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
0445                        unsigned int ring,
0446                        enum dma_ring_reg r)
0447 {
0448     return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
0449                   (DMA_RING_SIZE * ring) +
0450                   genet_dma_ring_regs[r]);
0451 }
0452 
0453 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
0454                          unsigned int ring, u32 val,
0455                          enum dma_ring_reg r)
0456 {
0457     bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
0458             (DMA_RING_SIZE * ring) +
0459             genet_dma_ring_regs[r]);
0460 }
0461 
0462 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
0463 {
0464     u32 offset;
0465     u32 reg;
0466 
0467     offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
0468     reg = bcmgenet_hfb_reg_readl(priv, offset);
0469     reg |= (1 << (f_index % 32));
0470     bcmgenet_hfb_reg_writel(priv, reg, offset);
0471     reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
0472     reg |= RBUF_HFB_EN;
0473     bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
0474 }
0475 
0476 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
0477 {
0478     u32 offset, reg, reg1;
0479 
0480     offset = HFB_FLT_ENABLE_V3PLUS;
0481     reg = bcmgenet_hfb_reg_readl(priv, offset);
0482     reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
0483     if  (f_index < 32) {
0484         reg1 &= ~(1 << (f_index % 32));
0485         bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
0486     } else {
0487         reg &= ~(1 << (f_index % 32));
0488         bcmgenet_hfb_reg_writel(priv, reg, offset);
0489     }
0490     if (!reg && !reg1) {
0491         reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
0492         reg &= ~RBUF_HFB_EN;
0493         bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
0494     }
0495 }
0496 
0497 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
0498                              u32 f_index, u32 rx_queue)
0499 {
0500     u32 offset;
0501     u32 reg;
0502 
0503     offset = f_index / 8;
0504     reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
0505     reg &= ~(0xF << (4 * (f_index % 8)));
0506     reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
0507     bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
0508 }
0509 
0510 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
0511                        u32 f_index, u32 f_length)
0512 {
0513     u32 offset;
0514     u32 reg;
0515 
0516     offset = HFB_FLT_LEN_V3PLUS +
0517          ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
0518          sizeof(u32);
0519     reg = bcmgenet_hfb_reg_readl(priv, offset);
0520     reg &= ~(0xFF << (8 * (f_index % 4)));
0521     reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
0522     bcmgenet_hfb_reg_writel(priv, reg, offset);
0523 }
0524 
0525 static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
0526 {
0527     while (size) {
0528         switch (*(unsigned char *)mask++) {
0529         case 0x00:
0530         case 0x0f:
0531         case 0xf0:
0532         case 0xff:
0533             size--;
0534             continue;
0535         default:
0536             return -EINVAL;
0537         }
0538     }
0539 
0540     return 0;
0541 }
0542 
0543 #define VALIDATE_MASK(x) \
0544     bcmgenet_hfb_validate_mask(&(x), sizeof(x))
0545 
0546 static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
0547                     u32 offset, void *val, void *mask,
0548                     size_t size)
0549 {
0550     u32 index, tmp;
0551 
0552     index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
0553     tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
0554 
0555     while (size--) {
0556         if (offset++ & 1) {
0557             tmp &= ~0x300FF;
0558             tmp |= (*(unsigned char *)val++);
0559             switch ((*(unsigned char *)mask++)) {
0560             case 0xFF:
0561                 tmp |= 0x30000;
0562                 break;
0563             case 0xF0:
0564                 tmp |= 0x20000;
0565                 break;
0566             case 0x0F:
0567                 tmp |= 0x10000;
0568                 break;
0569             }
0570             bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
0571             if (size)
0572                 tmp = bcmgenet_hfb_readl(priv,
0573                              index * sizeof(u32));
0574         } else {
0575             tmp &= ~0xCFF00;
0576             tmp |= (*(unsigned char *)val++) << 8;
0577             switch ((*(unsigned char *)mask++)) {
0578             case 0xFF:
0579                 tmp |= 0xC0000;
0580                 break;
0581             case 0xF0:
0582                 tmp |= 0x80000;
0583                 break;
0584             case 0x0F:
0585                 tmp |= 0x40000;
0586                 break;
0587             }
0588             if (!size)
0589                 bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
0590         }
0591     }
0592 
0593     return 0;
0594 }
0595 
0596 static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
0597                          struct bcmgenet_rxnfc_rule *rule)
0598 {
0599     struct ethtool_rx_flow_spec *fs = &rule->fs;
0600     u32 offset = 0, f_length = 0, f;
0601     u8 val_8, mask_8;
0602     __be16 val_16;
0603     u16 mask_16;
0604     size_t size;
0605 
0606     f = fs->location;
0607     if (fs->flow_type & FLOW_MAC_EXT) {
0608         bcmgenet_hfb_insert_data(priv, f, 0,
0609                      &fs->h_ext.h_dest, &fs->m_ext.h_dest,
0610                      sizeof(fs->h_ext.h_dest));
0611     }
0612 
0613     if (fs->flow_type & FLOW_EXT) {
0614         if (fs->m_ext.vlan_etype ||
0615             fs->m_ext.vlan_tci) {
0616             bcmgenet_hfb_insert_data(priv, f, 12,
0617                          &fs->h_ext.vlan_etype,
0618                          &fs->m_ext.vlan_etype,
0619                          sizeof(fs->h_ext.vlan_etype));
0620             bcmgenet_hfb_insert_data(priv, f, 14,
0621                          &fs->h_ext.vlan_tci,
0622                          &fs->m_ext.vlan_tci,
0623                          sizeof(fs->h_ext.vlan_tci));
0624             offset += VLAN_HLEN;
0625             f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
0626         }
0627     }
0628 
0629     switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
0630     case ETHER_FLOW:
0631         f_length += DIV_ROUND_UP(ETH_HLEN, 2);
0632         bcmgenet_hfb_insert_data(priv, f, 0,
0633                      &fs->h_u.ether_spec.h_dest,
0634                      &fs->m_u.ether_spec.h_dest,
0635                      sizeof(fs->h_u.ether_spec.h_dest));
0636         bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
0637                      &fs->h_u.ether_spec.h_source,
0638                      &fs->m_u.ether_spec.h_source,
0639                      sizeof(fs->h_u.ether_spec.h_source));
0640         bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
0641                      &fs->h_u.ether_spec.h_proto,
0642                      &fs->m_u.ether_spec.h_proto,
0643                      sizeof(fs->h_u.ether_spec.h_proto));
0644         break;
0645     case IP_USER_FLOW:
0646         f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
0647         /* Specify IP Ether Type */
0648         val_16 = htons(ETH_P_IP);
0649         mask_16 = 0xFFFF;
0650         bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
0651                      &val_16, &mask_16, sizeof(val_16));
0652         bcmgenet_hfb_insert_data(priv, f, 15 + offset,
0653                      &fs->h_u.usr_ip4_spec.tos,
0654                      &fs->m_u.usr_ip4_spec.tos,
0655                      sizeof(fs->h_u.usr_ip4_spec.tos));
0656         bcmgenet_hfb_insert_data(priv, f, 23 + offset,
0657                      &fs->h_u.usr_ip4_spec.proto,
0658                      &fs->m_u.usr_ip4_spec.proto,
0659                      sizeof(fs->h_u.usr_ip4_spec.proto));
0660         bcmgenet_hfb_insert_data(priv, f, 26 + offset,
0661                      &fs->h_u.usr_ip4_spec.ip4src,
0662                      &fs->m_u.usr_ip4_spec.ip4src,
0663                      sizeof(fs->h_u.usr_ip4_spec.ip4src));
0664         bcmgenet_hfb_insert_data(priv, f, 30 + offset,
0665                      &fs->h_u.usr_ip4_spec.ip4dst,
0666                      &fs->m_u.usr_ip4_spec.ip4dst,
0667                      sizeof(fs->h_u.usr_ip4_spec.ip4dst));
0668         if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
0669             break;
0670 
0671         /* Only supports 20 byte IPv4 header */
0672         val_8 = 0x45;
0673         mask_8 = 0xFF;
0674         bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
0675                      &val_8, &mask_8,
0676                      sizeof(val_8));
0677         size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
0678         bcmgenet_hfb_insert_data(priv, f,
0679                      ETH_HLEN + 20 + offset,
0680                      &fs->h_u.usr_ip4_spec.l4_4_bytes,
0681                      &fs->m_u.usr_ip4_spec.l4_4_bytes,
0682                      size);
0683         f_length += DIV_ROUND_UP(size, 2);
0684         break;
0685     }
0686 
0687     bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
0688     if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
0689         /* Ring 0 flows can be handled by the default Descriptor Ring
0690          * We'll map them to ring 0, but don't enable the filter
0691          */
0692         bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
0693         rule->state = BCMGENET_RXNFC_STATE_DISABLED;
0694     } else {
0695         /* Other Rx rings are direct mapped here */
0696         bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
0697                              fs->ring_cookie);
0698         bcmgenet_hfb_enable_filter(priv, f);
0699         rule->state = BCMGENET_RXNFC_STATE_ENABLED;
0700     }
0701 }
0702 
0703 /* bcmgenet_hfb_clear
0704  *
0705  * Clear Hardware Filter Block and disable all filtering.
0706  */
0707 static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
0708 {
0709     u32 base, i;
0710 
0711     base = f_index * priv->hw_params->hfb_filter_size;
0712     for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
0713         bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
0714 }
0715 
0716 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
0717 {
0718     u32 i;
0719 
0720     if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
0721         return;
0722 
0723     bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
0724     bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
0725     bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
0726 
0727     for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
0728         bcmgenet_rdma_writel(priv, 0x0, i);
0729 
0730     for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
0731         bcmgenet_hfb_reg_writel(priv, 0x0,
0732                     HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
0733 
0734     for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
0735         bcmgenet_hfb_clear_filter(priv, i);
0736 }
0737 
0738 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
0739 {
0740     int i;
0741 
0742     INIT_LIST_HEAD(&priv->rxnfc_list);
0743     if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
0744         return;
0745 
0746     for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
0747         INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
0748         priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
0749     }
0750 
0751     bcmgenet_hfb_clear(priv);
0752 }
0753 
0754 static int bcmgenet_begin(struct net_device *dev)
0755 {
0756     struct bcmgenet_priv *priv = netdev_priv(dev);
0757 
0758     /* Turn on the clock */
0759     return clk_prepare_enable(priv->clk);
0760 }
0761 
0762 static void bcmgenet_complete(struct net_device *dev)
0763 {
0764     struct bcmgenet_priv *priv = netdev_priv(dev);
0765 
0766     /* Turn off the clock */
0767     clk_disable_unprepare(priv->clk);
0768 }
0769 
0770 static int bcmgenet_get_link_ksettings(struct net_device *dev,
0771                        struct ethtool_link_ksettings *cmd)
0772 {
0773     if (!netif_running(dev))
0774         return -EINVAL;
0775 
0776     if (!dev->phydev)
0777         return -ENODEV;
0778 
0779     phy_ethtool_ksettings_get(dev->phydev, cmd);
0780 
0781     return 0;
0782 }
0783 
0784 static int bcmgenet_set_link_ksettings(struct net_device *dev,
0785                        const struct ethtool_link_ksettings *cmd)
0786 {
0787     if (!netif_running(dev))
0788         return -EINVAL;
0789 
0790     if (!dev->phydev)
0791         return -ENODEV;
0792 
0793     return phy_ethtool_ksettings_set(dev->phydev, cmd);
0794 }
0795 
0796 static int bcmgenet_set_features(struct net_device *dev,
0797                  netdev_features_t features)
0798 {
0799     struct bcmgenet_priv *priv = netdev_priv(dev);
0800     u32 reg;
0801     int ret;
0802 
0803     ret = clk_prepare_enable(priv->clk);
0804     if (ret)
0805         return ret;
0806 
0807     /* Make sure we reflect the value of CRC_CMD_FWD */
0808     reg = bcmgenet_umac_readl(priv, UMAC_CMD);
0809     priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
0810 
0811     clk_disable_unprepare(priv->clk);
0812 
0813     return ret;
0814 }
0815 
0816 static u32 bcmgenet_get_msglevel(struct net_device *dev)
0817 {
0818     struct bcmgenet_priv *priv = netdev_priv(dev);
0819 
0820     return priv->msg_enable;
0821 }
0822 
0823 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
0824 {
0825     struct bcmgenet_priv *priv = netdev_priv(dev);
0826 
0827     priv->msg_enable = level;
0828 }
0829 
0830 static int bcmgenet_get_coalesce(struct net_device *dev,
0831                  struct ethtool_coalesce *ec,
0832                  struct kernel_ethtool_coalesce *kernel_coal,
0833                  struct netlink_ext_ack *extack)
0834 {
0835     struct bcmgenet_priv *priv = netdev_priv(dev);
0836     struct bcmgenet_rx_ring *ring;
0837     unsigned int i;
0838 
0839     ec->tx_max_coalesced_frames =
0840         bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
0841                      DMA_MBUF_DONE_THRESH);
0842     ec->rx_max_coalesced_frames =
0843         bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
0844                      DMA_MBUF_DONE_THRESH);
0845     ec->rx_coalesce_usecs =
0846         bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
0847 
0848     for (i = 0; i < priv->hw_params->rx_queues; i++) {
0849         ring = &priv->rx_rings[i];
0850         ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
0851     }
0852     ring = &priv->rx_rings[DESC_INDEX];
0853     ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
0854 
0855     return 0;
0856 }
0857 
0858 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
0859                      u32 usecs, u32 pkts)
0860 {
0861     struct bcmgenet_priv *priv = ring->priv;
0862     unsigned int i = ring->index;
0863     u32 reg;
0864 
0865     bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
0866 
0867     reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
0868     reg &= ~DMA_TIMEOUT_MASK;
0869     reg |= DIV_ROUND_UP(usecs * 1000, 8192);
0870     bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
0871 }
0872 
0873 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
0874                       struct ethtool_coalesce *ec)
0875 {
0876     struct dim_cq_moder moder;
0877     u32 usecs, pkts;
0878 
0879     ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
0880     ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
0881     usecs = ring->rx_coalesce_usecs;
0882     pkts = ring->rx_max_coalesced_frames;
0883 
0884     if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
0885         moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
0886         usecs = moder.usec;
0887         pkts = moder.pkts;
0888     }
0889 
0890     ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
0891     bcmgenet_set_rx_coalesce(ring, usecs, pkts);
0892 }
0893 
0894 static int bcmgenet_set_coalesce(struct net_device *dev,
0895                  struct ethtool_coalesce *ec,
0896                  struct kernel_ethtool_coalesce *kernel_coal,
0897                  struct netlink_ext_ack *extack)
0898 {
0899     struct bcmgenet_priv *priv = netdev_priv(dev);
0900     unsigned int i;
0901 
0902     /* Base system clock is 125Mhz, DMA timeout is this reference clock
0903      * divided by 1024, which yields roughly 8.192us, our maximum value
0904      * has to fit in the DMA_TIMEOUT_MASK (16 bits)
0905      */
0906     if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
0907         ec->tx_max_coalesced_frames == 0 ||
0908         ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
0909         ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
0910         return -EINVAL;
0911 
0912     if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
0913         return -EINVAL;
0914 
0915     /* GENET TDMA hardware does not support a configurable timeout, but will
0916      * always generate an interrupt either after MBDONE packets have been
0917      * transmitted, or when the ring is empty.
