Back to home page

OSCL-LXR

 
 

    


0001 /* bnx2x_sp.c: Qlogic Everest network driver.
0002  *
0003  * Copyright 2011-2013 Broadcom Corporation
0004  * Copyright (c) 2014 QLogic Corporation
0005  * All rights reserved
0006  *
0007  * Unless you and Qlogic execute a separate written software license
0008  * agreement governing use of this software, this software is licensed to you
0009  * under the terms of the GNU General Public License version 2, available
0010  * at http://www.gnu.org/licenses/gpl-2.0.html (the "GPL").
0011  *
0012  * Notwithstanding the above, under no circumstances may you combine this
0013  * software in any way with any other Qlogic software provided under a
0014  * license other than the GPL, without Qlogic's express prior written
0015  * consent.
0016  *
0017  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
0018  * Written by: Vladislav Zolotarov
0019  *
0020  */
0021 
0022 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0023 
0024 #include <linux/module.h>
0025 #include <linux/crc32.h>
0026 #include <linux/netdevice.h>
0027 #include <linux/etherdevice.h>
0028 #include <linux/crc32c.h>
0029 #include "bnx2x.h"
0030 #include "bnx2x_cmn.h"
0031 #include "bnx2x_sp.h"
0032 
0033 #define BNX2X_MAX_EMUL_MULTI        16
0034 
0035 /**** Exe Queue interfaces ****/
0036 
0037 /**
0038  * bnx2x_exe_queue_init - init the Exe Queue object
0039  *
0040  * @bp:     driver handle
0041  * @o:      pointer to the object
0042  * @exe_len:    length
0043  * @owner:  pointer to the owner
0044  * @validate:   validate function pointer
0045  * @remove: remove function pointer
0046  * @optimize:   optimize function pointer
0047  * @exec:   execute function pointer
0048  * @get:    get function pointer
0049  */
0050 static inline void bnx2x_exe_queue_init(struct bnx2x *bp,
0051                     struct bnx2x_exe_queue_obj *o,
0052                     int exe_len,
0053                     union bnx2x_qable_obj *owner,
0054                     exe_q_validate validate,
0055                     exe_q_remove remove,
0056                     exe_q_optimize optimize,
0057                     exe_q_execute exec,
0058                     exe_q_get get)
0059 {
0060     memset(o, 0, sizeof(*o));
0061 
0062     INIT_LIST_HEAD(&o->exe_queue);
0063     INIT_LIST_HEAD(&o->pending_comp);
0064 
0065     spin_lock_init(&o->lock);
0066 
0067     o->exe_chunk_len = exe_len;
0068     o->owner         = owner;
0069 
0070     /* Owner specific callbacks */
0071     o->validate      = validate;
0072     o->remove        = remove;
0073     o->optimize      = optimize;
0074     o->execute       = exec;
0075     o->get           = get;
0076 
0077     DP(BNX2X_MSG_SP, "Setup the execution queue with the chunk length of %d\n",
0078        exe_len);
0079 }
0080 
0081 static inline void bnx2x_exe_queue_free_elem(struct bnx2x *bp,
0082                          struct bnx2x_exeq_elem *elem)
0083 {
0084     DP(BNX2X_MSG_SP, "Deleting an exe_queue element\n");
0085     kfree(elem);
0086 }
0087 
0088 static inline int bnx2x_exe_queue_length(struct bnx2x_exe_queue_obj *o)
0089 {
0090     struct bnx2x_exeq_elem *elem;
0091     int cnt = 0;
0092 
0093     spin_lock_bh(&o->lock);
0094 
0095     list_for_each_entry(elem, &o->exe_queue, link)
0096         cnt++;
0097 
0098     spin_unlock_bh(&o->lock);
0099 
0100     return cnt;
0101 }
0102 
0103 /**
0104  * bnx2x_exe_queue_add - add a new element to the execution queue
0105  *
0106  * @bp:     driver handle
0107  * @o:      queue
0108  * @elem:   new command to add
0109  * @restore:    true - do not optimize the command
0110  *
0111  * If the element is optimized or is illegal, frees it.
0112  */
0113 static inline int bnx2x_exe_queue_add(struct bnx2x *bp,
0114                       struct bnx2x_exe_queue_obj *o,
0115                       struct bnx2x_exeq_elem *elem,
0116                       bool restore)
0117 {
0118     int rc;
0119 
0120     spin_lock_bh(&o->lock);
0121 
0122     if (!restore) {
0123         /* Try to cancel this element queue */
0124         rc = o->optimize(bp, o->owner, elem);
0125         if (rc)
0126             goto free_and_exit;
0127 
0128         /* Check if this request is ok */
0129         rc = o->validate(bp, o->owner, elem);
0130         if (rc) {
0131             DP(BNX2X_MSG_SP, "Preamble failed: %d\n", rc);
0132             goto free_and_exit;
0133         }
0134     }
0135 
0136     /* If so, add it to the execution queue */
0137     list_add_tail(&elem->link, &o->exe_queue);
0138 
0139     spin_unlock_bh(&o->lock);
0140 
0141     return 0;
0142 
0143 free_and_exit:
0144     bnx2x_exe_queue_free_elem(bp, elem);
0145 
0146     spin_unlock_bh(&o->lock);
0147 
0148     return rc;
0149 }
0150 
0151 static inline void __bnx2x_exe_queue_reset_pending(
0152     struct bnx2x *bp,
0153     struct bnx2x_exe_queue_obj *o)
0154 {
0155     struct bnx2x_exeq_elem *elem;
0156 
0157     while (!list_empty(&o->pending_comp)) {
0158         elem = list_first_entry(&o->pending_comp,
0159                     struct bnx2x_exeq_elem, link);
0160 
0161         list_del(&elem->link);
0162         bnx2x_exe_queue_free_elem(bp, elem);
0163     }
0164 }
0165 
0166 /**
0167  * bnx2x_exe_queue_step - execute one execution chunk atomically
0168  *
0169  * @bp:         driver handle
0170  * @o:          queue
0171  * @ramrod_flags:   flags
0172  *
0173  * (Should be called while holding the exe_queue->lock).
0174  */
0175 static inline int bnx2x_exe_queue_step(struct bnx2x *bp,
0176                        struct bnx2x_exe_queue_obj *o,
0177                        unsigned long *ramrod_flags)
0178 {
0179     struct bnx2x_exeq_elem *elem, spacer;
0180     int cur_len = 0, rc;
0181 
0182     memset(&spacer, 0, sizeof(spacer));
0183 
0184     /* Next step should not be performed until the current is finished,
0185      * unless a DRV_CLEAR_ONLY bit is set. In this case we just want to
0186      * properly clear object internals without sending any command to the FW
0187      * which also implies there won't be any completion to clear the
0188      * 'pending' list.
0189      */
0190     if (!list_empty(&o->pending_comp)) {
0191         if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
0192             DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: resetting a pending_comp list\n");
0193             __bnx2x_exe_queue_reset_pending(bp, o);
0194         } else {
0195             return 1;
0196         }
0197     }
0198 
0199     /* Run through the pending commands list and create a next
0200      * execution chunk.
0201      */
0202     while (!list_empty(&o->exe_queue)) {
0203         elem = list_first_entry(&o->exe_queue, struct bnx2x_exeq_elem,
0204                     link);
0205         WARN_ON(!elem->cmd_len);
0206 
0207         if (cur_len + elem->cmd_len <= o->exe_chunk_len) {
0208             cur_len += elem->cmd_len;
0209             /* Prevent from both lists being empty when moving an
0210              * element. This will allow the call of
0211              * bnx2x_exe_queue_empty() without locking.
0212              */
0213             list_add_tail(&spacer.link, &o->pending_comp);
0214             mb();
0215             list_move_tail(&elem->link, &o->pending_comp);
0216             list_del(&spacer.link);
0217         } else
0218             break;
0219     }
0220 
0221     /* Sanity check */
0222     if (!cur_len)
0223         return 0;
0224 
0225     rc = o->execute(bp, o->owner, &o->pending_comp, ramrod_flags);
0226     if (rc < 0)
0227         /* In case of an error return the commands back to the queue
0228          * and reset the pending_comp.
0229          */
0230         list_splice_init(&o->pending_comp, &o->exe_queue);
0231     else if (!rc)
0232         /* If zero is returned, means there are no outstanding pending
0233          * completions and we may dismiss the pending list.
0234          */
0235         __bnx2x_exe_queue_reset_pending(bp, o);
0236 
0237     return rc;
0238 }
0239 
0240 static inline bool bnx2x_exe_queue_empty(struct bnx2x_exe_queue_obj *o)
0241 {
0242     bool empty = list_empty(&o->exe_queue);
0243 
0244     /* Don't reorder!!! */
0245     mb();
0246 
0247     return empty && list_empty(&o->pending_comp);
0248 }
0249 
0250 static inline struct bnx2x_exeq_elem *bnx2x_exe_queue_alloc_elem(
0251     struct bnx2x *bp)
0252 {
0253     DP(BNX2X_MSG_SP, "Allocating a new exe_queue element\n");
0254     return kzalloc(sizeof(struct bnx2x_exeq_elem), GFP_ATOMIC);
0255 }
0256 
0257 /************************ raw_obj functions ***********************************/
0258 static bool bnx2x_raw_check_pending(struct bnx2x_raw_obj *o)
0259 {
0260     return !!test_bit(o->state, o->pstate);
0261 }
0262 
0263 static void bnx2x_raw_clear_pending(struct bnx2x_raw_obj *o)
0264 {
0265     smp_mb__before_atomic();
0266     clear_bit(o->state, o->pstate);
0267     smp_mb__after_atomic();
0268 }
0269 
0270 static void bnx2x_raw_set_pending(struct bnx2x_raw_obj *o)
0271 {
0272     smp_mb__before_atomic();
0273     set_bit(o->state, o->pstate);
0274     smp_mb__after_atomic();
0275 }
0276 
0277 /**
0278  * bnx2x_state_wait - wait until the given bit(state) is cleared
0279  *
0280  * @bp:     device handle
0281  * @state:  state which is to be cleared
0282  * @pstate: state buffer
0283  *
0284  */
0285 static inline int bnx2x_state_wait(struct bnx2x *bp, int state,
0286                    unsigned long *pstate)
0287 {
0288     /* can take a while if any port is running */
0289     int cnt = 5000;
0290 
0291     if (CHIP_REV_IS_EMUL(bp))
0292         cnt *= 20;
0293 
0294     DP(BNX2X_MSG_SP, "waiting for state to become %d\n", state);
0295 
0296     might_sleep();
0297     while (cnt--) {
0298         if (!test_bit(state, pstate)) {
0299 #ifdef BNX2X_STOP_ON_ERROR
0300             DP(BNX2X_MSG_SP, "exit  (cnt %d)\n", 5000 - cnt);
0301 #endif
0302             return 0;
0303         }
0304 
0305         usleep_range(1000, 2000);
0306 
0307         if (bp->panic)
0308             return -EIO;
0309     }
0310 
0311     /* timeout! */
0312     BNX2X_ERR("timeout waiting for state %d\n", state);
0313 #ifdef BNX2X_STOP_ON_ERROR
0314     bnx2x_panic();
0315 #endif
0316 
0317     return -EBUSY;
0318 }
0319 
0320 static int bnx2x_raw_wait(struct bnx2x *bp, struct bnx2x_raw_obj *raw)
0321 {
0322     return bnx2x_state_wait(bp, raw->state, raw->pstate);
0323 }
0324 
0325 /***************** Classification verbs: Set/Del MAC/VLAN/VLAN-MAC ************/
0326 /* credit handling callbacks */
0327 static bool bnx2x_get_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int *offset)
0328 {
0329     struct bnx2x_credit_pool_obj *mp = o->macs_pool;
0330 
0331     WARN_ON(!mp);
0332 
0333     return mp->get_entry(mp, offset);
0334 }
0335 
0336 static bool bnx2x_get_credit_mac(struct bnx2x_vlan_mac_obj *o)
0337 {
0338     struct bnx2x_credit_pool_obj *mp = o->macs_pool;
0339 
0340     WARN_ON(!mp);
0341 
0342     return mp->get(mp, 1);
0343 }
0344 
0345 static bool bnx2x_get_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int *offset)
0346 {
0347     struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
0348 
0349     WARN_ON(!vp);
0350 
0351     return vp->get_entry(vp, offset);
0352 }
0353 
0354 static bool bnx2x_get_credit_vlan(struct bnx2x_vlan_mac_obj *o)
0355 {
0356     struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
0357 
0358     WARN_ON(!vp);
0359 
0360     return vp->get(vp, 1);
0361 }
0362 
0363 static bool bnx2x_get_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o)
0364 {
0365     struct bnx2x_credit_pool_obj *mp = o->macs_pool;
0366     struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
0367 
0368     if (!mp->get(mp, 1))
0369         return false;
0370 
0371     if (!vp->get(vp, 1)) {
0372         mp->put(mp, 1);
0373         return false;
0374     }
0375 
0376     return true;
0377 }
0378 
0379 static bool bnx2x_put_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int offset)
0380 {
0381     struct bnx2x_credit_pool_obj *mp = o->macs_pool;
0382 
0383     return mp->put_entry(mp, offset);
0384 }
0385 
0386 static bool bnx2x_put_credit_mac(struct bnx2x_vlan_mac_obj *o)
0387 {
0388     struct bnx2x_credit_pool_obj *mp = o->macs_pool;
0389 
0390     return mp->put(mp, 1);
0391 }
0392 
0393 static bool bnx2x_put_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int offset)
0394 {
0395     struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
0396 
0397     return vp->put_entry(vp, offset);
0398 }
0399 
0400 static bool bnx2x_put_credit_vlan(struct bnx2x_vlan_mac_obj *o)
0401 {
0402     struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
0403 
0404     return vp->put(vp, 1);
0405 }
0406 
0407 static bool bnx2x_put_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o)
0408 {
0409     struct bnx2x_credit_pool_obj *mp = o->macs_pool;
0410     struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
0411 
0412     if (!mp->put(mp, 1))
0413         return false;
0414 
0415     if (!vp->put(vp, 1)) {
0416         mp->get(mp, 1);
0417         return false;
0418     }
0419 
0420     return true;
0421 }
0422 
0423 /**
0424  * __bnx2x_vlan_mac_h_write_trylock - try getting the vlan mac writer lock
0425  *
0426  * @bp:     device handle
0427  * @o:      vlan_mac object
0428  *
0429  * Context: Non-blocking implementation; should be called under execution
0430  *          queue lock.
0431  */
0432 static int __bnx2x_vlan_mac_h_write_trylock(struct bnx2x *bp,
0433                         struct bnx2x_vlan_mac_obj *o)
0434 {
0435     if (o->head_reader) {
0436         DP(BNX2X_MSG_SP, "vlan_mac_lock writer - There are readers; Busy\n");
0437         return -EBUSY;
0438     }
0439 
0440     DP(BNX2X_MSG_SP, "vlan_mac_lock writer - Taken\n");
0441     return 0;
0442 }
0443 
0444 /**
0445  * __bnx2x_vlan_mac_h_exec_pending - execute step instead of a previous step
0446  *
0447  * @bp:     device handle
0448  * @o:      vlan_mac object
0449  *
0450  * details Should be called under execution queue lock; notice it might release
0451  *          and reclaim it during its run.
0452  */
0453 static void __bnx2x_vlan_mac_h_exec_pending(struct bnx2x *bp,
0454                         struct bnx2x_vlan_mac_obj *o)
0455 {
0456     int rc;
0457     unsigned long ramrod_flags = o->saved_ramrod_flags;
0458 
0459     DP(BNX2X_MSG_SP, "vlan_mac_lock execute pending command with ramrod flags %lu\n",
0460        ramrod_flags);
0461     o->head_exe_request = false;
0462     o->saved_ramrod_flags = 0;
0463     rc = bnx2x_exe_queue_step(bp, &o->exe_queue, &ramrod_flags);
0464     if ((rc != 0) && (rc != 1)) {
0465         BNX2X_ERR("execution of pending commands failed with rc %d\n",
0466               rc);
0467 #ifdef BNX2X_STOP_ON_ERROR
0468         bnx2x_panic();
0469 #endif
0470     }
0471 }
0472 
0473 /**
0474  * __bnx2x_vlan_mac_h_pend - Pend an execution step which couldn't run
0475  *
0476  * @bp:         device handle
0477  * @o:          vlan_mac object
0478  * @ramrod_flags:   ramrod flags of missed execution
0479  *
0480  * Context: Should be called under execution queue lock.
0481  */
0482 static void __bnx2x_vlan_mac_h_pend(struct bnx2x *bp,
0483                     struct bnx2x_vlan_mac_obj *o,
0484                     unsigned long ramrod_flags)
0485 {
0486     o->head_exe_request = true;
0487     o->saved_ramrod_flags = ramrod_flags;
0488     DP(BNX2X_MSG_SP, "Placing pending execution with ramrod flags %lu\n",
0489        ramrod_flags);
0490 }
0491 
0492 /**
0493  * __bnx2x_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
0494  *
0495  * @bp:         device handle
0496  * @o:          vlan_mac object
0497  *
0498  * Context: Should be called under execution queue lock. Notice if a pending
0499  *          execution exists, it would perform it - possibly releasing and
0500  *          reclaiming the execution queue lock.
0501  */
0502 static void __bnx2x_vlan_mac_h_write_unlock(struct bnx2x *bp,
0503                         struct bnx2x_vlan_mac_obj *o)
0504 {
0505     /* It's possible a new pending execution was added since this writer
0506      * executed. If so, execute again. [Ad infinitum]
0507      */
0508     while (o->head_exe_request) {
0509         DP(BNX2X_MSG_SP, "vlan_mac_lock - writer release encountered a pending request\n");
0510         __bnx2x_vlan_mac_h_exec_pending(bp, o);
0511     }
0512 }
0513 
0514 
0515 /**
0516  * __bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
0517  *
0518  * @bp:         device handle
0519  * @o:          vlan_mac object
0520  *
0521  * Context: Should be called under the execution queue lock. May sleep. May
0522  *          release and reclaim execution queue lock during its run.
0523  */
0524 static int __bnx2x_vlan_mac_h_read_lock(struct bnx2x *bp,
0525                     struct bnx2x_vlan_mac_obj *o)
0526 {
0527     /* If we got here, we're holding lock --> no WRITER exists */
0528     o->head_reader++;
0529     DP(BNX2X_MSG_SP, "vlan_mac_lock - locked reader - number %d\n",
0530        o->head_reader);
0531 
0532     return 0;
0533 }
0534 
0535 /**
0536  * bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
0537  *
0538  * @bp:         device handle
0539  * @o:          vlan_mac object
0540  *
0541  * Context: May sleep. Claims and releases execution queue lock during its run.
0542  */
0543 int bnx2x_vlan_mac_h_read_lock(struct bnx2x *bp,
0544                    struct bnx2x_vlan_mac_obj *o)
0545 {
0546     int rc;
0547 
0548     spin_lock_bh(&o->exe_queue.lock);
0549     rc = __bnx2x_vlan_mac_h_read_lock(bp, o);
0550     spin_unlock_bh(&o->exe_queue.lock);
0551 
0552     return rc;
0553 }
0554 
0555 /**
0556  * __bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
0557  *
0558  * @bp:         device handle
0559  * @o:          vlan_mac object
0560  *
0561  * Context: Should be called under execution queue lock. Notice if a pending
0562  *          execution exists, it would be performed if this was the last
0563  *          reader. possibly releasing and reclaiming the execution queue lock.
0564  */
0565 static void __bnx2x_vlan_mac_h_read_unlock(struct bnx2x *bp,
0566                       struct bnx2x_vlan_mac_obj *o)
0567 {
0568     if (!o->head_reader) {
0569         BNX2X_ERR("Need to release vlan mac reader lock, but lock isn't taken\n");
0570 #ifdef BNX2X_STOP_ON_ERROR
0571         bnx2x_panic();
0572 #endif
0573     } else {
0574         o->head_reader--;
0575         DP(BNX2X_MSG_SP, "vlan_mac_lock - decreased readers to %d\n",
0576            o->head_reader);
0577     }
0578 
0579     /* It's possible a new pending execution was added, and that this reader
0580      * was last - if so we need to execute the command.
0581      */
0582     if (!o->head_reader && o->head_exe_request) {
0583         DP(BNX2X_MSG_SP, "vlan_mac_lock - reader release encountered a pending request\n");
0584 
0585         /* Writer release will do the trick */
0586         __bnx2x_vlan_mac_h_write_unlock(bp, o);
0587     }
0588 }
0589 
0590 /**
0591  * bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
0592  *
0593  * @bp:         device handle
0594  * @o:          vlan_mac object
0595  *
0596  * Context: Notice if a pending execution exists, it would be performed if this
0597  *          was the last reader. Claims and releases the execution queue lock
0598  *          during its run.
0599  */
0600 void bnx2x_vlan_mac_h_read_unlock(struct bnx2x *bp,
0601                   struct bnx2x_vlan_mac_obj *o)
0602 {
0603     spin_lock_bh(&o->exe_queue.lock);
0604     __bnx2x_vlan_mac_h_read_unlock(bp, o);
0605     spin_unlock_bh(&o->exe_queue.lock);
0606 }
0607 
0608 static int bnx2x_get_n_elements(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o,
0609                 int n, u8 *base, u8 stride, u8 size)
0610 {
0611     struct bnx2x_vlan_mac_registry_elem *pos;
0612     u8 *next = base;
0613     int counter = 0;
0614     int read_lock;
0615 
0616     DP(BNX2X_MSG_SP, "get_n_elements - taking vlan_mac_lock (reader)\n");
0617     read_lock = bnx2x_vlan_mac_h_read_lock(bp, o);
0618     if (read_lock != 0)
0619         BNX2X_ERR("get_n_elements failed to get vlan mac reader lock; Access without lock\n");
0620 
0621     /* traverse list */
0622     list_for_each_entry(pos, &o->head, link) {
0623         if (counter < n) {
0624             memcpy(next, &pos->u, size);
0625             counter++;
0626             DP(BNX2X_MSG_SP, "copied element number %d to address %p element was:\n",
0627                counter, next);
0628             next += stride + size;
0629         }
0630     }
0631 
0632     if (read_lock == 0) {
0633         DP(BNX2X_MSG_SP, "get_n_elements - releasing vlan_mac_lock (reader)\n");
0634         bnx2x_vlan_mac_h_read_unlock(bp, o);
0635     }
0636 
0637     return counter * ETH_ALEN;
0638 }
0639 
0640 /* check_add() callbacks */
0641 static int bnx2x_check_mac_add(struct bnx2x *bp,
0642                    struct bnx2x_vlan_mac_obj *o,
0643                    union bnx2x_classification_ramrod_data *data)
0644 {
0645     struct bnx2x_vlan_mac_registry_elem *pos;
0646 
0647     DP(BNX2X_MSG_SP, "Checking MAC %pM for ADD command\n", data->mac.mac);
0648 
0649     if (!is_valid_ether_addr(data->mac.mac))
0650         return -EINVAL;
0651 
0652     /* Check if a requested MAC already exists */
0653     list_for_each_entry(pos, &o->head, link)
0654         if (ether_addr_equal(data->mac.mac, pos->u.mac.mac) &&
0655             (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
0656             return -EEXIST;
0657 
0658     return 0;
0659 }
0660 
0661 static int bnx2x_check_vlan_add(struct bnx2x *bp,
0662                 struct bnx2x_vlan_mac_obj *o,
0663                 union bnx2x_classification_ramrod_data *data)
0664 {
0665     struct bnx2x_vlan_mac_registry_elem *pos;
0666 
0667     DP(BNX2X_MSG_SP, "Checking VLAN %d for ADD command\n", data->vlan.vlan);
0668 
0669     list_for_each_entry(pos, &o->head, link)
0670         if (data->vlan.vlan == pos->u.vlan.vlan)
0671             return -EEXIST;
0672 
0673     return 0;
0674 }
0675 
0676 static int bnx2x_check_vlan_mac_add(struct bnx2x *bp,
0677                     struct bnx2x_vlan_mac_obj *o,
0678                    union bnx2x_classification_ramrod_data *data)
0679 {
0680     struct bnx2x_vlan_mac_registry_elem *pos;
0681 
0682     DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for ADD command\n",
0683        data->vlan_mac.mac, data->vlan_mac.vlan);
0684 
0685     list_for_each_entry(pos, &o->head, link)
0686         if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
0687             (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
0688                   ETH_ALEN)) &&
0689             (data->vlan_mac.is_inner_mac ==
0690              pos->u.vlan_mac.is_inner_mac))
0691             return -EEXIST;
0692 
0693     return 0;
0694 }
0695 
0696 /* check_del() callbacks */
0697 static struct bnx2x_vlan_mac_registry_elem *
0698     bnx2x_check_mac_del(struct bnx2x *bp,
0699                 struct bnx2x_vlan_mac_obj *o,
0700                 union bnx2x_classification_ramrod_data *data)
0701 {
0702     struct bnx2x_vlan_mac_registry_elem *pos;
0703 
0704     DP(BNX2X_MSG_SP, "Checking MAC %pM for DEL command\n", data->mac.mac);
0705 
0706     list_for_each_entry(pos, &o->head, link)
0707         if (ether_addr_equal(data->mac.mac, pos->u.mac.mac) &&
0708             (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
0709             return pos;
0710 
0711     return NULL;
0712 }
0713 
0714 static struct bnx2x_vlan_mac_registry_elem *
0715     bnx2x_check_vlan_del(struct bnx2x *bp,
0716                  struct bnx2x_vlan_mac_obj *o,
0717                  union bnx2x_classification_ramrod_data *data)
0718 {
0719     struct bnx2x_vlan_mac_registry_elem *pos;
0720 
0721     DP(BNX2X_MSG_SP, "Checking VLAN %d for DEL command\n", data->vlan.vlan);
0722 
0723     list_for_each_entry(pos, &o->head, link)
0724         if (data->vlan.vlan == pos->u.vlan.vlan)
0725             return pos;
0726 
0727     return NULL;
0728 }
0729 
0730 static struct bnx2x_vlan_mac_registry_elem *
0731     bnx2x_check_vlan_mac_del(struct bnx2x *bp,
0732                  struct bnx2x_vlan_mac_obj *o,
0733                  union bnx2x_classification_ramrod_data *data)
0734 {
0735     struct bnx2x_vlan_mac_registry_elem *pos;
0736 
0737     DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for DEL command\n",
0738        data->vlan_mac.mac, data->vlan_mac.vlan);
0739 
0740     list_for_each_entry(pos, &o->head, link)
0741         if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
0742             (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
0743                  ETH_ALEN)) &&
0744             (data->vlan_mac.is_inner_mac ==
0745              pos->u.vlan_mac.is_inner_mac))
0746             return pos;
0747 
0748     return NULL;
0749 }
0750 
0751 /* check_move() callback */
0752 static bool bnx2x_check_move(struct bnx2x *bp,
0753                  struct bnx2x_vlan_mac_obj *src_o,
0754                  struct bnx2x_vlan_mac_obj *dst_o,
0755                  union bnx2x_classification_ramrod_data *data)
0756 {
0757     struct bnx2x_vlan_mac_registry_elem *pos;
0758     int rc;
0759 
0760     /* Check if we can delete the requested configuration from the first
0761      * object.
0762      */
0763     pos = src_o->check_del(bp, src_o, data);
0764 
0765     /*  check if configuration can be added */
0766     rc = dst_o->check_add(bp, dst_o, data);
0767 
0768     /* If this classification can not be added (is already set)
0769      * or can't be deleted - return an error.
0770      */
0771     if (rc || !pos)
0772         return false;
0773 
0774     return true;
0775 }
0776 
0777 static bool bnx2x_check_move_always_err(
0778     struct bnx2x *bp,
0779     struct bnx2x_vlan_mac_obj *src_o,
0780     struct bnx2x_vlan_mac_obj *dst_o,
0781     union bnx2x_classification_ramrod_data *data)
0782 {
0783     return false;
0784 }
0785 
0786 static inline u8 bnx2x_vlan_mac_get_rx_tx_flag(struct bnx2x_vlan_mac_obj *o)
0787 {
0788     struct bnx2x_raw_obj *raw = &o->raw;
0789     u8 rx_tx_flag = 0;
0790 
0791     if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
0792         (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
0793         rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_TX_CMD;
0794 
0795     if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
0796         (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
0797         rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_RX_CMD;
0798 
0799     return rx_tx_flag;
0800 }
0801 
0802 static void bnx2x_set_mac_in_nig(struct bnx2x *bp,
0803                  bool add, unsigned char *dev_addr, int index)
0804 {
0805     u32 wb_data[2];
0806     u32 reg_offset = BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM :
0807              NIG_REG_LLH0_FUNC_MEM;
0808 
0809     if (!IS_MF_SI(bp) && !IS_MF_AFEX(bp))
0810         return;
0811 
0812     if (index > BNX2X_LLH_CAM_MAX_PF_LINE)
0813         return;
0814 
0815     DP(BNX2X_MSG_SP, "Going to %s LLH configuration at entry %d\n",
0816              (add ? "ADD" : "DELETE"), index);
0817 
0818     if (add) {
0819         /* LLH_FUNC_MEM is a u64 WB register */
0820         reg_offset += 8*index;
0821 
0822         wb_data[0] = ((dev_addr[2] << 24) | (dev_addr[3] << 16) |
0823                   (dev_addr[4] <<  8) |  dev_addr[5]);
0824         wb_data[1] = ((dev_addr[0] <<  8) |  dev_addr[1]);
0825 
0826         REG_WR_DMAE(bp, reg_offset, wb_data, 2);
0827     }
0828 
0829     REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM_ENABLE :
0830                   NIG_REG_LLH0_FUNC_MEM_ENABLE) + 4*index, add);
0831 }
0832 
0833 /**
0834  * bnx2x_vlan_mac_set_cmd_hdr_e2 - set a header in a single classify ramrod
0835  *
0836  * @bp:     device handle
0837  * @o:      queue for which we want to configure this rule
0838  * @add:    if true the command is an ADD command, DEL otherwise
0839  * @opcode: CLASSIFY_RULE_OPCODE_XXX
0840  * @hdr:    pointer to a header to setup
0841  *
0842  */
0843 static inline void bnx2x_vlan_mac_set_cmd_hdr_e2(struct bnx2x *bp,
0844     struct bnx2x_vlan_mac_obj *o, bool add, int opcode,
0845     struct eth_classify_cmd_header *hdr)
0846 {
0847     struct bnx2x_raw_obj *raw = &o->raw;
0848 
0849     hdr->client_id = raw->cl_id;
0850     hdr->func_id = raw->func_id;
0851 
0852     /* Rx or/and Tx (internal switching) configuration ? */
0853     hdr->cmd_general_data |=
0854         bnx2x_vlan_mac_get_rx_tx_flag(o);
0855 
0856     if (add)
0857         hdr->cmd_general_data |= ETH_CLASSIFY_CMD_HEADER_IS_ADD;
0858 
0859     hdr->cmd_general_data |=
0860         (opcode << ETH_CLASSIFY_CMD_HEADER_OPCODE_SHIFT);
0861 }
0862 
0863 /**
0864  * bnx2x_vlan_mac_set_rdata_hdr_e2 - set the classify ramrod data header
0865  *
0866  * @cid:    connection id
0867  * @type:   BNX2X_FILTER_XXX_PENDING
0868  * @hdr:    pointer to header to setup
0869  * @rule_cnt:
0870  *
0871  * currently we always configure one rule and echo field to contain a CID and an
0872  * opcode type.
0873  */
0874 static inline void bnx2x_vlan_mac_set_rdata_hdr_e2(u32 cid, int type,
0875                 struct eth_classify_header *hdr, int rule_cnt)
0876 {
0877     hdr->echo = cpu_to_le32((cid & BNX2X_SWCID_MASK) |
0878                 (type << BNX2X_SWCID_SHIFT));
0879     hdr->rule_cnt = (u8)rule_cnt;
0880 }
0881 
0882 /* hw_config() callbacks */
0883 static void bnx2x_set_one_mac_e2(struct bnx2x *bp,
0884                  struct bnx2x_vlan_mac_obj *o,
0885                  struct bnx2x_exeq_elem *elem, int rule_idx,
0886                  int cam_offset)
0887 {
0888     struct bnx2x_raw_obj *raw = &o->raw;
0889     struct eth_classify_rules_ramrod_data *data =
0890         (struct eth_classify_rules_ramrod_data *)(raw->rdata);
0891     int rule_cnt = rule_idx + 1, cmd = elem->cmd_data.vlan_mac.cmd;
0892     union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
0893     bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
0894     unsigned long *vlan_mac_flags = &elem->cmd_data.vlan_mac.vlan_mac_flags;
0895     u8 *mac = elem->cmd_data.vlan_mac.u.mac.mac;
0896 
0897     /* Set LLH CAM entry: currently only iSCSI and ETH macs are
0898      * relevant. In addition, current implementation is tuned for a
0899      * single ETH MAC.