0918      */
0919 
0920     /* Program all TX queues with the same values, as there is no
0921      * ethtool knob to do coalescing on a per-queue basis
0922      */
0923     for (i = 0; i < priv->hw_params->tx_queues; i++)
0924         bcmgenet_tdma_ring_writel(priv, i,
0925                       ec->tx_max_coalesced_frames,
0926                       DMA_MBUF_DONE_THRESH);
0927     bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
0928                   ec->tx_max_coalesced_frames,
0929                   DMA_MBUF_DONE_THRESH);
0930 
0931     for (i = 0; i < priv->hw_params->rx_queues; i++)
0932         bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
0933     bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
0934 
0935     return 0;
0936 }
0937 
0938 static void bcmgenet_get_pauseparam(struct net_device *dev,
0939                     struct ethtool_pauseparam *epause)
0940 {
0941     struct bcmgenet_priv *priv;
0942     u32 umac_cmd;
0943 
0944     priv = netdev_priv(dev);
0945 
0946     epause->autoneg = priv->autoneg_pause;
0947 
0948     if (netif_carrier_ok(dev)) {
0949         /* report active state when link is up */
0950         umac_cmd = bcmgenet_umac_readl(priv, UMAC_CMD);
0951         epause->tx_pause = !(umac_cmd & CMD_TX_PAUSE_IGNORE);
0952         epause->rx_pause = !(umac_cmd & CMD_RX_PAUSE_IGNORE);
0953     } else {
0954         /* otherwise report stored settings */
0955         epause->tx_pause = priv->tx_pause;
0956         epause->rx_pause = priv->rx_pause;
0957     }
0958 }
0959 
0960 static int bcmgenet_set_pauseparam(struct net_device *dev,
0961                    struct ethtool_pauseparam *epause)
0962 {
0963     struct bcmgenet_priv *priv = netdev_priv(dev);
0964 
0965     if (!dev->phydev)
0966         return -ENODEV;
0967 
0968     if (!phy_validate_pause(dev->phydev, epause))
0969         return -EINVAL;
0970 
0971     priv->autoneg_pause = !!epause->autoneg;
0972     priv->tx_pause = !!epause->tx_pause;
0973     priv->rx_pause = !!epause->rx_pause;
0974 
0975     bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
0976 
0977     return 0;
0978 }
0979 
0980 /* standard ethtool support functions. */
0981 enum bcmgenet_stat_type {
0982     BCMGENET_STAT_NETDEV = -1,
0983     BCMGENET_STAT_MIB_RX,
0984     BCMGENET_STAT_MIB_TX,
0985     BCMGENET_STAT_RUNT,
0986     BCMGENET_STAT_MISC,
0987     BCMGENET_STAT_SOFT,
0988 };
0989 
0990 struct bcmgenet_stats {
0991     char stat_string[ETH_GSTRING_LEN];
0992     int stat_sizeof;
0993     int stat_offset;
0994     enum bcmgenet_stat_type type;
0995     /* reg offset from UMAC base for misc counters */
0996     u16 reg_offset;
0997 };
0998 
0999 #define STAT_NETDEV(m) { \
1000     .stat_string = __stringify(m), \
1001     .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
1002     .stat_offset = offsetof(struct net_device_stats, m), \
1003     .type = BCMGENET_STAT_NETDEV, \
1004 }
1005 
1006 #define STAT_GENET_MIB(str, m, _type) { \
1007     .stat_string = str, \
1008     .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
1009     .stat_offset = offsetof(struct bcmgenet_priv, m), \
1010     .type = _type, \
1011 }
1012 
1013 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
1014 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
1015 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
1016 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
1017 
1018 #define STAT_GENET_MISC(str, m, offset) { \
1019     .stat_string = str, \
1020     .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
1021     .stat_offset = offsetof(struct bcmgenet_priv, m), \
1022     .type = BCMGENET_STAT_MISC, \
1023     .reg_offset = offset, \
1024 }
1025 
1026 #define STAT_GENET_Q(num) \
1027     STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
1028             tx_rings[num].packets), \
1029     STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
1030             tx_rings[num].bytes), \
1031     STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
1032             rx_rings[num].bytes),    \
1033     STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
1034             rx_rings[num].packets), \
1035     STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
1036             rx_rings[num].errors), \
1037     STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
1038             rx_rings[num].dropped)
1039 
1040 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
1041  * between the end of TX stats and the beginning of the RX RUNT
1042  */
1043 #define BCMGENET_STAT_OFFSET    0xc
1044 
1045 /* Hardware counters must be kept in sync because the order/offset
1046  * is important here (order in structure declaration = order in hardware)
1047  */
1048 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1049     /* general stats */
1050     STAT_NETDEV(rx_packets),
1051     STAT_NETDEV(tx_packets),
1052     STAT_NETDEV(rx_bytes),
1053     STAT_NETDEV(tx_bytes),
1054     STAT_NETDEV(rx_errors),
1055     STAT_NETDEV(tx_errors),
1056     STAT_NETDEV(rx_dropped),
1057     STAT_NETDEV(tx_dropped),
1058     STAT_NETDEV(multicast),
1059     /* UniMAC RSV counters */
1060     STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1061     STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1062     STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1063     STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1064     STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1065     STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1066     STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1067     STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1068     STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1069     STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1070     STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1071     STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1072     STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1073     STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1074     STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1075     STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1076     STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1077     STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1078     STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1079     STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1080     STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1081     STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1082     STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1083     STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1084     STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1085     STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1086     STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1087     STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1088     STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1089     /* UniMAC TSV counters */
1090     STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1091     STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1092     STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1093     STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1094     STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1095     STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1096     STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1097     STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1098     STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1099     STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1100     STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1101     STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1102     STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1103     STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1104     STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1105     STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1106     STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1107     STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1108     STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1109     STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1110     STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1111     STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1112     STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1113     STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1114     STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1115     STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1116     STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1117     STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1118     STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1119     /* UniMAC RUNT counters */
1120     STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1121     STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1122     STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1123     STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1124     /* Misc UniMAC counters */
1125     STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1126             UMAC_RBUF_OVFL_CNT_V1),
1127     STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1128             UMAC_RBUF_ERR_CNT_V1),
1129     STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1130     STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1131     STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1132     STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1133     STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1134     STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1135                 mib.tx_realloc_tsb_failed),
1136     /* Per TX queues */
1137     STAT_GENET_Q(0),
1138     STAT_GENET_Q(1),
1139     STAT_GENET_Q(2),
1140     STAT_GENET_Q(3),
1141     STAT_GENET_Q(16),
1142 };
1143 
1144 #define BCMGENET_STATS_LEN  ARRAY_SIZE(bcmgenet_gstrings_stats)
1145 
1146 static void bcmgenet_get_drvinfo(struct net_device *dev,
1147                  struct ethtool_drvinfo *info)
1148 {
1149     strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
1150 }
1151 
1152 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1153 {
1154     switch (string_set) {
1155     case ETH_SS_STATS:
1156         return BCMGENET_STATS_LEN;
1157     default:
1158         return -EOPNOTSUPP;
1159     }
1160 }
1161 
1162 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1163                  u8 *data)
1164 {
1165     int i;
1166 
1167     switch (stringset) {
1168     case ETH_SS_STATS:
1169         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1170             memcpy(data + i * ETH_GSTRING_LEN,
1171                    bcmgenet_gstrings_stats[i].stat_string,
1172                    ETH_GSTRING_LEN);
1173         }
1174         break;
1175     }
1176 }
1177 
1178 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1179 {
1180     u16 new_offset;
1181     u32 val;
1182 
1183     switch (offset) {
1184     case UMAC_RBUF_OVFL_CNT_V1:
1185         if (GENET_IS_V2(priv))
1186             new_offset = RBUF_OVFL_CNT_V2;
1187         else
1188             new_offset = RBUF_OVFL_CNT_V3PLUS;
1189 
1190         val = bcmgenet_rbuf_readl(priv, new_offset);
1191         /* clear if overflowed */
1192         if (val == ~0)
1193             bcmgenet_rbuf_writel(priv, 0, new_offset);
1194         break;
1195     case UMAC_RBUF_ERR_CNT_V1:
1196         if (GENET_IS_V2(priv))
1197             new_offset = RBUF_ERR_CNT_V2;
1198         else
1199             new_offset = RBUF_ERR_CNT_V3PLUS;
1200 
1201         val = bcmgenet_rbuf_readl(priv, new_offset);
1202         /* clear if overflowed */
1203         if (val == ~0)
1204             bcmgenet_rbuf_writel(priv, 0, new_offset);
1205         break;
1206     default:
1207         val = bcmgenet_umac_readl(priv, offset);
1208         /* clear if overflowed */
1209         if (val == ~0)
1210             bcmgenet_umac_writel(priv, 0, offset);
1211         break;
1212     }
1213 
1214     return val;
1215 }
1216 
1217 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1218 {
1219     int i, j = 0;
1220 
1221     for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1222         const struct bcmgenet_stats *s;
1223         u8 offset = 0;
1224         u32 val = 0;
1225         char *p;
1226 
1227         s = &bcmgenet_gstrings_stats[i];
1228         switch (s->type) {
1229         case BCMGENET_STAT_NETDEV:
1230         case BCMGENET_STAT_SOFT:
1231             continue;
1232         case BCMGENET_STAT_RUNT:
1233             offset += BCMGENET_STAT_OFFSET;
1234             fallthrough;
1235         case BCMGENET_STAT_MIB_TX:
1236             offset += BCMGENET_STAT_OFFSET;
1237             fallthrough;
1238         case BCMGENET_STAT_MIB_RX:
1239             val = bcmgenet_umac_readl(priv,
1240                           UMAC_MIB_START + j + offset);
1241             offset = 0; /* Reset Offset */
1242             break;
1243         case BCMGENET_STAT_MISC:
1244             if (GENET_IS_V1(priv)) {
1245                 val = bcmgenet_umac_readl(priv, s->reg_offset);
1246                 /* clear if overflowed */
1247                 if (val == ~0)
1248                     bcmgenet_umac_writel(priv, 0,
1249                                  s->reg_offset);
1250             } else {
1251                 val = bcmgenet_update_stat_misc(priv,
1252                                 s->reg_offset);
1253             }
1254             break;
1255         }
1256 
1257         j += s->stat_sizeof;
1258         p = (char *)priv + s->stat_offset;
1259         *(u32 *)p = val;
1260     }
1261 }
1262 
1263 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1264                        struct ethtool_stats *stats,
1265                        u64 *data)
1266 {
1267     struct bcmgenet_priv *priv = netdev_priv(dev);
1268     int i;
1269 
1270     if (netif_running(dev))
1271         bcmgenet_update_mib_counters(priv);
1272 
1273     dev->netdev_ops->ndo_get_stats(dev);
1274 
1275     for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1276         const struct bcmgenet_stats *s;
1277         char *p;
1278 
1279         s = &bcmgenet_gstrings_stats[i];
1280         if (s->type == BCMGENET_STAT_NETDEV)
1281             p = (char *)&dev->stats;
1282         else
1283             p = (char *)priv;
1284         p += s->stat_offset;
1285         if (sizeof(unsigned long) != sizeof(u32) &&
1286             s->stat_sizeof == sizeof(unsigned long))
1287             data[i] = *(unsigned long *)p;
1288         else
1289             data[i] = *(u32 *)p;
1290     }
1291 }
1292 
1293 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1294 {
1295     struct bcmgenet_priv *priv = netdev_priv(dev);
1296     u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1297     u32 reg;
1298 
1299     if (enable && !priv->clk_eee_enabled) {
1300         clk_prepare_enable(priv->clk_eee);
1301         priv->clk_eee_enabled = true;
1302     }
1303 
1304     reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1305     if (enable)
1306         reg |= EEE_EN;
1307     else
1308         reg &= ~EEE_EN;
1309     bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1310 
1311     /* Enable EEE and switch to a 27Mhz clock automatically */
1312     reg = bcmgenet_readl(priv->base + off);
1313     if (enable)
1314         reg |= TBUF_EEE_EN | TBUF_PM_EN;
1315     else
1316         reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1317     bcmgenet_writel(reg, priv->base + off);
1318 
1319     /* Do the same for thing for RBUF */
1320     reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1321     if (enable)
1322         reg |= RBUF_EEE_EN | RBUF_PM_EN;
1323     else
1324         reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1325     bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1326 
1327     if (!enable && priv->clk_eee_enabled) {
1328         clk_disable_unprepare(priv->clk_eee);
1329         priv->clk_eee_enabled = false;
1330     }
1331 
1332     priv->eee.eee_enabled = enable;
1333     priv->eee.eee_active = enable;
1334 }
1335 
1336 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1337 {
1338     struct bcmgenet_priv *priv = netdev_priv(dev);
1339     struct ethtool_eee *p = &priv->eee;
1340 
1341     if (GENET_IS_V1(priv))
1342         return -EOPNOTSUPP;
1343 
1344     if (!dev->phydev)
1345         return -ENODEV;
1346 
1347     e->eee_enabled = p->eee_enabled;
1348     e->eee_active = p->eee_active;
1349     e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1350 
1351     return phy_ethtool_get_eee(dev->phydev, e);
1352 }
1353 
1354 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1355 {
1356     struct bcmgenet_priv *priv = netdev_priv(dev);
1357     struct ethtool_eee *p = &priv->eee;
1358     int ret = 0;
1359 
1360     if (GENET_IS_V1(priv))
1361         return -EOPNOTSUPP;
1362 
1363     if (!dev->phydev)
1364         return -ENODEV;
1365 
1366     p->eee_enabled = e->eee_enabled;
1367 
1368     if (!p->eee_enabled) {
1369         bcmgenet_eee_enable_set(dev, false);
1370     } else {
1371         ret = phy_init_eee(dev->phydev, false);
1372         if (ret) {
1373             netif_err(priv, hw, dev, "EEE initialization failed\n");
1374             return ret;
1375         }
1376 
1377         bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1378         bcmgenet_eee_enable_set(dev, true);
1379     }
1380 
1381     return phy_ethtool_set_eee(dev->phydev, e);
1382 }
1383 
1384 static int bcmgenet_validate_flow(struct net_device *dev,
1385                   struct ethtool_rxnfc *cmd)
1386 {
1387     struct ethtool_usrip4_spec *l4_mask;
1388     struct ethhdr *eth_mask;
1389 
1390     if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) {
1391         netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1392                cmd->fs.location);
1393         return -EINVAL;
1394     }
1395 
1396     switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1397     case IP_USER_FLOW:
1398         l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1399         /* don't allow mask which isn't valid */
1400         if (VALIDATE_MASK(l4_mask->ip4src) ||
1401             VALIDATE_MASK(l4_mask->ip4dst) ||
1402             VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1403             VALIDATE_MASK(l4_mask->proto) ||
1404             VALIDATE_MASK(l4_mask->ip_ver) ||
1405             VALIDATE_MASK(l4_mask->tos)) {
1406             netdev_err(dev, "rxnfc: Unsupported mask\n");
1407             return -EINVAL;
1408         }
1409         break;
1410     case ETHER_FLOW:
1411         eth_mask = &cmd->fs.m_u.ether_spec;
1412         /* don't allow mask which isn't valid */
1413         if (VALIDATE_MASK(eth_mask->h_dest) ||
1414             VALIDATE_MASK(eth_mask->h_source) ||
1415             VALIDATE_MASK(eth_mask->h_proto)) {
1416             netdev_err(dev, "rxnfc: Unsupported mask\n");
1417             return -EINVAL;
1418         }
1419         break;
1420     default:
1421         netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1422                cmd->fs.flow_type);
1423         return -EINVAL;
1424     }
1425 