0900      *
0901      * When multiple unicast ETH MACs PF configuration in switch
0902      * independent mode is required (NetQ, multiple netdev MACs,
0903      * etc.), consider better utilisation of 8 per function MAC
0904      * entries in the LLH register. There is also
0905      * NIG_REG_P[01]_LLH_FUNC_MEM2 registers that complete the
0906      * total number of CAM entries to 16.
0907      *
0908      * Currently we won't configure NIG for MACs other than a primary ETH
0909      * MAC and iSCSI L2 MAC.
0910      *
0911      * If this MAC is moving from one Queue to another, no need to change
0912      * NIG configuration.
0913      */
0914     if (cmd != BNX2X_VLAN_MAC_MOVE) {
0915         if (test_bit(BNX2X_ISCSI_ETH_MAC, vlan_mac_flags))
0916             bnx2x_set_mac_in_nig(bp, add, mac,
0917                          BNX2X_LLH_CAM_ISCSI_ETH_LINE);
0918         else if (test_bit(BNX2X_ETH_MAC, vlan_mac_flags))
0919             bnx2x_set_mac_in_nig(bp, add, mac,
0920                          BNX2X_LLH_CAM_ETH_LINE);
0921     }
0922 
0923     /* Reset the ramrod data buffer for the first rule */
0924     if (rule_idx == 0)
0925         memset(data, 0, sizeof(*data));
0926 
0927     /* Setup a command header */
0928     bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_MAC,
0929                       &rule_entry->mac.header);
0930 
0931     DP(BNX2X_MSG_SP, "About to %s MAC %pM for Queue %d\n",
0932        (add ? "add" : "delete"), mac, raw->cl_id);
0933 
0934     /* Set a MAC itself */
0935     bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
0936                   &rule_entry->mac.mac_mid,
0937                   &rule_entry->mac.mac_lsb, mac);
0938     rule_entry->mac.inner_mac =
0939         cpu_to_le16(elem->cmd_data.vlan_mac.u.mac.is_inner_mac);
0940 
0941     /* MOVE: Add a rule that will add this MAC to the target Queue */
0942     if (cmd == BNX2X_VLAN_MAC_MOVE) {
0943         rule_entry++;
0944         rule_cnt++;
0945 
0946         /* Setup ramrod data */
0947         bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
0948                     elem->cmd_data.vlan_mac.target_obj,
0949                           true, CLASSIFY_RULE_OPCODE_MAC,
0950                           &rule_entry->mac.header);
0951 
0952         /* Set a MAC itself */
0953         bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
0954                       &rule_entry->mac.mac_mid,
0955                       &rule_entry->mac.mac_lsb, mac);
0956         rule_entry->mac.inner_mac =
0957             cpu_to_le16(elem->cmd_data.vlan_mac.
0958                         u.mac.is_inner_mac);
0959     }
0960 
0961     /* Set the ramrod data header */
0962     /* TODO: take this to the higher level in order to prevent multiple
0963          writing */
0964     bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
0965                     rule_cnt);
0966 }
0967 
0968 /**
0969  * bnx2x_vlan_mac_set_rdata_hdr_e1x - set a header in a single classify ramrod
0970  *
0971  * @bp:     device handle
0972  * @o:      queue
0973  * @type:   the type of echo
0974  * @cam_offset: offset in cam memory
0975  * @hdr:    pointer to a header to setup
0976  *
0977  * E1/E1H
0978  */
0979 static inline void bnx2x_vlan_mac_set_rdata_hdr_e1x(struct bnx2x *bp,
0980     struct bnx2x_vlan_mac_obj *o, int type, int cam_offset,
0981     struct mac_configuration_hdr *hdr)
0982 {
0983     struct bnx2x_raw_obj *r = &o->raw;
0984 
0985     hdr->length = 1;
0986     hdr->offset = (u8)cam_offset;
0987     hdr->client_id = cpu_to_le16(0xff);
0988     hdr->echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
0989                 (type << BNX2X_SWCID_SHIFT));
0990 }
0991 
0992 static inline void bnx2x_vlan_mac_set_cfg_entry_e1x(struct bnx2x *bp,
0993     struct bnx2x_vlan_mac_obj *o, bool add, int opcode, u8 *mac,
0994     u16 vlan_id, struct mac_configuration_entry *cfg_entry)
0995 {
0996     struct bnx2x_raw_obj *r = &o->raw;
0997     u32 cl_bit_vec = (1 << r->cl_id);
0998 
0999     cfg_entry->clients_bit_vector = cpu_to_le32(cl_bit_vec);
1000     cfg_entry->pf_id = r->func_id;
1001     cfg_entry->vlan_id = cpu_to_le16(vlan_id);
1002 
1003     if (add) {
1004         SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1005              T_ETH_MAC_COMMAND_SET);
1006         SET_FLAG(cfg_entry->flags,
1007              MAC_CONFIGURATION_ENTRY_VLAN_FILTERING_MODE, opcode);
1008 
1009         /* Set a MAC in a ramrod data */
1010         bnx2x_set_fw_mac_addr(&cfg_entry->msb_mac_addr,
1011                       &cfg_entry->middle_mac_addr,
1012                       &cfg_entry->lsb_mac_addr, mac);
1013     } else
1014         SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1015              T_ETH_MAC_COMMAND_INVALIDATE);
1016 }
1017 
1018 static inline void bnx2x_vlan_mac_set_rdata_e1x(struct bnx2x *bp,
1019     struct bnx2x_vlan_mac_obj *o, int type, int cam_offset, bool add,
1020     u8 *mac, u16 vlan_id, int opcode, struct mac_configuration_cmd *config)
1021 {
1022     struct mac_configuration_entry *cfg_entry = &config->config_table[0];
1023     struct bnx2x_raw_obj *raw = &o->raw;
1024 
1025     bnx2x_vlan_mac_set_rdata_hdr_e1x(bp, o, type, cam_offset,
1026                      &config->hdr);
1027     bnx2x_vlan_mac_set_cfg_entry_e1x(bp, o, add, opcode, mac, vlan_id,
1028                      cfg_entry);
1029 
1030     DP(BNX2X_MSG_SP, "%s MAC %pM CLID %d CAM offset %d\n",
1031              (add ? "setting" : "clearing"),
1032              mac, raw->cl_id, cam_offset);
1033 }
1034 
1035 /**
1036  * bnx2x_set_one_mac_e1x - fill a single MAC rule ramrod data
1037  *
1038  * @bp:     device handle
1039  * @o:      bnx2x_vlan_mac_obj
1040  * @elem:   bnx2x_exeq_elem
1041  * @rule_idx:   rule_idx
1042  * @cam_offset: cam_offset
1043  */
1044 static void bnx2x_set_one_mac_e1x(struct bnx2x *bp,
1045                   struct bnx2x_vlan_mac_obj *o,
1046                   struct bnx2x_exeq_elem *elem, int rule_idx,
1047                   int cam_offset)
1048 {
1049     struct bnx2x_raw_obj *raw = &o->raw;
1050     struct mac_configuration_cmd *config =
1051         (struct mac_configuration_cmd *)(raw->rdata);
1052     /* 57710 and 57711 do not support MOVE command,
1053      * so it's either ADD or DEL
1054      */
1055     bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1056         true : false;
1057 
1058     /* Reset the ramrod data buffer */
1059     memset(config, 0, sizeof(*config));
1060 
1061     bnx2x_vlan_mac_set_rdata_e1x(bp, o, raw->state,
1062                      cam_offset, add,
1063                      elem->cmd_data.vlan_mac.u.mac.mac, 0,
1064                      ETH_VLAN_FILTER_ANY_VLAN, config);
1065 }
1066 
1067 static void bnx2x_set_one_vlan_e2(struct bnx2x *bp,
1068                   struct bnx2x_vlan_mac_obj *o,
1069                   struct bnx2x_exeq_elem *elem, int rule_idx,
1070                   int cam_offset)
1071 {
1072     struct bnx2x_raw_obj *raw = &o->raw;
1073     struct eth_classify_rules_ramrod_data *data =
1074         (struct eth_classify_rules_ramrod_data *)(raw->rdata);
1075     int rule_cnt = rule_idx + 1;
1076     union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1077     enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1078     bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
1079     u16 vlan = elem->cmd_data.vlan_mac.u.vlan.vlan;
1080 
1081     /* Reset the ramrod data buffer for the first rule */
1082     if (rule_idx == 0)
1083         memset(data, 0, sizeof(*data));
1084 
1085     /* Set a rule header */
1086     bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_VLAN,
1087                       &rule_entry->vlan.header);
1088 
1089     DP(BNX2X_MSG_SP, "About to %s VLAN %d\n", (add ? "add" : "delete"),
1090              vlan);
1091 
1092     /* Set a VLAN itself */
1093     rule_entry->vlan.vlan = cpu_to_le16(vlan);
1094 
1095     /* MOVE: Add a rule that will add this MAC to the target Queue */
1096     if (cmd == BNX2X_VLAN_MAC_MOVE) {
1097         rule_entry++;
1098         rule_cnt++;
1099 
1100         /* Setup ramrod data */
1101         bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
1102                     elem->cmd_data.vlan_mac.target_obj,
1103                           true, CLASSIFY_RULE_OPCODE_VLAN,
1104                           &rule_entry->vlan.header);
1105 
1106         /* Set a VLAN itself */
1107         rule_entry->vlan.vlan = cpu_to_le16(vlan);
1108     }
1109 
1110     /* Set the ramrod data header */
1111     /* TODO: take this to the higher level in order to prevent multiple
1112          writing */
1113     bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1114                     rule_cnt);
1115 }
1116 
1117 static void bnx2x_set_one_vlan_mac_e2(struct bnx2x *bp,
1118                       struct bnx2x_vlan_mac_obj *o,
1119                       struct bnx2x_exeq_elem *elem,
1120                       int rule_idx, int cam_offset)
1121 {
1122     struct bnx2x_raw_obj *raw = &o->raw;
1123     struct eth_classify_rules_ramrod_data *data =
1124         (struct eth_classify_rules_ramrod_data *)(raw->rdata);
1125     int rule_cnt = rule_idx + 1;
1126     union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1127     enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1128     bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
1129     u16 vlan = elem->cmd_data.vlan_mac.u.vlan_mac.vlan;
1130     u8 *mac = elem->cmd_data.vlan_mac.u.vlan_mac.mac;
1131     u16 inner_mac;
1132 
1133     /* Reset the ramrod data buffer for the first rule */
1134     if (rule_idx == 0)
1135         memset(data, 0, sizeof(*data));
1136 
1137     /* Set a rule header */
1138     bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_PAIR,
1139                       &rule_entry->pair.header);
1140 
1141     /* Set VLAN and MAC themselves */
1142     rule_entry->pair.vlan = cpu_to_le16(vlan);
1143     bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1144                   &rule_entry->pair.mac_mid,
1145                   &rule_entry->pair.mac_lsb, mac);
1146     inner_mac = elem->cmd_data.vlan_mac.u.vlan_mac.is_inner_mac;
1147     rule_entry->pair.inner_mac = cpu_to_le16(inner_mac);
1148     /* MOVE: Add a rule that will add this MAC/VLAN to the target Queue */
1149     if (cmd == BNX2X_VLAN_MAC_MOVE) {
1150         struct bnx2x_vlan_mac_obj *target_obj;
1151 
1152         rule_entry++;
1153         rule_cnt++;
1154 
1155         /* Setup ramrod data */
1156         target_obj = elem->cmd_data.vlan_mac.target_obj;
1157         bnx2x_vlan_mac_set_cmd_hdr_e2(bp, target_obj,
1158                           true, CLASSIFY_RULE_OPCODE_PAIR,
1159                           &rule_entry->pair.header);
1160 
1161         /* Set a VLAN itself */
1162         rule_entry->pair.vlan = cpu_to_le16(vlan);
1163         bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1164                       &rule_entry->pair.mac_mid,
1165                       &rule_entry->pair.mac_lsb, mac);
1166         rule_entry->pair.inner_mac = cpu_to_le16(inner_mac);
1167     }
1168 
1169     /* Set the ramrod data header */
1170     bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1171                     rule_cnt);
1172 }
1173 
1174 /**
1175  * bnx2x_set_one_vlan_mac_e1h -
1176  *
1177  * @bp:     device handle
1178  * @o:      bnx2x_vlan_mac_obj
1179  * @elem:   bnx2x_exeq_elem
1180  * @rule_idx:   rule_idx
1181  * @cam_offset: cam_offset
1182  */
1183 static void bnx2x_set_one_vlan_mac_e1h(struct bnx2x *bp,
1184                        struct bnx2x_vlan_mac_obj *o,
1185                        struct bnx2x_exeq_elem *elem,
1186                        int rule_idx, int cam_offset)
1187 {
1188     struct bnx2x_raw_obj *raw = &o->raw;
1189     struct mac_configuration_cmd *config =
1190         (struct mac_configuration_cmd *)(raw->rdata);
1191     /* 57710 and 57711 do not support MOVE command,
1192      * so it's either ADD or DEL
1193      */
1194     bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1195         true : false;
1196 
1197     /* Reset the ramrod data buffer */
1198     memset(config, 0, sizeof(*config));
1199 
1200     bnx2x_vlan_mac_set_rdata_e1x(bp, o, BNX2X_FILTER_VLAN_MAC_PENDING,
1201                      cam_offset, add,
1202                      elem->cmd_data.vlan_mac.u.vlan_mac.mac,
1203                      elem->cmd_data.vlan_mac.u.vlan_mac.vlan,
1204                      ETH_VLAN_FILTER_CLASSIFY, config);
1205 }
1206 
1207 /**
1208  * bnx2x_vlan_mac_restore - reconfigure next MAC/VLAN/VLAN-MAC element
1209  *
1210  * @bp:     device handle
1211  * @p:      command parameters
1212  * @ppos:   pointer to the cookie
1213  *
1214  * reconfigure next MAC/VLAN/VLAN-MAC element from the
1215  * previously configured elements list.
1216  *
1217  * from command parameters only RAMROD_COMP_WAIT bit in ramrod_flags is taken
1218  * into an account
1219  *
1220  * pointer to the cookie  - that should be given back in the next call to make
1221  * function handle the next element. If *ppos is set to NULL it will restart the
1222  * iterator. If returned *ppos == NULL this means that the last element has been
1223  * handled.
1224  *
1225  */
1226 static int bnx2x_vlan_mac_restore(struct bnx2x *bp,
1227                struct bnx2x_vlan_mac_ramrod_params *p,
1228                struct bnx2x_vlan_mac_registry_elem **ppos)
1229 {
1230     struct bnx2x_vlan_mac_registry_elem *pos;
1231     struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1232 
1233     /* If list is empty - there is nothing to do here */
1234     if (list_empty(&o->head)) {
1235         *ppos = NULL;
1236         return 0;
1237     }
1238 
1239     /* make a step... */
1240     if (*ppos == NULL)
1241         *ppos = list_first_entry(&o->head,
1242                      struct bnx2x_vlan_mac_registry_elem,
1243                      link);
1244     else
1245         *ppos = list_next_entry(*ppos, link);
1246 
1247     pos = *ppos;
1248 
1249     /* If it's the last step - return NULL */
1250     if (list_is_last(&pos->link, &o->head))
1251         *ppos = NULL;
1252 
1253     /* Prepare a 'user_req' */
1254     memcpy(&p->user_req.u, &pos->u, sizeof(pos->u));
1255 
1256     /* Set the command */
1257     p->user_req.cmd = BNX2X_VLAN_MAC_ADD;
1258 
1259     /* Set vlan_mac_flags */
1260     p->user_req.vlan_mac_flags = pos->vlan_mac_flags;
1261 
1262     /* Set a restore bit */
1263     __set_bit(RAMROD_RESTORE, &p->ramrod_flags);
1264 
1265     return bnx2x_config_vlan_mac(bp, p);
1266 }
1267 
1268 /* bnx2x_exeq_get_mac/bnx2x_exeq_get_vlan/bnx2x_exeq_get_vlan_mac return a
1269  * pointer to an element with a specific criteria and NULL if such an element
1270  * hasn't been found.
1271  */
1272 static struct bnx2x_exeq_elem *bnx2x_exeq_get_mac(
1273     struct bnx2x_exe_queue_obj *o,
1274     struct bnx2x_exeq_elem *elem)
1275 {
1276     struct bnx2x_exeq_elem *pos;
1277     struct bnx2x_mac_ramrod_data *data = &elem->cmd_data.vlan_mac.u.mac;
1278 
1279     /* Check pending for execution commands */
1280     list_for_each_entry(pos, &o->exe_queue, link)
1281         if (!memcmp(&pos->cmd_data.vlan_mac.u.mac, data,
1282                   sizeof(*data)) &&
1283             (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1284             return pos;
1285 
1286     return NULL;
1287 }
1288 
1289 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan(
1290     struct bnx2x_exe_queue_obj *o,
1291     struct bnx2x_exeq_elem *elem)
1292 {
1293     struct bnx2x_exeq_elem *pos;
1294     struct bnx2x_vlan_ramrod_data *data = &elem->cmd_data.vlan_mac.u.vlan;
1295 
1296     /* Check pending for execution commands */
1297     list_for_each_entry(pos, &o->exe_queue, link)
1298         if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan, data,
1299                   sizeof(*data)) &&
1300             (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1301             return pos;
1302 
1303     return NULL;
1304 }
1305 
1306 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan_mac(
1307     struct bnx2x_exe_queue_obj *o,
1308     struct bnx2x_exeq_elem *elem)
1309 {
1310     struct bnx2x_exeq_elem *pos;
1311     struct bnx2x_vlan_mac_ramrod_data *data =
1312         &elem->cmd_data.vlan_mac.u.vlan_mac;
1313 
1314     /* Check pending for execution commands */
1315     list_for_each_entry(pos, &o->exe_queue, link)
1316         if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan_mac, data,
1317                 sizeof(*data)) &&
1318             (pos->cmd_data.vlan_mac.cmd ==
1319              elem->cmd_data.vlan_mac.cmd))
1320             return pos;
1321 
1322     return NULL;
1323 }
1324 
1325 /**
1326  * bnx2x_validate_vlan_mac_add - check if an ADD command can be executed
1327  *
1328  * @bp:     device handle
1329  * @qo:     bnx2x_qable_obj
1330  * @elem:   bnx2x_exeq_elem
1331  *
1332  * Checks that the requested configuration can be added. If yes and if
1333  * requested, consume CAM credit.
1334  *
1335  * The 'validate' is run after the 'optimize'.
1336  *
1337  */
1338 static inline int bnx2x_validate_vlan_mac_add(struct bnx2x *bp,
1339                           union bnx2x_qable_obj *qo,
1340                           struct bnx2x_exeq_elem *elem)
1341 {
1342     struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1343     struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1344     int rc;
1345 
1346     /* Check the registry */
1347     rc = o->check_add(bp, o, &elem->cmd_data.vlan_mac.u);
1348     if (rc) {
1349         DP(BNX2X_MSG_SP, "ADD command is not allowed considering current registry state.\n");
1350         return rc;
1351     }
1352 
1353     /* Check if there is a pending ADD command for this
1354      * MAC/VLAN/VLAN-MAC. Return an error if there is.
1355      */
1356     if (exeq->get(exeq, elem)) {
1357         DP(BNX2X_MSG_SP, "There is a pending ADD command already\n");
1358         return -EEXIST;
1359     }
1360 
1361     /* TODO: Check the pending MOVE from other objects where this
1362      * object is a destination object.
1363      */
1364 
1365     /* Consume the credit if not requested not to */
1366     if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1367                &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1368         o->get_credit(o)))
1369         return -EINVAL;
1370 
1371     return 0;
1372 }
1373 
1374 /**
1375  * bnx2x_validate_vlan_mac_del - check if the DEL command can be executed
1376  *
1377  * @bp:     device handle
1378  * @qo:     quable object to check
1379  * @elem:   element that needs to be deleted
1380  *
1381  * Checks that the requested configuration can be deleted. If yes and if
1382  * requested, returns a CAM credit.
1383  *
1384  * The 'validate' is run after the 'optimize'.
1385  */
1386 static inline int bnx2x_validate_vlan_mac_del(struct bnx2x *bp,
1387                           union bnx2x_qable_obj *qo,
1388                           struct bnx2x_exeq_elem *elem)
1389 {
1390     struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1391     struct bnx2x_vlan_mac_registry_elem *pos;
1392     struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1393     struct bnx2x_exeq_elem query_elem;
1394 
1395     /* If this classification can not be deleted (doesn't exist)
1396      * - return a BNX2X_EXIST.
1397      */
1398     pos = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
1399     if (!pos) {
1400         DP(BNX2X_MSG_SP, "DEL command is not allowed considering current registry state\n");
1401         return -EEXIST;
1402     }
1403 
1404     /* Check if there are pending DEL or MOVE commands for this
1405      * MAC/VLAN/VLAN-MAC. Return an error if so.
1406      */
1407     memcpy(&query_elem, elem, sizeof(query_elem));
1408 
1409     /* Check for MOVE commands */
1410     query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_MOVE;
1411     if (exeq->get(exeq, &query_elem)) {
1412         BNX2X_ERR("There is a pending MOVE command already\n");
1413         return -EINVAL;
1414     }
1415 
1416     /* Check for DEL commands */
1417     if (exeq->get(exeq, elem)) {
1418         DP(BNX2X_MSG_SP, "There is a pending DEL command already\n");
1419         return -EEXIST;
1420     }
1421 
1422     /* Return the credit to the credit pool if not requested not to */
1423     if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1424                &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1425         o->put_credit(o))) {
1426         BNX2X_ERR("Failed to return a credit\n");
1427         return -EINVAL;
1428     }
1429 
1430     return 0;
1431 }
1432 
1433 /**
1434  * bnx2x_validate_vlan_mac_move - check if the MOVE command can be executed
1435  *
1436  * @bp:     device handle
1437  * @qo:     quable object to check (source)
1438  * @elem:   element that needs to be moved
1439  *
1440  * Checks that the requested configuration can be moved. If yes and if
1441  * requested, returns a CAM credit.
1442  *
1443  * The 'validate' is run after the 'optimize'.
1444  */
1445 static inline int bnx2x_validate_vlan_mac_move(struct bnx2x *bp,
1446                            union bnx2x_qable_obj *qo,
1447                            struct bnx2x_exeq_elem *elem)
1448 {
1449     struct bnx2x_vlan_mac_obj *src_o = &qo->vlan_mac;
1450     struct bnx2x_vlan_mac_obj *dest_o = elem->cmd_data.vlan_mac.target_obj;
1451     struct bnx2x_exeq_elem query_elem;
1452     struct bnx2x_exe_queue_obj *src_exeq = &src_o->exe_queue;
1453     struct bnx2x_exe_queue_obj *dest_exeq = &dest_o->exe_queue;
1454 
1455     /* Check if we can perform this operation based on the current registry
1456      * state.
1457      */
1458     if (!src_o->check_move(bp, src_o, dest_o,
1459                    &elem->cmd_data.vlan_mac.u)) {
1460         DP(BNX2X_MSG_SP, "MOVE command is not allowed considering current registry state\n");
1461         return -EINVAL;
1462     }
1463 
1464     /* Check if there is an already pending DEL or MOVE command for the
1465      * source object or ADD command for a destination object. Return an
1466      * error if so.
1467      */
1468     memcpy(&query_elem, elem, sizeof(query_elem));
1469 
1470     /* Check DEL on source */
1471     query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
1472     if (src_exeq->get(src_exeq, &query_elem)) {
1473         BNX2X_ERR("There is a pending DEL command on the source queue already\n");
1474         return -EINVAL;
1475     }
1476 
1477     /* Check MOVE on source */
1478     if (src_exeq->get(src_exeq, elem)) {
1479         DP(BNX2X_MSG_SP, "There is a pending MOVE command already\n");
1480         return -EEXIST;
1481     }
1482 
1483     /* Check ADD on destination */
1484     query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
1485     if (dest_exeq->get(dest_exeq, &query_elem)) {
1486         BNX2X_ERR("There is a pending ADD command on the destination queue already\n");
1487         return -EINVAL;
1488     }
1489 
1490     /* Consume the credit if not requested not to */
1491     if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT_DEST,
1492                &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1493         dest_o->get_credit(dest_o)))
1494         return -EINVAL;
1495 
1496     if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1497                &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1498         src_o->put_credit(src_o))) {
1499         /* return the credit taken from dest... */
1500         dest_o->put_credit(dest_o);
1501         return -EINVAL;
1502     }
1503 
1504     return 0;
1505 }
1506 
1507 static int bnx2x_validate_vlan_mac(struct bnx2x *bp,
1508                    union bnx2x_qable_obj *qo,
1509                    struct bnx2x_exeq_elem *elem)
1510 {
1511     switch (elem->cmd_data.vlan_mac.cmd) {
1512     case BNX2X_VLAN_MAC_ADD:
1513         return bnx2x_validate_vlan_mac_add(bp, qo, elem);
1514     case BNX2X_VLAN_MAC_DEL:
1515         return bnx2x_validate_vlan_mac_del(bp, qo, elem);
1516     case BNX2X_VLAN_MAC_MOVE:
1517         return bnx2x_validate_vlan_mac_move(bp, qo, elem);
1518     default:
1519         return -EINVAL;
1520     }
1521 }
1522 
1523 static int bnx2x_remove_vlan_mac(struct bnx2x *bp,
1524                   union bnx2x_qable_obj *qo,
1525                   struct bnx2x_exeq_elem *elem)
1526 {
1527     int rc = 0;
1528 
1529     /* If consumption wasn't required, nothing to do */
1530     if (test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1531              &elem->cmd_data.vlan_mac.vlan_mac_flags))
1532         return 0;
1533 
1534     switch (elem->cmd_data.vlan_mac.cmd) {
1535     case BNX2X_VLAN_MAC_ADD:
1536     case BNX2X_VLAN_MAC_MOVE:
1537         rc = qo->vlan_mac.put_credit(&qo->vlan_mac);
1538         break;
1539     case BNX2X_VLAN_MAC_DEL:
1540         rc = qo->vlan_mac.get_credit(&qo->vlan_mac);
1541         break;
1542     default:
1543         return -EINVAL;
1544     }
1545 
1546     if (rc != true)
1547         return -EINVAL;
1548 
1549     return 0;
1550 }
1551 
1552 /**
1553  * bnx2x_wait_vlan_mac - passively wait for 5 seconds until all work completes.
1554  *
1555  * @bp:     device handle
1556  * @o:      bnx2x_vlan_mac_obj
1557  *
1558  */
1559 static int bnx2x_wait_vlan_mac(struct bnx2x *bp,
1560                    struct bnx2x_vlan_mac_obj *o)
1561 {
1562     int cnt = 5000, rc;
1563     struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1564     struct bnx2x_raw_obj *raw = &o->raw;
1565 
1566     while (cnt--) {
1567         /* Wait for the current command to complete */
1568         rc = raw->wait_comp(bp, raw);
1569         if (rc)
1570             return rc;
1571 
1572         /* Wait until there are no pending commands */
1573         if (!bnx2x_exe_queue_empty(exeq))
1574             usleep_range(1000, 2000);
1575         else
1576             return 0;
1577     }
1578 
1579     return -EBUSY;
1580 }
1581 
1582 static int __bnx2x_vlan_mac_execute_step(struct bnx2x *bp,
1583                      struct bnx2x_vlan_mac_obj *o,
1584                      unsigned long *ramrod_flags)
1585 {
1586     int rc = 0;
1587 
1588     spin_lock_bh(&o->exe_queue.lock);
1589 
1590     DP(BNX2X_MSG_SP, "vlan_mac_execute_step - trying to take writer lock\n");
1591     rc = __bnx2x_vlan_mac_h_write_trylock(bp, o);
1592 
1593     if (rc != 0) {
1594         __bnx2x_vlan_mac_h_pend(bp, o, *ramrod_flags);
1595 
1596         /* Calling function should not differentiate between this case
1597          * and the case in which there is already a pending ramrod
1598          */
1599         rc = 1;
1600     } else {
1601         rc = bnx2x_exe_queue_step(bp, &o->exe_queue, ramrod_flags);
1602     }
1603     spin_unlock_bh(&o->exe_queue.lock);
1604 
1605     return rc;
1606 }
1607 
1608 /**
1609  * bnx2x_complete_vlan_mac - complete one VLAN-MAC ramrod
1610  *
1611  * @bp:     device handle
1612  * @o:      bnx2x_vlan_mac_obj
1613  * @cqe:    completion element
1614  * @ramrod_flags: if set schedule next execution chunk
1615  *
1616  */
1617 static int bnx2x_complete_vlan_mac(struct bnx2x *bp,
1618                    struct bnx2x_vlan_mac_obj *o,
1619                    union event_ring_elem *cqe,
1620                    unsigned long *ramrod_flags)
1621 {
1622     struct bnx2x_raw_obj *r = &o->raw;
1623     int rc;
1624 
1625     /* Clearing the pending list & raw state should be made
1626      * atomically (as execution flow assumes they represent the same).
1627      */
1628     spin_lock_bh(&o->exe_queue.lock);
1629 
1630     /* Reset pending list */
1631     __bnx2x_exe_queue_reset_pending(bp, &o->exe_queue);
1632 
1633     /* Clear pending */
1634     r->clear_pending(r);
1635 
1636     spin_unlock_bh(&o->exe_queue.lock);
1637 
1638     /* If ramrod failed this is most likely a SW bug */
1639     if (cqe->message.error)
1640         return -EINVAL;
1641 
1642     /* Run the next bulk of pending commands if requested */
1643     if (test_bit(RAMROD_CONT, ramrod_flags)) {
1644         rc = __bnx2x_vlan_mac_execute_step(bp, o, ramrod_flags);
1645 
1646         if (rc < 0)
1647             return rc;
1648     }
1649 
1650     /* If there is more work to do return PENDING */
1651     if (!bnx2x_exe_queue_empty(&o->exe_queue))
1652         return 1;
1653 
1654     return 0;
1655 }
1656 
1657 /**
1658  * bnx2x_optimize_vlan_mac - optimize ADD and DEL commands.
1659  *
1660  * @bp:     device handle
1661  * @qo:     bnx2x_qable_obj
1662  * @elem:   bnx2x_exeq_elem
1663  */
1664 static int bnx2x_optimize_vlan_mac(struct bnx2x *bp,
1665                    union bnx2x_qable_obj *qo,
1666                    struct bnx2x_exeq_elem *elem)
1667 {
1668     struct bnx2x_exeq_elem query, *pos;
1669     struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1670     struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1671 
1672     memcpy(&query, elem, sizeof(query));
1673 
1674     switch (elem->cmd_data.vlan_mac.cmd) {
1675     case BNX2X_VLAN_MAC_ADD:
1676         query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
1677         break;
1678     case BNX2X_VLAN_MAC_DEL:
1679         query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
1680         break;
1681     default:
1682         /* Don't handle anything other than ADD or DEL */
1683         return 0;
1684     }
1685 
1686     /* If we found the appropriate element - delete it */
1687     pos = exeq->get(exeq, &query);
1688     if (pos) {
1689 
1690         /* Return the credit of the optimized command */
1691         if (!test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1692                   &pos->cmd_data.vlan_mac.vlan_mac_flags)) {
1693             if ((query.cmd_data.vlan_mac.cmd ==
1694                  BNX2X_VLAN_MAC_ADD) && !o->put_credit(o)) {
1695                 BNX2X_ERR("Failed to return the credit for the optimized ADD command\n");
1696                 return -EINVAL;
1697             } else if (!o->get_credit(o)) { /* VLAN_MAC_DEL */
1698                 BNX2X_ERR("Failed to recover the credit from the optimized DEL command\n");
1699                 return -EINVAL;
1700             }
1701         }
1702 
1703         DP(BNX2X_MSG_SP, "Optimizing %s command\n",
1704                (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1705                "ADD" : "DEL");
1706 
1707         list_del(&pos->link);
1708         bnx2x_exe_queue_free_elem(bp, pos);
1709         return 1;
1710     }
1711 
1712     return 0;
1713 }
1714 
1715 /**
1716  * bnx2x_vlan_mac_get_registry_elem - prepare a registry element
1717  *
1718  * @bp:   device handle
1719  * @o:  vlan object
1720  * @elem: element
1721  * @restore: to restore or not
1722  * @re: registry
1723  *
1724  * prepare a registry element according to the current command request.