1426     if ((cmd->fs.flow_type & FLOW_EXT)) {
1427         /* don't allow mask which isn't valid */
1428         if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1429             VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1430             netdev_err(dev, "rxnfc: Unsupported mask\n");
1431             return -EINVAL;
1432         }
1433         if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1434             netdev_err(dev, "rxnfc: user-def not supported\n");
1435             return -EINVAL;
1436         }
1437     }
1438 
1439     if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1440         /* don't allow mask which isn't valid */
1441         if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1442             netdev_err(dev, "rxnfc: Unsupported mask\n");
1443             return -EINVAL;
1444         }
1445     }
1446 
1447     return 0;
1448 }
1449 
1450 static int bcmgenet_insert_flow(struct net_device *dev,
1451                 struct ethtool_rxnfc *cmd)
1452 {
1453     struct bcmgenet_priv *priv = netdev_priv(dev);
1454     struct bcmgenet_rxnfc_rule *loc_rule;
1455     int err;
1456 
1457     if (priv->hw_params->hfb_filter_size < 128) {
1458         netdev_err(dev, "rxnfc: Not supported by this device\n");
1459         return -EINVAL;
1460     }
1461 
1462     if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1463         cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1464         netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1465                cmd->fs.ring_cookie);
1466         return -EINVAL;
1467     }
1468 
1469     err = bcmgenet_validate_flow(dev, cmd);
1470     if (err)
1471         return err;
1472 
1473     loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1474     if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1475         bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1476     if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1477         list_del(&loc_rule->list);
1478         bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1479     }
1480     loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1481     memcpy(&loc_rule->fs, &cmd->fs,
1482            sizeof(struct ethtool_rx_flow_spec));
1483 
1484     bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1485 
1486     list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1487 
1488     return 0;
1489 }
1490 
1491 static int bcmgenet_delete_flow(struct net_device *dev,
1492                 struct ethtool_rxnfc *cmd)
1493 {
1494     struct bcmgenet_priv *priv = netdev_priv(dev);
1495     struct bcmgenet_rxnfc_rule *rule;
1496     int err = 0;
1497 
1498     if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1499         return -EINVAL;
1500 
1501     rule = &priv->rxnfc_rules[cmd->fs.location];
1502     if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1503         err =  -ENOENT;
1504         goto out;
1505     }
1506 
1507     if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1508         bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1509     if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1510         list_del(&rule->list);
1511         bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1512     }
1513     rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1514     memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1515 
1516 out:
1517     return err;
1518 }
1519 
1520 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1521 {
1522     struct bcmgenet_priv *priv = netdev_priv(dev);
1523     int err = 0;
1524 
1525     switch (cmd->cmd) {
1526     case ETHTOOL_SRXCLSRLINS:
1527         err = bcmgenet_insert_flow(dev, cmd);
1528         break;
1529     case ETHTOOL_SRXCLSRLDEL:
1530         err = bcmgenet_delete_flow(dev, cmd);
1531         break;
1532     default:
1533         netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1534                 cmd->cmd);
1535         return -EINVAL;
1536     }
1537 
1538     return err;
1539 }
1540 
1541 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1542                  int loc)
1543 {
1544     struct bcmgenet_priv *priv = netdev_priv(dev);
1545     struct bcmgenet_rxnfc_rule *rule;
1546     int err = 0;
1547 
1548     if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1549         return -EINVAL;
1550 
1551     rule = &priv->rxnfc_rules[loc];
1552     if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1553         err = -ENOENT;
1554     else
1555         memcpy(&cmd->fs, &rule->fs,
1556                sizeof(struct ethtool_rx_flow_spec));
1557 
1558     return err;
1559 }
1560 
1561 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1562 {
1563     struct list_head *pos;
1564     int res = 0;
1565 
1566     list_for_each(pos, &priv->rxnfc_list)
1567         res++;
1568 
1569     return res;
1570 }
1571 
1572 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1573                   u32 *rule_locs)
1574 {
1575     struct bcmgenet_priv *priv = netdev_priv(dev);
1576     struct bcmgenet_rxnfc_rule *rule;
1577     int err = 0;
1578     int i = 0;
1579 
1580     switch (cmd->cmd) {
1581     case ETHTOOL_GRXRINGS:
1582         cmd->data = priv->hw_params->rx_queues ?: 1;
1583         break;
1584     case ETHTOOL_GRXCLSRLCNT:
1585         cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1586         cmd->data = MAX_NUM_OF_FS_RULES;
1587         break;
1588     case ETHTOOL_GRXCLSRULE:
1589         err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1590         break;
1591     case ETHTOOL_GRXCLSRLALL:
1592         list_for_each_entry(rule, &priv->rxnfc_list, list)
1593             if (i < cmd->rule_cnt)
1594                 rule_locs[i++] = rule->fs.location;
1595         cmd->rule_cnt = i;
1596         cmd->data = MAX_NUM_OF_FS_RULES;
1597         break;
1598     default:
1599         err = -EOPNOTSUPP;
1600         break;
1601     }
1602 
1603     return err;
1604 }
1605 
1606 /* standard ethtool support functions. */
1607 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1608     .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1609                      ETHTOOL_COALESCE_MAX_FRAMES |
1610                      ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1611     .begin          = bcmgenet_begin,
1612     .complete       = bcmgenet_complete,
1613     .get_strings        = bcmgenet_get_strings,
1614     .get_sset_count     = bcmgenet_get_sset_count,
1615     .get_ethtool_stats  = bcmgenet_get_ethtool_stats,
1616     .get_drvinfo        = bcmgenet_get_drvinfo,
1617     .get_link       = ethtool_op_get_link,
1618     .get_msglevel       = bcmgenet_get_msglevel,
1619     .set_msglevel       = bcmgenet_set_msglevel,
1620     .get_wol        = bcmgenet_get_wol,
1621     .set_wol        = bcmgenet_set_wol,
1622     .get_eee        = bcmgenet_get_eee,
1623     .set_eee        = bcmgenet_set_eee,
1624     .nway_reset     = phy_ethtool_nway_reset,
1625     .get_coalesce       = bcmgenet_get_coalesce,
1626     .set_coalesce       = bcmgenet_set_coalesce,
1627     .get_link_ksettings = bcmgenet_get_link_ksettings,
1628     .set_link_ksettings = bcmgenet_set_link_ksettings,
1629     .get_ts_info        = ethtool_op_get_ts_info,
1630     .get_rxnfc      = bcmgenet_get_rxnfc,
1631     .set_rxnfc      = bcmgenet_set_rxnfc,
1632     .get_pauseparam     = bcmgenet_get_pauseparam,
1633     .set_pauseparam     = bcmgenet_set_pauseparam,
1634 };
1635 
1636 /* Power down the unimac, based on mode. */
1637 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1638                 enum bcmgenet_power_mode mode)
1639 {
1640     int ret = 0;
1641     u32 reg;
1642 
1643     switch (mode) {
1644     case GENET_POWER_CABLE_SENSE:
1645         phy_detach(priv->dev->phydev);
1646         break;
1647 
1648     case GENET_POWER_WOL_MAGIC:
1649         ret = bcmgenet_wol_power_down_cfg(priv, mode);
1650         break;
1651 
1652     case GENET_POWER_PASSIVE:
1653         /* Power down LED */
1654         if (priv->hw_params->flags & GENET_HAS_EXT) {
1655             reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1656             if (GENET_IS_V5(priv) && !priv->ephy_16nm)
1657                 reg |= EXT_PWR_DOWN_PHY_EN |
1658                        EXT_PWR_DOWN_PHY_RD |
1659                        EXT_PWR_DOWN_PHY_SD |
1660                        EXT_PWR_DOWN_PHY_RX |
1661                        EXT_PWR_DOWN_PHY_TX |
1662                        EXT_IDDQ_GLBL_PWR;
1663             else
1664                 reg |= EXT_PWR_DOWN_PHY;
1665 
1666             reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1667             bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1668 
1669             bcmgenet_phy_power_set(priv->dev, false);
1670         }
1671         break;
1672     default:
1673         break;
1674     }
1675 
1676     return ret;
1677 }
1678 
1679 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1680                   enum bcmgenet_power_mode mode)
1681 {
1682     u32 reg;
1683 
1684     if (!(priv->hw_params->flags & GENET_HAS_EXT))
1685         return;
1686 
1687     reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1688 
1689     switch (mode) {
1690     case GENET_POWER_PASSIVE:
1691         reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS |
1692              EXT_ENERGY_DET_MASK);
1693         if (GENET_IS_V5(priv) && !priv->ephy_16nm) {
1694             reg &= ~(EXT_PWR_DOWN_PHY_EN |
1695                  EXT_PWR_DOWN_PHY_RD |
1696                  EXT_PWR_DOWN_PHY_SD |
1697                  EXT_PWR_DOWN_PHY_RX |
1698                  EXT_PWR_DOWN_PHY_TX |
1699                  EXT_IDDQ_GLBL_PWR);
1700             reg |=   EXT_PHY_RESET;
1701             bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1702             mdelay(1);
1703 
1704             reg &=  ~EXT_PHY_RESET;
1705         } else {
1706             reg &= ~EXT_PWR_DOWN_PHY;
1707             reg |= EXT_PWR_DN_EN_LD;
1708         }
1709         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1710         bcmgenet_phy_power_set(priv->dev, true);
1711         break;
1712 
1713     case GENET_POWER_CABLE_SENSE:
1714         /* enable APD */
1715         if (!GENET_IS_V5(priv)) {
1716             reg |= EXT_PWR_DN_EN_LD;
1717             bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1718         }
1719         break;
1720     case GENET_POWER_WOL_MAGIC:
1721         bcmgenet_wol_power_up_cfg(priv, mode);
1722         return;
1723     default:
1724         break;
1725     }
1726 }
1727 
1728 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1729                      struct bcmgenet_tx_ring *ring)
1730 {
1731     struct enet_cb *tx_cb_ptr;
1732 
1733     tx_cb_ptr = ring->cbs;
1734     tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1735 
1736     /* Advancing local write pointer */
1737     if (ring->write_ptr == ring->end_ptr)
1738         ring->write_ptr = ring->cb_ptr;
1739     else
1740         ring->write_ptr++;
1741 
1742     return tx_cb_ptr;
1743 }
1744 
1745 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1746                      struct bcmgenet_tx_ring *ring)
1747 {
1748     struct enet_cb *tx_cb_ptr;
1749 
1750     tx_cb_ptr = ring->cbs;
1751     tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1752 
1753     /* Rewinding local write pointer */
1754     if (ring->write_ptr == ring->cb_ptr)
1755         ring->write_ptr = ring->end_ptr;
1756     else
1757         ring->write_ptr--;
1758 
1759     return tx_cb_ptr;
1760 }
1761 
1762 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1763 {
1764     bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1765                  INTRL2_CPU_MASK_SET);
1766 }
1767 
1768 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1769 {
1770     bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1771                  INTRL2_CPU_MASK_CLEAR);
1772 }
1773 
1774 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1775 {
1776     bcmgenet_intrl2_1_writel(ring->priv,
1777                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1778                  INTRL2_CPU_MASK_SET);
1779 }
1780 
1781 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1782 {
1783     bcmgenet_intrl2_1_writel(ring->priv,
1784                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1785                  INTRL2_CPU_MASK_CLEAR);
1786 }
1787 
1788 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1789 {
1790     bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1791                  INTRL2_CPU_MASK_SET);
1792 }
1793 
1794 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1795 {
1796     bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1797                  INTRL2_CPU_MASK_CLEAR);
1798 }
1799 
1800 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1801 {
1802     bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1803                  INTRL2_CPU_MASK_CLEAR);
1804 }
1805 
1806 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1807 {
1808     bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1809                  INTRL2_CPU_MASK_SET);
1810 }
1811 
1812 /* Simple helper to free a transmit control block's resources
1813  * Returns an skb when the last transmit control block associated with the
1814  * skb is freed.  The skb should be freed by the caller if necessary.
1815  */
1816 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1817                        struct enet_cb *cb)
1818 {
1819     struct sk_buff *skb;
1820 
1821     skb = cb->skb;
1822 
1823     if (skb) {
1824         cb->skb = NULL;
1825         if (cb == GENET_CB(skb)->first_cb)
1826             dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1827                      dma_unmap_len(cb, dma_len),
1828                      DMA_TO_DEVICE);
1829         else
1830             dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1831                        dma_unmap_len(cb, dma_len),
1832                        DMA_TO_DEVICE);
1833         dma_unmap_addr_set(cb, dma_addr, 0);
1834 
1835         if (cb == GENET_CB(skb)->last_cb)
1836             return skb;
1837 
1838     } else if (dma_unmap_addr(cb, dma_addr)) {
1839         dma_unmap_page(dev,
1840                    dma_unmap_addr(cb, dma_addr),
1841                    dma_unmap_len(cb, dma_len),
1842                    DMA_TO_DEVICE);
1843         dma_unmap_addr_set(cb, dma_addr, 0);
1844     }
1845 
1846     return NULL;
1847 }
1848 
1849 /* Simple helper to free a receive control block's resources */
1850 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1851                        struct enet_cb *cb)
1852 {
1853     struct sk_buff *skb;
1854 
1855     skb = cb->skb;
1856     cb->skb = NULL;
1857 
1858     if (dma_unmap_addr(cb, dma_addr)) {
1859         dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1860                  dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1861         dma_unmap_addr_set(cb, dma_addr, 0);
1862     }
1863 
1864     return skb;
1865 }
1866 
1867 /* Unlocked version of the reclaim routine */
1868 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1869                       struct bcmgenet_tx_ring *ring)
1870 {
1871     struct bcmgenet_priv *priv = netdev_priv(dev);
1872     unsigned int txbds_processed = 0;
1873     unsigned int bytes_compl = 0;
1874     unsigned int pkts_compl = 0;
1875     unsigned int txbds_ready;
1876     unsigned int c_index;
1877     struct sk_buff *skb;
1878 
1879     /* Clear status before servicing to reduce spurious interrupts */
1880     if (ring->index == DESC_INDEX)
1881         bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1882                      INTRL2_CPU_CLEAR);
1883     else
1884         bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1885                      INTRL2_CPU_CLEAR);
1886 
1887     /* Compute how many buffers are transmitted since last xmit call */
1888     c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1889         & DMA_C_INDEX_MASK;
1890     txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1891 
1892     netif_dbg(priv, tx_done, dev,
1893           "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1894           __func__, ring->index, ring->c_index, c_index, txbds_ready);
1895 
1896     /* Reclaim transmitted buffers */
1897     while (txbds_processed < txbds_ready) {
1898         skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1899                       &priv->tx_cbs[ring->clean_ptr]);
1900         if (skb) {
1901             pkts_compl++;
1902             bytes_compl += GENET_CB(skb)->bytes_sent;
1903             dev_consume_skb_any(skb);
1904         }
1905 
1906         txbds_processed++;
1907         if (likely(ring->clean_ptr < ring->end_ptr))
1908             ring->clean_ptr++;
1909         else
1910             ring->clean_ptr = ring->cb_ptr;
1911     }
1912 
1913     ring->free_bds += txbds_processed;
1914     ring->c_index = c_index;
1915 
1916     ring->packets += pkts_compl;
1917     ring->bytes += bytes_compl;
1918 
1919     netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1920                   pkts_compl, bytes_compl);
1921 
1922     return txbds_processed;
1923 }
1924 
1925 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1926                 struct bcmgenet_tx_ring *ring)
1927 {
1928     unsigned int released;
1929 
1930     spin_lock_bh(&ring->lock);
1931     released = __bcmgenet_tx_reclaim(dev, ring);
1932     spin_unlock_bh(&ring->lock);
1933 
1934     return released;
1935 }
1936 
1937 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1938 {
1939     struct bcmgenet_tx_ring *ring =
1940         container_of(napi, struct bcmgenet_tx_ring, napi);
1941     unsigned int work_done = 0;
1942     struct netdev_queue *txq;
1943 
1944     spin_lock(&ring->lock);
1945     work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1946     if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1947         txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1948         netif_tx_wake_queue(txq);
1949     }
1950     spin_unlock(&ring->lock);
1951 
1952     if (work_done == 0) {
1953         napi_complete(napi);
1954         ring->int_enable(ring);
1955 
1956         return 0;
1957     }
1958 
1959     return budget;
1960 }
1961 
1962 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1963 {
1964     struct bcmgenet_priv *priv = netdev_priv(dev);
1965     int i;
1966 
1967     if (netif_is_multiqueue(dev)) {
1968         for (i = 0; i < priv->hw_params->tx_queues; i++)
1969             bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1970     }
1971 
1972     bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1973 }
1974 
1975 /* Reallocate the SKB to put enough headroom in front of it and insert
1976  * the transmit checksum offsets in the descriptors
1977  */
1978 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1979                     struct sk_buff *skb)
1980 {
1981     struct bcmgenet_priv *priv = netdev_priv(dev);
1982     struct status_64 *status = NULL;
1983     struct sk_buff *new_skb;
1984     u16 offset;
1985     u8 ip_proto;
1986     __be16 ip_ver;
1987     u32 tx_csum_info;
1988 
1989     if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1990         /* If 64 byte status block enabled, must make sure skb has
1991          * enough headroom for us to insert 64B status block.