1725  */
1726 static inline int bnx2x_vlan_mac_get_registry_elem(
1727     struct bnx2x *bp,
1728     struct bnx2x_vlan_mac_obj *o,
1729     struct bnx2x_exeq_elem *elem,
1730     bool restore,
1731     struct bnx2x_vlan_mac_registry_elem **re)
1732 {
1733     enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1734     struct bnx2x_vlan_mac_registry_elem *reg_elem;
1735 
1736     /* Allocate a new registry element if needed. */
1737     if (!restore &&
1738         ((cmd == BNX2X_VLAN_MAC_ADD) || (cmd == BNX2X_VLAN_MAC_MOVE))) {
1739         reg_elem = kzalloc(sizeof(*reg_elem), GFP_ATOMIC);
1740         if (!reg_elem)
1741             return -ENOMEM;
1742 
1743         /* Get a new CAM offset */
1744         if (!o->get_cam_offset(o, &reg_elem->cam_offset)) {
1745             /* This shall never happen, because we have checked the
1746              * CAM availability in the 'validate'.
1747              */
1748             WARN_ON(1);
1749             kfree(reg_elem);
1750             return -EINVAL;
1751         }
1752 
1753         DP(BNX2X_MSG_SP, "Got cam offset %d\n", reg_elem->cam_offset);
1754 
1755         /* Set a VLAN-MAC data */
1756         memcpy(&reg_elem->u, &elem->cmd_data.vlan_mac.u,
1757               sizeof(reg_elem->u));
1758 
1759         /* Copy the flags (needed for DEL and RESTORE flows) */
1760         reg_elem->vlan_mac_flags =
1761             elem->cmd_data.vlan_mac.vlan_mac_flags;
1762     } else /* DEL, RESTORE */
1763         reg_elem = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
1764 
1765     *re = reg_elem;
1766     return 0;
1767 }
1768 
1769 /**
1770  * bnx2x_execute_vlan_mac - execute vlan mac command
1771  *
1772  * @bp:         device handle
1773  * @qo:         bnx2x_qable_obj pointer
1774  * @exe_chunk:      chunk
1775  * @ramrod_flags:   flags
1776  *
1777  * go and send a ramrod!
1778  */
1779 static int bnx2x_execute_vlan_mac(struct bnx2x *bp,
1780                   union bnx2x_qable_obj *qo,
1781                   struct list_head *exe_chunk,
1782                   unsigned long *ramrod_flags)
1783 {
1784     struct bnx2x_exeq_elem *elem;
1785     struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac, *cam_obj;
1786     struct bnx2x_raw_obj *r = &o->raw;
1787     int rc, idx = 0;
1788     bool restore = test_bit(RAMROD_RESTORE, ramrod_flags);
1789     bool drv_only = test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags);
1790     struct bnx2x_vlan_mac_registry_elem *reg_elem;
1791     enum bnx2x_vlan_mac_cmd cmd;
1792 
1793     /* If DRIVER_ONLY execution is requested, cleanup a registry
1794      * and exit. Otherwise send a ramrod to FW.
1795      */
1796     if (!drv_only) {
1797         WARN_ON(r->check_pending(r));
1798 
1799         /* Set pending */
1800         r->set_pending(r);
1801 
1802         /* Fill the ramrod data */
1803         list_for_each_entry(elem, exe_chunk, link) {
1804             cmd = elem->cmd_data.vlan_mac.cmd;
1805             /* We will add to the target object in MOVE command, so
1806              * change the object for a CAM search.
1807              */
1808             if (cmd == BNX2X_VLAN_MAC_MOVE)
1809                 cam_obj = elem->cmd_data.vlan_mac.target_obj;
1810             else
1811                 cam_obj = o;
1812 
1813             rc = bnx2x_vlan_mac_get_registry_elem(bp, cam_obj,
1814                                   elem, restore,
1815                                   &reg_elem);
1816             if (rc)
1817                 goto error_exit;
1818 
1819             WARN_ON(!reg_elem);
1820 
1821             /* Push a new entry into the registry */
1822             if (!restore &&
1823                 ((cmd == BNX2X_VLAN_MAC_ADD) ||
1824                 (cmd == BNX2X_VLAN_MAC_MOVE)))
1825                 list_add(&reg_elem->link, &cam_obj->head);
1826 
1827             /* Configure a single command in a ramrod data buffer */
1828             o->set_one_rule(bp, o, elem, idx,
1829                     reg_elem->cam_offset);
1830 
1831             /* MOVE command consumes 2 entries in the ramrod data */
1832             if (cmd == BNX2X_VLAN_MAC_MOVE)
1833                 idx += 2;
1834             else
1835                 idx++;
1836         }
1837 
1838         /* No need for an explicit memory barrier here as long we would
1839          * need to ensure the ordering of writing to the SPQ element
1840          * and updating of the SPQ producer which involves a memory
1841          * read and we will have to put a full memory barrier there
1842          * (inside bnx2x_sp_post()).
1843          */
1844 
1845         rc = bnx2x_sp_post(bp, o->ramrod_cmd, r->cid,
1846                    U64_HI(r->rdata_mapping),
1847                    U64_LO(r->rdata_mapping),
1848                    ETH_CONNECTION_TYPE);
1849         if (rc)
1850             goto error_exit;
1851     }
1852 
1853     /* Now, when we are done with the ramrod - clean up the registry */
1854     list_for_each_entry(elem, exe_chunk, link) {
1855         cmd = elem->cmd_data.vlan_mac.cmd;
1856         if ((cmd == BNX2X_VLAN_MAC_DEL) ||
1857             (cmd == BNX2X_VLAN_MAC_MOVE)) {
1858             reg_elem = o->check_del(bp, o,
1859                         &elem->cmd_data.vlan_mac.u);
1860 
1861             WARN_ON(!reg_elem);
1862 
1863             o->put_cam_offset(o, reg_elem->cam_offset);
1864             list_del(&reg_elem->link);
1865             kfree(reg_elem);
1866         }
1867     }
1868 
1869     if (!drv_only)
1870         return 1;
1871     else
1872         return 0;
1873 
1874 error_exit:
1875     r->clear_pending(r);
1876 
1877     /* Cleanup a registry in case of a failure */
1878     list_for_each_entry(elem, exe_chunk, link) {
1879         cmd = elem->cmd_data.vlan_mac.cmd;
1880 
1881         if (cmd == BNX2X_VLAN_MAC_MOVE)
1882             cam_obj = elem->cmd_data.vlan_mac.target_obj;
1883         else
1884             cam_obj = o;
1885 
1886         /* Delete all newly added above entries */
1887         if (!restore &&
1888             ((cmd == BNX2X_VLAN_MAC_ADD) ||
1889             (cmd == BNX2X_VLAN_MAC_MOVE))) {
1890             reg_elem = o->check_del(bp, cam_obj,
1891                         &elem->cmd_data.vlan_mac.u);
1892             if (reg_elem) {
1893                 list_del(&reg_elem->link);
1894                 kfree(reg_elem);
1895             }
1896         }
1897     }
1898 
1899     return rc;
1900 }
1901 
1902 static inline int bnx2x_vlan_mac_push_new_cmd(
1903     struct bnx2x *bp,
1904     struct bnx2x_vlan_mac_ramrod_params *p)
1905 {
1906     struct bnx2x_exeq_elem *elem;
1907     struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1908     bool restore = test_bit(RAMROD_RESTORE, &p->ramrod_flags);
1909 
1910     /* Allocate the execution queue element */
1911     elem = bnx2x_exe_queue_alloc_elem(bp);
1912     if (!elem)
1913         return -ENOMEM;
1914 
1915     /* Set the command 'length' */
1916     switch (p->user_req.cmd) {
1917     case BNX2X_VLAN_MAC_MOVE:
1918         elem->cmd_len = 2;
1919         break;
1920     default:
1921         elem->cmd_len = 1;
1922     }
1923 
1924     /* Fill the object specific info */
1925     memcpy(&elem->cmd_data.vlan_mac, &p->user_req, sizeof(p->user_req));
1926 
1927     /* Try to add a new command to the pending list */
1928     return bnx2x_exe_queue_add(bp, &o->exe_queue, elem, restore);
1929 }
1930 
1931 /**
1932  * bnx2x_config_vlan_mac - configure VLAN/MAC/VLAN_MAC filtering rules.
1933  *
1934  * @bp:   device handle
1935  * @p:
1936  *
1937  */
1938 int bnx2x_config_vlan_mac(struct bnx2x *bp,
1939                struct bnx2x_vlan_mac_ramrod_params *p)
1940 {
1941     int rc = 0;
1942     struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1943     unsigned long *ramrod_flags = &p->ramrod_flags;
1944     bool cont = test_bit(RAMROD_CONT, ramrod_flags);
1945     struct bnx2x_raw_obj *raw = &o->raw;
1946 
1947     /*
1948      * Add new elements to the execution list for commands that require it.
1949      */
1950     if (!cont) {
1951         rc = bnx2x_vlan_mac_push_new_cmd(bp, p);
1952         if (rc)
1953             return rc;
1954     }
1955 
1956     /* If nothing will be executed further in this iteration we want to
1957      * return PENDING if there are pending commands
1958      */
1959     if (!bnx2x_exe_queue_empty(&o->exe_queue))
1960         rc = 1;
1961 
1962     if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags))  {
1963         DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: clearing a pending bit.\n");
1964         raw->clear_pending(raw);
1965     }
1966 
1967     /* Execute commands if required */
1968     if (cont || test_bit(RAMROD_EXEC, ramrod_flags) ||
1969         test_bit(RAMROD_COMP_WAIT, ramrod_flags)) {
1970         rc = __bnx2x_vlan_mac_execute_step(bp, p->vlan_mac_obj,
1971                            &p->ramrod_flags);
1972         if (rc < 0)
1973             return rc;
1974     }
1975 
1976     /* RAMROD_COMP_WAIT is a superset of RAMROD_EXEC. If it was set
1977      * then user want to wait until the last command is done.
1978      */
1979     if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
1980         /* Wait maximum for the current exe_queue length iterations plus
1981          * one (for the current pending command).
1982          */
1983         int max_iterations = bnx2x_exe_queue_length(&o->exe_queue) + 1;
1984 
1985         while (!bnx2x_exe_queue_empty(&o->exe_queue) &&
1986                max_iterations--) {
1987 
1988             /* Wait for the current command to complete */
1989             rc = raw->wait_comp(bp, raw);
1990             if (rc)
1991                 return rc;
1992 
1993             /* Make a next step */
1994             rc = __bnx2x_vlan_mac_execute_step(bp,
1995                                p->vlan_mac_obj,
1996                                &p->ramrod_flags);
1997             if (rc < 0)
1998                 return rc;
1999         }
2000 
2001         return 0;
2002     }
2003 
2004     return rc;
2005 }
2006 
2007 /**
2008  * bnx2x_vlan_mac_del_all - delete elements with given vlan_mac_flags spec
2009  *
2010  * @bp:         device handle
2011  * @o:          vlan object info
2012  * @vlan_mac_flags: vlan flags
2013  * @ramrod_flags:   execution flags to be used for this deletion
2014  *
2015  * if the last operation has completed successfully and there are no
2016  * more elements left, positive value if the last operation has completed
2017  * successfully and there are more previously configured elements, negative
2018  * value is current operation has failed.
2019  */
2020 static int bnx2x_vlan_mac_del_all(struct bnx2x *bp,
2021                   struct bnx2x_vlan_mac_obj *o,
2022                   unsigned long *vlan_mac_flags,
2023                   unsigned long *ramrod_flags)
2024 {
2025     struct bnx2x_vlan_mac_registry_elem *pos = NULL;
2026     struct bnx2x_vlan_mac_ramrod_params p;
2027     struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
2028     struct bnx2x_exeq_elem *exeq_pos, *exeq_pos_n;
2029     unsigned long flags;
2030     int read_lock;
2031     int rc = 0;
2032 
2033     /* Clear pending commands first */
2034 
2035     spin_lock_bh(&exeq->lock);
2036 
2037     list_for_each_entry_safe(exeq_pos, exeq_pos_n, &exeq->exe_queue, link) {
2038         flags = exeq_pos->cmd_data.vlan_mac.vlan_mac_flags;
2039         if (BNX2X_VLAN_MAC_CMP_FLAGS(flags) ==
2040             BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2041             rc = exeq->remove(bp, exeq->owner, exeq_pos);
2042             if (rc) {
2043                 BNX2X_ERR("Failed to remove command\n");
2044                 spin_unlock_bh(&exeq->lock);
2045                 return rc;
2046             }
2047             list_del(&exeq_pos->link);
2048             bnx2x_exe_queue_free_elem(bp, exeq_pos);
2049         }
2050     }
2051 
2052     spin_unlock_bh(&exeq->lock);
2053 
2054     /* Prepare a command request */
2055     memset(&p, 0, sizeof(p));
2056     p.vlan_mac_obj = o;
2057     p.ramrod_flags = *ramrod_flags;
2058     p.user_req.cmd = BNX2X_VLAN_MAC_DEL;
2059 
2060     /* Add all but the last VLAN-MAC to the execution queue without actually
2061      * execution anything.
2062      */
2063     __clear_bit(RAMROD_COMP_WAIT, &p.ramrod_flags);
2064     __clear_bit(RAMROD_EXEC, &p.ramrod_flags);
2065     __clear_bit(RAMROD_CONT, &p.ramrod_flags);
2066 
2067     DP(BNX2X_MSG_SP, "vlan_mac_del_all -- taking vlan_mac_lock (reader)\n");
2068     read_lock = bnx2x_vlan_mac_h_read_lock(bp, o);
2069     if (read_lock != 0)
2070         return read_lock;
2071 
2072     list_for_each_entry(pos, &o->head, link) {
2073         flags = pos->vlan_mac_flags;
2074         if (BNX2X_VLAN_MAC_CMP_FLAGS(flags) ==
2075             BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2076             p.user_req.vlan_mac_flags = pos->vlan_mac_flags;
2077             memcpy(&p.user_req.u, &pos->u, sizeof(pos->u));
2078             rc = bnx2x_config_vlan_mac(bp, &p);
2079             if (rc < 0) {
2080                 BNX2X_ERR("Failed to add a new DEL command\n");
2081                 bnx2x_vlan_mac_h_read_unlock(bp, o);
2082                 return rc;
2083             }
2084         }
2085     }
2086 
2087     DP(BNX2X_MSG_SP, "vlan_mac_del_all -- releasing vlan_mac_lock (reader)\n");
2088     bnx2x_vlan_mac_h_read_unlock(bp, o);
2089 
2090     p.ramrod_flags = *ramrod_flags;
2091     __set_bit(RAMROD_CONT, &p.ramrod_flags);
2092 
2093     return bnx2x_config_vlan_mac(bp, &p);
2094 }
2095 
2096 static inline void bnx2x_init_raw_obj(struct bnx2x_raw_obj *raw, u8 cl_id,
2097     u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping, int state,
2098     unsigned long *pstate, bnx2x_obj_type type)
2099 {
2100     raw->func_id = func_id;
2101     raw->cid = cid;
2102     raw->cl_id = cl_id;
2103     raw->rdata = rdata;
2104     raw->rdata_mapping = rdata_mapping;
2105     raw->state = state;
2106     raw->pstate = pstate;
2107     raw->obj_type = type;
2108     raw->check_pending = bnx2x_raw_check_pending;
2109     raw->clear_pending = bnx2x_raw_clear_pending;
2110     raw->set_pending = bnx2x_raw_set_pending;
2111     raw->wait_comp = bnx2x_raw_wait;
2112 }
2113 
2114 static inline void bnx2x_init_vlan_mac_common(struct bnx2x_vlan_mac_obj *o,
2115     u8 cl_id, u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping,
2116     int state, unsigned long *pstate, bnx2x_obj_type type,
2117     struct bnx2x_credit_pool_obj *macs_pool,
2118     struct bnx2x_credit_pool_obj *vlans_pool)
2119 {
2120     INIT_LIST_HEAD(&o->head);
2121     o->head_reader = 0;
2122     o->head_exe_request = false;
2123     o->saved_ramrod_flags = 0;
2124 
2125     o->macs_pool = macs_pool;
2126     o->vlans_pool = vlans_pool;
2127 
2128     o->delete_all = bnx2x_vlan_mac_del_all;
2129     o->restore = bnx2x_vlan_mac_restore;
2130     o->complete = bnx2x_complete_vlan_mac;
2131     o->wait = bnx2x_wait_vlan_mac;
2132 
2133     bnx2x_init_raw_obj(&o->raw, cl_id, cid, func_id, rdata, rdata_mapping,
2134                state, pstate, type);
2135 }
2136 
2137 void bnx2x_init_mac_obj(struct bnx2x *bp,
2138             struct bnx2x_vlan_mac_obj *mac_obj,
2139             u8 cl_id, u32 cid, u8 func_id, void *rdata,
2140             dma_addr_t rdata_mapping, int state,
2141             unsigned long *pstate, bnx2x_obj_type type,
2142             struct bnx2x_credit_pool_obj *macs_pool)
2143 {
2144     union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)mac_obj;
2145 
2146     bnx2x_init_vlan_mac_common(mac_obj, cl_id, cid, func_id, rdata,
2147                    rdata_mapping, state, pstate, type,
2148                    macs_pool, NULL);
2149 
2150     /* CAM credit pool handling */
2151     mac_obj->get_credit = bnx2x_get_credit_mac;
2152     mac_obj->put_credit = bnx2x_put_credit_mac;
2153     mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
2154     mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
2155 
2156     if (CHIP_IS_E1x(bp)) {
2157         mac_obj->set_one_rule      = bnx2x_set_one_mac_e1x;
2158         mac_obj->check_del         = bnx2x_check_mac_del;
2159         mac_obj->check_add         = bnx2x_check_mac_add;
2160         mac_obj->check_move        = bnx2x_check_move_always_err;
2161         mac_obj->ramrod_cmd        = RAMROD_CMD_ID_ETH_SET_MAC;
2162 
2163         /* Exe Queue */
2164         bnx2x_exe_queue_init(bp,
2165                      &mac_obj->exe_queue, 1, qable_obj,
2166                      bnx2x_validate_vlan_mac,
2167                      bnx2x_remove_vlan_mac,
2168                      bnx2x_optimize_vlan_mac,
2169                      bnx2x_execute_vlan_mac,
2170                      bnx2x_exeq_get_mac);
2171     } else {
2172         mac_obj->set_one_rule      = bnx2x_set_one_mac_e2;
2173         mac_obj->check_del         = bnx2x_check_mac_del;
2174         mac_obj->check_add         = bnx2x_check_mac_add;
2175         mac_obj->check_move        = bnx2x_check_move;
2176         mac_obj->ramrod_cmd        =
2177             RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2178         mac_obj->get_n_elements    = bnx2x_get_n_elements;
2179 
2180         /* Exe Queue */
2181         bnx2x_exe_queue_init(bp,
2182                      &mac_obj->exe_queue, CLASSIFY_RULES_COUNT,
2183                      qable_obj, bnx2x_validate_vlan_mac,
2184                      bnx2x_remove_vlan_mac,
2185                      bnx2x_optimize_vlan_mac,
2186                      bnx2x_execute_vlan_mac,
2187                      bnx2x_exeq_get_mac);
2188     }
2189 }
2190 
2191 void bnx2x_init_vlan_obj(struct bnx2x *bp,
2192              struct bnx2x_vlan_mac_obj *vlan_obj,
2193              u8 cl_id, u32 cid, u8 func_id, void *rdata,
2194              dma_addr_t rdata_mapping, int state,
2195              unsigned long *pstate, bnx2x_obj_type type,
2196              struct bnx2x_credit_pool_obj *vlans_pool)
2197 {
2198     union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)vlan_obj;
2199 
2200     bnx2x_init_vlan_mac_common(vlan_obj, cl_id, cid, func_id, rdata,
2201                    rdata_mapping, state, pstate, type, NULL,
2202                    vlans_pool);
2203 
2204     vlan_obj->get_credit = bnx2x_get_credit_vlan;
2205     vlan_obj->put_credit = bnx2x_put_credit_vlan;
2206     vlan_obj->get_cam_offset = bnx2x_get_cam_offset_vlan;
2207     vlan_obj->put_cam_offset = bnx2x_put_cam_offset_vlan;
2208 
2209     if (CHIP_IS_E1x(bp)) {
2210         BNX2X_ERR("Do not support chips others than E2 and newer\n");
2211         BUG();
2212     } else {
2213         vlan_obj->set_one_rule      = bnx2x_set_one_vlan_e2;
2214         vlan_obj->check_del         = bnx2x_check_vlan_del;
2215         vlan_obj->check_add         = bnx2x_check_vlan_add;
2216         vlan_obj->check_move        = bnx2x_check_move;
2217         vlan_obj->ramrod_cmd        =
2218             RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2219         vlan_obj->get_n_elements    = bnx2x_get_n_elements;
2220 
2221         /* Exe Queue */
2222         bnx2x_exe_queue_init(bp,
2223                      &vlan_obj->exe_queue, CLASSIFY_RULES_COUNT,
2224                      qable_obj, bnx2x_validate_vlan_mac,
2225                      bnx2x_remove_vlan_mac,
2226                      bnx2x_optimize_vlan_mac,
2227                      bnx2x_execute_vlan_mac,
2228                      bnx2x_exeq_get_vlan);
2229     }
2230 }
2231 
2232 void bnx2x_init_vlan_mac_obj(struct bnx2x *bp,
2233                  struct bnx2x_vlan_mac_obj *vlan_mac_obj,
2234                  u8 cl_id, u32 cid, u8 func_id, void *rdata,
2235                  dma_addr_t rdata_mapping, int state,
2236                  unsigned long *pstate, bnx2x_obj_type type,
2237                  struct bnx2x_credit_pool_obj *macs_pool,
2238                  struct bnx2x_credit_pool_obj *vlans_pool)
2239 {
2240     union bnx2x_qable_obj *qable_obj =
2241         (union bnx2x_qable_obj *)vlan_mac_obj;
2242 
2243     bnx2x_init_vlan_mac_common(vlan_mac_obj, cl_id, cid, func_id, rdata,
2244                    rdata_mapping, state, pstate, type,
2245                    macs_pool, vlans_pool);
2246 
2247     /* CAM pool handling */
2248     vlan_mac_obj->get_credit = bnx2x_get_credit_vlan_mac;
2249     vlan_mac_obj->put_credit = bnx2x_put_credit_vlan_mac;
2250     /* CAM offset is relevant for 57710 and 57711 chips only which have a
2251      * single CAM for both MACs and VLAN-MAC pairs. So the offset
2252      * will be taken from MACs' pool object only.
2253      */
2254     vlan_mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
2255     vlan_mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
2256 
2257     if (CHIP_IS_E1(bp)) {
2258         BNX2X_ERR("Do not support chips others than E2\n");
2259         BUG();
2260     } else if (CHIP_IS_E1H(bp)) {
2261         vlan_mac_obj->set_one_rule      = bnx2x_set_one_vlan_mac_e1h;
2262         vlan_mac_obj->check_del         = bnx2x_check_vlan_mac_del;
2263         vlan_mac_obj->check_add         = bnx2x_check_vlan_mac_add;
2264         vlan_mac_obj->check_move        = bnx2x_check_move_always_err;
2265         vlan_mac_obj->ramrod_cmd        = RAMROD_CMD_ID_ETH_SET_MAC;
2266 
2267         /* Exe Queue */
2268         bnx2x_exe_queue_init(bp,
2269                      &vlan_mac_obj->exe_queue, 1, qable_obj,
2270                      bnx2x_validate_vlan_mac,
2271                      bnx2x_remove_vlan_mac,
2272                      bnx2x_optimize_vlan_mac,
2273                      bnx2x_execute_vlan_mac,
2274                      bnx2x_exeq_get_vlan_mac);
2275     } else {
2276         vlan_mac_obj->set_one_rule      = bnx2x_set_one_vlan_mac_e2;
2277         vlan_mac_obj->check_del         = bnx2x_check_vlan_mac_del;
2278         vlan_mac_obj->check_add         = bnx2x_check_vlan_mac_add;
2279         vlan_mac_obj->check_move        = bnx2x_check_move;
2280         vlan_mac_obj->ramrod_cmd        =
2281             RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2282 
2283         /* Exe Queue */
2284         bnx2x_exe_queue_init(bp,
2285                      &vlan_mac_obj->exe_queue,
2286                      CLASSIFY_RULES_COUNT,
2287                      qable_obj, bnx2x_validate_vlan_mac,
2288                      bnx2x_remove_vlan_mac,
2289                      bnx2x_optimize_vlan_mac,
2290                      bnx2x_execute_vlan_mac,
2291                      bnx2x_exeq_get_vlan_mac);
2292     }
2293 }
2294 /* RX_MODE verbs: DROP_ALL/ACCEPT_ALL/ACCEPT_ALL_MULTI/ACCEPT_ALL_VLAN/NORMAL */
2295 static inline void __storm_memset_mac_filters(struct bnx2x *bp,
2296             struct tstorm_eth_mac_filter_config *mac_filters,
2297             u16 pf_id)
2298 {
2299     size_t size = sizeof(struct tstorm_eth_mac_filter_config);
2300 
2301     u32 addr = BAR_TSTRORM_INTMEM +
2302             TSTORM_MAC_FILTER_CONFIG_OFFSET(pf_id);
2303 
2304     __storm_memset_struct(bp, addr, size, (u32 *)mac_filters);
2305 }
2306 
2307 static int bnx2x_set_rx_mode_e1x(struct bnx2x *bp,
2308                  struct bnx2x_rx_mode_ramrod_params *p)
2309 {
2310     /* update the bp MAC filter structure */
2311     u32 mask = (1 << p->cl_id);
2312 
2313     struct tstorm_eth_mac_filter_config *mac_filters =
2314         (struct tstorm_eth_mac_filter_config *)p->rdata;
2315 
2316     /* initial setting is drop-all */
2317     u8 drop_all_ucast = 1, drop_all_mcast = 1;
2318     u8 accp_all_ucast = 0, accp_all_bcast = 0, accp_all_mcast = 0;
2319     u8 unmatched_unicast = 0;
2320 
2321     /* In e1x there we only take into account rx accept flag since tx switching
2322      * isn't enabled. */
2323     if (test_bit(BNX2X_ACCEPT_UNICAST, &p->rx_accept_flags))
2324         /* accept matched ucast */
2325         drop_all_ucast = 0;
2326 
2327     if (test_bit(BNX2X_ACCEPT_MULTICAST, &p->rx_accept_flags))
2328         /* accept matched mcast */
2329         drop_all_mcast = 0;
2330 
2331     if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, &p->rx_accept_flags)) {
2332         /* accept all mcast */
2333         drop_all_ucast = 0;
2334         accp_all_ucast = 1;
2335     }
2336     if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, &p->rx_accept_flags)) {
2337         /* accept all mcast */
2338         drop_all_mcast = 0;
2339         accp_all_mcast = 1;
2340     }
2341     if (test_bit(BNX2X_ACCEPT_BROADCAST, &p->rx_accept_flags))
2342         /* accept (all) bcast */
2343         accp_all_bcast = 1;
2344     if (test_bit(BNX2X_ACCEPT_UNMATCHED, &p->rx_accept_flags))
2345         /* accept unmatched unicasts */
2346         unmatched_unicast = 1;
2347 
2348     mac_filters->ucast_drop_all = drop_all_ucast ?
2349         mac_filters->ucast_drop_all | mask :
2350         mac_filters->ucast_drop_all & ~mask;
2351 
2352     mac_filters->mcast_drop_all = drop_all_mcast ?
2353         mac_filters->mcast_drop_all | mask :
2354         mac_filters->mcast_drop_all & ~mask;
2355 
2356     mac_filters->ucast_accept_all = accp_all_ucast ?
2357         mac_filters->ucast_accept_all | mask :
2358         mac_filters->ucast_accept_all & ~mask;
2359 
2360     mac_filters->mcast_accept_all = accp_all_mcast ?
2361         mac_filters->mcast_accept_all | mask :
2362         mac_filters->mcast_accept_all & ~mask;
2363 
2364     mac_filters->bcast_accept_all = accp_all_bcast ?
2365         mac_filters->bcast_accept_all | mask :
2366         mac_filters->bcast_accept_all & ~mask;
2367 
2368     mac_filters->unmatched_unicast = unmatched_unicast ?
2369         mac_filters->unmatched_unicast | mask :
2370         mac_filters->unmatched_unicast & ~mask;
2371 
2372     DP(BNX2X_MSG_SP, "drop_ucast 0x%x\ndrop_mcast 0x%x\n accp_ucast 0x%x\n"
2373              "accp_mcast 0x%x\naccp_bcast 0x%x\n",
2374        mac_filters->ucast_drop_all, mac_filters->mcast_drop_all,
2375        mac_filters->ucast_accept_all, mac_filters->mcast_accept_all,
2376        mac_filters->bcast_accept_all);
2377 
2378     /* write the MAC filter structure*/
2379     __storm_memset_mac_filters(bp, mac_filters, p->func_id);
2380 
2381     /* The operation is completed */
2382     clear_bit(p->state, p->pstate);
2383     smp_mb__after_atomic();
2384 
2385     return 0;
2386 }
2387 
2388 /* Setup ramrod data */
2389 static inline void bnx2x_rx_mode_set_rdata_hdr_e2(u32 cid,
2390                 struct eth_classify_header *hdr,
2391                 u8 rule_cnt)
2392 {
2393     hdr->echo = cpu_to_le32(cid);
2394     hdr->rule_cnt = rule_cnt;
2395 }
2396 
2397 static inline void bnx2x_rx_mode_set_cmd_state_e2(struct bnx2x *bp,
2398                 unsigned long *accept_flags,
2399                 struct eth_filter_rules_cmd *cmd,
2400                 bool clear_accept_all)
2401 {
2402     u16 state;
2403 
2404     /* start with 'drop-all' */
2405     state = ETH_FILTER_RULES_CMD_UCAST_DROP_ALL |
2406         ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2407 
2408     if (test_bit(BNX2X_ACCEPT_UNICAST, accept_flags))
2409         state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2410 
2411     if (test_bit(BNX2X_ACCEPT_MULTICAST, accept_flags))
2412         state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2413 
2414     if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, accept_flags)) {
2415         state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2416         state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2417     }
2418 
2419     if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, accept_flags)) {
2420         state |= ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2421         state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2422     }
2423 
2424     if (test_bit(BNX2X_ACCEPT_BROADCAST, accept_flags))
2425         state |= ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2426 
2427     if (test_bit(BNX2X_ACCEPT_UNMATCHED, accept_flags)) {
2428         state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2429         state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2430     }
2431 
2432     if (test_bit(BNX2X_ACCEPT_ANY_VLAN, accept_flags))
2433         state |= ETH_FILTER_RULES_CMD_ACCEPT_ANY_VLAN;
2434 
2435     /* Clear ACCEPT_ALL_XXX flags for FCoE L2 Queue */
2436     if (clear_accept_all) {
2437         state &= ~ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2438         state &= ~ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2439         state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2440         state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2441     }
2442 
2443     cmd->state = cpu_to_le16(state);
2444 }
2445 
2446 static int bnx2x_set_rx_mode_e2(struct bnx2x *bp,
2447                 struct bnx2x_rx_mode_ramrod_params *p)
2448 {
2449     struct eth_filter_rules_ramrod_data *data = p->rdata;
2450     int rc;
2451     u8 rule_idx = 0;
2452 
2453     /* Reset the ramrod data buffer */
2454     memset(data, 0, sizeof(*data));
2455 
2456     /* Setup ramrod data */
2457 
2458     /* Tx (internal switching) */
2459     if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
2460         data->rules[rule_idx].client_id = p->cl_id;
2461         data->rules[rule_idx].func_id = p->func_id;
2462 
2463         data->rules[rule_idx].cmd_general_data =
2464             ETH_FILTER_RULES_CMD_TX_CMD;
2465 
2466         bnx2x_rx_mode_set_cmd_state_e2(bp, &p->tx_accept_flags,
2467                            &(data->rules[rule_idx++]),
2468                            false);
2469     }
2470 
2471     /* Rx */
2472     if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
2473         data->rules[rule_idx].client_id = p->cl_id;
2474         data->rules[rule_idx].func_id = p->func_id;
2475 
2476         data->rules[rule_idx].cmd_general_data =
2477             ETH_FILTER_RULES_CMD_RX_CMD;
2478 
2479         bnx2x_rx_mode_set_cmd_state_e2(bp, &p->rx_accept_flags,
2480                            &(data->rules[rule_idx++]),
2481                            false);
2482     }
2483 
2484     /* If FCoE Queue configuration has been requested configure the Rx and
2485      * internal switching modes for this queue in separate rules.
2486      *
2487      * FCoE queue shell never be set to ACCEPT_ALL packets of any sort:
2488      * MCAST_ALL, UCAST_ALL, BCAST_ALL and UNMATCHED.
2489      */
2490     if (test_bit(BNX2X_RX_MODE_FCOE_ETH, &p->rx_mode_flags)) {
2491         /*  Tx (internal switching) */
2492         if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
2493             data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
2494             data->rules[rule_idx].func_id = p->func_id;
2495 
2496             data->rules[rule_idx].cmd_general_data =
2497                         ETH_FILTER_RULES_CMD_TX_CMD;
2498 
2499             bnx2x_rx_mode_set_cmd_state_e2(bp, &p->tx_accept_flags,
2500                                &(data->rules[rule_idx]),
2501                                true);
2502             rule_idx++;
2503         }
2504 
2505         /* Rx */
2506         if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
2507             data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
2508             data->rules[rule_idx].func_id = p->func_id;
2509 
2510             data->rules[rule_idx].cmd_general_data =
2511                         ETH_FILTER_RULES_CMD_RX_CMD;
2512 
2513             bnx2x_rx_mode_set_cmd_state_e2(bp, &p->rx_accept_flags,
2514                                &(data->rules[rule_idx]),
2515                                true);
2516             rule_idx++;
2517         }
2518     }
2519 
2520     /* Set the ramrod header (most importantly - number of rules to
2521      * configure).
2522      */
2523     bnx2x_rx_mode_set_rdata_hdr_e2(p->cid, &data->header, rule_idx);
2524 
2525     DP(BNX2X_MSG_SP, "About to configure %d rules, rx_accept_flags 0x%lx, tx_accept_flags 0x%lx\n",
2526              data->header.rule_cnt, p->rx_accept_flags,
2527              p->tx_accept_flags);
2528 
2529     /* No need for an explicit memory barrier here as long as we
2530      * ensure the ordering of writing to the SPQ element
2531      * and updating of the SPQ producer which involves a memory
2532      * read. If the memory read is removed we will have to put a
2533      * full memory barrier there (inside bnx2x_sp_post()).
2534      */
2535 
2536     /* Send a ramrod */
2537     rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_FILTER_RULES, p->cid,
2538                U64_HI(p->rdata_mapping),
2539                U64_LO(p->rdata_mapping),
2540                ETH_CONNECTION_TYPE);
2541     if (rc)
2542         return rc;
2543 
2544     /* Ramrod completion is pending */
2545     return 1;
2546 }
2547 
2548 static int bnx2x_wait_rx_mode_comp_e2(struct bnx2x *bp,
2549                       struct bnx2x_rx_mode_ramrod_params *p)
2550 {
2551     return bnx2x_state_wait(bp, p->state, p->pstate);
2552 }
2553 
2554 static int bnx2x_empty_rx_mode_wait(struct bnx2x *bp,
2555                     struct bnx2x_rx_mode_ramrod_params *p)
2556 {
2557     /* Do nothing */
2558     return 0;
2559 }
2560 
2561 int bnx2x_config_rx_mode(struct bnx2x *bp,
2562              struct bnx2x_rx_mode_ramrod_params *p)
2563 {
2564     int rc;
2565 
2566     /* Configure the new classification in the chip */
2567     rc = p->rx_mode_obj->config_rx_mode(bp, p);
2568     if (rc < 0)
2569         return rc;
2570 
2571     /* Wait for a ramrod completion if was requested */
2572     if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2573         rc = p->rx_mode_obj->wait_comp(bp, p);
2574         if (rc)
2575             return rc;
2576     }
2577 
2578     return rc;
2579 }
2580 
2581 void bnx2x_init_rx_mode_obj(struct bnx2x *bp,
2582                 struct bnx2x_rx_mode_obj *o)
2583 {
2584     if (CHIP_IS_E1x(bp)) {
2585         o->wait_comp      = bnx2x_empty_rx_mode_wait;
2586         o->config_rx_mode = bnx2x_set_rx_mode_e1x;
2587     } else {
2588         o->wait_comp      = bnx2x_wait_rx_mode_comp_e2;
2589         o->config_rx_mode = bnx2x_set_rx_mode_e2;
2590     }
2591 }
2592 
2593 /********************* Multicast verbs: SET, CLEAR ****************************/
2594 static inline u8 bnx2x_mcast_bin_from_mac(u8 *mac)
2595 {
2596     return (crc32c_le(0, mac, ETH_ALEN) >> 24) & 0xff;
2597 }
2598 
2599 struct bnx2x_mcast_mac_elem {
2600     struct list_head link;
2601     u8 mac[ETH_ALEN];
2602     u8 pad[2]; /* For a natural alignment of the following buffer */
2603 };
2604 
2605 struct bnx2x_mcast_bin_elem {
2606     struct list_head link;
2607     int bin;
2608     int type; /* BNX2X_MCAST_CMD_SET_{ADD, DEL} */
2609 };
2610 
2611 union bnx2x_mcast_elem {
2612     struct bnx2x_mcast_bin_elem bin_elem;
2613     struct bnx2x_mcast_mac_elem mac_elem;
2614 };
2615 
2616 struct bnx2x_mcast_elem_group {
2617     struct list_head mcast_group_link;
2618     union bnx2x_mcast_elem mcast_elems[];
2619 };
2620 
2621 #define MCAST_MAC_ELEMS_PER_PG \
2622     ((PAGE_SIZE - sizeof(struct bnx2x_mcast_elem_group)) / \
2623     sizeof(union bnx2x_mcast_elem))
2624 
2625 struct bnx2x_pending_mcast_cmd {
2626     struct list_head link;
2627     struct list_head group_head;
2628     int type; /* BNX2X_MCAST_CMD_X */
2629     union {
2630         struct list_head macs_head;
2631         u32 macs_num; /* Needed for DEL command */
2632         int next_bin; /* Needed for RESTORE flow with aprox match */
2633     } data;
2634 
2635     bool set_convert; /* in case type == BNX2X_MCAST_CMD_SET, this is set
2636                * when macs_head had been converted to a list of
2637                * bnx2x_mcast_bin_elem.
2638                */
2639 
2640     bool done; /* set to true, when the command has been handled,
2641             * practically used in 57712 handling only, where one pending
2642             * command may be handled in a few operations. As long as for
2643             * other chips every operation handling is completed in a
2644             * single ramrod, there is no need to utilize this field.
2645             */
2646 };
2647 
2648 static int bnx2x_mcast_wait(struct bnx2x *bp,
2649                 struct bnx2x_mcast_obj *o)
2650 {
2651     if (bnx2x_state_wait(bp, o->sched_state, o->raw.pstate) ||
2652             o->raw.wait_comp(bp, &o->raw))
2653         return -EBUSY;
2654 
2655     return 0;
2656 }
2657 
2658 static void bnx2x_free_groups(struct list_head *mcast_group_list)
2659 {
2660     struct bnx2x_mcast_elem_group *current_mcast_group;
2661 
2662     while (!list_empty(mcast_group_list)) {
2663         current_mcast_group = list_first_entry(mcast_group_list,
2664                       struct bnx2x_mcast_elem_group,
2665                       mcast_group_link);
2666         list_del(&current_mcast_group->mcast_group_link);
2667         free_page((unsigned long)current_mcast_group);
2668     }
2669 }
2670 
2671 static int bnx2x_mcast_enqueue_cmd(struct bnx2x *bp,
2672                    struct bnx2x_mcast_obj *o,
2673                    struct bnx2x_mcast_ramrod_params *p,
2674                    enum bnx2x_mcast_cmd cmd)
2675 {
2676     struct bnx2x_pending_mcast_cmd *new_cmd;
2677     struct bnx2x_mcast_list_elem *pos;
2678     struct bnx2x_mcast_elem_group *elem_group;
2679     struct bnx2x_mcast_mac_elem *mac_elem;
2680     int total_elems = 0, macs_list_len = 0, offset = 0;
2681 
2682     /* When adding MACs we'll need to store their values */
2683     if (cmd == BNX2X_MCAST_CMD_ADD || cmd == BNX2X_MCAST_CMD_SET)
2684         macs_list_len = p->mcast_list_len;
2685 
2686     /* If the command is empty ("handle pending commands only"), break */
2687     if (!p->mcast_list_len)
2688         return 0;
2689 
2690     /* Add mcast is called under spin_lock, thus calling with GFP_ATOMIC */
2691     new_cmd = kzalloc(sizeof(*new_cmd), GFP_ATOMIC);
2692     if (!new_cmd)
2693         return -ENOMEM;
2694 
2695     INIT_LIST_HEAD(&new_cmd->data.macs_head);
2696     INIT_LIST_HEAD(&new_cmd->group_head);
2697     new_cmd->type = cmd;
2698     new_cmd->done = false;
2699 
2700     DP(BNX2X_MSG_SP, "About to enqueue a new %d command. macs_list_len=%d\n",
2701        cmd, macs_list_len);
2702 
2703     switch (cmd) {
2704     case BNX2X_MCAST_CMD_ADD:
2705     case BNX2X_MCAST_CMD_SET:
2706         /* For a set command, we need to allocate sufficient memory for
2707          * all the bins, since we can't analyze at this point how much
2708          * memory would be required.
2709          */
2710         total_elems = macs_list_len;
2711         if (cmd == BNX2X_MCAST_CMD_SET) {
2712             if (total_elems < BNX2X_MCAST_BINS_NUM)
2713                 total_elems = BNX2X_MCAST_BINS_NUM;
2714         }
2715         while (total_elems > 0) {
2716             elem_group = (struct bnx2x_mcast_elem_group *)
2717                      __get_free_page(GFP_ATOMIC | __GFP_ZERO);
2718             if (!elem_group) {
2719                 bnx2x_free_groups(&new_cmd->group_head);
2720                 kfree(new_cmd);
2721                 return -ENOMEM;
2722             }
2723             total_elems -= MCAST_MAC_ELEMS_PER_PG;
2724             list_add_tail(&elem_group->mcast_group_link,
2725                       &new_cmd->group_head);
2726         }
2727         elem_group = list_first_entry(&new_cmd->group_head,
2728                           struct bnx2x_mcast_elem_group,
2729                           mcast_group_link);
2730         list_for_each_entry(pos, &p->mcast_list, link) {
2731             mac_elem = &elem_group->mcast_elems[offset].mac_elem;
2732             memcpy(mac_elem->mac, pos->mac, ETH_ALEN);
2733             /* Push the MACs of the current command into the pending
2734              * command MACs list: FIFO
2735              */
2736             list_add_tail(&mac_elem->link,
2737                       &new_cmd->data.macs_head);
2738             offset++;
2739             if (offset == MCAST_MAC_ELEMS_PER_PG) {
2740                 offset = 0;
2741                 elem_group = list_next_entry(elem_group,
2742                                  mcast_group_link);
2743             }
2744         }
2745         break;
2746 
2747     case BNX2X_MCAST_CMD_DEL:
2748         new_cmd->data.macs_num = p->mcast_list_len;
2749         break;
2750 
2751     case BNX2X_MCAST_CMD_RESTORE:
2752         new_cmd->data.next_bin = 0;
2753         break;
2754 
2755     default:
2756         kfree(new_cmd);
2757         BNX2X_ERR("Unknown command: %d\n", cmd);
2758         return -EINVAL;
2759     }
2760 
2761     /* Push the new pending command to the tail of the pending list: FIFO */
2762     list_add_tail(&new_cmd->link, &o->pending_cmds_head);
2763 
2764     o->set_sched(o);
2765 
2766     return 1;
2767 }
2768 
2769 /**
2770  * bnx2x_mcast_get_next_bin - get the next set bin (index)
2771  *
2772  * @o:      multicast object info
2773  * @last:   index to start looking from (including)
2774  *
2775  * returns the next found (set) bin or a negative value if none is found.
2776  */
2777 static inline int bnx2x_mcast_get_next_bin(struct bnx2x_mcast_obj *o, int last)
2778 {
2779     int i, j, inner_start = last % BIT_VEC64_ELEM_SZ;
2780 
2781     for (i = last / BIT_VEC64_ELEM_SZ; i < BNX2X_MCAST_VEC_SZ; i++) {
2782         if (o->registry.aprox_match.vec[i])
2783             for (j = inner_start; j < BIT_VEC64_ELEM_SZ; j++) {
2784                 int cur_bit = j + BIT_VEC64_ELEM_SZ * i;
2785                 if (BIT_VEC64_TEST_BIT(o->registry.aprox_match.
2786                                vec, cur_bit)) {
2787                     return cur_bit;
2788                 }
2789             }
2790         inner_start = 0;
2791     }
2792 
2793     /* None found */
2794     return -1;
2795 }
2796 
2797 /**
2798  * bnx2x_mcast_clear_first_bin - find the first set bin and clear it
2799  *
2800  * @o:
2801  *
2802  * returns the index of the found bin or -1 if none is found
2803  */
2804 static inline int bnx2x_mcast_clear_first_bin(struct bnx2x_mcast_obj *o)
2805 {
2806     int cur_bit = bnx2x_mcast_get_next_bin(o, 0);
2807 
2808     if (cur_bit >= 0)
2809         BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, cur_bit);
2810 
2811     return cur_bit;
2812 }
2813 
2814 static inline u8 bnx2x_mcast_get_rx_tx_flag(struct bnx2x_mcast_obj *o)
2815 {
2816     struct bnx2x_raw_obj *raw = &o->raw;
2817     u8 rx_tx_flag = 0;
2818 
2819     if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
2820         (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
2821         rx_tx_flag |= ETH_MULTICAST_RULES_CMD_TX_CMD;
2822 
2823     if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
2824         (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
2825         rx_tx_flag |= ETH_MULTICAST_RULES_CMD_RX_CMD;
2826 
2827     return rx_tx_flag;
2828 }
2829 
2830 static void bnx2x_mcast_set_one_rule_e2(struct bnx2x *bp,
2831                     struct bnx2x_mcast_obj *o, int idx,
2832                     union bnx2x_mcast_config_data *cfg_data,
2833                     enum bnx2x_mcast_cmd cmd)
2834 {
2835     struct bnx2x_raw_obj *r = &o->raw;
2836     struct eth_multicast_rules_ramrod_data *data =
2837         (struct eth_multicast_rules_ramrod_data *)(r->rdata);
2838     u8 func_id = r->func_id;
2839     u8 rx_tx_add_flag = bnx2x_mcast_get_rx_tx_flag(o);
2840     int bin;
2841 
2842     if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE) ||
2843         (cmd == BNX2X_MCAST_CMD_SET_ADD))
2844         rx_tx_add_flag |= ETH_MULTICAST_RULES_CMD_IS_ADD;
2845 
2846     data->rules[idx].cmd_general_data |= rx_tx_add_flag;
2847 
2848     /* Get a bin and update a bins' vector */
2849     switch (cmd) {
2850     case BNX2X_MCAST_CMD_ADD:
2851         bin = bnx2x_mcast_bin_from_mac(cfg_data->mac);
2852         BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
2853         break;
2854 
2855     case BNX2X_MCAST_CMD_DEL:
2856         /* If there were no more bins to clear
2857          * (bnx2x_mcast_clear_first_bin() returns -1) then we would
2858          * clear any (0xff) bin.
2859          * See bnx2x_mcast_validate_e2() for explanation when it may
2860          * happen.
2861          */
2862         bin = bnx2x_mcast_clear_first_bin(o);
2863         break;
2864 
2865     case BNX2X_MCAST_CMD_RESTORE:
2866         bin = cfg_data->bin;
2867         break;
2868 
2869     case BNX2X_MCAST_CMD_SET_ADD:
2870         bin = cfg_data->bin;
2871         BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
2872         break;
2873 
2874     case BNX2X_MCAST_CMD_SET_DEL:
2875         bin = cfg_data->bin;
2876         BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, bin);
2877         break;
2878 
2879     default:
2880         BNX2X_ERR("Unknown command: %d\n", cmd);
2881         return;
2882     }
2883 
2884     DP(BNX2X_MSG_SP, "%s bin %d\n",
2885              ((rx_tx_add_flag & ETH_MULTICAST_RULES_CMD_IS_ADD) ?
2886              "Setting"  : "Clearing"), bin);
2887 
2888     data->rules[idx].bin_id    = (u8)bin;
2889     data->rules[idx].func_id   = func_id;
2890     data->rules[idx].engine_id = o->engine_id;
2891 }
2892 
2893 /**
2894  * bnx2x_mcast_handle_restore_cmd_e2 - restore configuration from the registry
2895  *
2896  * @bp:     device handle
2897  * @o:      multicast object info
2898  * @start_bin:  index in the registry to start from (including)
2899  * @rdata_idx:  index in the ramrod data to start from
2900  *
2901  * returns last handled bin index or -1 if all bins have been handled
2902  */
2903 static inline int bnx2x_mcast_handle_restore_cmd_e2(
2904     struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_bin,
2905     int *rdata_idx)
2906 {
2907     int cur_bin, cnt = *rdata_idx;
2908     union bnx2x_mcast_config_data cfg_data = {NULL};
2909 
2910     /* go through the registry and configure the bins from it */
2911     for (cur_bin = bnx2x_mcast_get_next_bin(o, start_bin); cur_bin >= 0;
2912         cur_bin = bnx2x_mcast_get_next_bin(o, cur_bin + 1)) {
2913 
2914         cfg_data.bin = (u8)cur_bin;
2915         o->set_one_rule(bp, o, cnt, &cfg_data,
2916                 BNX2X_MCAST_CMD_RESTORE);
2917 
2918         cnt++;
2919 
2920         DP(BNX2X_MSG_SP, "About to configure a bin %d\n", cur_bin);
2921 
2922         /* Break if we reached the maximum number
2923          * of rules.
2924          */
2925         if (cnt >= o->max_cmd_len)
2926             break;
2927     }
2928 
2929     *rdata_idx = cnt;
2930 
2931     return cur_bin;
2932 }
2933 
2934 static inline void bnx2x_mcast_hdl_pending_add_e2(struct bnx2x *bp,
2935     struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2936     int *line_idx)
2937 {
2938     struct bnx2x_mcast_mac_elem *pmac_pos, *pmac_pos_n;
2939     int cnt = *line_idx;
2940     union bnx2x_mcast_config_data cfg_data = {NULL};
2941 
2942     list_for_each_entry_safe(pmac_pos, pmac_pos_n, &cmd_pos->data.macs_head,
2943                  link) {
2944 
2945         cfg_data.mac = &pmac_pos->mac[0];
2946         o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
2947 
2948         cnt++;
2949 
2950         DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
2951            pmac_pos->mac);
2952 
2953         list_del(&pmac_pos->link);
2954 
2955         /* Break if we reached the maximum number
2956          * of rules.
2957          */
2958         if (cnt >= o->max_cmd_len)
2959             break;
2960     }
2961 
2962     *line_idx = cnt;
2963 
2964     /* if no more MACs to configure - we are done */
2965     if (list_empty(&cmd_pos->data.macs_head))
2966         cmd_pos->done = true;
2967 }
2968 
2969 static inline void bnx2x_mcast_hdl_pending_del_e2(struct bnx2x *bp,
2970     struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2971     int *line_idx)
2972 {
2973     int cnt = *line_idx;
2974 
2975     while (cmd_pos->data.macs_num) {
2976         o->set_one_rule(bp, o, cnt, NULL, cmd_pos->type);
2977 
2978         cnt++;
2979 
2980         cmd_pos->data.macs_num--;
2981 
2982         DP(BNX2X_MSG_SP, "Deleting MAC. %d left,cnt is %d\n",
2983            cmd_pos->data.macs_num, cnt);
2984 
2985         /* Break if we reached the maximum
2986          * number of rules.
2987          */
2988         if (cnt >= o->max_cmd_len)
2989             break;
2990     }
2991 
2992     *line_idx = cnt;
2993 
2994     /* If we cleared all bins - we are done */
2995     if (!cmd_pos->data.macs_num)
2996         cmd_pos->done = true;
2997 }
2998 
2999 static inline void bnx2x_mcast_hdl_pending_restore_e2(struct bnx2x *bp,
3000     struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
3001     int *line_idx)
3002 {
3003     cmd_pos->data.next_bin = o->hdl_restore(bp, o, cmd_pos->data.next_bin,
3004                         line_idx);
3005 
3006     if (cmd_pos->data.next_bin < 0)
3007         /* If o->set_restore returned -1 we are done */
3008         cmd_pos->done = true;
3009     else
3010         /* Start from the next bin next time */
3011         cmd_pos->data.next_bin++;
3012 }
3013 
3014 static void
3015 bnx2x_mcast_hdl_pending_set_e2_convert(struct bnx2x *bp,
3016                        struct bnx2x_mcast_obj *o,
3017                        struct bnx2x_pending_mcast_cmd *cmd_pos)
3018 {
3019     u64 cur[BNX2X_MCAST_VEC_SZ], req[BNX2X_MCAST_VEC_SZ];
3020     struct bnx2x_mcast_mac_elem *pmac_pos, *pmac_pos_n;
3021     struct bnx2x_mcast_bin_elem *p_item;
3022     struct bnx2x_mcast_elem_group *elem_group;
3023     int cnt = 0, mac_cnt = 0, offset = 0, i;
3024 
3025     memset(req, 0, sizeof(u64) * BNX2X_MCAST_VEC_SZ);
3026     memcpy(cur, o->registry.aprox_match.vec,
3027            sizeof(u64) * BNX2X_MCAST_VEC_SZ);
3028 
3029     /* Fill `current' with the required set of bins to configure */
3030     list_for_each_entry_safe(pmac_pos, pmac_pos_n, &cmd_pos->data.macs_head,
3031                  link) {
3032         int bin = bnx2x_mcast_bin_from_mac(pmac_pos->mac);
3033 
3034         DP(BNX2X_MSG_SP, "Set contains %pM mcast MAC\n",
3035            pmac_pos->mac);
3036 
3037         BIT_VEC64_SET_BIT(req, bin);
3038         list_del(&pmac_pos->link);
3039         mac_cnt++;
3040     }
3041 
3042     /* We no longer have use for the MACs; Need to re-use memory for
3043      * a list that will be used to configure bins.
3044      */
3045     cmd_pos->set_convert = true;
3046     INIT_LIST_HEAD(&cmd_pos->data.macs_head);
3047     elem_group = list_first_entry(&cmd_pos->group_head,
3048                       struct bnx2x_mcast_elem_group,
3049                       mcast_group_link);
3050     for (i = 0; i < BNX2X_MCAST_BINS_NUM; i++) {
3051         bool b_current = !!BIT_VEC64_TEST_BIT(cur, i);
3052         bool b_required = !!BIT_VEC64_TEST_BIT(req, i);
3053 
3054         if (b_current == b_required)
3055             continue;
3056 
3057         p_item = &elem_group->mcast_elems[offset].bin_elem;
3058         p_item->bin = i;
3059         p_item->type = b_required ? BNX2X_MCAST_CMD_SET_ADD
3060                       : BNX2X_MCAST_CMD_SET_DEL;
3061         list_add_tail(&p_item->link , &cmd_pos->data.macs_head);
3062         cnt++;
3063         offset++;
3064         if (offset == MCAST_MAC_ELEMS_PER_PG) {
3065             offset = 0;
3066             elem_group = list_next_entry(elem_group,
3067                              mcast_group_link);
3068         }
3069     }
3070 
3071     /* We now definitely know how many commands are hiding here.
3072      * Also need to correct the disruption we've added to guarantee this
3073      * would be enqueued.
3074      */
3075     o->total_pending_num -= (o->max_cmd_len + mac_cnt);
3076     o->total_pending_num += cnt;
3077 
3078     DP(BNX2X_MSG_SP, "o->total_pending_num=%d\n", o->total_pending_num);
3079 }
3080 
3081 static void
3082 bnx2x_mcast_hdl_pending_set_e2(struct bnx2x *bp,
3083                    struct bnx2x_mcast_obj *o,
3084                    struct bnx2x_pending_mcast_cmd *cmd_pos,
3085                    int *cnt)
3086 {
3087     union bnx2x_mcast_config_data cfg_data = {NULL};
3088     struct bnx2x_mcast_bin_elem *p_item, *p_item_n;
3089 
3090     /* This is actually a 2-part scheme - it starts by converting the MACs
3091      * into a list of bins to be added/removed, and correcting the numbers
3092      * on the object. this is now allowed, as we're now sure that all
3093      * previous configured requests have already applied.
3094      * The second part is actually adding rules for the newly introduced
3095      * entries [like all the rest of the hdl_pending functions].
3096      */
3097     if (!cmd_pos->set_convert)
3098         bnx2x_mcast_hdl_pending_set_e2_convert(bp, o, cmd_pos);
3099 
3100     list_for_each_entry_safe(p_item, p_item_n, &cmd_pos->data.macs_head,
3101                  link) {
3102         cfg_data.bin = (u8)p_item->bin;
3103         o->set_one_rule(bp, o, *cnt, &cfg_data, p_item->type);
3104         (*cnt)++;
3105 
3106         list_del(&p_item->link);
3107 
3108         /* Break if we reached the maximum number of rules. */
3109         if (*cnt >= o->max_cmd_len)
3110             break;
3111     }
3112 
3113     /* if no more MACs to configure - we are done */
3114     if (list_empty(&cmd_pos->data.macs_head))
3115         cmd_pos->done = true;
3116 }
3117 
3118 static inline int bnx2x_mcast_handle_pending_cmds_e2(struct bnx2x *bp,
3119                 struct bnx2x_mcast_ramrod_params *p)
3120 {
3121     struct bnx2x_pending_mcast_cmd *cmd_pos, *cmd_pos_n;
3122     int cnt = 0;
3123     struct bnx2x_mcast_obj *o = p->mcast_obj;
3124 
3125     list_for_each_entry_safe(cmd_pos, cmd_pos_n, &o->pending_cmds_head,
3126                  link) {
3127         switch (cmd_pos->type) {
3128         case BNX2X_MCAST_CMD_ADD:
3129             bnx2x_mcast_hdl_pending_add_e2(bp, o, cmd_pos, &cnt);
3130             break;
3131 
3132         case BNX2X_MCAST_CMD_DEL:
3133             bnx2x_mcast_hdl_pending_del_e2(bp, o, cmd_pos, &cnt);
3134             break;
3135 
3136         case BNX2X_MCAST_CMD_RESTORE:
3137             bnx2x_mcast_hdl_pending_restore_e2(bp, o, cmd_pos,
3138                                &cnt);
3139             break;
3140 
3141         case BNX2X_MCAST_CMD_SET:
3142             bnx2x_mcast_hdl_pending_set_e2(bp, o, cmd_pos, &cnt);
3143             break;
3144 
3145         default:
3146             BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
3147             return -EINVAL;
3148         }
3149 
3150         /* If the command has been completed - remove it from the list
3151          * and free the memory
3152          */
3153         if (cmd_pos->done) {
3154             list_del(&cmd_pos->link);
3155             bnx2x_free_groups(&cmd_pos->group_head);
3156             kfree(cmd_pos);
3157         }
3158 
3159         /* Break if we reached the maximum number of rules */
3160         if (cnt >= o->max_cmd_len)
3161             break;
3162     }
3163 
3164     return cnt;
3165 }
3166 
3167 static inline void bnx2x_mcast_hdl_add(struct bnx2x *bp,
3168     struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3169     int *line_idx)
3170 {
3171     struct bnx2x_mcast_list_elem *mlist_pos;
3172     union bnx2x_mcast_config_data cfg_data = {NULL};
3173     int cnt = *line_idx;
3174 
3175     list_for_each_entry(mlist_pos, &p->mcast_list, link) {
3176         cfg_data.mac = mlist_pos->mac;
3177         o->set_one_rule(bp, o, cnt, &cfg_data, BNX2X_MCAST_CMD_ADD);
3178 
3179         cnt++;
3180 
3181         DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3182            mlist_pos->mac);
3183     }
3184 
3185     *line_idx = cnt;
3186 }
3187 
3188 static inline void bnx2x_mcast_hdl_del(struct bnx2x *bp,
3189     struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3190     int *line_idx)
3191 {
3192     int cnt = *line_idx, i;
3193 
3194     for (i = 0; i < p->mcast_list_len; i++) {
3195         o->set_one_rule(bp, o, cnt, NULL, BNX2X_MCAST_CMD_DEL);
3196 
3197         cnt++;
3198 
3199         DP(BNX2X_MSG_SP, "Deleting MAC. %d left\n",
3200                  p->mcast_list_len - i - 1);
3201     }
3202 
3203     *line_idx = cnt;
3204 }
3205 
3206 /**
3207  * bnx2x_mcast_handle_current_cmd - send command if room
3208  *
3209  * @bp:     device handle
3210  * @p:      ramrod mcast info
3211  * @cmd:    command
3212  * @start_cnt:  first line in the ramrod data that may be used
3213  *
3214  * This function is called iff there is enough place for the current command in
3215  * the ramrod data.
3216  * Returns number of lines filled in the ramrod data in total.
3217  */
3218 static inline int bnx2x_mcast_handle_current_cmd(struct bnx2x *bp,
3219             struct bnx2x_mcast_ramrod_params *p,
3220             enum bnx2x_mcast_cmd cmd,
3221             int start_cnt)
3222 {
3223     struct bnx2x_mcast_obj *o = p->mcast_obj;
3224     int cnt = start_cnt;
3225 
3226     DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
3227 
3228     switch (cmd) {
3229     case BNX2X_MCAST_CMD_ADD:
3230         bnx2x_mcast_hdl_add(bp, o, p, &cnt);
3231         break;
3232 
3233     case BNX2X_MCAST_CMD_DEL:
3234         bnx2x_mcast_hdl_del(bp, o, p, &cnt);
3235         break;
3236 
3237     case BNX2X_MCAST_CMD_RESTORE:
3238         o->hdl_restore(bp, o, 0, &cnt);
3239         break;
3240 
3241     default:
3242         BNX2X_ERR("Unknown command: %d\n", cmd);
3243         return -EINVAL;
3244     }
3245 
3246     /* The current command has been handled */
3247     p->mcast_list_len = 0;
3248 
3249     return cnt;
3250 }
3251 
3252 static int bnx2x_mcast_validate_e2(struct bnx2x *bp,
3253                    struct bnx2x_mcast_ramrod_params *p,
3254                    enum bnx2x_mcast_cmd cmd)
3255 {
3256     struct bnx2x_mcast_obj *o = p->mcast_obj;
3257     int reg_sz = o->get_registry_size(o);
3258 
3259     switch (cmd) {
3260     /* DEL command deletes all currently configured MACs */
3261     case BNX2X_MCAST_CMD_DEL:
3262         o->set_registry_size(o, 0);
3263         fallthrough;
3264 
3265     /* RESTORE command will restore the entire multicast configuration */
3266     case BNX2X_MCAST_CMD_RESTORE:
3267         /* Here we set the approximate amount of work to do, which in
3268          * fact may be only less as some MACs in postponed ADD
3269          * command(s) scheduled before this command may fall into
3270          * the same bin and the actual number of bins set in the
3271          * registry would be less than we estimated here. See
3272          * bnx2x_mcast_set_one_rule_e2() for further details.
3273          */
3274         p->mcast_list_len = reg_sz;
3275         break;
3276 
3277     case BNX2X_MCAST_CMD_ADD:
3278     case BNX2X_MCAST_CMD_CONT:
3279         /* Here we assume that all new MACs will fall into new bins.
3280          * However we will correct the real registry size after we
3281          * handle all pending commands.
3282          */
3283         o->set_registry_size(o, reg_sz + p->mcast_list_len);
3284         break;
3285 
3286     case BNX2X_MCAST_CMD_SET:
3287         /* We can only learn how many commands would actually be used
3288          * when this is being configured. So for now, simply guarantee
3289          * the command will be enqueued [to refrain from adding logic
3290          * that handles this and THEN learns it needs several ramrods].
3291          * Just like for ADD/Cont, the mcast_list_len might be an over
3292          * estimation; or even more so, since we don't take into
3293          * account the possibility of removal of existing bins.
3294          */
3295         o->set_registry_size(o, reg_sz + p->mcast_list_len);
3296         o->total_pending_num += o->max_cmd_len;
3297         break;
3298 
3299     default:
3300         BNX2X_ERR("Unknown command: %d\n", cmd);
3301         return -EINVAL;
3302     }
3303 
3304     /* Increase the total number of MACs pending to be configured */
3305     o->total_pending_num += p->mcast_list_len;
3306 
3307     return 0;
3308 }
3309 
3310 static void bnx2x_mcast_revert_e2(struct bnx2x *bp,
3311                       struct bnx2x_mcast_ramrod_params *p,
3312                   int old_num_bins,
3313                   enum bnx2x_mcast_cmd cmd)
3314 {
3315     struct bnx2x_mcast_obj *o = p->mcast_obj;
3316 
3317     o->set_registry_size(o, old_num_bins);
3318     o->total_pending_num -= p->mcast_list_len;
3319 
3320     if (cmd == BNX2X_MCAST_CMD_SET)
3321         o->total_pending_num -= o->max_cmd_len;
3322 }
3323 
3324 /**
3325  * bnx2x_mcast_set_rdata_hdr_e2 - sets a header values
3326  *
3327  * @bp:     device handle
3328  * @p:      ramrod parameters
3329  * @len:    number of rules to handle
3330  */
3331 static inline void bnx2x_mcast_set_rdata_hdr_e2(struct bnx2x *bp,
3332                     struct bnx2x_mcast_ramrod_params *p,
3333                     u8 len)
3334 {
3335     struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
3336     struct eth_multicast_rules_ramrod_data *data =
3337         (struct eth_multicast_rules_ramrod_data *)(r->rdata);
3338 
3339     data->header.echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
3340                     (BNX2X_FILTER_MCAST_PENDING <<
3341                      BNX2X_SWCID_SHIFT));
3342     data->header.rule_cnt = len;
3343 }
3344 
3345 /**
3346  * bnx2x_mcast_refresh_registry_e2 - recalculate the actual number of set bins
3347  *
3348  * @bp:     device handle
3349  * @o:
3350  *
3351  * Recalculate the actual number of set bins in the registry using Brian
3352  * Kernighan's algorithm: it's execution complexity is as a number of set bins.