1992          */
1993         new_skb = skb_realloc_headroom(skb, sizeof(*status));
1994         if (!new_skb) {
1995             dev_kfree_skb_any(skb);
1996             priv->mib.tx_realloc_tsb_failed++;
1997             dev->stats.tx_dropped++;
1998             return NULL;
1999         }
2000         dev_consume_skb_any(skb);
2001         skb = new_skb;
2002         priv->mib.tx_realloc_tsb++;
2003     }
2004 
2005     skb_push(skb, sizeof(*status));
2006     status = (struct status_64 *)skb->data;
2007 
2008     if (skb->ip_summed  == CHECKSUM_PARTIAL) {
2009         ip_ver = skb->protocol;
2010         switch (ip_ver) {
2011         case htons(ETH_P_IP):
2012             ip_proto = ip_hdr(skb)->protocol;
2013             break;
2014         case htons(ETH_P_IPV6):
2015             ip_proto = ipv6_hdr(skb)->nexthdr;
2016             break;
2017         default:
2018             /* don't use UDP flag */
2019             ip_proto = 0;
2020             break;
2021         }
2022 
2023         offset = skb_checksum_start_offset(skb) - sizeof(*status);
2024         tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
2025                 (offset + skb->csum_offset) |
2026                 STATUS_TX_CSUM_LV;
2027 
2028         /* Set the special UDP flag for UDP */
2029         if (ip_proto == IPPROTO_UDP)
2030             tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
2031 
2032         status->tx_csum_info = tx_csum_info;
2033     }
2034 
2035     return skb;
2036 }
2037 
2038 static void bcmgenet_hide_tsb(struct sk_buff *skb)
2039 {
2040     __skb_pull(skb, sizeof(struct status_64));
2041 }
2042 
2043 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
2044 {
2045     struct bcmgenet_priv *priv = netdev_priv(dev);
2046     struct device *kdev = &priv->pdev->dev;
2047     struct bcmgenet_tx_ring *ring = NULL;
2048     struct enet_cb *tx_cb_ptr;
2049     struct netdev_queue *txq;
2050     int nr_frags, index;
2051     dma_addr_t mapping;
2052     unsigned int size;
2053     skb_frag_t *frag;
2054     u32 len_stat;
2055     int ret;
2056     int i;
2057 
2058     index = skb_get_queue_mapping(skb);
2059     /* Mapping strategy:
2060      * queue_mapping = 0, unclassified, packet xmited through ring16
2061      * queue_mapping = 1, goes to ring 0. (highest priority queue
2062      * queue_mapping = 2, goes to ring 1.
2063      * queue_mapping = 3, goes to ring 2.
2064      * queue_mapping = 4, goes to ring 3.
2065      */
2066     if (index == 0)
2067         index = DESC_INDEX;
2068     else
2069         index -= 1;
2070 
2071     ring = &priv->tx_rings[index];
2072     txq = netdev_get_tx_queue(dev, ring->queue);
2073 
2074     nr_frags = skb_shinfo(skb)->nr_frags;
2075 
2076     spin_lock(&ring->lock);
2077     if (ring->free_bds <= (nr_frags + 1)) {
2078         if (!netif_tx_queue_stopped(txq)) {
2079             netif_tx_stop_queue(txq);
2080             netdev_err(dev,
2081                    "%s: tx ring %d full when queue %d awake\n",
2082                    __func__, index, ring->queue);
2083         }
2084         ret = NETDEV_TX_BUSY;
2085         goto out;
2086     }
2087 
2088     /* Retain how many bytes will be sent on the wire, without TSB inserted
2089      * by transmit checksum offload
2090      */
2091     GENET_CB(skb)->bytes_sent = skb->len;
2092 
2093     /* add the Transmit Status Block */
2094     skb = bcmgenet_add_tsb(dev, skb);
2095     if (!skb) {
2096         ret = NETDEV_TX_OK;
2097         goto out;
2098     }
2099 
2100     for (i = 0; i <= nr_frags; i++) {
2101         tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2102 
2103         BUG_ON(!tx_cb_ptr);
2104 
2105         if (!i) {
2106             /* Transmit single SKB or head of fragment list */
2107             GENET_CB(skb)->first_cb = tx_cb_ptr;
2108             size = skb_headlen(skb);
2109             mapping = dma_map_single(kdev, skb->data, size,
2110                          DMA_TO_DEVICE);
2111         } else {
2112             /* xmit fragment */
2113             frag = &skb_shinfo(skb)->frags[i - 1];
2114             size = skb_frag_size(frag);
2115             mapping = skb_frag_dma_map(kdev, frag, 0, size,
2116                            DMA_TO_DEVICE);
2117         }
2118 
2119         ret = dma_mapping_error(kdev, mapping);
2120         if (ret) {
2121             priv->mib.tx_dma_failed++;
2122             netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2123             ret = NETDEV_TX_OK;
2124             goto out_unmap_frags;
2125         }
2126         dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2127         dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2128 
2129         tx_cb_ptr->skb = skb;
2130 
2131         len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2132                (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2133 
2134         /* Note: if we ever change from DMA_TX_APPEND_CRC below we
2135          * will need to restore software padding of "runt" packets
2136          */
2137         if (!i) {
2138             len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
2139             if (skb->ip_summed == CHECKSUM_PARTIAL)
2140                 len_stat |= DMA_TX_DO_CSUM;
2141         }
2142         if (i == nr_frags)
2143             len_stat |= DMA_EOP;
2144 
2145         dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2146     }
2147 
2148     GENET_CB(skb)->last_cb = tx_cb_ptr;
2149 
2150     bcmgenet_hide_tsb(skb);
2151     skb_tx_timestamp(skb);
2152 
2153     /* Decrement total BD count and advance our write pointer */
2154     ring->free_bds -= nr_frags + 1;
2155     ring->prod_index += nr_frags + 1;
2156     ring->prod_index &= DMA_P_INDEX_MASK;
2157 
2158     netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2159 
2160     if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2161         netif_tx_stop_queue(txq);
2162 
2163     if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2164         /* Packets are ready, update producer index */
2165         bcmgenet_tdma_ring_writel(priv, ring->index,
2166                       ring->prod_index, TDMA_PROD_INDEX);
2167 out:
2168     spin_unlock(&ring->lock);
2169 
2170     return ret;
2171 
2172 out_unmap_frags:
2173     /* Back up for failed control block mapping */
2174     bcmgenet_put_txcb(priv, ring);
2175 
2176     /* Unmap successfully mapped control blocks */
2177     while (i-- > 0) {
2178         tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2179         bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2180     }
2181 
2182     dev_kfree_skb(skb);
2183     goto out;
2184 }
2185 
2186 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2187                       struct enet_cb *cb)
2188 {
2189     struct device *kdev = &priv->pdev->dev;
2190     struct sk_buff *skb;
2191     struct sk_buff *rx_skb;
2192     dma_addr_t mapping;
2193 
2194     /* Allocate a new Rx skb */
2195     skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2196                  GFP_ATOMIC | __GFP_NOWARN);
2197     if (!skb) {
2198         priv->mib.alloc_rx_buff_failed++;
2199         netif_err(priv, rx_err, priv->dev,
2200               "%s: Rx skb allocation failed\n", __func__);
2201         return NULL;
2202     }
2203 
2204     /* DMA-map the new Rx skb */
2205     mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2206                  DMA_FROM_DEVICE);
2207     if (dma_mapping_error(kdev, mapping)) {
2208         priv->mib.rx_dma_failed++;
2209         dev_kfree_skb_any(skb);
2210         netif_err(priv, rx_err, priv->dev,
2211               "%s: Rx skb DMA mapping failed\n", __func__);
2212         return NULL;
2213     }
2214 
2215     /* Grab the current Rx skb from the ring and DMA-unmap it */
2216     rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2217 
2218     /* Put the new Rx skb on the ring */
2219     cb->skb = skb;
2220     dma_unmap_addr_set(cb, dma_addr, mapping);
2221     dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2222     dmadesc_set_addr(priv, cb->bd_addr, mapping);
2223 
2224     /* Return the current Rx skb to caller */
2225     return rx_skb;
2226 }
2227 
2228 /* bcmgenet_desc_rx - descriptor based rx process.
2229  * this could be called from bottom half, or from NAPI polling method.
2230  */
2231 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2232                      unsigned int budget)
2233 {
2234     struct bcmgenet_priv *priv = ring->priv;
2235     struct net_device *dev = priv->dev;
2236     struct enet_cb *cb;
2237     struct sk_buff *skb;
2238     u32 dma_length_status;
2239     unsigned long dma_flag;
2240     int len;
2241     unsigned int rxpktprocessed = 0, rxpkttoprocess;
2242     unsigned int bytes_processed = 0;
2243     unsigned int p_index, mask;
2244     unsigned int discards;
2245 
2246     /* Clear status before servicing to reduce spurious interrupts */
2247     if (ring->index == DESC_INDEX) {
2248         bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2249                      INTRL2_CPU_CLEAR);
2250     } else {
2251         mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2252         bcmgenet_intrl2_1_writel(priv,
2253                      mask,
2254                      INTRL2_CPU_CLEAR);
2255     }
2256 
2257     p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2258 
2259     discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2260            DMA_P_INDEX_DISCARD_CNT_MASK;
2261     if (discards > ring->old_discards) {
2262         discards = discards - ring->old_discards;
2263         ring->errors += discards;
2264         ring->old_discards += discards;
2265 
2266         /* Clear HW register when we reach 75% of maximum 0xFFFF */
2267         if (ring->old_discards >= 0xC000) {
2268             ring->old_discards = 0;
2269             bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2270                           RDMA_PROD_INDEX);
2271         }
2272     }
2273 
2274     p_index &= DMA_P_INDEX_MASK;
2275     rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2276 
2277     netif_dbg(priv, rx_status, dev,
2278           "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2279 
2280     while ((rxpktprocessed < rxpkttoprocess) &&
2281            (rxpktprocessed < budget)) {
2282         struct status_64 *status;
2283         __be16 rx_csum;
2284 
2285         cb = &priv->rx_cbs[ring->read_ptr];
2286         skb = bcmgenet_rx_refill(priv, cb);
2287 
2288         if (unlikely(!skb)) {
2289             ring->dropped++;
2290             goto next;
2291         }
2292 
2293         status = (struct status_64 *)skb->data;
2294         dma_length_status = status->length_status;
2295         if (dev->features & NETIF_F_RXCSUM) {
2296             rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2297             if (rx_csum) {
2298                 skb->csum = (__force __wsum)ntohs(rx_csum);
2299                 skb->ip_summed = CHECKSUM_COMPLETE;
2300             }
2301         }
2302 
2303         /* DMA flags and length are still valid no matter how
2304          * we got the Receive Status Vector (64B RSB or register)
2305          */
2306         dma_flag = dma_length_status & 0xffff;
2307         len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2308 
2309         netif_dbg(priv, rx_status, dev,
2310               "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2311               __func__, p_index, ring->c_index,
2312               ring->read_ptr, dma_length_status);
2313 
2314         if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2315             netif_err(priv, rx_status, dev,
2316                   "dropping fragmented packet!\n");
2317             ring->errors++;
2318             dev_kfree_skb_any(skb);
2319             goto next;
2320         }
2321 
2322         /* report errors */
2323         if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2324                         DMA_RX_OV |
2325                         DMA_RX_NO |
2326                         DMA_RX_LG |
2327                         DMA_RX_RXER))) {
2328             netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2329                   (unsigned int)dma_flag);
2330             if (dma_flag & DMA_RX_CRC_ERROR)
2331                 dev->stats.rx_crc_errors++;
2332             if (dma_flag & DMA_RX_OV)
2333                 dev->stats.rx_over_errors++;
2334             if (dma_flag & DMA_RX_NO)
2335                 dev->stats.rx_frame_errors++;
2336             if (dma_flag & DMA_RX_LG)
2337                 dev->stats.rx_length_errors++;
2338             dev->stats.rx_errors++;
2339             dev_kfree_skb_any(skb);
2340             goto next;
2341         } /* error packet */
2342 
2343         skb_put(skb, len);
2344 
2345         /* remove RSB and hardware 2bytes added for IP alignment */
2346         skb_pull(skb, 66);
2347         len -= 66;
2348 
2349         if (priv->crc_fwd_en) {
2350             skb_trim(skb, len - ETH_FCS_LEN);
2351             len -= ETH_FCS_LEN;
2352         }
2353 
2354         bytes_processed += len;
2355 
2356         /*Finish setting up the received SKB and send it to the kernel*/
2357         skb->protocol = eth_type_trans(skb, priv->dev);
2358         ring->packets++;
2359         ring->bytes += len;
2360         if (dma_flag & DMA_RX_MULT)
2361             dev->stats.multicast++;
2362 
2363         /* Notify kernel */
2364         napi_gro_receive(&ring->napi, skb);
2365         netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2366 
2367 next:
2368         rxpktprocessed++;
2369         if (likely(ring->read_ptr < ring->end_ptr))
2370             ring->read_ptr++;
2371         else
2372             ring->read_ptr = ring->cb_ptr;
2373 
2374         ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2375         bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2376     }
2377 
2378     ring->dim.bytes = bytes_processed;
2379     ring->dim.packets = rxpktprocessed;
2380 
2381     return rxpktprocessed;
2382 }
2383 
2384 /* Rx NAPI polling method */
2385 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2386 {
2387     struct bcmgenet_rx_ring *ring = container_of(napi,
2388             struct bcmgenet_rx_ring, napi);
2389     struct dim_sample dim_sample = {};
2390     unsigned int work_done;
2391 
2392     work_done = bcmgenet_desc_rx(ring, budget);
2393 
2394     if (work_done < budget) {
2395         napi_complete_done(napi, work_done);
2396         ring->int_enable(ring);
2397     }
2398 
2399     if (ring->dim.use_dim) {
2400         dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2401                   ring->dim.bytes, &dim_sample);
2402         net_dim(&ring->dim.dim, dim_sample);
2403     }
2404 
2405     return work_done;
2406 }
2407 
2408 static void bcmgenet_dim_work(struct work_struct *work)
2409 {
2410     struct dim *dim = container_of(work, struct dim, work);
2411     struct bcmgenet_net_dim *ndim =
2412             container_of(dim, struct bcmgenet_net_dim, dim);
2413     struct bcmgenet_rx_ring *ring =
2414             container_of(ndim, struct bcmgenet_rx_ring, dim);
2415     struct dim_cq_moder cur_profile =
2416             net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2417 
2418     bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2419     dim->state = DIM_START_MEASURE;
2420 }
2421 
2422 /* Assign skb to RX DMA descriptor. */
2423 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2424                      struct bcmgenet_rx_ring *ring)
2425 {
2426     struct enet_cb *cb;
2427     struct sk_buff *skb;
2428     int i;
2429 
2430     netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2431 
2432     /* loop here for each buffer needing assign */
2433     for (i = 0; i < ring->size; i++) {
2434         cb = ring->cbs + i;
2435         skb = bcmgenet_rx_refill(priv, cb);
2436         if (skb)
2437             dev_consume_skb_any(skb);
2438         if (!cb->skb)
2439             return -ENOMEM;
2440     }
2441 
2442     return 0;
2443 }
2444 
2445 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2446 {
2447     struct sk_buff *skb;
2448     struct enet_cb *cb;
2449     int i;
2450 
2451     for (i = 0; i < priv->num_rx_bds; i++) {
2452         cb = &priv->rx_cbs[i];
2453 
2454         skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2455         if (skb)
2456             dev_consume_skb_any(skb);
2457     }
2458 }
2459 
2460 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2461 {
2462     u32 reg;
2463 
2464     reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2465     if (reg & CMD_SW_RESET)
2466         return;
2467     if (enable)
2468         reg |= mask;
2469     else
2470         reg &= ~mask;
2471     bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2472 
2473     /* UniMAC stops on a packet boundary, wait for a full-size packet
2474      * to be processed
2475      */
2476     if (enable == 0)
2477         usleep_range(1000, 2000);
2478 }
2479 
2480 static void reset_umac(struct bcmgenet_priv *priv)
2481 {
2482     /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2483     bcmgenet_rbuf_ctrl_set(priv, 0);
2484     udelay(10);
2485 
2486     /* issue soft reset and disable MAC while updating its registers */
2487     bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2488     udelay(2);
2489 }
2490 
2491 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2492 {
2493     /* Mask all interrupts.*/
2494     bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2495     bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2496     bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2497     bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2498 }
2499 
2500 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2501 {
2502     u32 int0_enable = 0;
2503 
2504     /* Monitor cable plug/unplugged event for internal PHY, external PHY
2505      * and MoCA PHY
2506      */
2507     if (priv->internal_phy) {
2508         int0_enable |= UMAC_IRQ_LINK_EVENT;
2509         if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2510             int0_enable |= UMAC_IRQ_PHY_DET_R;
2511     } else if (priv->ext_phy) {
2512         int0_enable |= UMAC_IRQ_LINK_EVENT;
2513     } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2514         if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2515             int0_enable |= UMAC_IRQ_LINK_EVENT;
2516     }
2517     bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2518 }
2519 
2520 static void init_umac(struct bcmgenet_priv *priv)
2521 {
2522     struct device *kdev = &priv->pdev->dev;
2523     u32 reg;
2524     u32 int0_enable = 0;
2525 
2526     dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2527 
2528     reset_umac(priv);
2529 
2530     /* clear tx/rx counter */
2531     bcmgenet_umac_writel(priv,
2532                  MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2533                  UMAC_MIB_CTRL);
2534     bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2535 
2536     bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2537 
2538     /* init tx registers, enable TSB */
2539     reg = bcmgenet_tbuf_ctrl_get(priv);
2540     reg |= TBUF_64B_EN;
2541     bcmgenet_tbuf_ctrl_set(priv, reg);
2542 
2543     /* init rx registers, enable ip header optimization and RSB */
2544     reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2545     reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2546     bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2547 
2548     /* enable rx checksumming */
2549     reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2550     reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2551     /* If UniMAC forwards CRC, we need to skip over it to get
2552      * a valid CHK bit to be set in the per-packet status word
2553      */
2554     if (priv->crc_fwd_en)
2555         reg |= RBUF_SKIP_FCS;
2556     else
2557         reg &= ~RBUF_SKIP_FCS;
2558     bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2559 
2560     if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2561         bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2562 
2563     bcmgenet_intr_disable(priv);
2564 
2565     /* Configure backpressure vectors for MoCA */
2566     if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2567         reg = bcmgenet_bp_mc_get(priv);
2568         reg |= BIT(priv->hw_params->bp_in_en_shift);
2569 
2570         /* bp_mask: back pressure mask */
2571         if (netif_is_multiqueue(priv->dev))
2572             reg |= priv->hw_params->bp_in_mask;
2573         else
2574             reg &= ~priv->hw_params->bp_in_mask;
2575         bcmgenet_bp_mc_set(priv, reg);
2576     }
2577 
2578     /* Enable MDIO interrupts on GENET v3+ */
2579     if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2580         int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2581 
2582     bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2583 
2584     dev_dbg(kdev, "done init umac\n");
2585 }
2586 
2587 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2588                   void (*cb)(struct work_struct *work))
2589 {
2590     struct bcmgenet_net_dim *dim = &ring->dim;
2591 
2592     INIT_WORK(&dim->dim.work, cb);
2593     dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2594     dim->event_ctr = 0;
2595     dim->packets = 0;
2596     dim->bytes = 0;
2597 }
2598 
2599 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2600 {
2601     struct bcmgenet_net_dim *dim = &ring->dim;
2602     struct dim_cq_moder moder;
2603     u32 usecs, pkts;
2604 
2605     usecs = ring->rx_coalesce_usecs;
2606     pkts = ring->rx_max_coalesced_frames;
2607 
2608     /* If DIM was enabled, re-apply default parameters */
2609     if (dim->use_dim) {
2610         moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2611         usecs = moder.usec;
2612         pkts = moder.pkts;
2613     }
2614 
2615     bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2616 }
2617 
2618 /* Initialize a Tx ring along with corresponding hardware registers */
2619 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2620                   unsigned int index, unsigned int size,
2621                   unsigned int start_ptr, unsigned int end_ptr)
2622 {
2623     struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2624     u32 words_per_bd = WORDS_PER_BD(priv);
2625     u32 flow_period_val = 0;
2626 
2627     spin_lock_init(&ring->lock);
2628     ring->priv = priv;
2629     ring->index = index;
2630     if (index == DESC_INDEX) {
2631         ring->queue = 0;
2632         ring->int_enable = bcmgenet_tx_ring16_int_enable;
2633         ring->int_disable = bcmgenet_tx_ring16_int_disable;
2634     } else {
2635         ring->queue = index + 1;
2636         ring->int_enable = bcmgenet_tx_ring_int_enable;
2637         ring->int_disable = bcmgenet_tx_ring_int_disable;
2638     }
2639     ring->cbs = priv->tx_cbs + start_ptr;
2640     ring->size = size;
2641     ring->clean_ptr = start_ptr;
2642     ring->c_index = 0;
2643     ring->free_bds = size;
2644     ring->write_ptr = start_ptr;
2645     ring->cb_ptr = start_ptr;
2646     ring->end_ptr = end_ptr - 1;
2647     ring->prod_index = 0;
2648 
2649     /* Set flow period for ring != 16 */
2650     if (index != DESC_INDEX)
2651         flow_period_val = ENET_MAX_MTU_SIZE << 16;
2652 
2653     bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2654     bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2655     bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2656     /* Disable rate control for now */
2657     bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2658                   TDMA_FLOW_PERIOD);
2659     bcmgenet_tdma_ring_writel(priv, index,
2660                   ((size << DMA_RING_SIZE_SHIFT) |
2661                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2662 
2663     /* Set start and end address, read and write pointers */
2664     bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2665                   DMA_START_ADDR);
2666     bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2667                   TDMA_READ_PTR);
2668     bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2669                   TDMA_WRITE_PTR);
2670     bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2671                   DMA_END_ADDR);
2672 
2673     /* Initialize Tx NAPI */
2674     netif_napi_add_tx(priv->dev, &ring->napi, bcmgenet_tx_poll);
2675 }
2676 
2677 /* Initialize a RDMA ring */
2678 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2679                  unsigned int index, unsigned int size,
2680                  unsigned int start_ptr, unsigned int end_ptr)
2681 {
2682     struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2683     u32 words_per_bd = WORDS_PER_BD(priv);
2684     int ret;
2685 
2686     ring->priv = priv;
2687     ring->index = index;
2688     if (index == DESC_INDEX) {
2689         ring->int_enable = bcmgenet_rx_ring16_int_enable;
2690         ring->int_disable = bcmgenet_rx_ring16_int_disable;
2691     } else {
2692         ring->int_enable = bcmgenet_rx_ring_int_enable;
2693         ring->int_disable = bcmgenet_rx_ring_int_disable;
2694     }
2695     ring->cbs = priv->rx_cbs + start_ptr;
2696     ring->size = size;
2697     ring->c_index = 0;
2698     ring->read_ptr = start_ptr;
2699     ring->cb_ptr = start_ptr;
2700     ring->end_ptr = end_ptr - 1;
2701 
2702     ret = bcmgenet_alloc_rx_buffers(priv, ring);
2703     if (ret)
2704         return ret;
2705 
2706     bcmgenet_init_dim(ring, bcmgenet_dim_work);
2707     bcmgenet_init_rx_coalesce(ring);
2708 
2709     /* Initialize Rx NAPI */
2710     netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2711                NAPI_POLL_WEIGHT);
2712 
2713     bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2714     bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2715     bcmgenet_rdma_ring_writel(priv, index,
2716                   ((size << DMA_RING_SIZE_SHIFT) |
2717                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2718     bcmgenet_rdma_ring_writel(priv, index,
2719                   (DMA_FC_THRESH_LO <<
2720                    DMA_XOFF_THRESHOLD_SHIFT) |
2721                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2722 
2723     /* Set start and end address, read and write pointers */
2724     bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2725                   DMA_START_ADDR);
2726     bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2727                   RDMA_READ_PTR);
2728     bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2729                   RDMA_WRITE_PTR);
2730     bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2731                   DMA_END_ADDR);
2732 
2733     return ret;
2734 }
2735 
2736 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2737 {
2738     unsigned int i;
2739     struct bcmgenet_tx_ring *ring;
2740 
2741     for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2742         ring = &priv->tx_rings[i];
2743         napi_enable(&ring->napi);
2744         ring->int_enable(ring);
2745     }
2746 
2747     ring = &priv->tx_rings[DESC_INDEX];
2748     napi_enable(&ring->napi);
2749     ring->int_enable(ring);
2750 }
2751 
2752 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2753 {
2754     unsigned int i;
2755     struct bcmgenet_tx_ring *ring;
2756 
2757     for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2758         ring = &priv->tx_rings[i];
2759         napi_disable(&ring->napi);
2760     }
2761 
2762     ring = &priv->tx_rings[DESC_INDEX];
2763     napi_disable(&ring->napi);
2764 }
2765 
2766 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2767 {
2768     unsigned int i;
2769     struct bcmgenet_tx_ring *ring;
2770 
2771     for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2772         ring = &priv->tx_rings[i];
2773         netif_napi_del(&ring->napi);
2774     }
2775 
2776     ring = &priv->tx_rings[DESC_INDEX];
2777     netif_napi_del(&ring->napi);
2778 }
2779 
2780 /* Initialize Tx queues
2781  *
2782  * Queues 0-3 are priority-based, each one has 32 descriptors,
2783  * with queue 0 being the highest priority queue.
2784  *
2785  * Queue 16 is the default Tx queue with
2786  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2787  *
2788  * The transmit control block pool is then partitioned as follows:
2789  * - Tx queue 0 uses tx_cbs[0..31]
2790  * - Tx queue 1 uses tx_cbs[32..63]
2791  * - Tx queue 2 uses tx_cbs[64..95]
2792  * - Tx queue 3 uses tx_cbs[96..127]
2793  * - Tx queue 16 uses tx_cbs[128..255]
2794  */
2795 static void bcmgenet_init_tx_queues(struct net_device *dev)
2796 {
2797     struct bcmgenet_priv *priv = netdev_priv(dev);
2798     u32 i, dma_enable;
2799     u32 dma_ctrl, ring_cfg;
2800     u32 dma_priority[3] = {0, 0, 0};
2801 
2802     dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2803     dma_enable = dma_ctrl & DMA_EN;
2804     dma_ctrl &= ~DMA_EN;
2805     bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2806 
2807     dma_ctrl = 0;
2808     ring_cfg = 0;
2809 
2810     /* Enable strict priority arbiter mode */
2811     bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2812 
2813     /* Initialize Tx priority queues */
2814     for (i = 0; i < priv->hw_params->tx_queues; i++) {
2815         bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2816                       i * priv->hw_params->tx_bds_per_q,
2817                       (i + 1) * priv->hw_params->tx_bds_per_q);
2818         ring_cfg |= (1 << i);
2819         dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2820         dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2821             ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2822     }
2823 
2824     /* Initialize Tx default queue 16 */
2825     bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2826                   priv->hw_params->tx_queues *
2827                   priv->hw_params->tx_bds_per_q,
2828                   TOTAL_DESC);
2829     ring_cfg |= (1 << DESC_INDEX);
2830     dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2831     dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2832         ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2833          DMA_PRIO_REG_SHIFT(DESC_INDEX));
2834 
2835     /* Set Tx queue priorities */
2836     bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2837     bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2838     bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2839 
2840     /* Enable Tx queues */
2841     bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2842 
2843     /* Enable Tx DMA */
2844     if (dma_enable)
2845         dma_ctrl |= DMA_EN;
2846     bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2847 }
2848 
2849 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2850 {
2851     unsigned int i;
2852     struct bcmgenet_rx_ring *ring;
2853 
2854     for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2855         ring = &priv->rx_rings[i];
2856         napi_enable(&ring->napi);
2857         ring->int_enable(ring);
2858     }
2859 
2860     ring = &priv->rx_rings[DESC_INDEX];
2861     napi_enable(&ring->napi);
2862     ring->int_enable(ring);
2863 }
2864 
2865 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2866 {
2867     unsigned int i;
2868     struct bcmgenet_rx_ring *ring;
2869 
2870     for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2871         ring = &priv->rx_rings[i];
2872         napi_disable(&ring->napi);
2873         cancel_work_sync(&ring->dim.dim.work);
2874     }
2875 
2876     ring = &priv->rx_rings[DESC_INDEX];
2877     napi_disable(&ring->napi);
2878     cancel_work_sync(&ring->dim.dim.work);
2879 }
2880 
2881 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2882 {
2883     unsigned int i;
2884     struct bcmgenet_rx_ring *ring;
2885 
2886     for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2887         ring = &priv->rx_rings[i];
2888         netif_napi_del(&ring->napi);
2889     }
2890 
2891     ring = &priv->rx_rings[DESC_INDEX];
2892     netif_napi_del(&ring->napi);
2893 }
2894 
2895 /* Initialize Rx queues
2896  *
2897  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2898  * used to direct traffic to these queues.