3353  *
3354  * returns 0 for the compliance with bnx2x_mcast_refresh_registry_e1().
3355  */
3356 static inline int bnx2x_mcast_refresh_registry_e2(struct bnx2x *bp,
3357                           struct bnx2x_mcast_obj *o)
3358 {
3359     int i, cnt = 0;
3360     u64 elem;
3361 
3362     for (i = 0; i < BNX2X_MCAST_VEC_SZ; i++) {
3363         elem = o->registry.aprox_match.vec[i];
3364         for (; elem; cnt++)
3365             elem &= elem - 1;
3366     }
3367 
3368     o->set_registry_size(o, cnt);
3369 
3370     return 0;
3371 }
3372 
3373 static int bnx2x_mcast_setup_e2(struct bnx2x *bp,
3374                 struct bnx2x_mcast_ramrod_params *p,
3375                 enum bnx2x_mcast_cmd cmd)
3376 {
3377     struct bnx2x_raw_obj *raw = &p->mcast_obj->raw;
3378     struct bnx2x_mcast_obj *o = p->mcast_obj;
3379     struct eth_multicast_rules_ramrod_data *data =
3380         (struct eth_multicast_rules_ramrod_data *)(raw->rdata);
3381     int cnt = 0, rc;
3382 
3383     /* Reset the ramrod data buffer */
3384     memset(data, 0, sizeof(*data));
3385 
3386     cnt = bnx2x_mcast_handle_pending_cmds_e2(bp, p);
3387 
3388     /* If there are no more pending commands - clear SCHEDULED state */
3389     if (list_empty(&o->pending_cmds_head))
3390         o->clear_sched(o);
3391 
3392     /* The below may be true iff there was enough room in ramrod
3393      * data for all pending commands and for the current
3394      * command. Otherwise the current command would have been added
3395      * to the pending commands and p->mcast_list_len would have been
3396      * zeroed.
3397      */
3398     if (p->mcast_list_len > 0)
3399         cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, cnt);
3400 
3401     /* We've pulled out some MACs - update the total number of
3402      * outstanding.
3403      */
3404     o->total_pending_num -= cnt;
3405 
3406     /* send a ramrod */
3407     WARN_ON(o->total_pending_num < 0);
3408     WARN_ON(cnt > o->max_cmd_len);
3409 
3410     bnx2x_mcast_set_rdata_hdr_e2(bp, p, (u8)cnt);
3411 
3412     /* Update a registry size if there are no more pending operations.
3413      *
3414      * We don't want to change the value of the registry size if there are
3415      * pending operations because we want it to always be equal to the
3416      * exact or the approximate number (see bnx2x_mcast_validate_e2()) of
3417      * set bins after the last requested operation in order to properly
3418      * evaluate the size of the next DEL/RESTORE operation.
3419      *
3420      * Note that we update the registry itself during command(s) handling
3421      * - see bnx2x_mcast_set_one_rule_e2(). That's because for 57712 we
3422      * aggregate multiple commands (ADD/DEL/RESTORE) into one ramrod but
3423      * with a limited amount of update commands (per MAC/bin) and we don't
3424      * know in this scope what the actual state of bins configuration is
3425      * going to be after this ramrod.
3426      */
3427     if (!o->total_pending_num)
3428         bnx2x_mcast_refresh_registry_e2(bp, o);
3429 
3430     /* If CLEAR_ONLY was requested - don't send a ramrod and clear
3431      * RAMROD_PENDING status immediately. due to the SET option, it's also
3432      * possible that after evaluating the differences there's no need for
3433      * a ramrod. In that case, we can skip it as well.
3434      */
3435     if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags) || !cnt) {
3436         raw->clear_pending(raw);
3437         return 0;
3438     } else {
3439         /* No need for an explicit memory barrier here as long as we
3440          * ensure the ordering of writing to the SPQ element
3441          * and updating of the SPQ producer which involves a memory
3442          * read. If the memory read is removed we will have to put a
3443          * full memory barrier there (inside bnx2x_sp_post()).
3444          */
3445 
3446         /* Send a ramrod */
3447         rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_MULTICAST_RULES,
3448                    raw->cid, U64_HI(raw->rdata_mapping),
3449                    U64_LO(raw->rdata_mapping),
3450                    ETH_CONNECTION_TYPE);
3451         if (rc)
3452             return rc;
3453 
3454         /* Ramrod completion is pending */
3455         return 1;
3456     }
3457 }
3458 
3459 static int bnx2x_mcast_validate_e1h(struct bnx2x *bp,
3460                     struct bnx2x_mcast_ramrod_params *p,
3461                     enum bnx2x_mcast_cmd cmd)
3462 {
3463     if (cmd == BNX2X_MCAST_CMD_SET) {
3464         BNX2X_ERR("Can't use `set' command on e1h!\n");
3465         return -EINVAL;
3466     }
3467 
3468     /* Mark, that there is a work to do */
3469     if ((cmd == BNX2X_MCAST_CMD_DEL) || (cmd == BNX2X_MCAST_CMD_RESTORE))
3470         p->mcast_list_len = 1;
3471 
3472     return 0;
3473 }
3474 
3475 static void bnx2x_mcast_revert_e1h(struct bnx2x *bp,
3476                        struct bnx2x_mcast_ramrod_params *p,
3477                        int old_num_bins,
3478                        enum bnx2x_mcast_cmd cmd)
3479 {
3480     /* Do nothing */
3481 }
3482 
3483 #define BNX2X_57711_SET_MC_FILTER(filter, bit) \
3484 do { \
3485     (filter)[(bit) >> 5] |= (1 << ((bit) & 0x1f)); \
3486 } while (0)
3487 
3488 static inline void bnx2x_mcast_hdl_add_e1h(struct bnx2x *bp,
3489                        struct bnx2x_mcast_obj *o,
3490                        struct bnx2x_mcast_ramrod_params *p,
3491                        u32 *mc_filter)
3492 {
3493     struct bnx2x_mcast_list_elem *mlist_pos;
3494     int bit;
3495 
3496     list_for_each_entry(mlist_pos, &p->mcast_list, link) {
3497         bit = bnx2x_mcast_bin_from_mac(mlist_pos->mac);
3498         BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
3499 
3500         DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC, bin %d\n",
3501            mlist_pos->mac, bit);
3502 
3503         /* bookkeeping... */
3504         BIT_VEC64_SET_BIT(o->registry.aprox_match.vec,
3505                   bit);
3506     }
3507 }
3508 
3509 static inline void bnx2x_mcast_hdl_restore_e1h(struct bnx2x *bp,
3510     struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3511     u32 *mc_filter)
3512 {
3513     int bit;
3514 
3515     for (bit = bnx2x_mcast_get_next_bin(o, 0);
3516          bit >= 0;
3517          bit = bnx2x_mcast_get_next_bin(o, bit + 1)) {
3518         BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
3519         DP(BNX2X_MSG_SP, "About to set bin %d\n", bit);
3520     }
3521 }
3522 
3523 /* On 57711 we write the multicast MACs' approximate match
3524  * table by directly into the TSTORM's internal RAM. So we don't
3525  * really need to handle any tricks to make it work.
3526  */
3527 static int bnx2x_mcast_setup_e1h(struct bnx2x *bp,
3528                  struct bnx2x_mcast_ramrod_params *p,
3529                  enum bnx2x_mcast_cmd cmd)
3530 {
3531     int i;
3532     struct bnx2x_mcast_obj *o = p->mcast_obj;
3533     struct bnx2x_raw_obj *r = &o->raw;
3534 
3535     /* If CLEAR_ONLY has been requested - clear the registry
3536      * and clear a pending bit.
3537      */
3538     if (!test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3539         u32 mc_filter[MC_HASH_SIZE] = {0};
3540 
3541         /* Set the multicast filter bits before writing it into
3542          * the internal memory.
3543          */
3544         switch (cmd) {
3545         case BNX2X_MCAST_CMD_ADD:
3546             bnx2x_mcast_hdl_add_e1h(bp, o, p, mc_filter);
3547             break;
3548 
3549         case BNX2X_MCAST_CMD_DEL:
3550             DP(BNX2X_MSG_SP,
3551                "Invalidating multicast MACs configuration\n");
3552 
3553             /* clear the registry */
3554             memset(o->registry.aprox_match.vec, 0,
3555                    sizeof(o->registry.aprox_match.vec));
3556             break;
3557 
3558         case BNX2X_MCAST_CMD_RESTORE:
3559             bnx2x_mcast_hdl_restore_e1h(bp, o, p, mc_filter);
3560             break;
3561 
3562         default:
3563             BNX2X_ERR("Unknown command: %d\n", cmd);
3564             return -EINVAL;
3565         }
3566 
3567         /* Set the mcast filter in the internal memory */
3568         for (i = 0; i < MC_HASH_SIZE; i++)
3569             REG_WR(bp, MC_HASH_OFFSET(bp, i), mc_filter[i]);
3570     } else
3571         /* clear the registry */
3572         memset(o->registry.aprox_match.vec, 0,
3573                sizeof(o->registry.aprox_match.vec));
3574 
3575     /* We are done */
3576     r->clear_pending(r);
3577 
3578     return 0;
3579 }
3580 
3581 static int bnx2x_mcast_validate_e1(struct bnx2x *bp,
3582                    struct bnx2x_mcast_ramrod_params *p,
3583                    enum bnx2x_mcast_cmd cmd)
3584 {
3585     struct bnx2x_mcast_obj *o = p->mcast_obj;
3586     int reg_sz = o->get_registry_size(o);
3587 
3588     if (cmd == BNX2X_MCAST_CMD_SET) {
3589         BNX2X_ERR("Can't use `set' command on e1!\n");
3590         return -EINVAL;
3591     }
3592 
3593     switch (cmd) {
3594     /* DEL command deletes all currently configured MACs */
3595     case BNX2X_MCAST_CMD_DEL:
3596         o->set_registry_size(o, 0);
3597         fallthrough;
3598 
3599     /* RESTORE command will restore the entire multicast configuration */
3600     case BNX2X_MCAST_CMD_RESTORE:
3601         p->mcast_list_len = reg_sz;
3602         DP(BNX2X_MSG_SP, "Command %d, p->mcast_list_len=%d\n",
3603            cmd, p->mcast_list_len);
3604         break;
3605 
3606     case BNX2X_MCAST_CMD_ADD:
3607     case BNX2X_MCAST_CMD_CONT:
3608         /* Multicast MACs on 57710 are configured as unicast MACs and
3609          * there is only a limited number of CAM entries for that
3610          * matter.
3611          */
3612         if (p->mcast_list_len > o->max_cmd_len) {
3613             BNX2X_ERR("Can't configure more than %d multicast MACs on 57710\n",
3614                   o->max_cmd_len);
3615             return -EINVAL;
3616         }
3617         /* Every configured MAC should be cleared if DEL command is
3618          * called. Only the last ADD command is relevant as long as
3619          * every ADD commands overrides the previous configuration.
3620          */
3621         DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
3622         if (p->mcast_list_len > 0)
3623             o->set_registry_size(o, p->mcast_list_len);
3624 
3625         break;
3626 
3627     default:
3628         BNX2X_ERR("Unknown command: %d\n", cmd);
3629         return -EINVAL;
3630     }
3631 
3632     /* We want to ensure that commands are executed one by one for 57710.
3633      * Therefore each none-empty command will consume o->max_cmd_len.
3634      */
3635     if (p->mcast_list_len)
3636         o->total_pending_num += o->max_cmd_len;
3637 
3638     return 0;
3639 }
3640 
3641 static void bnx2x_mcast_revert_e1(struct bnx2x *bp,
3642                       struct bnx2x_mcast_ramrod_params *p,
3643                    int old_num_macs,
3644                    enum bnx2x_mcast_cmd cmd)
3645 {
3646     struct bnx2x_mcast_obj *o = p->mcast_obj;
3647 
3648     o->set_registry_size(o, old_num_macs);
3649 
3650     /* If current command hasn't been handled yet and we are
3651      * here means that it's meant to be dropped and we have to
3652      * update the number of outstanding MACs accordingly.
3653      */
3654     if (p->mcast_list_len)
3655         o->total_pending_num -= o->max_cmd_len;
3656 }
3657 
3658 static void bnx2x_mcast_set_one_rule_e1(struct bnx2x *bp,
3659                     struct bnx2x_mcast_obj *o, int idx,
3660                     union bnx2x_mcast_config_data *cfg_data,
3661                     enum bnx2x_mcast_cmd cmd)
3662 {
3663     struct bnx2x_raw_obj *r = &o->raw;
3664     struct mac_configuration_cmd *data =
3665         (struct mac_configuration_cmd *)(r->rdata);
3666 
3667     /* copy mac */
3668     if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE)) {
3669         bnx2x_set_fw_mac_addr(&data->config_table[idx].msb_mac_addr,
3670                       &data->config_table[idx].middle_mac_addr,
3671                       &data->config_table[idx].lsb_mac_addr,
3672                       cfg_data->mac);
3673 
3674         data->config_table[idx].vlan_id = 0;
3675         data->config_table[idx].pf_id = r->func_id;
3676         data->config_table[idx].clients_bit_vector =
3677             cpu_to_le32(1 << r->cl_id);
3678 
3679         SET_FLAG(data->config_table[idx].flags,
3680              MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3681              T_ETH_MAC_COMMAND_SET);
3682     }
3683 }
3684 
3685 /**
3686  * bnx2x_mcast_set_rdata_hdr_e1  - set header values in mac_configuration_cmd
3687  *
3688  * @bp:     device handle
3689  * @p:      ramrod parameters
3690  * @len:    number of rules to handle
3691  */
3692 static inline void bnx2x_mcast_set_rdata_hdr_e1(struct bnx2x *bp,
3693                     struct bnx2x_mcast_ramrod_params *p,
3694                     u8 len)
3695 {
3696     struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
3697     struct mac_configuration_cmd *data =
3698         (struct mac_configuration_cmd *)(r->rdata);
3699 
3700     u8 offset = (CHIP_REV_IS_SLOW(bp) ?
3701              BNX2X_MAX_EMUL_MULTI*(1 + r->func_id) :
3702              BNX2X_MAX_MULTICAST*(1 + r->func_id));
3703 
3704     data->hdr.offset = offset;
3705     data->hdr.client_id = cpu_to_le16(0xff);
3706     data->hdr.echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
3707                      (BNX2X_FILTER_MCAST_PENDING <<
3708                       BNX2X_SWCID_SHIFT));
3709     data->hdr.length = len;
3710 }
3711 
3712 /**
3713  * bnx2x_mcast_handle_restore_cmd_e1 - restore command for 57710
3714  *
3715  * @bp:     device handle
3716  * @o:      multicast info
3717  * @start_idx:  index in the registry to start from
3718  * @rdata_idx:  index in the ramrod data to start from
3719  *
3720  * restore command for 57710 is like all other commands - always a stand alone
3721  * command - start_idx and rdata_idx will always be 0. This function will always
3722  * succeed.
3723  * returns -1 to comply with 57712 variant.
3724  */
3725 static inline int bnx2x_mcast_handle_restore_cmd_e1(
3726     struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_idx,
3727     int *rdata_idx)
3728 {
3729     struct bnx2x_mcast_mac_elem *elem;
3730     int i = 0;
3731     union bnx2x_mcast_config_data cfg_data = {NULL};
3732 
3733     /* go through the registry and configure the MACs from it. */
3734     list_for_each_entry(elem, &o->registry.exact_match.macs, link) {
3735         cfg_data.mac = &elem->mac[0];
3736         o->set_one_rule(bp, o, i, &cfg_data, BNX2X_MCAST_CMD_RESTORE);
3737 
3738         i++;
3739 
3740         DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3741            cfg_data.mac);
3742     }
3743 
3744     *rdata_idx = i;
3745 
3746     return -1;
3747 }
3748 
3749 static inline int bnx2x_mcast_handle_pending_cmds_e1(
3750     struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p)
3751 {
3752     struct bnx2x_pending_mcast_cmd *cmd_pos;
3753     struct bnx2x_mcast_mac_elem *pmac_pos;
3754     struct bnx2x_mcast_obj *o = p->mcast_obj;
3755     union bnx2x_mcast_config_data cfg_data = {NULL};
3756     int cnt = 0;
3757 
3758     /* If nothing to be done - return */
3759     if (list_empty(&o->pending_cmds_head))
3760         return 0;
3761 
3762     /* Handle the first command */
3763     cmd_pos = list_first_entry(&o->pending_cmds_head,
3764                    struct bnx2x_pending_mcast_cmd, link);
3765 
3766     switch (cmd_pos->type) {
3767     case BNX2X_MCAST_CMD_ADD:
3768         list_for_each_entry(pmac_pos, &cmd_pos->data.macs_head, link) {
3769             cfg_data.mac = &pmac_pos->mac[0];
3770             o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
3771 
3772             cnt++;
3773 
3774             DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3775                pmac_pos->mac);
3776         }
3777         break;
3778 
3779     case BNX2X_MCAST_CMD_DEL:
3780         cnt = cmd_pos->data.macs_num;
3781         DP(BNX2X_MSG_SP, "About to delete %d multicast MACs\n", cnt);
3782         break;
3783 
3784     case BNX2X_MCAST_CMD_RESTORE:
3785         o->hdl_restore(bp, o, 0, &cnt);
3786         break;
3787 
3788     default:
3789         BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
3790         return -EINVAL;
3791     }
3792 
3793     list_del(&cmd_pos->link);
3794     bnx2x_free_groups(&cmd_pos->group_head);
3795     kfree(cmd_pos);
3796 
3797     return cnt;
3798 }
3799 
3800 /**
3801  * bnx2x_get_fw_mac_addr - revert the bnx2x_set_fw_mac_addr().
3802  *
3803  * @fw_hi: address
3804  * @fw_mid: address
3805  * @fw_lo: address
3806  * @mac: mac address
3807  */
3808 static inline void bnx2x_get_fw_mac_addr(__le16 *fw_hi, __le16 *fw_mid,
3809                      __le16 *fw_lo, u8 *mac)
3810 {
3811     mac[1] = ((u8 *)fw_hi)[0];
3812     mac[0] = ((u8 *)fw_hi)[1];
3813     mac[3] = ((u8 *)fw_mid)[0];
3814     mac[2] = ((u8 *)fw_mid)[1];
3815     mac[5] = ((u8 *)fw_lo)[0];
3816     mac[4] = ((u8 *)fw_lo)[1];
3817 }
3818 
3819 /**
3820  * bnx2x_mcast_refresh_registry_e1 -
3821  *
3822  * @bp:     device handle
3823  * @o:      multicast info
3824  *
3825  * Check the ramrod data first entry flag to see if it's a DELETE or ADD command
3826  * and update the registry correspondingly: if ADD - allocate a memory and add
3827  * the entries to the registry (list), if DELETE - clear the registry and free
3828  * the memory.
3829  */
3830 static inline int bnx2x_mcast_refresh_registry_e1(struct bnx2x *bp,
3831                           struct bnx2x_mcast_obj *o)
3832 {
3833     struct bnx2x_raw_obj *raw = &o->raw;
3834     struct bnx2x_mcast_mac_elem *elem;
3835     struct mac_configuration_cmd *data =
3836             (struct mac_configuration_cmd *)(raw->rdata);
3837 
3838     /* If first entry contains a SET bit - the command was ADD,
3839      * otherwise - DEL_ALL
3840      */
3841     if (GET_FLAG(data->config_table[0].flags,
3842             MAC_CONFIGURATION_ENTRY_ACTION_TYPE)) {
3843         int i, len = data->hdr.length;
3844 
3845         /* Break if it was a RESTORE command */
3846         if (!list_empty(&o->registry.exact_match.macs))
3847             return 0;
3848 
3849         elem = kcalloc(len, sizeof(*elem), GFP_ATOMIC);
3850         if (!elem) {
3851             BNX2X_ERR("Failed to allocate registry memory\n");
3852             return -ENOMEM;
3853         }
3854 
3855         for (i = 0; i < len; i++, elem++) {
3856             bnx2x_get_fw_mac_addr(
3857                 &data->config_table[i].msb_mac_addr,
3858                 &data->config_table[i].middle_mac_addr,
3859                 &data->config_table[i].lsb_mac_addr,
3860                 elem->mac);
3861             DP(BNX2X_MSG_SP, "Adding registry entry for [%pM]\n",
3862                elem->mac);
3863             list_add_tail(&elem->link,
3864                       &o->registry.exact_match.macs);
3865         }
3866     } else {
3867         elem = list_first_entry(&o->registry.exact_match.macs,
3868                     struct bnx2x_mcast_mac_elem, link);
3869         DP(BNX2X_MSG_SP, "Deleting a registry\n");
3870         kfree(elem);
3871         INIT_LIST_HEAD(&o->registry.exact_match.macs);
3872     }
3873 
3874     return 0;
3875 }
3876 
3877 static int bnx2x_mcast_setup_e1(struct bnx2x *bp,
3878                 struct bnx2x_mcast_ramrod_params *p,
3879                 enum bnx2x_mcast_cmd cmd)
3880 {
3881     struct bnx2x_mcast_obj *o = p->mcast_obj;
3882     struct bnx2x_raw_obj *raw = &o->raw;
3883     struct mac_configuration_cmd *data =
3884         (struct mac_configuration_cmd *)(raw->rdata);
3885     int cnt = 0, i, rc;
3886 
3887     /* Reset the ramrod data buffer */
3888     memset(data, 0, sizeof(*data));
3889 
3890     /* First set all entries as invalid */
3891     for (i = 0; i < o->max_cmd_len ; i++)
3892         SET_FLAG(data->config_table[i].flags,
3893              MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3894              T_ETH_MAC_COMMAND_INVALIDATE);
3895 
3896     /* Handle pending commands first */
3897     cnt = bnx2x_mcast_handle_pending_cmds_e1(bp, p);
3898 
3899     /* If there are no more pending commands - clear SCHEDULED state */
3900     if (list_empty(&o->pending_cmds_head))
3901         o->clear_sched(o);
3902 
3903     /* The below may be true iff there were no pending commands */
3904     if (!cnt)
3905         cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, 0);
3906 
3907     /* For 57710 every command has o->max_cmd_len length to ensure that
3908      * commands are done one at a time.
3909      */
3910     o->total_pending_num -= o->max_cmd_len;
3911 
3912     /* send a ramrod */
3913 
3914     WARN_ON(cnt > o->max_cmd_len);
3915 
3916     /* Set ramrod header (in particular, a number of entries to update) */
3917     bnx2x_mcast_set_rdata_hdr_e1(bp, p, (u8)cnt);
3918 
3919     /* update a registry: we need the registry contents to be always up
3920      * to date in order to be able to execute a RESTORE opcode. Here
3921      * we use the fact that for 57710 we sent one command at a time
3922      * hence we may take the registry update out of the command handling
3923      * and do it in a simpler way here.
3924      */
3925     rc = bnx2x_mcast_refresh_registry_e1(bp, o);
3926     if (rc)
3927         return rc;
3928 
3929     /* If CLEAR_ONLY was requested - don't send a ramrod and clear
3930      * RAMROD_PENDING status immediately.
3931      */
3932     if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3933         raw->clear_pending(raw);
3934         return 0;
3935     } else {
3936         /* No need for an explicit memory barrier here as long as we
3937          * ensure the ordering of writing to the SPQ element
3938          * and updating of the SPQ producer which involves a memory
3939          * read. If the memory read is removed we will have to put a
3940          * full memory barrier there (inside bnx2x_sp_post()).
3941          */
3942 
3943         /* Send a ramrod */
3944         rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_SET_MAC, raw->cid,
3945                    U64_HI(raw->rdata_mapping),
3946                    U64_LO(raw->rdata_mapping),
3947                    ETH_CONNECTION_TYPE);
3948         if (rc)
3949             return rc;
3950 
3951         /* Ramrod completion is pending */
3952         return 1;
3953     }
3954 }
3955 
3956 static int bnx2x_mcast_get_registry_size_exact(struct bnx2x_mcast_obj *o)
3957 {
3958     return o->registry.exact_match.num_macs_set;
3959 }
3960 
3961 static int bnx2x_mcast_get_registry_size_aprox(struct bnx2x_mcast_obj *o)
3962 {
3963     return o->registry.aprox_match.num_bins_set;
3964 }
3965 
3966 static void bnx2x_mcast_set_registry_size_exact(struct bnx2x_mcast_obj *o,
3967                         int n)
3968 {
3969     o->registry.exact_match.num_macs_set = n;
3970 }
3971 
3972 static void bnx2x_mcast_set_registry_size_aprox(struct bnx2x_mcast_obj *o,
3973                         int n)
3974 {
3975     o->registry.aprox_match.num_bins_set = n;
3976 }
3977 
3978 int bnx2x_config_mcast(struct bnx2x *bp,
3979                struct bnx2x_mcast_ramrod_params *p,
3980                enum bnx2x_mcast_cmd cmd)
3981 {
3982     struct bnx2x_mcast_obj *o = p->mcast_obj;
3983     struct bnx2x_raw_obj *r = &o->raw;
3984     int rc = 0, old_reg_size;
3985 
3986     /* This is needed to recover number of currently configured mcast macs
3987      * in case of failure.
3988      */
3989     old_reg_size = o->get_registry_size(o);
3990 
3991     /* Do some calculations and checks */
3992     rc = o->validate(bp, p, cmd);
3993     if (rc)
3994         return rc;
3995 
3996     /* Return if there is no work to do */
3997     if ((!p->mcast_list_len) && (!o->check_sched(o)))
3998         return 0;
3999 
4000     DP(BNX2X_MSG_SP, "o->total_pending_num=%d p->mcast_list_len=%d o->max_cmd_len=%d\n",
4001        o->total_pending_num, p->mcast_list_len, o->max_cmd_len);
4002 
4003     /* Enqueue the current command to the pending list if we can't complete
4004      * it in the current iteration
4005      */
4006     if (r->check_pending(r) ||
4007         ((o->max_cmd_len > 0) && (o->total_pending_num > o->max_cmd_len))) {
4008         rc = o->enqueue_cmd(bp, p->mcast_obj, p, cmd);
4009         if (rc < 0)
4010             goto error_exit1;
4011 
4012         /* As long as the current command is in a command list we
4013          * don't need to handle it separately.
4014          */
4015         p->mcast_list_len = 0;
4016     }
4017 
4018     if (!r->check_pending(r)) {
4019 
4020         /* Set 'pending' state */
4021         r->set_pending(r);
4022 
4023         /* Configure the new classification in the chip */
4024         rc = o->config_mcast(bp, p, cmd);
4025         if (rc < 0)
4026             goto error_exit2;
4027 
4028         /* Wait for a ramrod completion if was requested */
4029         if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
4030             rc = o->wait_comp(bp, o);
4031     }
4032 
4033     return rc;
4034 
4035 error_exit2:
4036     r->clear_pending(r);
4037 
4038 error_exit1:
4039     o->revert(bp, p, old_reg_size, cmd);
4040 
4041     return rc;
4042 }
4043 
4044 static void bnx2x_mcast_clear_sched(struct bnx2x_mcast_obj *o)
4045 {
4046     smp_mb__before_atomic();
4047     clear_bit(o->sched_state, o->raw.pstate);
4048     smp_mb__after_atomic();
4049 }
4050 
4051 static void bnx2x_mcast_set_sched(struct bnx2x_mcast_obj *o)
4052 {
4053     smp_mb__before_atomic();
4054     set_bit(o->sched_state, o->raw.pstate);
4055     smp_mb__after_atomic();
4056 }
4057 
4058 static bool bnx2x_mcast_check_sched(struct bnx2x_mcast_obj *o)
4059 {
4060     return !!test_bit(o->sched_state, o->raw.pstate);
4061 }
4062 
4063 static bool bnx2x_mcast_check_pending(struct bnx2x_mcast_obj *o)
4064 {
4065     return o->raw.check_pending(&o->raw) || o->check_sched(o);
4066 }
4067 
4068 void bnx2x_init_mcast_obj(struct bnx2x *bp,
4069               struct bnx2x_mcast_obj *mcast_obj,
4070               u8 mcast_cl_id, u32 mcast_cid, u8 func_id,
4071               u8 engine_id, void *rdata, dma_addr_t rdata_mapping,
4072               int state, unsigned long *pstate, bnx2x_obj_type type)
4073 {
4074     memset(mcast_obj, 0, sizeof(*mcast_obj));
4075 
4076     bnx2x_init_raw_obj(&mcast_obj->raw, mcast_cl_id, mcast_cid, func_id,
4077                rdata, rdata_mapping, state, pstate, type);
4078 
4079     mcast_obj->engine_id = engine_id;
4080 
4081     INIT_LIST_HEAD(&mcast_obj->pending_cmds_head);
4082 
4083     mcast_obj->sched_state = BNX2X_FILTER_MCAST_SCHED;
4084     mcast_obj->check_sched = bnx2x_mcast_check_sched;
4085     mcast_obj->set_sched = bnx2x_mcast_set_sched;
4086     mcast_obj->clear_sched = bnx2x_mcast_clear_sched;
4087 
4088     if (CHIP_IS_E1(bp)) {
4089         mcast_obj->config_mcast      = bnx2x_mcast_setup_e1;
4090         mcast_obj->enqueue_cmd       = bnx2x_mcast_enqueue_cmd;
4091         mcast_obj->hdl_restore       =
4092             bnx2x_mcast_handle_restore_cmd_e1;
4093         mcast_obj->check_pending     = bnx2x_mcast_check_pending;
4094 
4095         if (CHIP_REV_IS_SLOW(bp))
4096             mcast_obj->max_cmd_len = BNX2X_MAX_EMUL_MULTI;
4097         else
4098             mcast_obj->max_cmd_len = BNX2X_MAX_MULTICAST;
4099 
4100         mcast_obj->wait_comp         = bnx2x_mcast_wait;
4101         mcast_obj->set_one_rule      = bnx2x_mcast_set_one_rule_e1;
4102         mcast_obj->validate          = bnx2x_mcast_validate_e1;
4103         mcast_obj->revert            = bnx2x_mcast_revert_e1;
4104         mcast_obj->get_registry_size =
4105             bnx2x_mcast_get_registry_size_exact;
4106         mcast_obj->set_registry_size =
4107             bnx2x_mcast_set_registry_size_exact;
4108 
4109         /* 57710 is the only chip that uses the exact match for mcast
4110          * at the moment.
4111          */
4112         INIT_LIST_HEAD(&mcast_obj->registry.exact_match.macs);
4113 
4114     } else if (CHIP_IS_E1H(bp)) {
4115         mcast_obj->config_mcast  = bnx2x_mcast_setup_e1h;
4116         mcast_obj->enqueue_cmd   = NULL;
4117         mcast_obj->hdl_restore   = NULL;
4118         mcast_obj->check_pending = bnx2x_mcast_check_pending;
4119 
4120         /* 57711 doesn't send a ramrod, so it has unlimited credit
4121          * for one command.
4122          */
4123         mcast_obj->max_cmd_len       = -1;
4124         mcast_obj->wait_comp         = bnx2x_mcast_wait;
4125         mcast_obj->set_one_rule      = NULL;
4126         mcast_obj->validate          = bnx2x_mcast_validate_e1h;
4127         mcast_obj->revert            = bnx2x_mcast_revert_e1h;
4128         mcast_obj->get_registry_size =
4129             bnx2x_mcast_get_registry_size_aprox;
4130         mcast_obj->set_registry_size =
4131             bnx2x_mcast_set_registry_size_aprox;
4132     } else {
4133         mcast_obj->config_mcast      = bnx2x_mcast_setup_e2;
4134         mcast_obj->enqueue_cmd       = bnx2x_mcast_enqueue_cmd;
4135         mcast_obj->hdl_restore       =
4136             bnx2x_mcast_handle_restore_cmd_e2;
4137         mcast_obj->check_pending     = bnx2x_mcast_check_pending;
4138         /* TODO: There should be a proper HSI define for this number!!!
4139          */
4140         mcast_obj->max_cmd_len       = 16;
4141         mcast_obj->wait_comp         = bnx2x_mcast_wait;
4142         mcast_obj->set_one_rule      = bnx2x_mcast_set_one_rule_e2;
4143         mcast_obj->validate          = bnx2x_mcast_validate_e2;
4144         mcast_obj->revert            = bnx2x_mcast_revert_e2;
4145         mcast_obj->get_registry_size =
4146             bnx2x_mcast_get_registry_size_aprox;
4147         mcast_obj->set_registry_size =
4148             bnx2x_mcast_set_registry_size_aprox;
4149     }
4150 }
4151 
4152 /*************************** Credit handling **********************************/
4153 
4154 /**
4155  * __atomic_add_ifless - add if the result is less than a given value.