2899  *
2900  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2901  */
2902 static int bcmgenet_init_rx_queues(struct net_device *dev)
2903 {
2904     struct bcmgenet_priv *priv = netdev_priv(dev);
2905     u32 i;
2906     u32 dma_enable;
2907     u32 dma_ctrl;
2908     u32 ring_cfg;
2909     int ret;
2910 
2911     dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2912     dma_enable = dma_ctrl & DMA_EN;
2913     dma_ctrl &= ~DMA_EN;
2914     bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2915 
2916     dma_ctrl = 0;
2917     ring_cfg = 0;
2918 
2919     /* Initialize Rx priority queues */
2920     for (i = 0; i < priv->hw_params->rx_queues; i++) {
2921         ret = bcmgenet_init_rx_ring(priv, i,
2922                         priv->hw_params->rx_bds_per_q,
2923                         i * priv->hw_params->rx_bds_per_q,
2924                         (i + 1) *
2925                         priv->hw_params->rx_bds_per_q);
2926         if (ret)
2927             return ret;
2928 
2929         ring_cfg |= (1 << i);
2930         dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2931     }
2932 
2933     /* Initialize Rx default queue 16 */
2934     ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2935                     priv->hw_params->rx_queues *
2936                     priv->hw_params->rx_bds_per_q,
2937                     TOTAL_DESC);
2938     if (ret)
2939         return ret;
2940 
2941     ring_cfg |= (1 << DESC_INDEX);
2942     dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2943 
2944     /* Enable rings */
2945     bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2946 
2947     /* Configure ring as descriptor ring and re-enable DMA if enabled */
2948     if (dma_enable)
2949         dma_ctrl |= DMA_EN;
2950     bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2951 
2952     return 0;
2953 }
2954 
2955 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2956 {
2957     int ret = 0;
2958     int timeout = 0;
2959     u32 reg;
2960     u32 dma_ctrl;
2961     int i;
2962 
2963     /* Disable TDMA to stop add more frames in TX DMA */
2964     reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2965     reg &= ~DMA_EN;
2966     bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2967 
2968     /* Check TDMA status register to confirm TDMA is disabled */
2969     while (timeout++ < DMA_TIMEOUT_VAL) {
2970         reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2971         if (reg & DMA_DISABLED)
2972             break;
2973 
2974         udelay(1);
2975     }
2976 
2977     if (timeout == DMA_TIMEOUT_VAL) {
2978         netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2979         ret = -ETIMEDOUT;
2980     }
2981 
2982     /* Wait 10ms for packet drain in both tx and rx dma */
2983     usleep_range(10000, 20000);
2984 
2985     /* Disable RDMA */
2986     reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2987     reg &= ~DMA_EN;
2988     bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2989 
2990     timeout = 0;
2991     /* Check RDMA status register to confirm RDMA is disabled */
2992     while (timeout++ < DMA_TIMEOUT_VAL) {
2993         reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2994         if (reg & DMA_DISABLED)
2995             break;
2996 
2997         udelay(1);
2998     }
2999 
3000     if (timeout == DMA_TIMEOUT_VAL) {
3001         netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
3002         ret = -ETIMEDOUT;
3003     }
3004 
3005     dma_ctrl = 0;
3006     for (i = 0; i < priv->hw_params->rx_queues; i++)
3007         dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3008     reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3009     reg &= ~dma_ctrl;
3010     bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3011 
3012     dma_ctrl = 0;
3013     for (i = 0; i < priv->hw_params->tx_queues; i++)
3014         dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3015     reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3016     reg &= ~dma_ctrl;
3017     bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3018 
3019     return ret;
3020 }
3021 
3022 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
3023 {
3024     struct netdev_queue *txq;
3025     int i;
3026 
3027     bcmgenet_fini_rx_napi(priv);
3028     bcmgenet_fini_tx_napi(priv);
3029 
3030     for (i = 0; i < priv->num_tx_bds; i++)
3031         dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
3032                           priv->tx_cbs + i));
3033 
3034     for (i = 0; i < priv->hw_params->tx_queues; i++) {
3035         txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
3036         netdev_tx_reset_queue(txq);
3037     }
3038 
3039     txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
3040     netdev_tx_reset_queue(txq);
3041 
3042     bcmgenet_free_rx_buffers(priv);
3043     kfree(priv->rx_cbs);
3044     kfree(priv->tx_cbs);
3045 }
3046 
3047 /* init_edma: Initialize DMA control register */
3048 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
3049 {
3050     int ret;
3051     unsigned int i;
3052     struct enet_cb *cb;
3053 
3054     netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
3055 
3056     /* Initialize common Rx ring structures */
3057     priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3058     priv->num_rx_bds = TOTAL_DESC;
3059     priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3060                    GFP_KERNEL);
3061     if (!priv->rx_cbs)
3062         return -ENOMEM;
3063 
3064     for (i = 0; i < priv->num_rx_bds; i++) {
3065         cb = priv->rx_cbs + i;
3066         cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3067     }
3068 
3069     /* Initialize common TX ring structures */
3070     priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3071     priv->num_tx_bds = TOTAL_DESC;
3072     priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3073                    GFP_KERNEL);
3074     if (!priv->tx_cbs) {
3075         kfree(priv->rx_cbs);
3076         return -ENOMEM;
3077     }
3078 
3079     for (i = 0; i < priv->num_tx_bds; i++) {
3080         cb = priv->tx_cbs + i;
3081         cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3082     }
3083 
3084     /* Init rDma */
3085     bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3086                  DMA_SCB_BURST_SIZE);
3087 
3088     /* Initialize Rx queues */
3089     ret = bcmgenet_init_rx_queues(priv->dev);
3090     if (ret) {
3091         netdev_err(priv->dev, "failed to initialize Rx queues\n");
3092         bcmgenet_free_rx_buffers(priv);
3093         kfree(priv->rx_cbs);
3094         kfree(priv->tx_cbs);
3095         return ret;
3096     }
3097 
3098     /* Init tDma */
3099     bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3100                  DMA_SCB_BURST_SIZE);
3101 
3102     /* Initialize Tx queues */
3103     bcmgenet_init_tx_queues(priv->dev);
3104 
3105     return 0;
3106 }
3107 
3108 /* Interrupt bottom half */
3109 static void bcmgenet_irq_task(struct work_struct *work)
3110 {
3111     unsigned int status;
3112     struct bcmgenet_priv *priv = container_of(
3113             work, struct bcmgenet_priv, bcmgenet_irq_work);
3114 
3115     netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3116 
3117     spin_lock_irq(&priv->lock);
3118     status = priv->irq0_stat;
3119     priv->irq0_stat = 0;
3120     spin_unlock_irq(&priv->lock);
3121 
3122     if (status & UMAC_IRQ_PHY_DET_R &&
3123         priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3124         phy_init_hw(priv->dev->phydev);
3125         genphy_config_aneg(priv->dev->phydev);
3126     }
3127 
3128     /* Link UP/DOWN event */
3129     if (status & UMAC_IRQ_LINK_EVENT)
3130         phy_mac_interrupt(priv->dev->phydev);
3131 
3132 }
3133 
3134 /* bcmgenet_isr1: handle Rx and Tx priority queues */
3135 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3136 {
3137     struct bcmgenet_priv *priv = dev_id;
3138     struct bcmgenet_rx_ring *rx_ring;
3139     struct bcmgenet_tx_ring *tx_ring;
3140     unsigned int index, status;
3141 
3142     /* Read irq status */
3143     status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3144         ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3145 
3146     /* clear interrupts */
3147     bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3148 
3149     netif_dbg(priv, intr, priv->dev,
3150           "%s: IRQ=0x%x\n", __func__, status);
3151 
3152     /* Check Rx priority queue interrupts */
3153     for (index = 0; index < priv->hw_params->rx_queues; index++) {
3154         if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3155             continue;
3156 
3157         rx_ring = &priv->rx_rings[index];
3158         rx_ring->dim.event_ctr++;
3159 
3160         if (likely(napi_schedule_prep(&rx_ring->napi))) {
3161             rx_ring->int_disable(rx_ring);
3162             __napi_schedule_irqoff(&rx_ring->napi);
3163         }
3164     }
3165 
3166     /* Check Tx priority queue interrupts */
3167     for (index = 0; index < priv->hw_params->tx_queues; index++) {
3168         if (!(status & BIT(index)))
3169             continue;
3170 
3171         tx_ring = &priv->tx_rings[index];
3172 
3173         if (likely(napi_schedule_prep(&tx_ring->napi))) {
3174             tx_ring->int_disable(tx_ring);
3175             __napi_schedule_irqoff(&tx_ring->napi);
3176         }
3177     }
3178 
3179     return IRQ_HANDLED;
3180 }
3181 
3182 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
3183 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3184 {
3185     struct bcmgenet_priv *priv = dev_id;
3186     struct bcmgenet_rx_ring *rx_ring;
3187     struct bcmgenet_tx_ring *tx_ring;
3188     unsigned int status;
3189     unsigned long flags;
3190 
3191     /* Read irq status */
3192     status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3193         ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3194 
3195     /* clear interrupts */
3196     bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3197 
3198     netif_dbg(priv, intr, priv->dev,
3199           "IRQ=0x%x\n", status);
3200 
3201     if (status & UMAC_IRQ_RXDMA_DONE) {
3202         rx_ring = &priv->rx_rings[DESC_INDEX];
3203         rx_ring->dim.event_ctr++;
3204 
3205         if (likely(napi_schedule_prep(&rx_ring->napi))) {
3206             rx_ring->int_disable(rx_ring);
3207             __napi_schedule_irqoff(&rx_ring->napi);
3208         }
3209     }
3210 
3211     if (status & UMAC_IRQ_TXDMA_DONE) {
3212         tx_ring = &priv->tx_rings[DESC_INDEX];
3213 
3214         if (likely(napi_schedule_prep(&tx_ring->napi))) {
3215             tx_ring->int_disable(tx_ring);
3216             __napi_schedule_irqoff(&tx_ring->napi);
3217         }
3218     }
3219 
3220     if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3221         status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3222         wake_up(&priv->wq);
3223     }
3224 
3225     /* all other interested interrupts handled in bottom half */
3226     status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3227     if (status) {
3228         /* Save irq status for bottom-half processing. */
3229         spin_lock_irqsave(&priv->lock, flags);
3230         priv->irq0_stat |= status;
3231         spin_unlock_irqrestore(&priv->lock, flags);
3232 
3233         schedule_work(&priv->bcmgenet_irq_work);
3234     }
3235 
3236     return IRQ_HANDLED;
3237 }
3238 
3239 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3240 {
3241     /* Acknowledge the interrupt */
3242     return IRQ_HANDLED;
3243 }
3244 
3245 #ifdef CONFIG_NET_POLL_CONTROLLER
3246 static void bcmgenet_poll_controller(struct net_device *dev)
3247 {
3248     struct bcmgenet_priv *priv = netdev_priv(dev);
3249 
3250     /* Invoke the main RX/TX interrupt handler */
3251     disable_irq(priv->irq0);
3252     bcmgenet_isr0(priv->irq0, priv);
3253     enable_irq(priv->irq0);
3254 
3255     /* And the interrupt handler for RX/TX priority queues */
3256     disable_irq(priv->irq1);
3257     bcmgenet_isr1(priv->irq1, priv);
3258     enable_irq(priv->irq1);
3259 }
3260 #endif
3261 
3262 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3263 {
3264     u32 reg;
3265 
3266     reg = bcmgenet_rbuf_ctrl_get(priv);
3267     reg |= BIT(1);
3268     bcmgenet_rbuf_ctrl_set(priv, reg);
3269     udelay(10);
3270 
3271     reg &= ~BIT(1);
3272     bcmgenet_rbuf_ctrl_set(priv, reg);
3273     udelay(10);
3274 }
3275 
3276 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3277                  const unsigned char *addr)
3278 {
3279     bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3280     bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3281 }
3282 
3283 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3284                  unsigned char *addr)
3285 {
3286     u32 addr_tmp;
3287 
3288     addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3289     put_unaligned_be32(addr_tmp, &addr[0]);
3290     addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3291     put_unaligned_be16(addr_tmp, &addr[4]);
3292 }
3293 
3294 /* Returns a reusable dma control register value */
3295 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3296 {
3297     unsigned int i;
3298     u32 reg;
3299     u32 dma_ctrl;
3300 
3301     /* disable DMA */
3302     dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3303     for (i = 0; i < priv->hw_params->tx_queues; i++)
3304         dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3305     reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3306     reg &= ~dma_ctrl;
3307     bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3308 
3309     dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3310     for (i = 0; i < priv->hw_params->rx_queues; i++)
3311         dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3312     reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3313     reg &= ~dma_ctrl;
3314     bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3315 
3316     bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3317     udelay(10);
3318     bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3319 
3320     return dma_ctrl;
3321 }
3322 
3323 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3324 {
3325     u32 reg;
3326 
3327     reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3328     reg |= dma_ctrl;
3329     bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3330 
3331     reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3332     reg |= dma_ctrl;
3333     bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3334 }
3335 
3336 static void bcmgenet_netif_start(struct net_device *dev)
3337 {
3338     struct bcmgenet_priv *priv = netdev_priv(dev);
3339 
3340     /* Start the network engine */
3341     bcmgenet_set_rx_mode(dev);
3342     bcmgenet_enable_rx_napi(priv);
3343 
3344     umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3345 
3346     bcmgenet_enable_tx_napi(priv);
3347 
3348     /* Monitor link interrupts now */
3349     bcmgenet_link_intr_enable(priv);
3350 
3351     phy_start(dev->phydev);
3352 }
3353 
3354 static int bcmgenet_open(struct net_device *dev)
3355 {
3356     struct bcmgenet_priv *priv = netdev_priv(dev);
3357     unsigned long dma_ctrl;
3358     int ret;
3359 
3360     netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3361 
3362     /* Turn on the clock */
3363     clk_prepare_enable(priv->clk);
3364 
3365     /* If this is an internal GPHY, power it back on now, before UniMAC is
3366      * brought out of reset as absolutely no UniMAC activity is allowed
3367      */
3368     if (priv->internal_phy)
3369         bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3370 
3371     /* take MAC out of reset */
3372     bcmgenet_umac_reset(priv);
3373 
3374     init_umac(priv);
3375 
3376     /* Apply features again in case we changed them while interface was
3377      * down
3378      */
3379     bcmgenet_set_features(dev, dev->features);
3380 
3381     bcmgenet_set_hw_addr(priv, dev->dev_addr);
3382 
3383     /* Disable RX/TX DMA and flush TX queues */
3384     dma_ctrl = bcmgenet_dma_disable(priv);
3385 
3386     /* Reinitialize TDMA and RDMA and SW housekeeping */
3387     ret = bcmgenet_init_dma(priv);
3388     if (ret) {
3389         netdev_err(dev, "failed to initialize DMA\n");
3390         goto err_clk_disable;
3391     }
3392 
3393     /* Always enable ring 16 - descriptor ring */
3394     bcmgenet_enable_dma(priv, dma_ctrl);
3395 
3396     /* HFB init */
3397     bcmgenet_hfb_init(priv);
3398 
3399     ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3400               dev->name, priv);
3401     if (ret < 0) {
3402         netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3403         goto err_fini_dma;
3404     }
3405 
3406     ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3407               dev->name, priv);
3408     if (ret < 0) {
3409         netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3410         goto err_irq0;
3411     }
3412 
3413     ret = bcmgenet_mii_probe(dev);
3414     if (ret) {
3415         netdev_err(dev, "failed to connect to PHY\n");
3416         goto err_irq1;
3417     }
3418 
3419     bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
3420 
3421     bcmgenet_netif_start(dev);
3422 
3423     netif_tx_start_all_queues(dev);
3424 
3425     return 0;
3426 
3427 err_irq1:
3428     free_irq(priv->irq1, priv);
3429 err_irq0:
3430     free_irq(priv->irq0, priv);
3431 err_fini_dma:
3432     bcmgenet_dma_teardown(priv);
3433     bcmgenet_fini_dma(priv);
3434 err_clk_disable:
3435     if (priv->internal_phy)
3436         bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3437     clk_disable_unprepare(priv->clk);
3438     return ret;
3439 }
3440 
3441 static void bcmgenet_netif_stop(struct net_device *dev)
3442 {
3443     struct bcmgenet_priv *priv = netdev_priv(dev);
3444 
3445     bcmgenet_disable_tx_napi(priv);
3446     netif_tx_disable(dev);
3447 
3448     /* Disable MAC receive */
3449     umac_enable_set(priv, CMD_RX_EN, false);
3450 
3451     bcmgenet_dma_teardown(priv);
3452 
3453     /* Disable MAC transmit. TX DMA disabled must be done before this */
3454     umac_enable_set(priv, CMD_TX_EN, false);
3455 
3456     phy_stop(dev->phydev);
3457     bcmgenet_disable_rx_napi(priv);
3458     bcmgenet_intr_disable(priv);
3459 
3460     /* Wait for pending work items to complete. Since interrupts are
3461      * disabled no new work will be scheduled.
3462      */
3463     cancel_work_sync(&priv->bcmgenet_irq_work);
3464 
3465     /* tx reclaim */
3466     bcmgenet_tx_reclaim_all(dev);
3467     bcmgenet_fini_dma(priv);
3468 }
3469 
3470 static int bcmgenet_close(struct net_device *dev)
3471 {
3472     struct bcmgenet_priv *priv = netdev_priv(dev);
3473     int ret = 0;
3474 
3475     netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3476 
3477     bcmgenet_netif_stop(dev);
3478 
3479     /* Really kill the PHY state machine and disconnect from it */
3480     phy_disconnect(dev->phydev);
3481 
3482     free_irq(priv->irq0, priv);
3483     free_irq(priv->irq1, priv);
3484 
3485     if (priv->internal_phy)
3486         ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3487 
3488     clk_disable_unprepare(priv->clk);
3489 
3490     return ret;
3491 }
3492 
3493 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3494 {
3495     struct bcmgenet_priv *priv = ring->priv;
3496     u32 p_index, c_index, intsts, intmsk;
3497     struct netdev_queue *txq;
3498     unsigned int free_bds;
3499     bool txq_stopped;
3500 
3501     if (!netif_msg_tx_err(priv))
3502         return;
3503 
3504     txq = netdev_get_tx_queue(priv->dev, ring->queue);
3505 
3506     spin_lock(&ring->lock);
3507     if (ring->index == DESC_INDEX) {
3508         intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3509         intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3510     } else {
3511         intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3512         intmsk = 1 << ring->index;
3513     }
3514     c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3515     p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3516     txq_stopped = netif_tx_queue_stopped(txq);
3517     free_bds = ring->free_bds;
3518     spin_unlock(&ring->lock);
3519 
3520     netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3521           "TX queue status: %s, interrupts: %s\n"
3522           "(sw)free_bds: %d (sw)size: %d\n"
3523           "(sw)p_index: %d (hw)p_index: %d\n"
3524           "(sw)c_index: %d (hw)c_index: %d\n"
3525           "(sw)clean_p: %d (sw)write_p: %d\n"
3526           "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3527           ring->index, ring->queue,
3528           txq_stopped ? "stopped" : "active",
3529           intsts & intmsk ? "enabled" : "disabled",
3530           free_bds, ring->size,
3531           ring->prod_index, p_index & DMA_P_INDEX_MASK,
3532           ring->c_index, c_index & DMA_C_INDEX_MASK,
3533           ring->clean_ptr, ring->write_ptr,
3534           ring->cb_ptr, ring->end_ptr);
3535 }
3536 
3537 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3538 {
3539     struct bcmgenet_priv *priv = netdev_priv(dev);
3540     u32 int0_enable = 0;
3541     u32 int1_enable = 0;
3542     unsigned int q;
3543 
3544     netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3545 
3546     for (q = 0; q < priv->hw_params->tx_queues; q++)
3547         bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3548     bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3549 
3550     bcmgenet_tx_reclaim_all(dev);
3551 
3552     for (q = 0; q < priv->hw_params->tx_queues; q++)
3553         int1_enable |= (1 << q);
3554 
3555     int0_enable = UMAC_IRQ_TXDMA_DONE;
3556 
3557     /* Re-enable TX interrupts if disabled */
3558     bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3559     bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3560 
3561     netif_trans_update(dev);
3562 
3563     dev->stats.tx_errors++;
3564 
3565     netif_tx_wake_all_queues(dev);
3566 }
3567 
3568 #define MAX_MDF_FILTER  17
3569 
3570 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3571                      const unsigned char *addr,
3572                      int *i)
3573 {
3574     bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3575                  UMAC_MDF_ADDR + (*i * 4));
3576     bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3577                  addr[4] << 8 | addr[5],
3578                  UMAC_MDF_ADDR + ((*i + 1) * 4));
3579     *i += 2;
3580 }
3581 
3582 static void bcmgenet_set_rx_mode(struct net_device *dev)
3583 {
3584     struct bcmgenet_priv *priv = netdev_priv(dev);
3585     struct netdev_hw_addr *ha;
3586     int i, nfilter;
3587     u32 reg;
3588 
3589     netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3590 
3591     /* Number of filters needed */
3592     nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3593 
3594     /*
3595      * Turn on promicuous mode for three scenarios
3596      * 1. IFF_PROMISC flag is set
3597      * 2. IFF_ALLMULTI flag is set
3598      * 3. The number of filters needed exceeds the number filters
3599      *    supported by the hardware.
3600     */
3601     reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3602     if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3603         (nfilter > MAX_MDF_FILTER)) {
3604         reg |= CMD_PROMISC;
3605         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3606         bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3607         return;
3608     } else {
3609         reg &= ~CMD_PROMISC;
3610         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3611     }
3612 
3613     /* update MDF filter */
3614     i = 0;
3615     /* Broadcast */
3616     bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3617     /* my own address.*/
3618     bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3619 
3620     /* Unicast */
3621     netdev_for_each_uc_addr(ha, dev)
3622         bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3623 
3624     /* Multicast */
3625     netdev_for_each_mc_addr(ha, dev)
3626         bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3627 
3628     /* Enable filters */
3629     reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3630     bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3631 }
3632 
3633 /* Set the hardware MAC address. */
3634 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3635 {
3636     struct sockaddr *addr = p;
3637 
3638     /* Setting the MAC address at the hardware level is not possible
3639      * without disabling the UniMAC RX/TX enable bits.
3640      */
3641     if (netif_running(dev))
3642         return -EBUSY;
3643 
3644     eth_hw_addr_set(dev, addr->sa_data);
3645 
3646     return 0;
3647 }
3648 
3649 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3650 {
3651     struct bcmgenet_priv *priv = netdev_priv(dev);
3652     unsigned long tx_bytes = 0, tx_packets = 0;
3653     unsigned long rx_bytes = 0, rx_packets = 0;
3654     unsigned long rx_errors = 0, rx_dropped = 0;
3655     struct bcmgenet_tx_ring *tx_ring;
3656     struct bcmgenet_rx_ring *rx_ring;
3657     unsigned int q;
3658 
3659     for (q = 0; q < priv->hw_params->tx_queues; q++) {
3660         tx_ring = &priv->tx_rings[q];
3661         tx_bytes += tx_ring->bytes;
3662         tx_packets += tx_ring->packets;
3663     }
3664     tx_ring = &priv->tx_rings[DESC_INDEX];
3665     tx_bytes += tx_ring->bytes;
3666     tx_packets += tx_ring->packets;
3667 
3668     for (q = 0; q < priv->hw_params->rx_queues; q++) {
3669         rx_ring = &priv->rx_rings[q];
3670 
3671         rx_bytes += rx_ring->bytes;
3672         rx_packets += rx_ring->packets;
3673         rx_errors += rx_ring->errors;
3674         rx_dropped += rx_ring->dropped;
3675     }
3676     rx_ring = &priv->rx_rings[DESC_INDEX];
3677     rx_bytes += rx_ring->bytes;
3678     rx_packets += rx_ring->packets;
3679     rx_errors += rx_ring->errors;
3680     rx_dropped += rx_ring->dropped;
3681 
3682     dev->stats.tx_bytes = tx_bytes;
3683     dev->stats.tx_packets = tx_packets;
3684     dev->stats.rx_bytes = rx_bytes;
3685     dev->stats.rx_packets = rx_packets;
3686     dev->stats.rx_errors = rx_errors;
3687     dev->stats.rx_missed_errors = rx_errors;
3688     dev->stats.rx_dropped = rx_dropped;
3689     return &dev->stats;
3690 }
3691 
3692 static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3693 {
3694     struct bcmgenet_priv *priv = netdev_priv(dev);
3695 
3696     if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3697         priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3698         return -EOPNOTSUPP;
3699 
3700     if (new_carrier)
3701         netif_carrier_on(dev);
3702     else
3703         netif_carrier_off(dev);
3704 
3705     return 0;
3706 }
3707 
3708 static const struct net_device_ops bcmgenet_netdev_ops = {
3709     .ndo_open       = bcmgenet_open,
3710     .ndo_stop       = bcmgenet_close,
3711     .ndo_start_xmit     = bcmgenet_xmit,
3712     .ndo_tx_timeout     = bcmgenet_timeout,
3713     .ndo_set_rx_mode    = bcmgenet_set_rx_mode,
3714     .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3715     .ndo_eth_ioctl      = phy_do_ioctl_running,
3716     .ndo_set_features   = bcmgenet_set_features,
3717 #ifdef CONFIG_NET_POLL_CONTROLLER
3718     .ndo_poll_controller    = bcmgenet_poll_controller,
3719 #endif
3720     .ndo_get_stats      = bcmgenet_get_stats,
3721     .ndo_change_carrier = bcmgenet_change_carrier,
3722 };
3723 
3724 /* Array of GENET hardware parameters/characteristics */
3725 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3726     [GENET_V1] = {
3727         .tx_queues = 0,
3728         .tx_bds_per_q = 0,
3729         .rx_queues = 0,
3730         .rx_bds_per_q = 0,
3731         .bp_in_en_shift = 16,
3732         .bp_in_mask = 0xffff,
3733         .hfb_filter_cnt = 16,
3734         .qtag_mask = 0x1F,
3735         .hfb_offset = 0x1000,
3736         .rdma_offset = 0x2000,
3737         .tdma_offset = 0x3000,
3738         .words_per_bd = 2,
3739     },
3740     [GENET_V2] = {
3741         .tx_queues = 4,
3742         .tx_bds_per_q = 32,
3743         .rx_queues = 0,
3744         .rx_bds_per_q = 0,
3745         .bp_in_en_shift = 16,
3746         .bp_in_mask = 0xffff,
3747         .hfb_filter_cnt = 16,
3748         .qtag_mask = 0x1F,
3749         .tbuf_offset = 0x0600,
3750         .hfb_offset = 0x1000,
3751         .hfb_reg_offset = 0x2000,
3752         .rdma_offset = 0x3000,
3753         .tdma_offset = 0x4000,
3754         .words_per_bd = 2,
3755         .flags = GENET_HAS_EXT,
3756     },
3757     [GENET_V3] = {
3758         .tx_queues = 4,
3759         .tx_bds_per_q = 32,
3760         .rx_queues = 0,
3761         .rx_bds_per_q = 0,
3762         .bp_in_en_shift = 17,
3763         .bp_in_mask = 0x1ffff,
3764         .hfb_filter_cnt = 48,
3765         .hfb_filter_size = 128,
3766         .qtag_mask = 0x3F,
3767         .tbuf_offset = 0x0600,
3768         .hfb_offset = 0x8000,
3769         .hfb_reg_offset = 0xfc00,
3770         .rdma_offset = 0x10000,
3771         .tdma_offset = 0x11000,
3772         .words_per_bd = 2,
3773         .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3774              GENET_HAS_MOCA_LINK_DET,
3775     },
3776     [GENET_V4] = {
3777         .tx_queues = 4,
3778         .tx_bds_per_q = 32,
3779         .rx_queues = 0,
3780         .rx_bds_per_q = 0,
3781         .bp_in_en_shift = 17,
3782         .bp_in_mask = 0x1ffff,
3783         .hfb_filter_cnt = 48,
3784         .hfb_filter_size = 128,
3785         .qtag_mask = 0x3F,
3786         .tbuf_offset = 0x0600,
3787         .hfb_offset = 0x8000,
3788         .hfb_reg_offset = 0xfc00,
3789         .rdma_offset = 0x2000,
3790         .tdma_offset = 0x4000,
3791         .words_per_bd = 3,
3792         .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3793              GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3794     },
3795     [GENET_V5] = {
3796         .tx_queues = 4,
3797         .tx_bds_per_q = 32,
3798         .rx_queues = 0,
3799         .rx_bds_per_q = 0,
3800         .bp_in_en_shift = 17,
3801         .bp_in_mask = 0x1ffff,
3802         .hfb_filter_cnt = 48,
3803         .hfb_filter_size = 128,
3804         .qtag_mask = 0x3F,
3805         .tbuf_offset = 0x0600,
3806         .hfb_offset = 0x8000,
3807         .hfb_reg_offset = 0xfc00,
3808         .rdma_offset = 0x2000,
3809         .tdma_offset = 0x4000,
3810         .words_per_bd = 3,
3811         .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3812              GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3813     },
3814 };
3815 
3816 /* Infer hardware parameters from the detected GENET version */
3817 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3818 {
3819     struct bcmgenet_hw_params *params;
3820     u32 reg;
3821     u8 major;
3822     u16 gphy_rev;
3823 
3824     if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3825         bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3826         genet_dma_ring_regs = genet_dma_ring_regs_v4;
3827     } else if (GENET_IS_V3(priv)) {
3828         bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3829         genet_dma_ring_regs = genet_dma_ring_regs_v123;
3830     } else if (GENET_IS_V2(priv)) {
3831         bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3832         genet_dma_ring_regs = genet_dma_ring_regs_v123;
3833     } else if (GENET_IS_V1(priv)) {
3834         bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3835         genet_dma_ring_regs = genet_dma_ring_regs_v123;
3836     }
3837 
3838     /* enum genet_version starts at 1 */
3839     priv->hw_params = &bcmgenet_hw_params[priv->version];
3840     params = priv->hw_params;
3841 
3842     /* Read GENET HW version */
3843     reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3844     major = (reg >> 24 & 0x0f);
3845     if (major == 6)
3846         major = 5;
3847     else if (major == 5)
3848         major = 4;
3849     else if (major == 0)
3850         major = 1;
3851     if (major != priv->version) {
3852         dev_err(&priv->pdev->dev,
3853             "GENET version mismatch, got: %d, configured for: %d\n",
3854             major, priv->version);
3855     }
3856 
3857     /* Print the GENET core version */
3858     dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3859          major, (reg >> 16) & 0x0f, reg & 0xffff);
3860 
3861     /* Store the integrated PHY revision for the MDIO probing function
3862      * to pass this information to the PHY driver. The PHY driver expects
3863      * to find the PHY major revision in bits 15:8 while the GENET register
3864      * stores that information in bits 7:0, account for that.
3865      *
3866      * On newer chips, starting with PHY revision G0, a new scheme is
3867      * deployed similar to the Starfighter 2 switch with GPHY major
3868      * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3869      * is reserved as well as special value 0x01ff, we have a small
3870      * heuristic to check for the new GPHY revision and re-arrange things
3871      * so the GPHY driver is happy.
3872      */
3873     gphy_rev = reg & 0xffff;
3874 
3875     if (GENET_IS_V5(priv)) {
3876         /* The EPHY revision should come from the MDIO registers of
3877          * the PHY not from GENET.