4156  *
4157  * @v:  pointer of type atomic_t
4158  * @a:  the amount to add to v...
4159  * @u:  ...if (v + a) is less than u.
4160  *
4161  * returns true if (v + a) was less than u, and false otherwise.
4162  *
4163  */
4164 static inline bool __atomic_add_ifless(atomic_t *v, int a, int u)
4165 {
4166     int c, old;
4167 
4168     c = atomic_read(v);
4169     for (;;) {
4170         if (unlikely(c + a >= u))
4171             return false;
4172 
4173         old = atomic_cmpxchg((v), c, c + a);
4174         if (likely(old == c))
4175             break;
4176         c = old;
4177     }
4178 
4179     return true;
4180 }
4181 
4182 /**
4183  * __atomic_dec_ifmoe - dec if the result is more or equal than a given value.
4184  *
4185  * @v:  pointer of type atomic_t
4186  * @a:  the amount to dec from v...
4187  * @u:  ...if (v - a) is more or equal than u.
4188  *
4189  * returns true if (v - a) was more or equal than u, and false
4190  * otherwise.
4191  */
4192 static inline bool __atomic_dec_ifmoe(atomic_t *v, int a, int u)
4193 {
4194     int c, old;
4195 
4196     c = atomic_read(v);
4197     for (;;) {
4198         if (unlikely(c - a < u))
4199             return false;
4200 
4201         old = atomic_cmpxchg((v), c, c - a);
4202         if (likely(old == c))
4203             break;
4204         c = old;
4205     }
4206 
4207     return true;
4208 }
4209 
4210 static bool bnx2x_credit_pool_get(struct bnx2x_credit_pool_obj *o, int cnt)
4211 {
4212     bool rc;
4213 
4214     smp_mb();
4215     rc = __atomic_dec_ifmoe(&o->credit, cnt, 0);
4216     smp_mb();
4217 
4218     return rc;
4219 }
4220 
4221 static bool bnx2x_credit_pool_put(struct bnx2x_credit_pool_obj *o, int cnt)
4222 {
4223     bool rc;
4224 
4225     smp_mb();
4226 
4227     /* Don't let to refill if credit + cnt > pool_sz */
4228     rc = __atomic_add_ifless(&o->credit, cnt, o->pool_sz + 1);
4229 
4230     smp_mb();
4231 
4232     return rc;
4233 }
4234 
4235 static int bnx2x_credit_pool_check(struct bnx2x_credit_pool_obj *o)
4236 {
4237     int cur_credit;
4238 
4239     smp_mb();
4240     cur_credit = atomic_read(&o->credit);
4241 
4242     return cur_credit;
4243 }
4244 
4245 static bool bnx2x_credit_pool_always_true(struct bnx2x_credit_pool_obj *o,
4246                       int cnt)
4247 {
4248     return true;
4249 }
4250 
4251 static bool bnx2x_credit_pool_get_entry(
4252     struct bnx2x_credit_pool_obj *o,
4253     int *offset)
4254 {
4255     int idx, vec, i;
4256 
4257     *offset = -1;
4258 
4259     /* Find "internal cam-offset" then add to base for this object... */
4260     for (vec = 0; vec < BNX2X_POOL_VEC_SIZE; vec++) {
4261 
4262         /* Skip the current vector if there are no free entries in it */
4263         if (!o->pool_mirror[vec])
4264             continue;
4265 
4266         /* If we've got here we are going to find a free entry */
4267         for (idx = vec * BIT_VEC64_ELEM_SZ, i = 0;
4268               i < BIT_VEC64_ELEM_SZ; idx++, i++)
4269 
4270             if (BIT_VEC64_TEST_BIT(o->pool_mirror, idx)) {
4271                 /* Got one!! */
4272                 BIT_VEC64_CLEAR_BIT(o->pool_mirror, idx);
4273                 *offset = o->base_pool_offset + idx;
4274                 return true;
4275             }
4276     }
4277 
4278     return false;
4279 }
4280 
4281 static bool bnx2x_credit_pool_put_entry(
4282     struct bnx2x_credit_pool_obj *o,
4283     int offset)
4284 {
4285     if (offset < o->base_pool_offset)
4286         return false;
4287 
4288     offset -= o->base_pool_offset;
4289 
4290     if (offset >= o->pool_sz)
4291         return false;
4292 
4293     /* Return the entry to the pool */
4294     BIT_VEC64_SET_BIT(o->pool_mirror, offset);
4295 
4296     return true;
4297 }
4298 
4299 static bool bnx2x_credit_pool_put_entry_always_true(
4300     struct bnx2x_credit_pool_obj *o,
4301     int offset)
4302 {
4303     return true;
4304 }
4305 
4306 static bool bnx2x_credit_pool_get_entry_always_true(
4307     struct bnx2x_credit_pool_obj *o,
4308     int *offset)
4309 {
4310     *offset = -1;
4311     return true;
4312 }
4313 /**
4314  * bnx2x_init_credit_pool - initialize credit pool internals.
4315  *
4316  * @p:      credit pool
4317  * @base:   Base entry in the CAM to use.
4318  * @credit: pool size.
4319  *
4320  * If base is negative no CAM entries handling will be performed.
4321  * If credit is negative pool operations will always succeed (unlimited pool).
4322  *
4323  */
4324 void bnx2x_init_credit_pool(struct bnx2x_credit_pool_obj *p,
4325                 int base, int credit)
4326 {
4327     /* Zero the object first */
4328     memset(p, 0, sizeof(*p));
4329 
4330     /* Set the table to all 1s */
4331     memset(&p->pool_mirror, 0xff, sizeof(p->pool_mirror));
4332 
4333     /* Init a pool as full */
4334     atomic_set(&p->credit, credit);
4335 
4336     /* The total poll size */
4337     p->pool_sz = credit;
4338 
4339     p->base_pool_offset = base;
4340 
4341     /* Commit the change */
4342     smp_mb();
4343 
4344     p->check = bnx2x_credit_pool_check;
4345 
4346     /* if pool credit is negative - disable the checks */
4347     if (credit >= 0) {
4348         p->put      = bnx2x_credit_pool_put;
4349         p->get      = bnx2x_credit_pool_get;
4350         p->put_entry = bnx2x_credit_pool_put_entry;
4351         p->get_entry = bnx2x_credit_pool_get_entry;
4352     } else {
4353         p->put      = bnx2x_credit_pool_always_true;
4354         p->get      = bnx2x_credit_pool_always_true;
4355         p->put_entry = bnx2x_credit_pool_put_entry_always_true;
4356         p->get_entry = bnx2x_credit_pool_get_entry_always_true;
4357     }
4358 
4359     /* If base is negative - disable entries handling */
4360     if (base < 0) {
4361         p->put_entry = bnx2x_credit_pool_put_entry_always_true;
4362         p->get_entry = bnx2x_credit_pool_get_entry_always_true;
4363     }
4364 }
4365 
4366 void bnx2x_init_mac_credit_pool(struct bnx2x *bp,
4367                 struct bnx2x_credit_pool_obj *p, u8 func_id,
4368                 u8 func_num)
4369 {
4370 /* TODO: this will be defined in consts as well... */
4371 #define BNX2X_CAM_SIZE_EMUL 5
4372 
4373     int cam_sz;
4374 
4375     if (CHIP_IS_E1(bp)) {
4376         /* In E1, Multicast is saved in cam... */
4377         if (!CHIP_REV_IS_SLOW(bp))
4378             cam_sz = (MAX_MAC_CREDIT_E1 / 2) - BNX2X_MAX_MULTICAST;
4379         else
4380             cam_sz = BNX2X_CAM_SIZE_EMUL - BNX2X_MAX_EMUL_MULTI;
4381 
4382         bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
4383 
4384     } else if (CHIP_IS_E1H(bp)) {
4385         /* CAM credit is equaly divided between all active functions
4386          * on the PORT!.
4387          */
4388         if ((func_num > 0)) {
4389             if (!CHIP_REV_IS_SLOW(bp))
4390                 cam_sz = (MAX_MAC_CREDIT_E1H / (2*func_num));
4391             else
4392                 cam_sz = BNX2X_CAM_SIZE_EMUL;
4393             bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
4394         } else {
4395             /* this should never happen! Block MAC operations. */
4396             bnx2x_init_credit_pool(p, 0, 0);
4397         }
4398 
4399     } else {
4400 
4401         /* CAM credit is equaly divided between all active functions
4402          * on the PATH.
4403          */
4404         if (func_num > 0) {
4405             if (!CHIP_REV_IS_SLOW(bp))
4406                 cam_sz = PF_MAC_CREDIT_E2(bp, func_num);
4407             else
4408                 cam_sz = BNX2X_CAM_SIZE_EMUL;
4409 
4410             /* No need for CAM entries handling for 57712 and
4411              * newer.
4412              */
4413             bnx2x_init_credit_pool(p, -1, cam_sz);
4414         } else {
4415             /* this should never happen! Block MAC operations. */
4416             bnx2x_init_credit_pool(p, 0, 0);
4417         }
4418     }
4419 }
4420 
4421 void bnx2x_init_vlan_credit_pool(struct bnx2x *bp,
4422                  struct bnx2x_credit_pool_obj *p,
4423                  u8 func_id,
4424                  u8 func_num)
4425 {
4426     if (CHIP_IS_E1x(bp)) {
4427         /* There is no VLAN credit in HW on 57710 and 57711 only
4428          * MAC / MAC-VLAN can be set
4429          */
4430         bnx2x_init_credit_pool(p, 0, -1);
4431     } else {
4432         /* CAM credit is equally divided between all active functions
4433          * on the PATH.
4434          */
4435         if (func_num > 0) {
4436             int credit = PF_VLAN_CREDIT_E2(bp, func_num);
4437 
4438             bnx2x_init_credit_pool(p, -1/*unused for E2*/, credit);
4439         } else
4440             /* this should never happen! Block VLAN operations. */
4441             bnx2x_init_credit_pool(p, 0, 0);
4442     }
4443 }
4444 
4445 /****************** RSS Configuration ******************/
4446 /**
4447  * bnx2x_debug_print_ind_table - prints the indirection table configuration.
4448  *
4449  * @bp:     driver handle
4450  * @p:      pointer to rss configuration
4451  *
4452  * Prints it when NETIF_MSG_IFUP debug level is configured.
4453  */
4454 static inline void bnx2x_debug_print_ind_table(struct bnx2x *bp,
4455                     struct bnx2x_config_rss_params *p)
4456 {
4457     int i;
4458 
4459     DP(BNX2X_MSG_SP, "Setting indirection table to:\n");
4460     DP(BNX2X_MSG_SP, "0x0000: ");
4461     for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
4462         DP_CONT(BNX2X_MSG_SP, "0x%02x ", p->ind_table[i]);
4463 
4464         /* Print 4 bytes in a line */
4465         if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
4466             (((i + 1) & 0x3) == 0)) {
4467             DP_CONT(BNX2X_MSG_SP, "\n");
4468             DP(BNX2X_MSG_SP, "0x%04x: ", i + 1);
4469         }
4470     }
4471 
4472     DP_CONT(BNX2X_MSG_SP, "\n");
4473 }
4474 
4475 /**
4476  * bnx2x_setup_rss - configure RSS
4477  *
4478  * @bp:     device handle
4479  * @p:      rss configuration
4480  *
4481  * sends on UPDATE ramrod for that matter.
4482  */
4483 static int bnx2x_setup_rss(struct bnx2x *bp,
4484                struct bnx2x_config_rss_params *p)
4485 {
4486     struct bnx2x_rss_config_obj *o = p->rss_obj;
4487     struct bnx2x_raw_obj *r = &o->raw;
4488     struct eth_rss_update_ramrod_data *data =
4489         (struct eth_rss_update_ramrod_data *)(r->rdata);
4490     u16 caps = 0;
4491     u8 rss_mode = 0;
4492     int rc;
4493 
4494     memset(data, 0, sizeof(*data));
4495 
4496     DP(BNX2X_MSG_SP, "Configuring RSS\n");
4497 
4498     /* Set an echo field */
4499     data->echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
4500                  (r->state << BNX2X_SWCID_SHIFT));
4501 
4502     /* RSS mode */
4503     if (test_bit(BNX2X_RSS_MODE_DISABLED, &p->rss_flags))
4504         rss_mode = ETH_RSS_MODE_DISABLED;
4505     else if (test_bit(BNX2X_RSS_MODE_REGULAR, &p->rss_flags))
4506         rss_mode = ETH_RSS_MODE_REGULAR;
4507 
4508     data->rss_mode = rss_mode;
4509 
4510     DP(BNX2X_MSG_SP, "rss_mode=%d\n", rss_mode);
4511 
4512     /* RSS capabilities */
4513     if (test_bit(BNX2X_RSS_IPV4, &p->rss_flags))
4514         caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_CAPABILITY;
4515 
4516     if (test_bit(BNX2X_RSS_IPV4_TCP, &p->rss_flags))
4517         caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_TCP_CAPABILITY;
4518 
4519     if (test_bit(BNX2X_RSS_IPV4_UDP, &p->rss_flags))
4520         caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_UDP_CAPABILITY;
4521 
4522     if (test_bit(BNX2X_RSS_IPV6, &p->rss_flags))
4523         caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_CAPABILITY;
4524 
4525     if (test_bit(BNX2X_RSS_IPV6_TCP, &p->rss_flags))
4526         caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_TCP_CAPABILITY;
4527 
4528     if (test_bit(BNX2X_RSS_IPV6_UDP, &p->rss_flags))
4529         caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_UDP_CAPABILITY;
4530 
4531     if (test_bit(BNX2X_RSS_IPV4_VXLAN, &p->rss_flags))
4532         caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_VXLAN_CAPABILITY;
4533 
4534     if (test_bit(BNX2X_RSS_IPV6_VXLAN, &p->rss_flags))
4535         caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_VXLAN_CAPABILITY;
4536 
4537     if (test_bit(BNX2X_RSS_TUNN_INNER_HDRS, &p->rss_flags))
4538         caps |= ETH_RSS_UPDATE_RAMROD_DATA_TUNN_INNER_HDRS_CAPABILITY;
4539 
4540     /* RSS keys */
4541     if (test_bit(BNX2X_RSS_SET_SRCH, &p->rss_flags)) {
4542         u8 *dst = (u8 *)(data->rss_key) + sizeof(data->rss_key);
4543         const u8 *src = (const u8 *)p->rss_key;
4544         int i;
4545 
4546         /* Apparently, bnx2x reads this array in reverse order
4547          * We need to byte swap rss_key to comply with Toeplitz specs.
4548          */
4549         for (i = 0; i < sizeof(data->rss_key); i++)
4550             *--dst = *src++;
4551 
4552         caps |= ETH_RSS_UPDATE_RAMROD_DATA_UPDATE_RSS_KEY;
4553     }
4554 
4555     data->capabilities = cpu_to_le16(caps);
4556 
4557     /* Hashing mask */
4558     data->rss_result_mask = p->rss_result_mask;
4559 
4560     /* RSS engine ID */
4561     data->rss_engine_id = o->engine_id;
4562 
4563     DP(BNX2X_MSG_SP, "rss_engine_id=%d\n", data->rss_engine_id);
4564 
4565     /* Indirection table */
4566     memcpy(data->indirection_table, p->ind_table,
4567           T_ETH_INDIRECTION_TABLE_SIZE);
4568 
4569     /* Remember the last configuration */
4570     memcpy(o->ind_table, p->ind_table, T_ETH_INDIRECTION_TABLE_SIZE);
4571 
4572     /* Print the indirection table */
4573     if (netif_msg_ifup(bp))
4574         bnx2x_debug_print_ind_table(bp, p);
4575 
4576     /* No need for an explicit memory barrier here as long as we
4577      * ensure the ordering of writing to the SPQ element
4578      * and updating of the SPQ producer which involves a memory
4579      * read. If the memory read is removed we will have to put a
4580      * full memory barrier there (inside bnx2x_sp_post()).
4581      */
4582 
4583     /* Send a ramrod */
4584     rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_RSS_UPDATE, r->cid,
4585                U64_HI(r->rdata_mapping),
4586                U64_LO(r->rdata_mapping),
4587                ETH_CONNECTION_TYPE);
4588 
4589     if (rc < 0)
4590         return rc;
4591 
4592     return 1;
4593 }
4594 
4595 void bnx2x_get_rss_ind_table(struct bnx2x_rss_config_obj *rss_obj,
4596                  u8 *ind_table)
4597 {
4598     memcpy(ind_table, rss_obj->ind_table, sizeof(rss_obj->ind_table));
4599 }
4600 
4601 int bnx2x_config_rss(struct bnx2x *bp,
4602              struct bnx2x_config_rss_params *p)
4603 {
4604     int rc;
4605     struct bnx2x_rss_config_obj *o = p->rss_obj;
4606     struct bnx2x_raw_obj *r = &o->raw;
4607 
4608     /* Do nothing if only driver cleanup was requested */
4609     if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
4610         DP(BNX2X_MSG_SP, "Not configuring RSS ramrod_flags=%lx\n",
4611            p->ramrod_flags);
4612         return 0;
4613     }
4614 
4615     r->set_pending(r);
4616 
4617     rc = o->config_rss(bp, p);
4618     if (rc < 0) {
4619         r->clear_pending(r);
4620         return rc;
4621     }
4622 
4623     if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
4624         rc = r->wait_comp(bp, r);
4625 
4626     return rc;
4627 }
4628 
4629 void bnx2x_init_rss_config_obj(struct bnx2x *bp,
4630                    struct bnx2x_rss_config_obj *rss_obj,
4631                    u8 cl_id, u32 cid, u8 func_id, u8 engine_id,
4632                    void *rdata, dma_addr_t rdata_mapping,
4633                    int state, unsigned long *pstate,
4634                    bnx2x_obj_type type)
4635 {
4636     bnx2x_init_raw_obj(&rss_obj->raw, cl_id, cid, func_id, rdata,
4637                rdata_mapping, state, pstate, type);
4638 
4639     rss_obj->engine_id  = engine_id;
4640     rss_obj->config_rss = bnx2x_setup_rss;
4641 }
4642 
4643 /********************** Queue state object ***********************************/
4644 
4645 /**
4646  * bnx2x_queue_state_change - perform Queue state change transition
4647  *
4648  * @bp:     device handle
4649  * @params: parameters to perform the transition
4650  *
4651  * returns 0 in case of successfully completed transition, negative error
4652  * code in case of failure, positive (EBUSY) value if there is a completion
4653  * to that is still pending (possible only if RAMROD_COMP_WAIT is
4654  * not set in params->ramrod_flags for asynchronous commands).
4655  *
4656  */
4657 int bnx2x_queue_state_change(struct bnx2x *bp,
4658                  struct bnx2x_queue_state_params *params)
4659 {
4660     struct bnx2x_queue_sp_obj *o = params->q_obj;
4661     int rc, pending_bit;
4662     unsigned long *pending = &o->pending;
4663 
4664     /* Check that the requested transition is legal */
4665     rc = o->check_transition(bp, o, params);
4666     if (rc) {
4667         BNX2X_ERR("check transition returned an error. rc %d\n", rc);
4668         return -EINVAL;
4669     }
4670 
4671     /* Set "pending" bit */
4672     DP(BNX2X_MSG_SP, "pending bit was=%lx\n", o->pending);
4673     pending_bit = o->set_pending(o, params);
4674     DP(BNX2X_MSG_SP, "pending bit now=%lx\n", o->pending);
4675 
4676     /* Don't send a command if only driver cleanup was requested */
4677     if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags))
4678         o->complete_cmd(bp, o, pending_bit);
4679     else {
4680         /* Send a ramrod */
4681         rc = o->send_cmd(bp, params);
4682         if (rc) {
4683             o->next_state = BNX2X_Q_STATE_MAX;
4684             clear_bit(pending_bit, pending);
4685             smp_mb__after_atomic();
4686             return rc;
4687         }
4688 
4689         if (test_bit(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
4690             rc = o->wait_comp(bp, o, pending_bit);
4691             if (rc)
4692                 return rc;
4693 
4694             return 0;
4695         }
4696     }
4697 
4698     return !!test_bit(pending_bit, pending);
4699 }
4700 
4701 static int bnx2x_queue_set_pending(struct bnx2x_queue_sp_obj *obj,
4702                    struct bnx2x_queue_state_params *params)
4703 {
4704     enum bnx2x_queue_cmd cmd = params->cmd, bit;
4705 
4706     /* ACTIVATE and DEACTIVATE commands are implemented on top of
4707      * UPDATE command.
4708      */
4709     if ((cmd == BNX2X_Q_CMD_ACTIVATE) ||
4710         (cmd == BNX2X_Q_CMD_DEACTIVATE))
4711         bit = BNX2X_Q_CMD_UPDATE;
4712     else
4713         bit = cmd;
4714 
4715     set_bit(bit, &obj->pending);
4716     return bit;
4717 }
4718 
4719 static int bnx2x_queue_wait_comp(struct bnx2x *bp,
4720                  struct bnx2x_queue_sp_obj *o,
4721                  enum bnx2x_queue_cmd cmd)
4722 {
4723     return bnx2x_state_wait(bp, cmd, &o->pending);
4724 }
4725 
4726 /**
4727  * bnx2x_queue_comp_cmd - complete the state change command.
4728  *
4729  * @bp:     device handle
4730  * @o:      queue info
4731  * @cmd:    command to exec
4732  *
4733  * Checks that the arrived completion is expected.
4734  */
4735 static int bnx2x_queue_comp_cmd(struct bnx2x *bp,
4736                 struct bnx2x_queue_sp_obj *o,
4737                 enum bnx2x_queue_cmd cmd)
4738 {
4739     unsigned long cur_pending = o->pending;
4740 
4741     if (!test_and_clear_bit(cmd, &cur_pending)) {
4742         BNX2X_ERR("Bad MC reply %d for queue %d in state %d pending 0x%lx, next_state %d\n",
4743               cmd, o->cids[BNX2X_PRIMARY_CID_INDEX],
4744               o->state, cur_pending, o->next_state);
4745         return -EINVAL;
4746     }
4747 
4748     if (o->next_tx_only >= o->max_cos)
4749         /* >= because tx only must always be smaller than cos since the
4750          * primary connection supports COS 0
4751          */
4752         BNX2X_ERR("illegal value for next tx_only: %d. max cos was %d",
4753                o->next_tx_only, o->max_cos);
4754 
4755     DP(BNX2X_MSG_SP,
4756        "Completing command %d for queue %d, setting state to %d\n",
4757        cmd, o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_state);
4758 
4759     if (o->next_tx_only)  /* print num tx-only if any exist */
4760         DP(BNX2X_MSG_SP, "primary cid %d: num tx-only cons %d\n",
4761            o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_tx_only);
4762 
4763     o->state = o->next_state;
4764     o->num_tx_only = o->next_tx_only;
4765     o->next_state = BNX2X_Q_STATE_MAX;
4766 
4767     /* It's important that o->state and o->next_state are
4768      * updated before o->pending.
4769      */
4770     wmb();
4771 
4772     clear_bit(cmd, &o->pending);
4773     smp_mb__after_atomic();
4774 
4775     return 0;
4776 }
4777 
4778 static void bnx2x_q_fill_setup_data_e2(struct bnx2x *bp,
4779                 struct bnx2x_queue_state_params *cmd_params,
4780                 struct client_init_ramrod_data *data)
4781 {
4782     struct bnx2x_queue_setup_params *params = &cmd_params->params.setup;
4783 
4784     /* Rx data */
4785 
4786     /* IPv6 TPA supported for E2 and above only */
4787     data->rx.tpa_en |= test_bit(BNX2X_Q_FLG_TPA_IPV6, &params->flags) *
4788                 CLIENT_INIT_RX_DATA_TPA_EN_IPV6;
4789 }
4790 
4791 static void bnx2x_q_fill_init_general_data(struct bnx2x *bp,
4792                 struct bnx2x_queue_sp_obj *o,
4793                 struct bnx2x_general_setup_params *params,
4794                 struct client_init_general_data *gen_data,
4795                 unsigned long *flags)
4796 {
4797     gen_data->client_id = o->cl_id;
4798 
4799     if (test_bit(BNX2X_Q_FLG_STATS, flags)) {
4800         gen_data->statistics_counter_id =
4801                     params->stat_id;
4802         gen_data->statistics_en_flg = 1;
4803         gen_data->statistics_zero_flg =
4804             test_bit(BNX2X_Q_FLG_ZERO_STATS, flags);
4805     } else
4806         gen_data->statistics_counter_id =
4807                     DISABLE_STATISTIC_COUNTER_ID_VALUE;
4808 
4809     gen_data->is_fcoe_flg = test_bit(BNX2X_Q_FLG_FCOE, flags);
4810     gen_data->activate_flg = test_bit(BNX2X_Q_FLG_ACTIVE, flags);
4811     gen_data->sp_client_id = params->spcl_id;
4812     gen_data->mtu = cpu_to_le16(params->mtu);
4813     gen_data->func_id = o->func_id;
4814 
4815     gen_data->cos = params->cos;
4816 
4817     gen_data->traffic_type =
4818         test_bit(BNX2X_Q_FLG_FCOE, flags) ?
4819         LLFC_TRAFFIC_TYPE_FCOE : LLFC_TRAFFIC_TYPE_NW;
4820 
4821     gen_data->fp_hsi_ver = params->fp_hsi;
4822 
4823     DP(BNX2X_MSG_SP, "flags: active %d, cos %d, stats en %d\n",
4824        gen_data->activate_flg, gen_data->cos, gen_data->statistics_en_flg);
4825 }
4826 
4827 static void bnx2x_q_fill_init_tx_data(struct bnx2x_queue_sp_obj *o,
4828                 struct bnx2x_txq_setup_params *params,
4829                 struct client_init_tx_data *tx_data,
4830                 unsigned long *flags)
4831 {
4832     tx_data->enforce_security_flg =
4833         test_bit(BNX2X_Q_FLG_TX_SEC, flags);
4834     tx_data->default_vlan =
4835         cpu_to_le16(params->default_vlan);
4836     tx_data->default_vlan_flg =
4837         test_bit(BNX2X_Q_FLG_DEF_VLAN, flags);
4838     tx_data->tx_switching_flg =
4839         test_bit(BNX2X_Q_FLG_TX_SWITCH, flags);
4840     tx_data->anti_spoofing_flg =
4841         test_bit(BNX2X_Q_FLG_ANTI_SPOOF, flags);
4842     tx_data->force_default_pri_flg =
4843         test_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, flags);
4844     tx_data->refuse_outband_vlan_flg =
4845         test_bit(BNX2X_Q_FLG_REFUSE_OUTBAND_VLAN, flags);
4846     tx_data->tunnel_lso_inc_ip_id =
4847         test_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, flags);
4848     tx_data->tunnel_non_lso_pcsum_location =
4849         test_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, flags) ? CSUM_ON_PKT :
4850                                 CSUM_ON_BD;
4851 
4852     tx_data->tx_status_block_id = params->fw_sb_id;
4853     tx_data->tx_sb_index_number = params->sb_cq_index;
4854     tx_data->tss_leading_client_id = params->tss_leading_cl_id;
4855 
4856     tx_data->tx_bd_page_base.lo =
4857         cpu_to_le32(U64_LO(params->dscr_map));
4858     tx_data->tx_bd_page_base.hi =
4859         cpu_to_le32(U64_HI(params->dscr_map));
4860 
4861     /* Don't configure any Tx switching mode during queue SETUP */
4862     tx_data->state = 0;
4863 }
4864 
4865 static void bnx2x_q_fill_init_pause_data(struct bnx2x_queue_sp_obj *o,
4866                 struct rxq_pause_params *params,
4867                 struct client_init_rx_data *rx_data)
4868 {
4869     /* flow control data */
4870     rx_data->cqe_pause_thr_low = cpu_to_le16(params->rcq_th_lo);
4871     rx_data->cqe_pause_thr_high = cpu_to_le16(params->rcq_th_hi);
4872     rx_data->bd_pause_thr_low = cpu_to_le16(params->bd_th_lo);
4873     rx_data->bd_pause_thr_high = cpu_to_le16(params->bd_th_hi);
4874     rx_data->sge_pause_thr_low = cpu_to_le16(params->sge_th_lo);
4875     rx_data->sge_pause_thr_high = cpu_to_le16(params->sge_th_hi);
4876     rx_data->rx_cos_mask = cpu_to_le16(params->pri_map);
4877 }
4878 
4879 static void bnx2x_q_fill_init_rx_data(struct bnx2x_queue_sp_obj *o,
4880                 struct bnx2x_rxq_setup_params *params,
4881                 struct client_init_rx_data *rx_data,
4882                 unsigned long *flags)
4883 {
4884     rx_data->tpa_en = test_bit(BNX2X_Q_FLG_TPA, flags) *
4885                 CLIENT_INIT_RX_DATA_TPA_EN_IPV4;
4886     rx_data->tpa_en |= test_bit(BNX2X_Q_FLG_TPA_GRO, flags) *
4887                 CLIENT_INIT_RX_DATA_TPA_MODE;
4888     rx_data->vmqueue_mode_en_flg = 0;
4889 
4890     rx_data->cache_line_alignment_log_size =
4891         params->cache_line_log;
4892     rx_data->enable_dynamic_hc =
4893         test_bit(BNX2X_Q_FLG_DHC, flags);
4894     rx_data->max_sges_for_packet = params->max_sges_pkt;
4895     rx_data->client_qzone_id = params->cl_qzone_id;
4896     rx_data->max_agg_size = cpu_to_le16(params->tpa_agg_sz);
4897 
4898     /* Always start in DROP_ALL mode */
4899     rx_data->state = cpu_to_le16(CLIENT_INIT_RX_DATA_UCAST_DROP_ALL |
4900                      CLIENT_INIT_RX_DATA_MCAST_DROP_ALL);
4901 
4902     /* We don't set drop flags */
4903     rx_data->drop_ip_cs_err_flg = 0;
4904     rx_data->drop_tcp_cs_err_flg = 0;
4905     rx_data->drop_ttl0_flg = 0;
4906     rx_data->drop_udp_cs_err_flg = 0;
4907     rx_data->inner_vlan_removal_enable_flg =
4908         test_bit(BNX2X_Q_FLG_VLAN, flags);
4909     rx_data->outer_vlan_removal_enable_flg =
4910         test_bit(BNX2X_Q_FLG_OV, flags);
4911     rx_data->status_block_id = params->fw_sb_id;
4912     rx_data->rx_sb_index_number = params->sb_cq_index;
4913     rx_data->max_tpa_queues = params->max_tpa_queues;
4914     rx_data->max_bytes_on_bd = cpu_to_le16(params->buf_sz);
4915     rx_data->sge_buff_size = cpu_to_le16(params->sge_buf_sz);
4916     rx_data->bd_page_base.lo =
4917         cpu_to_le32(U64_LO(params->dscr_map));
4918     rx_data->bd_page_base.hi =
4919         cpu_to_le32(U64_HI(params->dscr_map));
4920     rx_data->sge_page_base.lo =
4921         cpu_to_le32(U64_LO(params->sge_map));
4922     rx_data->sge_page_base.hi =
4923         cpu_to_le32(U64_HI(params->sge_map));
4924     rx_data->cqe_page_base.lo =
4925         cpu_to_le32(U64_LO(params->rcq_map));
4926     rx_data->cqe_page_base.hi =
4927         cpu_to_le32(U64_HI(params->rcq_map));
4928     rx_data->is_leading_rss = test_bit(BNX2X_Q_FLG_LEADING_RSS, flags);
4929 
4930     if (test_bit(BNX2X_Q_FLG_MCAST, flags)) {
4931         rx_data->approx_mcast_engine_id = params->mcast_engine_id;
4932         rx_data->is_approx_mcast = 1;
4933     }
4934 
4935     rx_data->rss_engine_id = params->rss_engine_id;
4936 
4937     /* silent vlan removal */
4938     rx_data->silent_vlan_removal_flg =
4939         test_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, flags);
4940     rx_data->silent_vlan_value =
4941         cpu_to_le16(params->silent_removal_value);
4942     rx_data->silent_vlan_mask =
4943         cpu_to_le16(params->silent_removal_mask);
4944 }
4945 
4946 /* initialize the general, tx and rx parts of a queue object */
4947 static void bnx2x_q_fill_setup_data_cmn(struct bnx2x *bp,
4948                 struct bnx2x_queue_state_params *cmd_params,
4949                 struct client_init_ramrod_data *data)
4950 {
4951     bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
4952                        &cmd_params->params.setup.gen_params,
4953                        &data->general,
4954                        &cmd_params->params.setup.flags);
4955 
4956     bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
4957                   &cmd_params->params.setup.txq_params,
4958                   &data->tx,
4959                   &cmd_params->params.setup.flags);
4960 
4961     bnx2x_q_fill_init_rx_data(cmd_params->q_obj,
4962                   &cmd_params->params.setup.rxq_params,
4963                   &data->rx,
4964                   &cmd_params->params.setup.flags);
4965 
4966     bnx2x_q_fill_init_pause_data(cmd_params->q_obj,
4967                      &cmd_params->params.setup.pause_params,
4968                      &data->rx);
4969 }
4970 
4971 /* initialize the general and tx parts of a tx-only queue object */
4972 static void bnx2x_q_fill_setup_tx_only(struct bnx2x *bp,
4973                 struct bnx2x_queue_state_params *cmd_params,
4974                 struct tx_queue_init_ramrod_data *data)
4975 {
4976     bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
4977                        &cmd_params->params.tx_only.gen_params,
4978                        &data->general,
4979                        &cmd_params->params.tx_only.flags);
4980 
4981     bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
4982                   &cmd_params->params.tx_only.txq_params,
4983                   &data->tx,
4984                   &cmd_params->params.tx_only.flags);
4985 
4986     DP(BNX2X_MSG_SP, "cid %d, tx bd page lo %x hi %x",
4987              cmd_params->q_obj->cids[0],
4988              data->tx.tx_bd_page_base.lo,
4989              data->tx.tx_bd_page_base.hi);
4990 }
4991 
4992 /**
4993  * bnx2x_q_init - init HW/FW queue
4994  *
4995  * @bp:     device handle
4996  * @params:
4997  *
4998  * HW/FW initial Queue configuration:
4999  *      - HC: Rx and Tx
5000  *      - CDU context validation
5001  *
5002  */
5003 static inline int bnx2x_q_init(struct bnx2x *bp,
5004                    struct bnx2x_queue_state_params *params)
5005 {
5006     struct bnx2x_queue_sp_obj *o = params->q_obj;
5007     struct bnx2x_queue_init_params *init = &params->params.init;
5008     u16 hc_usec;
5009     u8 cos;
5010 
5011     /* Tx HC configuration */
5012     if (test_bit(BNX2X_Q_TYPE_HAS_TX, &o->type) &&
5013         test_bit(BNX2X_Q_FLG_HC, &init->tx.flags)) {
5014         hc_usec = init->tx.hc_rate ? 1000000 / init->tx.hc_rate : 0;
5015 
5016         bnx2x_update_coalesce_sb_index(bp, init->tx.fw_sb_id,
5017             init->tx.sb_cq_index,
5018             !test_bit(BNX2X_Q_FLG_HC_EN, &init->tx.flags),
5019             hc_usec);
5020     }
5021 
5022     /* Rx HC configuration */
5023     if (test_bit(BNX2X_Q_TYPE_HAS_RX, &o->type) &&
5024         test_bit(BNX2X_Q_FLG_HC, &init->rx.flags)) {
5025         hc_usec = init->rx.hc_rate ? 1000000 / init->rx.hc_rate : 0;
5026 
5027         bnx2x_update_coalesce_sb_index(bp, init->rx.fw_sb_id,
5028             init->rx.sb_cq_index,
5029             !test_bit(BNX2X_Q_FLG_HC_EN, &init->rx.flags),
5030             hc_usec);
5031     }
5032 
5033     /* Set CDU context validation values */
5034     for (cos = 0; cos < o->max_cos; cos++) {
5035         DP(BNX2X_MSG_SP, "setting context validation. cid %d, cos %d\n",
5036                  o->cids[cos], cos);
5037         DP(BNX2X_MSG_SP, "context pointer %p\n", init->cxts[cos]);
5038         bnx2x_set_ctx_validation(bp, init->cxts[cos], o->cids[cos]);
5039     }
5040 
5041     /* As no ramrod is sent, complete the command immediately  */
5042     o->complete_cmd(bp, o, BNX2X_Q_CMD_INIT);
5043 
5044     smp_mb();
5045 
5046     return 0;
5047 }
5048 
5049 static inline int bnx2x_q_send_setup_e1x(struct bnx2x *bp,
5050                     struct bnx2x_queue_state_params *params)
5051 {
5052     struct bnx2x_queue_sp_obj *o = params->q_obj;
5053     struct client_init_ramrod_data *rdata =
5054         (struct client_init_ramrod_data *)o->rdata;
5055     dma_addr_t data_mapping = o->rdata_mapping;
5056     int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
5057 
5058     /* Clear the ramrod data */
5059     memset(rdata, 0, sizeof(*rdata));
5060 
5061     /* Fill the ramrod data */
5062     bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
5063 
5064     /* No need for an explicit memory barrier here as long as we
5065      * ensure the ordering of writing to the SPQ element
5066      * and updating of the SPQ producer which involves a memory
5067      * read. If the memory read is removed we will have to put a
5068      * full memory barrier there (inside bnx2x_sp_post()).