3878          */
3879         if (gphy_rev != 0) {
3880             pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3881                 gphy_rev);
3882         }
3883     /* This is reserved so should require special treatment */
3884     } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3885         pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3886         return;
3887     /* This is the good old scheme, just GPHY major, no minor nor patch */
3888     } else if ((gphy_rev & 0xf0) != 0) {
3889         priv->gphy_rev = gphy_rev << 8;
3890     /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3891     } else if ((gphy_rev & 0xff00) != 0) {
3892         priv->gphy_rev = gphy_rev;
3893     }
3894 
3895 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3896     if (!(params->flags & GENET_HAS_40BITS))
3897         pr_warn("GENET does not support 40-bits PA\n");
3898 #endif
3899 
3900     pr_debug("Configuration for version: %d\n"
3901         "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3902         "BP << en: %2d, BP msk: 0x%05x\n"
3903         "HFB count: %2d, QTAQ msk: 0x%05x\n"
3904         "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3905         "RDMA: 0x%05x, TDMA: 0x%05x\n"
3906         "Words/BD: %d\n",
3907         priv->version,
3908         params->tx_queues, params->tx_bds_per_q,
3909         params->rx_queues, params->rx_bds_per_q,
3910         params->bp_in_en_shift, params->bp_in_mask,
3911         params->hfb_filter_cnt, params->qtag_mask,
3912         params->tbuf_offset, params->hfb_offset,
3913         params->hfb_reg_offset,
3914         params->rdma_offset, params->tdma_offset,
3915         params->words_per_bd);
3916 }
3917 
3918 struct bcmgenet_plat_data {
3919     enum bcmgenet_version version;
3920     u32 dma_max_burst_length;
3921     bool ephy_16nm;
3922 };
3923 
3924 static const struct bcmgenet_plat_data v1_plat_data = {
3925     .version = GENET_V1,
3926     .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3927 };
3928 
3929 static const struct bcmgenet_plat_data v2_plat_data = {
3930     .version = GENET_V2,
3931     .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3932 };
3933 
3934 static const struct bcmgenet_plat_data v3_plat_data = {
3935     .version = GENET_V3,
3936     .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3937 };
3938 
3939 static const struct bcmgenet_plat_data v4_plat_data = {
3940     .version = GENET_V4,
3941     .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3942 };
3943 
3944 static const struct bcmgenet_plat_data v5_plat_data = {
3945     .version = GENET_V5,
3946     .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3947 };
3948 
3949 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3950     .version = GENET_V5,
3951     .dma_max_burst_length = 0x08,
3952 };
3953 
3954 static const struct bcmgenet_plat_data bcm7712_plat_data = {
3955     .version = GENET_V5,
3956     .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3957     .ephy_16nm = true,
3958 };
3959 
3960 static const struct of_device_id bcmgenet_match[] = {
3961     { .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3962     { .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3963     { .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3964     { .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3965     { .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3966     { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3967     { .compatible = "brcm,bcm7712-genet-v5", .data = &bcm7712_plat_data },
3968     { },
3969 };
3970 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3971 
3972 static int bcmgenet_probe(struct platform_device *pdev)
3973 {
3974     struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3975     const struct bcmgenet_plat_data *pdata;
3976     struct bcmgenet_priv *priv;
3977     struct net_device *dev;
3978     unsigned int i;
3979     int err = -EIO;
3980 
3981     /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3982     dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3983                  GENET_MAX_MQ_CNT + 1);
3984     if (!dev) {
3985         dev_err(&pdev->dev, "can't allocate net device\n");
3986         return -ENOMEM;
3987     }
3988 
3989     priv = netdev_priv(dev);
3990     priv->irq0 = platform_get_irq(pdev, 0);
3991     if (priv->irq0 < 0) {
3992         err = priv->irq0;
3993         goto err;
3994     }
3995     priv->irq1 = platform_get_irq(pdev, 1);
3996     if (priv->irq1 < 0) {
3997         err = priv->irq1;
3998         goto err;
3999     }
4000     priv->wol_irq = platform_get_irq_optional(pdev, 2);
4001     if (priv->wol_irq == -EPROBE_DEFER) {
4002         err = priv->wol_irq;
4003         goto err;
4004     }
4005 
4006     priv->base = devm_platform_ioremap_resource(pdev, 0);
4007     if (IS_ERR(priv->base)) {
4008         err = PTR_ERR(priv->base);
4009         goto err;
4010     }
4011 
4012     spin_lock_init(&priv->lock);
4013 
4014     /* Set default pause parameters */
4015     priv->autoneg_pause = 1;
4016     priv->tx_pause = 1;
4017     priv->rx_pause = 1;
4018 
4019     SET_NETDEV_DEV(dev, &pdev->dev);
4020     dev_set_drvdata(&pdev->dev, dev);
4021     dev->watchdog_timeo = 2 * HZ;
4022     dev->ethtool_ops = &bcmgenet_ethtool_ops;
4023     dev->netdev_ops = &bcmgenet_netdev_ops;
4024 
4025     priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
4026 
4027     /* Set default features */
4028     dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
4029              NETIF_F_RXCSUM;
4030     dev->hw_features |= dev->features;
4031     dev->vlan_features |= dev->features;
4032 
4033     /* Request the WOL interrupt and advertise suspend if available */
4034     priv->wol_irq_disabled = true;
4035     if (priv->wol_irq > 0) {
4036         err = devm_request_irq(&pdev->dev, priv->wol_irq,
4037                        bcmgenet_wol_isr, 0, dev->name, priv);
4038         if (!err)
4039             device_set_wakeup_capable(&pdev->dev, 1);
4040     }
4041 
4042     /* Set the needed headroom to account for any possible
4043      * features enabling/disabling at runtime
4044      */
4045     dev->needed_headroom += 64;
4046 
4047     priv->dev = dev;
4048     priv->pdev = pdev;
4049 
4050     pdata = device_get_match_data(&pdev->dev);
4051     if (pdata) {
4052         priv->version = pdata->version;
4053         priv->dma_max_burst_length = pdata->dma_max_burst_length;
4054         priv->ephy_16nm = pdata->ephy_16nm;
4055     } else {
4056         priv->version = pd->genet_version;
4057         priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
4058     }
4059 
4060     priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
4061     if (IS_ERR(priv->clk)) {
4062         dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
4063         err = PTR_ERR(priv->clk);
4064         goto err;
4065     }
4066 
4067     err = clk_prepare_enable(priv->clk);
4068     if (err)
4069         goto err;
4070 
4071     bcmgenet_set_hw_params(priv);
4072 
4073     err = -EIO;
4074     if (priv->hw_params->flags & GENET_HAS_40BITS)
4075         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4076     if (err)
4077         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4078     if (err)
4079         goto err_clk_disable;
4080 
4081     /* Mii wait queue */
4082     init_waitqueue_head(&priv->wq);
4083     /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4084     priv->rx_buf_len = RX_BUF_LENGTH;
4085     INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4086 
4087     priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4088     if (IS_ERR(priv->clk_wol)) {
4089         dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4090         err = PTR_ERR(priv->clk_wol);
4091         goto err_clk_disable;
4092     }
4093 
4094     priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4095     if (IS_ERR(priv->clk_eee)) {
4096         dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4097         err = PTR_ERR(priv->clk_eee);
4098         goto err_clk_disable;
4099     }
4100 
4101     /* If this is an internal GPHY, power it on now, before UniMAC is
4102      * brought out of reset as absolutely no UniMAC activity is allowed
4103      */
4104     if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4105         bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4106 
4107     if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4108         eth_hw_addr_set(dev, pd->mac_address);
4109     else
4110         if (device_get_ethdev_address(&pdev->dev, dev))
4111             if (has_acpi_companion(&pdev->dev)) {
4112                 u8 addr[ETH_ALEN];
4113 
4114                 bcmgenet_get_hw_addr(priv, addr);
4115                 eth_hw_addr_set(dev, addr);
4116             }
4117 
4118     if (!is_valid_ether_addr(dev->dev_addr)) {
4119         dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4120         eth_hw_addr_random(dev);
4121     }
4122 
4123     reset_umac(priv);
4124 
4125     err = bcmgenet_mii_init(dev);
4126     if (err)
4127         goto err_clk_disable;
4128 
4129     /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
4130      * just the ring 16 descriptor based TX
4131      */
4132     netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4133     netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4134 
4135     /* Set default coalescing parameters */
4136     for (i = 0; i < priv->hw_params->rx_queues; i++)
4137         priv->rx_rings[i].rx_max_coalesced_frames = 1;
4138     priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4139 
4140     /* libphy will determine the link state */
4141     netif_carrier_off(dev);
4142 
4143     /* Turn off the main clock, WOL clock is handled separately */
4144     clk_disable_unprepare(priv->clk);
4145 
4146     err = register_netdev(dev);
4147     if (err) {
4148         bcmgenet_mii_exit(dev);
4149         goto err;
4150     }
4151 
4152     return err;
4153 
4154 err_clk_disable:
4155     clk_disable_unprepare(priv->clk);
4156 err:
4157     free_netdev(dev);
4158     return err;
4159 }
4160 
4161 static int bcmgenet_remove(struct platform_device *pdev)
4162 {
4163     struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4164 
4165     dev_set_drvdata(&pdev->dev, NULL);
4166     unregister_netdev(priv->dev);
4167     bcmgenet_mii_exit(priv->dev);
4168     free_netdev(priv->dev);
4169 
4170     return 0;
4171 }
4172 
4173 static void bcmgenet_shutdown(struct platform_device *pdev)
4174 {
4175     bcmgenet_remove(pdev);
4176 }
4177 
4178 #ifdef CONFIG_PM_SLEEP
4179 static int bcmgenet_resume_noirq(struct device *d)
4180 {
4181     struct net_device *dev = dev_get_drvdata(d);
4182     struct bcmgenet_priv *priv = netdev_priv(dev);
4183     int ret;
4184     u32 reg;
4185 
4186     if (!netif_running(dev))
4187         return 0;
4188 
4189     /* Turn on the clock */
4190     ret = clk_prepare_enable(priv->clk);
4191     if (ret)
4192         return ret;
4193 
4194     if (device_may_wakeup(d) && priv->wolopts) {
4195         /* Account for Wake-on-LAN events and clear those events
4196          * (Some devices need more time between enabling the clocks
4197          *  and the interrupt register reflecting the wake event so
4198          *  read the register twice)
4199          */
4200         reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4201         reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4202         if (reg & UMAC_IRQ_WAKE_EVENT)
4203             pm_wakeup_event(&priv->pdev->dev, 0);
4204     }
4205 
4206     bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4207 
4208     return 0;
4209 }
4210 
4211 static int bcmgenet_resume(struct device *d)
4212 {
4213     struct net_device *dev = dev_get_drvdata(d);
4214     struct bcmgenet_priv *priv = netdev_priv(dev);
4215     struct bcmgenet_rxnfc_rule *rule;
4216     unsigned long dma_ctrl;
4217     int ret;
4218 
4219     if (!netif_running(dev))
4220         return 0;
4221 
4222     /* From WOL-enabled suspend, switch to regular clock */
4223     if (device_may_wakeup(d) && priv->wolopts)
4224         bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4225 
4226     /* If this is an internal GPHY, power it back on now, before UniMAC is
4227      * brought out of reset as absolutely no UniMAC activity is allowed
4228      */
4229     if (priv->internal_phy)
4230         bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4231 
4232     bcmgenet_umac_reset(priv);
4233 
4234     init_umac(priv);
4235 
4236     phy_init_hw(dev->phydev);
4237 
4238     /* Speed settings must be restored */
4239     genphy_config_aneg(dev->phydev);
4240     bcmgenet_mii_config(priv->dev, false);
4241 
4242     /* Restore enabled features */
4243     bcmgenet_set_features(dev, dev->features);
4244 
4245     bcmgenet_set_hw_addr(priv, dev->dev_addr);
4246 
4247     /* Restore hardware filters */
4248     bcmgenet_hfb_clear(priv);
4249     list_for_each_entry(rule, &priv->rxnfc_list, list)
4250         if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4251             bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4252 
4253     /* Disable RX/TX DMA and flush TX queues */
4254     dma_ctrl = bcmgenet_dma_disable(priv);
4255 
4256     /* Reinitialize TDMA and RDMA and SW housekeeping */
4257     ret = bcmgenet_init_dma(priv);
4258     if (ret) {
4259         netdev_err(dev, "failed to initialize DMA\n");
4260         goto out_clk_disable;
4261     }
4262 
4263     /* Always enable ring 16 - descriptor ring */
4264     bcmgenet_enable_dma(priv, dma_ctrl);
4265 
4266     if (!device_may_wakeup(d))
4267         phy_resume(dev->phydev);
4268 
4269     if (priv->eee.eee_enabled)
4270         bcmgenet_eee_enable_set(dev, true);
4271 
4272     bcmgenet_netif_start(dev);
4273 
4274     netif_device_attach(dev);
4275 
4276     return 0;
4277 
4278 out_clk_disable:
4279     if (priv->internal_phy)
4280         bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4281     clk_disable_unprepare(priv->clk);
4282     return ret;
4283 }
4284 
4285 static int bcmgenet_suspend(struct device *d)
4286 {
4287     struct net_device *dev = dev_get_drvdata(d);
4288     struct bcmgenet_priv *priv = netdev_priv(dev);
4289 
4290     if (!netif_running(dev))
4291         return 0;
4292 
4293     netif_device_detach(dev);
4294 
4295     bcmgenet_netif_stop(dev);
4296 
4297     if (!device_may_wakeup(d))
4298         phy_suspend(dev->phydev);
4299 
4300     /* Disable filtering */
4301     bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4302 
4303     return 0;
4304 }
4305 
4306 static int bcmgenet_suspend_noirq(struct device *d)
4307 {
4308     struct net_device *dev = dev_get_drvdata(d);
4309     struct bcmgenet_priv *priv = netdev_priv(dev);
4310     int ret = 0;
4311 
4312     if (!netif_running(dev))
4313         return 0;
4314 
4315     /* Prepare the device for Wake-on-LAN and switch to the slow clock */
4316     if (device_may_wakeup(d) && priv->wolopts)
4317         ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4318     else if (priv->internal_phy)
4319         ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4320 
4321     /* Let the framework handle resumption and leave the clocks on */
4322     if (ret)
4323         return ret;
4324 
4325     /* Turn off the clocks */
4326     clk_disable_unprepare(priv->clk);
4327 
4328     return 0;
4329 }
4330 #else
4331 #define bcmgenet_suspend    NULL
4332 #define bcmgenet_suspend_noirq  NULL
4333 #define bcmgenet_resume     NULL
4334 #define bcmgenet_resume_noirq   NULL
4335 #endif /* CONFIG_PM_SLEEP */
4336 
4337 static const struct dev_pm_ops bcmgenet_pm_ops = {
4338     .suspend    = bcmgenet_suspend,
4339     .suspend_noirq  = bcmgenet_suspend_noirq,
4340     .resume     = bcmgenet_resume,
4341     .resume_noirq   = bcmgenet_resume_noirq,
4342 };
4343 
4344 static const struct acpi_device_id genet_acpi_match[] = {
4345     { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4346     { },
4347 };
4348 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4349 
4350 static struct platform_driver bcmgenet_driver = {
4351     .probe  = bcmgenet_probe,
4352     .remove = bcmgenet_remove,
4353     .shutdown = bcmgenet_shutdown,
4354     .driver = {
4355         .name   = "bcmgenet",
4356         .of_match_table = bcmgenet_match,
4357         .pm = &bcmgenet_pm_ops,
4358         .acpi_match_table = genet_acpi_match,
4359     },
4360 };
4361 module_platform_driver(bcmgenet_driver);
4362 
4363 MODULE_AUTHOR("Broadcom Corporation");
4364 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4365 MODULE_ALIAS("platform:bcmgenet");
4366 MODULE_LICENSE("GPL");
4367 MODULE_SOFTDEP("pre: mdio-bcm-unimac");