5069      */
5070     return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
5071                  U64_HI(data_mapping),
5072                  U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5073 }
5074 
5075 static inline int bnx2x_q_send_setup_e2(struct bnx2x *bp,
5076                     struct bnx2x_queue_state_params *params)
5077 {
5078     struct bnx2x_queue_sp_obj *o = params->q_obj;
5079     struct client_init_ramrod_data *rdata =
5080         (struct client_init_ramrod_data *)o->rdata;
5081     dma_addr_t data_mapping = o->rdata_mapping;
5082     int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
5083 
5084     /* Clear the ramrod data */
5085     memset(rdata, 0, sizeof(*rdata));
5086 
5087     /* Fill the ramrod data */
5088     bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
5089     bnx2x_q_fill_setup_data_e2(bp, params, rdata);
5090 
5091     /* No need for an explicit memory barrier here as long as we
5092      * ensure the ordering of writing to the SPQ element
5093      * and updating of the SPQ producer which involves a memory
5094      * read. If the memory read is removed we will have to put a
5095      * full memory barrier there (inside bnx2x_sp_post()).
5096      */
5097     return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
5098                  U64_HI(data_mapping),
5099                  U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5100 }
5101 
5102 static inline int bnx2x_q_send_setup_tx_only(struct bnx2x *bp,
5103                   struct bnx2x_queue_state_params *params)
5104 {
5105     struct bnx2x_queue_sp_obj *o = params->q_obj;
5106     struct tx_queue_init_ramrod_data *rdata =
5107         (struct tx_queue_init_ramrod_data *)o->rdata;
5108     dma_addr_t data_mapping = o->rdata_mapping;
5109     int ramrod = RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP;
5110     struct bnx2x_queue_setup_tx_only_params *tx_only_params =
5111         &params->params.tx_only;
5112     u8 cid_index = tx_only_params->cid_index;
5113 
5114     if (cid_index >= o->max_cos) {
5115         BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5116               o->cl_id, cid_index);
5117         return -EINVAL;
5118     }
5119 
5120     DP(BNX2X_MSG_SP, "parameters received: cos: %d sp-id: %d\n",
5121              tx_only_params->gen_params.cos,
5122              tx_only_params->gen_params.spcl_id);
5123 
5124     /* Clear the ramrod data */
5125     memset(rdata, 0, sizeof(*rdata));
5126 
5127     /* Fill the ramrod data */
5128     bnx2x_q_fill_setup_tx_only(bp, params, rdata);
5129 
5130     DP(BNX2X_MSG_SP, "sending tx-only ramrod: cid %d, client-id %d, sp-client id %d, cos %d\n",
5131              o->cids[cid_index], rdata->general.client_id,
5132              rdata->general.sp_client_id, rdata->general.cos);
5133 
5134     /* No need for an explicit memory barrier here as long as we
5135      * ensure the ordering of writing to the SPQ element
5136      * and updating of the SPQ producer which involves a memory
5137      * read. If the memory read is removed we will have to put a
5138      * full memory barrier there (inside bnx2x_sp_post()).
5139      */
5140     return bnx2x_sp_post(bp, ramrod, o->cids[cid_index],
5141                  U64_HI(data_mapping),
5142                  U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5143 }
5144 
5145 static void bnx2x_q_fill_update_data(struct bnx2x *bp,
5146                      struct bnx2x_queue_sp_obj *obj,
5147                      struct bnx2x_queue_update_params *params,
5148                      struct client_update_ramrod_data *data)
5149 {
5150     /* Client ID of the client to update */
5151     data->client_id = obj->cl_id;
5152 
5153     /* Function ID of the client to update */
5154     data->func_id = obj->func_id;
5155 
5156     /* Default VLAN value */
5157     data->default_vlan = cpu_to_le16(params->def_vlan);
5158 
5159     /* Inner VLAN stripping */
5160     data->inner_vlan_removal_enable_flg =
5161         test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM, &params->update_flags);
5162     data->inner_vlan_removal_change_flg =
5163         test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM_CHNG,
5164              &params->update_flags);
5165 
5166     /* Outer VLAN stripping */
5167     data->outer_vlan_removal_enable_flg =
5168         test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM, &params->update_flags);
5169     data->outer_vlan_removal_change_flg =
5170         test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM_CHNG,
5171              &params->update_flags);
5172 
5173     /* Drop packets that have source MAC that doesn't belong to this
5174      * Queue.
5175      */
5176     data->anti_spoofing_enable_flg =
5177         test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, &params->update_flags);
5178     data->anti_spoofing_change_flg =
5179         test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG, &params->update_flags);
5180 
5181     /* Activate/Deactivate */
5182     data->activate_flg =
5183         test_bit(BNX2X_Q_UPDATE_ACTIVATE, &params->update_flags);
5184     data->activate_change_flg =
5185         test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &params->update_flags);
5186 
5187     /* Enable default VLAN */
5188     data->default_vlan_enable_flg =
5189         test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, &params->update_flags);
5190     data->default_vlan_change_flg =
5191         test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
5192              &params->update_flags);
5193 
5194     /* silent vlan removal */
5195     data->silent_vlan_change_flg =
5196         test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5197              &params->update_flags);
5198     data->silent_vlan_removal_flg =
5199         test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, &params->update_flags);
5200     data->silent_vlan_value = cpu_to_le16(params->silent_removal_value);
5201     data->silent_vlan_mask = cpu_to_le16(params->silent_removal_mask);
5202 
5203     /* tx switching */
5204     data->tx_switching_flg =
5205         test_bit(BNX2X_Q_UPDATE_TX_SWITCHING, &params->update_flags);
5206     data->tx_switching_change_flg =
5207         test_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
5208              &params->update_flags);
5209 
5210     /* PTP */
5211     data->handle_ptp_pkts_flg =
5212         test_bit(BNX2X_Q_UPDATE_PTP_PKTS, &params->update_flags);
5213     data->handle_ptp_pkts_change_flg =
5214         test_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG, &params->update_flags);
5215 }
5216 
5217 static inline int bnx2x_q_send_update(struct bnx2x *bp,
5218                       struct bnx2x_queue_state_params *params)
5219 {
5220     struct bnx2x_queue_sp_obj *o = params->q_obj;
5221     struct client_update_ramrod_data *rdata =
5222         (struct client_update_ramrod_data *)o->rdata;
5223     dma_addr_t data_mapping = o->rdata_mapping;
5224     struct bnx2x_queue_update_params *update_params =
5225         &params->params.update;
5226     u8 cid_index = update_params->cid_index;
5227 
5228     if (cid_index >= o->max_cos) {
5229         BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5230               o->cl_id, cid_index);
5231         return -EINVAL;
5232     }
5233 
5234     /* Clear the ramrod data */
5235     memset(rdata, 0, sizeof(*rdata));
5236 
5237     /* Fill the ramrod data */
5238     bnx2x_q_fill_update_data(bp, o, update_params, rdata);
5239 
5240     /* No need for an explicit memory barrier here as long as we
5241      * ensure the ordering of writing to the SPQ element
5242      * and updating of the SPQ producer which involves a memory
5243      * read. If the memory read is removed we will have to put a
5244      * full memory barrier there (inside bnx2x_sp_post()).
5245      */
5246     return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_CLIENT_UPDATE,
5247                  o->cids[cid_index], U64_HI(data_mapping),
5248                  U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5249 }
5250 
5251 /**
5252  * bnx2x_q_send_deactivate - send DEACTIVATE command
5253  *
5254  * @bp:     device handle
5255  * @params:
5256  *
5257  * implemented using the UPDATE command.
5258  */
5259 static inline int bnx2x_q_send_deactivate(struct bnx2x *bp,
5260                     struct bnx2x_queue_state_params *params)
5261 {
5262     struct bnx2x_queue_update_params *update = &params->params.update;
5263 
5264     memset(update, 0, sizeof(*update));
5265 
5266     __set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5267 
5268     return bnx2x_q_send_update(bp, params);
5269 }
5270 
5271 /**
5272  * bnx2x_q_send_activate - send ACTIVATE command
5273  *
5274  * @bp:     device handle
5275  * @params:
5276  *
5277  * implemented using the UPDATE command.
5278  */
5279 static inline int bnx2x_q_send_activate(struct bnx2x *bp,
5280                     struct bnx2x_queue_state_params *params)
5281 {
5282     struct bnx2x_queue_update_params *update = &params->params.update;
5283 
5284     memset(update, 0, sizeof(*update));
5285 
5286     __set_bit(BNX2X_Q_UPDATE_ACTIVATE, &update->update_flags);
5287     __set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5288 
5289     return bnx2x_q_send_update(bp, params);
5290 }
5291 
5292 static void bnx2x_q_fill_update_tpa_data(struct bnx2x *bp,
5293                 struct bnx2x_queue_sp_obj *obj,
5294                 struct bnx2x_queue_update_tpa_params *params,
5295                 struct tpa_update_ramrod_data *data)
5296 {
5297     data->client_id = obj->cl_id;
5298     data->complete_on_both_clients = params->complete_on_both_clients;
5299     data->dont_verify_rings_pause_thr_flg =
5300         params->dont_verify_thr;
5301     data->max_agg_size = cpu_to_le16(params->max_agg_sz);
5302     data->max_sges_for_packet = params->max_sges_pkt;
5303     data->max_tpa_queues = params->max_tpa_queues;
5304     data->sge_buff_size = cpu_to_le16(params->sge_buff_sz);
5305     data->sge_page_base_hi = cpu_to_le32(U64_HI(params->sge_map));
5306     data->sge_page_base_lo = cpu_to_le32(U64_LO(params->sge_map));
5307     data->sge_pause_thr_high = cpu_to_le16(params->sge_pause_thr_high);
5308     data->sge_pause_thr_low = cpu_to_le16(params->sge_pause_thr_low);
5309     data->tpa_mode = params->tpa_mode;
5310     data->update_ipv4 = params->update_ipv4;
5311     data->update_ipv6 = params->update_ipv6;
5312 }
5313 
5314 static inline int bnx2x_q_send_update_tpa(struct bnx2x *bp,
5315                     struct bnx2x_queue_state_params *params)
5316 {
5317     struct bnx2x_queue_sp_obj *o = params->q_obj;
5318     struct tpa_update_ramrod_data *rdata =
5319         (struct tpa_update_ramrod_data *)o->rdata;
5320     dma_addr_t data_mapping = o->rdata_mapping;
5321     struct bnx2x_queue_update_tpa_params *update_tpa_params =
5322         &params->params.update_tpa;
5323     u16 type;
5324 
5325     /* Clear the ramrod data */
5326     memset(rdata, 0, sizeof(*rdata));
5327 
5328     /* Fill the ramrod data */
5329     bnx2x_q_fill_update_tpa_data(bp, o, update_tpa_params, rdata);
5330 
5331     /* Add the function id inside the type, so that sp post function
5332      * doesn't automatically add the PF func-id, this is required
5333      * for operations done by PFs on behalf of their VFs
5334      */
5335     type = ETH_CONNECTION_TYPE |
5336         ((o->func_id) << SPE_HDR_FUNCTION_ID_SHIFT);
5337 
5338     /* No need for an explicit memory barrier here as long as we
5339      * ensure the ordering of writing to the SPQ element
5340      * and updating of the SPQ producer which involves a memory
5341      * read. If the memory read is removed we will have to put a
5342      * full memory barrier there (inside bnx2x_sp_post()).
5343      */
5344     return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TPA_UPDATE,
5345                  o->cids[BNX2X_PRIMARY_CID_INDEX],
5346                  U64_HI(data_mapping),
5347                  U64_LO(data_mapping), type);
5348 }
5349 
5350 static inline int bnx2x_q_send_halt(struct bnx2x *bp,
5351                     struct bnx2x_queue_state_params *params)
5352 {
5353     struct bnx2x_queue_sp_obj *o = params->q_obj;
5354 
5355     return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_HALT,
5356                  o->cids[BNX2X_PRIMARY_CID_INDEX], 0, o->cl_id,
5357                  ETH_CONNECTION_TYPE);
5358 }
5359 
5360 static inline int bnx2x_q_send_cfc_del(struct bnx2x *bp,
5361                        struct bnx2x_queue_state_params *params)
5362 {
5363     struct bnx2x_queue_sp_obj *o = params->q_obj;
5364     u8 cid_idx = params->params.cfc_del.cid_index;
5365 
5366     if (cid_idx >= o->max_cos) {
5367         BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5368               o->cl_id, cid_idx);
5369         return -EINVAL;
5370     }
5371 
5372     return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_CFC_DEL,
5373                  o->cids[cid_idx], 0, 0, NONE_CONNECTION_TYPE);
5374 }
5375 
5376 static inline int bnx2x_q_send_terminate(struct bnx2x *bp,
5377                     struct bnx2x_queue_state_params *params)
5378 {
5379     struct bnx2x_queue_sp_obj *o = params->q_obj;
5380     u8 cid_index = params->params.terminate.cid_index;
5381 
5382     if (cid_index >= o->max_cos) {
5383         BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5384               o->cl_id, cid_index);
5385         return -EINVAL;
5386     }
5387 
5388     return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TERMINATE,
5389                  o->cids[cid_index], 0, 0, ETH_CONNECTION_TYPE);
5390 }
5391 
5392 static inline int bnx2x_q_send_empty(struct bnx2x *bp,
5393                      struct bnx2x_queue_state_params *params)
5394 {
5395     struct bnx2x_queue_sp_obj *o = params->q_obj;
5396 
5397     return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_EMPTY,
5398                  o->cids[BNX2X_PRIMARY_CID_INDEX], 0, 0,
5399                  ETH_CONNECTION_TYPE);
5400 }
5401 
5402 static inline int bnx2x_queue_send_cmd_cmn(struct bnx2x *bp,
5403                     struct bnx2x_queue_state_params *params)
5404 {
5405     switch (params->cmd) {
5406     case BNX2X_Q_CMD_INIT:
5407         return bnx2x_q_init(bp, params);
5408     case BNX2X_Q_CMD_SETUP_TX_ONLY:
5409         return bnx2x_q_send_setup_tx_only(bp, params);
5410     case BNX2X_Q_CMD_DEACTIVATE:
5411         return bnx2x_q_send_deactivate(bp, params);
5412     case BNX2X_Q_CMD_ACTIVATE:
5413         return bnx2x_q_send_activate(bp, params);
5414     case BNX2X_Q_CMD_UPDATE:
5415         return bnx2x_q_send_update(bp, params);
5416     case BNX2X_Q_CMD_UPDATE_TPA:
5417         return bnx2x_q_send_update_tpa(bp, params);
5418     case BNX2X_Q_CMD_HALT:
5419         return bnx2x_q_send_halt(bp, params);
5420     case BNX2X_Q_CMD_CFC_DEL:
5421         return bnx2x_q_send_cfc_del(bp, params);
5422     case BNX2X_Q_CMD_TERMINATE:
5423         return bnx2x_q_send_terminate(bp, params);
5424     case BNX2X_Q_CMD_EMPTY:
5425         return bnx2x_q_send_empty(bp, params);
5426     default:
5427         BNX2X_ERR("Unknown command: %d\n", params->cmd);
5428         return -EINVAL;
5429     }
5430 }
5431 
5432 static int bnx2x_queue_send_cmd_e1x(struct bnx2x *bp,
5433                     struct bnx2x_queue_state_params *params)
5434 {
5435     switch (params->cmd) {
5436     case BNX2X_Q_CMD_SETUP:
5437         return bnx2x_q_send_setup_e1x(bp, params);
5438     case BNX2X_Q_CMD_INIT:
5439     case BNX2X_Q_CMD_SETUP_TX_ONLY:
5440     case BNX2X_Q_CMD_DEACTIVATE:
5441     case BNX2X_Q_CMD_ACTIVATE:
5442     case BNX2X_Q_CMD_UPDATE:
5443     case BNX2X_Q_CMD_UPDATE_TPA:
5444     case BNX2X_Q_CMD_HALT:
5445     case BNX2X_Q_CMD_CFC_DEL:
5446     case BNX2X_Q_CMD_TERMINATE:
5447     case BNX2X_Q_CMD_EMPTY:
5448         return bnx2x_queue_send_cmd_cmn(bp, params);
5449     default:
5450         BNX2X_ERR("Unknown command: %d\n", params->cmd);
5451         return -EINVAL;
5452     }
5453 }
5454 
5455 static int bnx2x_queue_send_cmd_e2(struct bnx2x *bp,
5456                    struct bnx2x_queue_state_params *params)
5457 {
5458     switch (params->cmd) {
5459     case BNX2X_Q_CMD_SETUP:
5460         return bnx2x_q_send_setup_e2(bp, params);
5461     case BNX2X_Q_CMD_INIT:
5462     case BNX2X_Q_CMD_SETUP_TX_ONLY:
5463     case BNX2X_Q_CMD_DEACTIVATE:
5464     case BNX2X_Q_CMD_ACTIVATE:
5465     case BNX2X_Q_CMD_UPDATE:
5466     case BNX2X_Q_CMD_UPDATE_TPA:
5467     case BNX2X_Q_CMD_HALT:
5468     case BNX2X_Q_CMD_CFC_DEL:
5469     case BNX2X_Q_CMD_TERMINATE:
5470     case BNX2X_Q_CMD_EMPTY:
5471         return bnx2x_queue_send_cmd_cmn(bp, params);
5472     default:
5473         BNX2X_ERR("Unknown command: %d\n", params->cmd);
5474         return -EINVAL;
5475     }
5476 }
5477 
5478 /**
5479  * bnx2x_queue_chk_transition - check state machine of a regular Queue
5480  *
5481  * @bp:     device handle
5482  * @o:      queue info
5483  * @params: queue state
5484  *
5485  * (not Forwarding)
5486  * It both checks if the requested command is legal in a current
5487  * state and, if it's legal, sets a `next_state' in the object
5488  * that will be used in the completion flow to set the `state'
5489  * of the object.
5490  *
5491  * returns 0 if a requested command is a legal transition,
5492  *         -EINVAL otherwise.
5493  */
5494 static int bnx2x_queue_chk_transition(struct bnx2x *bp,
5495                       struct bnx2x_queue_sp_obj *o,
5496                       struct bnx2x_queue_state_params *params)
5497 {
5498     enum bnx2x_q_state state = o->state, next_state = BNX2X_Q_STATE_MAX;
5499     enum bnx2x_queue_cmd cmd = params->cmd;
5500     struct bnx2x_queue_update_params *update_params =
5501          &params->params.update;
5502     u8 next_tx_only = o->num_tx_only;
5503 
5504     /* Forget all pending for completion commands if a driver only state
5505      * transition has been requested.
5506      */
5507     if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5508         o->pending = 0;
5509         o->next_state = BNX2X_Q_STATE_MAX;
5510     }
5511 
5512     /* Don't allow a next state transition if we are in the middle of
5513      * the previous one.
5514      */
5515     if (o->pending) {
5516         BNX2X_ERR("Blocking transition since pending was %lx\n",
5517               o->pending);
5518         return -EBUSY;
5519     }
5520 
5521     switch (state) {
5522     case BNX2X_Q_STATE_RESET:
5523         if (cmd == BNX2X_Q_CMD_INIT)
5524             next_state = BNX2X_Q_STATE_INITIALIZED;
5525 
5526         break;
5527     case BNX2X_Q_STATE_INITIALIZED:
5528         if (cmd == BNX2X_Q_CMD_SETUP) {
5529             if (test_bit(BNX2X_Q_FLG_ACTIVE,
5530                      &params->params.setup.flags))
5531                 next_state = BNX2X_Q_STATE_ACTIVE;
5532             else
5533                 next_state = BNX2X_Q_STATE_INACTIVE;
5534         }
5535 
5536         break;
5537     case BNX2X_Q_STATE_ACTIVE:
5538         if (cmd == BNX2X_Q_CMD_DEACTIVATE)
5539             next_state = BNX2X_Q_STATE_INACTIVE;
5540 
5541         else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5542              (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5543             next_state = BNX2X_Q_STATE_ACTIVE;
5544 
5545         else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
5546             next_state = BNX2X_Q_STATE_MULTI_COS;
5547             next_tx_only = 1;
5548         }
5549 
5550         else if (cmd == BNX2X_Q_CMD_HALT)
5551             next_state = BNX2X_Q_STATE_STOPPED;
5552 
5553         else if (cmd == BNX2X_Q_CMD_UPDATE) {
5554             /* If "active" state change is requested, update the
5555              *  state accordingly.
5556              */
5557             if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5558                      &update_params->update_flags) &&
5559                 !test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5560                       &update_params->update_flags))
5561                 next_state = BNX2X_Q_STATE_INACTIVE;
5562             else
5563                 next_state = BNX2X_Q_STATE_ACTIVE;
5564         }
5565 
5566         break;
5567     case BNX2X_Q_STATE_MULTI_COS:
5568         if (cmd == BNX2X_Q_CMD_TERMINATE)
5569             next_state = BNX2X_Q_STATE_MCOS_TERMINATED;
5570 
5571         else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
5572             next_state = BNX2X_Q_STATE_MULTI_COS;
5573             next_tx_only = o->num_tx_only + 1;
5574         }
5575 
5576         else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5577              (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5578             next_state = BNX2X_Q_STATE_MULTI_COS;
5579 
5580         else if (cmd == BNX2X_Q_CMD_UPDATE) {
5581             /* If "active" state change is requested, update the
5582              *  state accordingly.
5583              */
5584             if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5585                      &update_params->update_flags) &&
5586                 !test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5587                       &update_params->update_flags))
5588                 next_state = BNX2X_Q_STATE_INACTIVE;
5589             else
5590                 next_state = BNX2X_Q_STATE_MULTI_COS;
5591         }
5592 
5593         break;
5594     case BNX2X_Q_STATE_MCOS_TERMINATED:
5595         if (cmd == BNX2X_Q_CMD_CFC_DEL) {
5596             next_tx_only = o->num_tx_only - 1;
5597             if (next_tx_only == 0)
5598                 next_state = BNX2X_Q_STATE_ACTIVE;
5599             else
5600                 next_state = BNX2X_Q_STATE_MULTI_COS;
5601         }
5602 
5603         break;
5604     case BNX2X_Q_STATE_INACTIVE:
5605         if (cmd == BNX2X_Q_CMD_ACTIVATE)
5606             next_state = BNX2X_Q_STATE_ACTIVE;
5607 
5608         else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5609              (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5610             next_state = BNX2X_Q_STATE_INACTIVE;
5611 
5612         else if (cmd == BNX2X_Q_CMD_HALT)
5613             next_state = BNX2X_Q_STATE_STOPPED;
5614 
5615         else if (cmd == BNX2X_Q_CMD_UPDATE) {
5616             /* If "active" state change is requested, update the
5617              * state accordingly.
5618              */
5619             if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5620                      &update_params->update_flags) &&
5621                 test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5622                      &update_params->update_flags)){
5623                 if (o->num_tx_only == 0)
5624                     next_state = BNX2X_Q_STATE_ACTIVE;
5625                 else /* tx only queues exist for this queue */
5626                     next_state = BNX2X_Q_STATE_MULTI_COS;
5627             } else
5628                 next_state = BNX2X_Q_STATE_INACTIVE;
5629         }
5630 
5631         break;
5632     case BNX2X_Q_STATE_STOPPED:
5633         if (cmd == BNX2X_Q_CMD_TERMINATE)
5634             next_state = BNX2X_Q_STATE_TERMINATED;
5635 
5636         break;
5637     case BNX2X_Q_STATE_TERMINATED:
5638         if (cmd == BNX2X_Q_CMD_CFC_DEL)
5639             next_state = BNX2X_Q_STATE_RESET;
5640 
5641         break;
5642     default:
5643         BNX2X_ERR("Illegal state: %d\n", state);
5644     }
5645 
5646     /* Transition is assured */
5647     if (next_state != BNX2X_Q_STATE_MAX) {
5648         DP(BNX2X_MSG_SP, "Good state transition: %d(%d)->%d\n",
5649                  state, cmd, next_state);
5650         o->next_state = next_state;
5651         o->next_tx_only = next_tx_only;
5652         return 0;
5653     }
5654 
5655     DP(BNX2X_MSG_SP, "Bad state transition request: %d %d\n", state, cmd);
5656 
5657     return -EINVAL;
5658 }
5659 
5660 void bnx2x_init_queue_obj(struct bnx2x *bp,
5661               struct bnx2x_queue_sp_obj *obj,
5662               u8 cl_id, u32 *cids, u8 cid_cnt, u8 func_id,
5663               void *rdata,
5664               dma_addr_t rdata_mapping, unsigned long type)
5665 {
5666     memset(obj, 0, sizeof(*obj));
5667 
5668     /* We support only BNX2X_MULTI_TX_COS Tx CoS at the moment */
5669     BUG_ON(BNX2X_MULTI_TX_COS < cid_cnt);
5670 
5671     memcpy(obj->cids, cids, sizeof(obj->cids[0]) * cid_cnt);
5672     obj->max_cos = cid_cnt;
5673     obj->cl_id = cl_id;
5674     obj->func_id = func_id;
5675     obj->rdata = rdata;
5676     obj->rdata_mapping = rdata_mapping;
5677     obj->type = type;
5678     obj->next_state = BNX2X_Q_STATE_MAX;
5679 
5680     if (CHIP_IS_E1x(bp))
5681         obj->send_cmd = bnx2x_queue_send_cmd_e1x;
5682     else
5683         obj->send_cmd = bnx2x_queue_send_cmd_e2;
5684 
5685     obj->check_transition = bnx2x_queue_chk_transition;
5686 
5687     obj->complete_cmd = bnx2x_queue_comp_cmd;
5688     obj->wait_comp = bnx2x_queue_wait_comp;
5689     obj->set_pending = bnx2x_queue_set_pending;
5690 }
5691 
5692 /* return a queue object's logical state*/
5693 int bnx2x_get_q_logical_state(struct bnx2x *bp,
5694                    struct bnx2x_queue_sp_obj *obj)
5695 {
5696     switch (obj->state) {
5697     case BNX2X_Q_STATE_ACTIVE:
5698     case BNX2X_Q_STATE_MULTI_COS:
5699         return BNX2X_Q_LOGICAL_STATE_ACTIVE;
5700     case BNX2X_Q_STATE_RESET:
5701     case BNX2X_Q_STATE_INITIALIZED:
5702     case BNX2X_Q_STATE_MCOS_TERMINATED:
5703     case BNX2X_Q_STATE_INACTIVE:
5704     case BNX2X_Q_STATE_STOPPED:
5705     case BNX2X_Q_STATE_TERMINATED:
5706     case BNX2X_Q_STATE_FLRED:
5707         return BNX2X_Q_LOGICAL_STATE_STOPPED;
5708     default:
5709         return -EINVAL;
5710     }
5711 }
5712 
5713 /********************** Function state object *********************************/
5714 enum bnx2x_func_state bnx2x_func_get_state(struct bnx2x *bp,
5715                        struct bnx2x_func_sp_obj *o)
5716 {
5717     /* in the middle of transaction - return INVALID state */
5718     if (o->pending)
5719         return BNX2X_F_STATE_MAX;
5720 
5721     /* unsure the order of reading of o->pending and o->state
5722      * o->pending should be read first
5723      */
5724     rmb();
5725 
5726     return o->state;
5727 }
5728 
5729 static int bnx2x_func_wait_comp(struct bnx2x *bp,
5730                 struct bnx2x_func_sp_obj *o,
5731                 enum bnx2x_func_cmd cmd)
5732 {
5733     return bnx2x_state_wait(bp, cmd, &o->pending);
5734 }
5735 
5736 /**
5737  * bnx2x_func_state_change_comp - complete the state machine transition
5738  *
5739  * @bp:     device handle
5740  * @o:      function info
5741  * @cmd:    more info
5742  *
5743  * Called on state change transition. Completes the state
5744  * machine transition only - no HW interaction.
5745  */
5746 static inline int bnx2x_func_state_change_comp(struct bnx2x *bp,
5747                            struct bnx2x_func_sp_obj *o,
5748                            enum bnx2x_func_cmd cmd)
5749 {
5750     unsigned long cur_pending = o->pending;
5751 
5752     if (!test_and_clear_bit(cmd, &cur_pending)) {
5753         BNX2X_ERR("Bad MC reply %d for func %d in state %d pending 0x%lx, next_state %d\n",
5754               cmd, BP_FUNC(bp), o->state,
5755               cur_pending, o->next_state);
5756         return -EINVAL;
5757     }
5758 
5759     DP(BNX2X_MSG_SP,
5760        "Completing command %d for func %d, setting state to %d\n",
5761        cmd, BP_FUNC(bp), o->next_state);
5762 
5763     o->state = o->next_state;
5764     o->next_state = BNX2X_F_STATE_MAX;
5765 
5766     /* It's important that o->state and o->next_state are
5767      * updated before o->pending.
5768      */
5769     wmb();
5770 
5771     clear_bit(cmd, &o->pending);
5772     smp_mb__after_atomic();
5773 
5774     return 0;
5775 }
5776 
5777 /**
5778  * bnx2x_func_comp_cmd - complete the state change command
5779  *
5780  * @bp:     device handle
5781  * @o:      function info
5782  * @cmd:    more info
5783  *
5784  * Checks that the arrived completion is expected.
5785  */
5786 static int bnx2x_func_comp_cmd(struct bnx2x *bp,
5787                    struct bnx2x_func_sp_obj *o,
5788                    enum bnx2x_func_cmd cmd)
5789 {
5790     /* Complete the state machine part first, check if it's a
5791      * legal completion.
5792      */
5793     int rc = bnx2x_func_state_change_comp(bp, o, cmd);
5794     return rc;
5795 }
5796 
5797 /**
5798  * bnx2x_func_chk_transition - perform function state machine transition
5799  *
5800  * @bp:     device handle
5801  * @o:      function info
5802  * @params: state parameters
5803  *
5804  * It both checks if the requested command is legal in a current
5805  * state and, if it's legal, sets a `next_state' in the object
5806  * that will be used in the completion flow to set the `state'
5807  * of the object.
5808  *
5809  * returns 0 if a requested command is a legal transition,
5810  *         -EINVAL otherwise.
5811  */
5812 static int bnx2x_func_chk_transition(struct bnx2x *bp,
5813                      struct bnx2x_func_sp_obj *o,
5814                      struct bnx2x_func_state_params *params)
5815 {
5816     enum bnx2x_func_state state = o->state, next_state = BNX2X_F_STATE_MAX;
5817     enum bnx2x_func_cmd cmd = params->cmd;
5818 
5819     /* Forget all pending for completion commands if a driver only state
5820      * transition has been requested.
5821      */
5822     if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5823         o->pending = 0;
5824         o->next_state = BNX2X_F_STATE_MAX;
5825     }
5826 
5827     /* Don't allow a next state transition if we are in the middle of
5828      * the previous one.
5829      */
5830     if (o->pending)
5831         return -EBUSY;
5832 
5833     switch (state) {
5834     case BNX2X_F_STATE_RESET:
5835         if (cmd == BNX2X_F_CMD_HW_INIT)
5836             next_state = BNX2X_F_STATE_INITIALIZED;
5837 
5838         break;
5839     case BNX2X_F_STATE_INITIALIZED:
5840         if (cmd == BNX2X_F_CMD_START)
5841             next_state = BNX2X_F_STATE_STARTED;
5842 
5843         else if (cmd == BNX2X_F_CMD_HW_RESET)
5844             next_state = BNX2X_F_STATE_RESET;
5845 
5846         break;
5847     case BNX2X_F_STATE_STARTED:
5848         if (cmd == BNX2X_F_CMD_STOP)
5849             next_state = BNX2X_F_STATE_INITIALIZED;
5850         /* afex ramrods can be sent only in started mode, and only
5851          * if not pending for function_stop ramrod completion
5852          * for these events - next state remained STARTED.
5853          */
5854         else if ((cmd == BNX2X_F_CMD_AFEX_UPDATE) &&
5855              (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5856             next_state = BNX2X_F_STATE_STARTED;
5857 
5858         else if ((cmd == BNX2X_F_CMD_AFEX_VIFLISTS) &&
5859              (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5860             next_state = BNX2X_F_STATE_STARTED;
5861 
5862         /* Switch_update ramrod can be sent in either started or
5863          * tx_stopped state, and it doesn't change the state.
5864          */
5865         else if ((cmd == BNX2X_F_CMD_SWITCH_UPDATE) &&
5866              (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5867             next_state = BNX2X_F_STATE_STARTED;
5868 
5869         else if ((cmd == BNX2X_F_CMD_SET_TIMESYNC) &&
5870              (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5871             next_state = BNX2X_F_STATE_STARTED;
5872 
5873         else if (cmd == BNX2X_F_CMD_TX_STOP)
5874             next_state = BNX2X_F_STATE_TX_STOPPED;
5875 
5876         break;
5877     case BNX2X_F_STATE_TX_STOPPED:
5878         if ((cmd == BNX2X_F_CMD_SWITCH_UPDATE) &&
5879             (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5880             next_state = BNX2X_F_STATE_TX_STOPPED;
5881 
5882         else if ((cmd == BNX2X_F_CMD_SET_TIMESYNC) &&
5883              (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5884             next_state = BNX2X_F_STATE_TX_STOPPED;
5885 
5886         else if (cmd == BNX2X_F_CMD_TX_START)
5887             next_state = BNX2X_F_STATE_STARTED;
5888 
5889         break;
5890     default:
5891         BNX2X_ERR("Unknown state: %d\n", state);
5892     }
5893 
5894     /* Transition is assured */
5895     if (next_state != BNX2X_F_STATE_MAX) {
5896         DP(BNX2X_MSG_SP, "Good function state transition: %d(%d)->%d\n",
5897                  state, cmd, next_state);
5898         o->next_state = next_state;
5899         return 0;
5900     }
5901 
5902     DP(BNX2X_MSG_SP, "Bad function state transition request: %d %d\n",
5903              state, cmd);
5904 
5905     return -EINVAL;
5906 }
5907 
5908 /**
5909  * bnx2x_func_init_func - performs HW init at function stage
5910  *
5911  * @bp:     device handle
5912  * @drv:
5913  *
5914  * Init HW when the current phase is
5915  * FW_MSG_CODE_DRV_LOAD_FUNCTION: initialize only FUNCTION-only
5916  * HW blocks.
5917  */
5918 static inline int bnx2x_func_init_func(struct bnx2x *bp,
5919                        const struct bnx2x_func_sp_drv_ops *drv)
5920 {
5921     return drv->init_hw_func(bp);
5922 }
5923 
5924 /**
5925  * bnx2x_func_init_port - performs HW init at port stage
5926  *
5927  * @bp:     device handle
5928  * @drv:
5929  *
5930  * Init HW when the current phase is
5931  * FW_MSG_CODE_DRV_LOAD_PORT: initialize PORT-only and
5932  * FUNCTION-only HW blocks.
5933  *
5934  */
5935 static inline int bnx2x_func_init_port(struct bnx2x *bp,
5936                        const struct bnx2x_func_sp_drv_ops *drv)
5937 {
5938     int rc = drv->init_hw_port(bp);
5939     if (rc)
5940         return rc;
5941 
5942     return bnx2x_func_init_func(bp, drv);
5943 }
5944 
5945 /**
5946  * bnx2x_func_init_cmn_chip - performs HW init at chip-common stage
5947  *
5948  * @bp:     device handle
5949  * @drv:
5950  *
5951  * Init HW when the current phase is
5952  * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON_CHIP,
5953  * PORT-only and FUNCTION-only HW blocks.
5954  */
5955 static inline int bnx2x_func_init_cmn_chip(struct bnx2x *bp,
5956                     const struct bnx2x_func_sp_drv_ops *drv)
5957 {
5958     int rc = drv->init_hw_cmn_chip(bp);
5959     if (rc)
5960         return rc;
5961 
5962     return bnx2x_func_init_port(bp, drv);
5963 }
5964 
5965 /**
5966  * bnx2x_func_init_cmn - performs HW init at common stage
5967  *
5968  * @bp:     device handle
5969  * @drv:
5970  *
5971  * Init HW when the current phase is
5972  * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON,
5973  * PORT-only and FUNCTION-only HW blocks.
5974  */
5975 static inline int bnx2x_func_init_cmn(struct bnx2x *bp,
5976                       const struct bnx2x_func_sp_drv_ops *drv)
5977 {
5978     int rc = drv->init_hw_cmn(bp);
5979     if (rc)
5980         return rc;
5981 
5982     return bnx2x_func_init_port(bp, drv);
5983 }
5984 
5985 static int bnx2x_func_hw_init(struct bnx2x *bp,
5986                   struct bnx2x_func_state_params *params)
5987 {
5988     u32 load_code = params->params.hw_init.load_phase;
5989     struct bnx2x_func_sp_obj *o = params->f_obj;
5990     const struct bnx2x_func_sp_drv_ops *drv = o->drv;
5991     int rc = 0;
5992 
5993     DP(BNX2X_MSG_SP, "function %d  load_code %x\n",
5994              BP_ABS_FUNC(bp), load_code);
5995 
5996     /* Prepare buffers for unzipping the FW */
5997     rc = drv->gunzip_init(bp);
5998     if (rc)
5999         return rc;
6000 
6001     /* Prepare FW */
6002     rc = drv->init_fw(bp);
6003     if (rc) {
6004         BNX2X_ERR("Error loading firmware\n");
6005         goto init_err;
6006     }
6007 
6008     /* Handle the beginning of COMMON_XXX pases separately... */
6009     switch (load_code) {
6010     case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6011         rc = bnx2x_func_init_cmn_chip(bp, drv);
6012         if (rc)
6013             goto init_err;
6014 
6015         break;
6016     case FW_MSG_CODE_DRV_LOAD_COMMON:
6017         rc = bnx2x_func_init_cmn(bp, drv);
6018         if (rc)
6019             goto init_err;
6020 
6021         break;
6022     case FW_MSG_CODE_DRV_LOAD_PORT:
6023         rc = bnx2x_func_init_port(bp, drv);
6024         if (rc)
6025             goto init_err;
6026 
6027         break;
6028     case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6029         rc = bnx2x_func_init_func(bp, drv);
6030         if (rc)
6031             goto init_err;
6032 
6033         break;
6034     default:
6035         BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6036         rc = -EINVAL;
6037     }
6038 
6039 init_err:
6040     drv->gunzip_end(bp);
6041 
6042     /* In case of success, complete the command immediately: no ramrods
6043      * have been sent.
6044      */
6045     if (!rc)
6046         o->complete_cmd(bp, o, BNX2X_F_CMD_HW_INIT);
6047 
6048     return rc;
6049 }
6050 
6051 /**
6052  * bnx2x_func_reset_func - reset HW at function stage
6053  *
6054  * @bp:     device handle
6055  * @drv:
6056  *
6057  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_FUNCTION stage: reset only
6058  * FUNCTION-only HW blocks.
6059  */
6060 static inline void bnx2x_func_reset_func(struct bnx2x *bp,
6061                     const struct bnx2x_func_sp_drv_ops *drv)
6062 {
6063     drv->reset_hw_func(bp);
6064 }
6065 
6066 /**
6067  * bnx2x_func_reset_port - reset HW at port stage
6068  *
6069  * @bp:     device handle
6070  * @drv:
6071  *
6072  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_PORT stage: reset
6073  * FUNCTION-only and PORT-only HW blocks.
6074  *
6075  *                 !!!IMPORTANT!!!
6076  *
6077  * It's important to call reset_port before reset_func() as the last thing
6078  * reset_func does is pf_disable() thus disabling PGLUE_B, which
6079  * makes impossible any DMAE transactions.
6080  */
6081 static inline void bnx2x_func_reset_port(struct bnx2x *bp,
6082                     const struct bnx2x_func_sp_drv_ops *drv)
6083 {
6084     drv->reset_hw_port(bp);
6085     bnx2x_func_reset_func(bp, drv);
6086 }
6087 
6088 /**
6089  * bnx2x_func_reset_cmn - reset HW at common stage
6090  *
6091  * @bp:     device handle
6092  * @drv:
6093  *
6094  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_COMMON and
6095  * FW_MSG_CODE_DRV_UNLOAD_COMMON_CHIP stages: reset COMMON,
6096  * COMMON_CHIP, FUNCTION-only and PORT-only HW blocks.
6097  */
6098 static inline void bnx2x_func_reset_cmn(struct bnx2x *bp,
6099                     const struct bnx2x_func_sp_drv_ops *drv)
6100 {
6101     bnx2x_func_reset_port(bp, drv);
6102     drv->reset_hw_cmn(bp);
6103 }
6104 
6105 static inline int bnx2x_func_hw_reset(struct bnx2x *bp,
6106                       struct bnx2x_func_state_params *params)
6107 {
6108     u32 reset_phase = params->params.hw_reset.reset_phase;
6109     struct bnx2x_func_sp_obj *o = params->f_obj;
6110     const struct bnx2x_func_sp_drv_ops *drv = o->drv;
6111 
6112     DP(BNX2X_MSG_SP, "function %d  reset_phase %x\n", BP_ABS_FUNC(bp),
6113              reset_phase);
6114 
6115     switch (reset_phase) {
6116     case FW_MSG_CODE_DRV_UNLOAD_COMMON:
6117         bnx2x_func_reset_cmn(bp, drv);
6118         break;
6119     case FW_MSG_CODE_DRV_UNLOAD_PORT:
6120         bnx2x_func_reset_port(bp, drv);
6121         break;
6122     case FW_MSG_CODE_DRV_UNLOAD_FUNCTION:
6123         bnx2x_func_reset_func(bp, drv);
6124         break;
6125     default:
6126         BNX2X_ERR("Unknown reset_phase (0x%x) from MCP\n",
6127                reset_phase);
6128         break;
6129     }
6130 
6131     /* Complete the command immediately: no ramrods have been sent. */
6132     o->complete_cmd(bp, o, BNX2X_F_CMD_HW_RESET);
6133 
6134     return 0;
6135 }
6136 
6137 static inline int bnx2x_func_send_start(struct bnx2x *bp,
6138                     struct bnx2x_func_state_params *params)
6139 {
6140     struct bnx2x_func_sp_obj *o = params->f_obj;
6141     struct function_start_data *rdata =
6142         (struct function_start_data *)o->rdata;
6143     dma_addr_t data_mapping = o->rdata_mapping;
6144     struct bnx2x_func_start_params *start_params = &params->params.start;
6145 
6146     memset(rdata, 0, sizeof(*rdata));
6147 
6148     /* Fill the ramrod data with provided parameters */
6149     rdata->function_mode    = (u8)start_params->mf_mode;
6150     rdata->sd_vlan_tag  = cpu_to_le16(start_params->sd_vlan_tag);
6151     rdata->path_id      = BP_PATH(bp);
6152     rdata->network_cos_mode = start_params->network_cos_mode;
6153     rdata->dmae_cmd_id  = BNX2X_FW_DMAE_C;
6154 
6155     rdata->vxlan_dst_port   = cpu_to_le16(start_params->vxlan_dst_port);
6156     rdata->geneve_dst_port  = cpu_to_le16(start_params->geneve_dst_port);
6157     rdata->inner_clss_l2gre = start_params->inner_clss_l2gre;
6158     rdata->inner_clss_l2geneve = start_params->inner_clss_l2geneve;
6159     rdata->inner_clss_vxlan = start_params->inner_clss_vxlan;
6160     rdata->inner_rss    = start_params->inner_rss;
6161 
6162     rdata->sd_accept_mf_clss_fail = start_params->class_fail;
6163     if (start_params->class_fail_ethtype) {
6164         rdata->sd_accept_mf_clss_fail_match_ethtype = 1;
6165         rdata->sd_accept_mf_clss_fail_ethtype =
6166             cpu_to_le16(start_params->class_fail_ethtype);
6167     }
6168 
6169     rdata->sd_vlan_force_pri_flg = start_params->sd_vlan_force_pri;
6170     rdata->sd_vlan_force_pri_val = start_params->sd_vlan_force_pri_val;
6171     if (start_params->sd_vlan_eth_type)
6172         rdata->sd_vlan_eth_type =
6173             cpu_to_le16(start_params->sd_vlan_eth_type);
6174     else
6175         rdata->sd_vlan_eth_type =
6176             cpu_to_le16(0x8100);
6177 
6178     rdata->no_added_tags = start_params->no_added_tags;
6179 
6180     rdata->c2s_pri_tt_valid = start_params->c2s_pri_valid;
6181     if (rdata->c2s_pri_tt_valid) {
6182         memcpy(rdata->c2s_pri_trans_table.val,
6183                start_params->c2s_pri,
6184                MAX_VLAN_PRIORITIES);
6185         rdata->c2s_pri_default = start_params->c2s_pri_default;
6186     }
6187     /* No need for an explicit memory barrier here as long we would
6188      * need to ensure the ordering of writing to the SPQ element
6189      * and updating of the SPQ producer which involves a memory
6190      * read and we will have to put a full memory barrier there
6191      * (inside bnx2x_sp_post()).
6192      */
6193 
6194     return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_START, 0,
6195                  U64_HI(data_mapping),
6196                  U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6197 }
6198 
6199 static inline int bnx2x_func_send_switch_update(struct bnx2x *bp,
6200                     struct bnx2x_func_state_params *params)
6201 {
6202     struct bnx2x_func_sp_obj *o = params->f_obj;
6203     struct function_update_data *rdata =
6204         (struct function_update_data *)o->rdata;
6205     dma_addr_t data_mapping = o->rdata_mapping;
6206     struct bnx2x_func_switch_update_params *switch_update_params =
6207         &params->params.switch_update;
6208 
6209     memset(rdata, 0, sizeof(*rdata));
6210 
6211     /* Fill the ramrod data with provided parameters */
6212     if (test_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
6213              &switch_update_params->changes)) {
6214         rdata->tx_switch_suspend_change_flg = 1;
6215         rdata->tx_switch_suspend =
6216             test_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
6217                  &switch_update_params->changes);
6218     }
6219 
6220     if (test_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
6221              &switch_update_params->changes)) {
6222         rdata->sd_vlan_tag_change_flg = 1;
6223         rdata->sd_vlan_tag =
6224             cpu_to_le16(switch_update_params->vlan);
6225     }
6226 
6227     if (test_bit(BNX2X_F_UPDATE_SD_VLAN_ETH_TYPE_CHNG,
6228              &switch_update_params->changes)) {
6229         rdata->sd_vlan_eth_type_change_flg = 1;
6230         rdata->sd_vlan_eth_type =
6231             cpu_to_le16(switch_update_params->vlan_eth_type);
6232     }
6233 
6234     if (test_bit(BNX2X_F_UPDATE_VLAN_FORCE_PRIO_CHNG,
6235              &switch_update_params->changes)) {
6236         rdata->sd_vlan_force_pri_change_flg = 1;
6237         if (test_bit(BNX2X_F_UPDATE_VLAN_FORCE_PRIO_FLAG,
6238                  &switch_update_params->changes))
6239             rdata->sd_vlan_force_pri_flg = 1;
6240         rdata->sd_vlan_force_pri_flg =
6241             switch_update_params->vlan_force_prio;
6242     }
6243 
6244     if (test_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
6245              &switch_update_params->changes)) {
6246         rdata->update_tunn_cfg_flg = 1;
6247         if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_L2GRE,
6248                  &switch_update_params->changes))
6249             rdata->inner_clss_l2gre = 1;
6250         if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_VXLAN,
6251                  &switch_update_params->changes))
6252             rdata->inner_clss_vxlan = 1;
6253         if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_L2GENEVE,
6254                  &switch_update_params->changes))
6255             rdata->inner_clss_l2geneve = 1;
6256         if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
6257                  &switch_update_params->changes))
6258             rdata->inner_rss = 1;
6259         rdata->vxlan_dst_port =
6260             cpu_to_le16(switch_update_params->vxlan_dst_port);
6261         rdata->geneve_dst_port =
6262             cpu_to_le16(switch_update_params->geneve_dst_port);
6263     }
6264 
6265     rdata->echo = SWITCH_UPDATE;
6266 
6267     /* No need for an explicit memory barrier here as long as we
6268      * ensure the ordering of writing to the SPQ element
6269      * and updating of the SPQ producer which involves a memory
6270      * read. If the memory read is removed we will have to put a
6271      * full memory barrier there (inside bnx2x_sp_post()).
6272      */
6273     return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6274                  U64_HI(data_mapping),
6275                  U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6276 }
6277 
6278 static inline int bnx2x_func_send_afex_update(struct bnx2x *bp,
6279                      struct bnx2x_func_state_params *params)
6280 {
6281     struct bnx2x_func_sp_obj *o = params->f_obj;
6282     struct function_update_data *rdata =
6283         (struct function_update_data *)o->afex_rdata;
6284     dma_addr_t data_mapping = o->afex_rdata_mapping;
6285     struct bnx2x_func_afex_update_params *afex_update_params =
6286         &params->params.afex_update;
6287 
6288     memset(rdata, 0, sizeof(*rdata));
6289 
6290     /* Fill the ramrod data with provided parameters */
6291     rdata->vif_id_change_flg = 1;
6292     rdata->vif_id = cpu_to_le16(afex_update_params->vif_id);
6293     rdata->afex_default_vlan_change_flg = 1;
6294     rdata->afex_default_vlan =
6295         cpu_to_le16(afex_update_params->afex_default_vlan);
6296     rdata->allowed_priorities_change_flg = 1;
6297     rdata->allowed_priorities = afex_update_params->allowed_priorities;
6298     rdata->echo = AFEX_UPDATE;
6299 
6300     /* No need for an explicit memory barrier here as long as we
6301      * ensure the ordering of writing to the SPQ element
6302      * and updating of the SPQ producer which involves a memory
6303      * read. If the memory read is removed we will have to put a
6304      * full memory barrier there (inside bnx2x_sp_post()).
6305      */
6306     DP(BNX2X_MSG_SP,
6307        "afex: sending func_update vif_id 0x%x dvlan 0x%x prio 0x%x\n",
6308        rdata->vif_id,
6309        rdata->afex_default_vlan, rdata->allowed_priorities);
6310 
6311     return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6312                  U64_HI(data_mapping),
6313                  U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6314 }
6315 
6316 static
6317 inline int bnx2x_func_send_afex_viflists(struct bnx2x *bp,
6318                      struct bnx2x_func_state_params *params)
6319 {
6320     struct bnx2x_func_sp_obj *o = params->f_obj;
6321     struct afex_vif_list_ramrod_data *rdata =
6322         (struct afex_vif_list_ramrod_data *)o->afex_rdata;
6323     struct bnx2x_func_afex_viflists_params *afex_vif_params =
6324         &params->params.afex_viflists;
6325     u64 *p_rdata = (u64 *)rdata;
6326 
6327     memset(rdata, 0, sizeof(*rdata));
6328 
6329     /* Fill the ramrod data with provided parameters */
6330     rdata->vif_list_index = cpu_to_le16(afex_vif_params->vif_list_index);
6331     rdata->func_bit_map          = afex_vif_params->func_bit_map;
6332     rdata->afex_vif_list_command = afex_vif_params->afex_vif_list_command;
6333     rdata->func_to_clear         = afex_vif_params->func_to_clear;
6334 
6335     /* send in echo type of sub command */
6336     rdata->echo = afex_vif_params->afex_vif_list_command;
6337 
6338     /*  No need for an explicit memory barrier here as long we would
6339      *  need to ensure the ordering of writing to the SPQ element
6340      *  and updating of the SPQ producer which involves a memory
6341      *  read and we will have to put a full memory barrier there
6342      *  (inside bnx2x_sp_post()).
6343      */
6344 
6345     DP(BNX2X_MSG_SP, "afex: ramrod lists, cmd 0x%x index 0x%x func_bit_map 0x%x func_to_clr 0x%x\n",
6346        rdata->afex_vif_list_command, rdata->vif_list_index,
6347        rdata->func_bit_map, rdata->func_to_clear);
6348 
6349     /* this ramrod sends data directly and not through DMA mapping */
6350     return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_AFEX_VIF_LISTS, 0,
6351                  U64_HI(*p_rdata), U64_LO(*p_rdata),
6352                  NONE_CONNECTION_TYPE);
6353 }
6354 
6355 static inline int bnx2x_func_send_stop(struct bnx2x *bp,
6356                        struct bnx2x_func_state_params *params)
6357 {
6358     return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_STOP, 0, 0, 0,
6359                  NONE_CONNECTION_TYPE);
6360 }
6361 
6362 static inline int bnx2x_func_send_tx_stop(struct bnx2x *bp,
6363                        struct bnx2x_func_state_params *params)
6364 {
6365     return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_STOP_TRAFFIC, 0, 0, 0,
6366                  NONE_CONNECTION_TYPE);
6367 }
6368 static inline int bnx2x_func_send_tx_start(struct bnx2x *bp,
6369                        struct bnx2x_func_state_params *params)
6370 {
6371     struct bnx2x_func_sp_obj *o = params->f_obj;
6372     struct flow_control_configuration *rdata =
6373         (struct flow_control_configuration *)o->rdata;
6374     dma_addr_t data_mapping = o->rdata_mapping;
6375     struct bnx2x_func_tx_start_params *tx_start_params =
6376         &params->params.tx_start;
6377     int i;
6378 
6379     memset(rdata, 0, sizeof(*rdata));
6380 
6381     rdata->dcb_enabled = tx_start_params->dcb_enabled;
6382     rdata->dcb_version = tx_start_params->dcb_version;
6383     rdata->dont_add_pri_0_en = tx_start_params->dont_add_pri_0_en;
6384 
6385     for (i = 0; i < ARRAY_SIZE(rdata->traffic_type_to_priority_cos); i++)
6386         rdata->traffic_type_to_priority_cos[i] =
6387             tx_start_params->traffic_type_to_priority_cos[i];
6388 
6389     for (i = 0; i < MAX_TRAFFIC_TYPES; i++)
6390         rdata->dcb_outer_pri[i] = tx_start_params->dcb_outer_pri[i];
6391     /* No need for an explicit memory barrier here as long as we
6392      * ensure the ordering of writing to the SPQ element
6393      * and updating of the SPQ producer which involves a memory
6394      * read. If the memory read is removed we will have to put a
6395      * full memory barrier there (inside bnx2x_sp_post()).
6396      */
6397     return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_START_TRAFFIC, 0,
6398                  U64_HI(data_mapping),
6399                  U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6400 }
6401 
6402 static inline
6403 int bnx2x_func_send_set_timesync(struct bnx2x *bp,
6404                  struct bnx2x_func_state_params *params)
6405 {
6406     struct bnx2x_func_sp_obj *o = params->f_obj;
6407     struct set_timesync_ramrod_data *rdata =
6408         (struct set_timesync_ramrod_data *)o->rdata;
6409     dma_addr_t data_mapping = o->rdata_mapping;
6410     struct bnx2x_func_set_timesync_params *set_timesync_params =
6411         &params->params.set_timesync;
6412 
6413     memset(rdata, 0, sizeof(*rdata));
6414 
6415     /* Fill the ramrod data with provided parameters */
6416     rdata->drift_adjust_cmd = set_timesync_params->drift_adjust_cmd;
6417     rdata->offset_cmd = set_timesync_params->offset_cmd;
6418     rdata->add_sub_drift_adjust_value =
6419         set_timesync_params->add_sub_drift_adjust_value;
6420     rdata->drift_adjust_value = set_timesync_params->drift_adjust_value;
6421     rdata->drift_adjust_period = set_timesync_params->drift_adjust_period;
6422     rdata->offset_delta.lo =
6423         cpu_to_le32(U64_LO(set_timesync_params->offset_delta));
6424     rdata->offset_delta.hi =
6425         cpu_to_le32(U64_HI(set_timesync_params->offset_delta));
6426 
6427     DP(BNX2X_MSG_SP, "Set timesync command params: drift_cmd = %d, offset_cmd = %d, add_sub_drift = %d, drift_val = %d, drift_period = %d, offset_lo = %d, offset_hi = %d\n",
6428        rdata->drift_adjust_cmd, rdata->offset_cmd,
6429        rdata->add_sub_drift_adjust_value, rdata->drift_adjust_value,
6430        rdata->drift_adjust_period, rdata->offset_delta.lo,
6431        rdata->offset_delta.hi);
6432 
6433     return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_SET_TIMESYNC, 0,
6434                  U64_HI(data_mapping),
6435                  U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6436 }
6437 
6438 static int bnx2x_func_send_cmd(struct bnx2x *bp,
6439                    struct bnx2x_func_state_params *params)
6440 {
6441     switch (params->cmd) {
6442     case BNX2X_F_CMD_HW_INIT:
6443         return bnx2x_func_hw_init(bp, params);
6444     case BNX2X_F_CMD_START:
6445         return bnx2x_func_send_start(bp, params);
6446     case BNX2X_F_CMD_STOP:
6447         return bnx2x_func_send_stop(bp, params);
6448     case BNX2X_F_CMD_HW_RESET:
6449         return bnx2x_func_hw_reset(bp, params);
6450     case BNX2X_F_CMD_AFEX_UPDATE:
6451         return bnx2x_func_send_afex_update(bp, params);
6452     case BNX2X_F_CMD_AFEX_VIFLISTS:
6453         return bnx2x_func_send_afex_viflists(bp, params);
6454     case BNX2X_F_CMD_TX_STOP:
6455         return bnx2x_func_send_tx_stop(bp, params);
6456     case BNX2X_F_CMD_TX_START:
6457         return bnx2x_func_send_tx_start(bp, params);
6458     case BNX2X_F_CMD_SWITCH_UPDATE:
6459         return bnx2x_func_send_switch_update(bp, params);
6460     case BNX2X_F_CMD_SET_TIMESYNC:
6461         return bnx2x_func_send_set_timesync(bp, params);
6462     default:
6463         BNX2X_ERR("Unknown command: %d\n", params->cmd);
6464         return -EINVAL;
6465     }
6466 }
6467 
6468 void bnx2x_init_func_obj(struct bnx2x *bp,
6469              struct bnx2x_func_sp_obj *obj,
6470              void *rdata, dma_addr_t rdata_mapping,
6471              void *afex_rdata, dma_addr_t afex_rdata_mapping,
6472              struct bnx2x_func_sp_drv_ops *drv_iface)
6473 {
6474     memset(obj, 0, sizeof(*obj));
6475 
6476     mutex_init(&obj->one_pending_mutex);
6477 
6478     obj->rdata = rdata;
6479     obj->rdata_mapping = rdata_mapping;
6480     obj->afex_rdata = afex_rdata;
6481     obj->afex_rdata_mapping = afex_rdata_mapping;
6482     obj->send_cmd = bnx2x_func_send_cmd;
6483     obj->check_transition = bnx2x_func_chk_transition;
6484     obj->complete_cmd = bnx2x_func_comp_cmd;
6485     obj->wait_comp = bnx2x_func_wait_comp;
6486 
6487     obj->drv = drv_iface;
6488 }
6489 
6490 /**
6491  * bnx2x_func_state_change - perform Function state change transition
6492  *
6493  * @bp:     device handle
6494  * @params: parameters to perform the transaction
6495  *
6496  * returns 0 in case of successfully completed transition,
6497  *         negative error code in case of failure, positive
6498  *         (EBUSY) value if there is a completion to that is
6499  *         still pending (possible only if RAMROD_COMP_WAIT is
6500  *         not set in params->ramrod_flags for asynchronous
6501  *         commands).
6502  */
6503 int bnx2x_func_state_change(struct bnx2x *bp,
6504                 struct bnx2x_func_state_params *params)
6505 {
6506     struct bnx2x_func_sp_obj *o = params->f_obj;
6507     int rc, cnt = 300;
6508     enum bnx2x_func_cmd cmd = params->cmd;
6509     unsigned long *pending = &o->pending;
6510 
6511     mutex_lock(&o->one_pending_mutex);
6512 
6513     /* Check that the requested transition is legal */
6514     rc = o->check_transition(bp, o, params);
6515     if ((rc == -EBUSY) &&
6516         (test_bit(RAMROD_RETRY, &params->ramrod_flags))) {
6517         while ((rc == -EBUSY) && (--cnt > 0)) {
6518             mutex_unlock(&o->one_pending_mutex);
6519             msleep(10);
6520             mutex_lock(&o->one_pending_mutex);
6521             rc = o->check_transition(bp, o, params);
6522         }
6523         if (rc == -EBUSY) {
6524             mutex_unlock(&o->one_pending_mutex);
6525             BNX2X_ERR("timeout waiting for previous ramrod completion\n");
6526             return rc;
6527         }
6528     } else if (rc) {
6529         mutex_unlock(&o->one_pending_mutex);
6530         return rc;
6531     }
6532 
6533     /* Set "pending" bit */
6534     set_bit(cmd, pending);
6535 
6536     /* Don't send a command if only driver cleanup was requested */
6537     if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
6538         bnx2x_func_state_change_comp(bp, o, cmd);
6539         mutex_unlock(&o->one_pending_mutex);
6540     } else {
6541         /* Send a ramrod */
6542         rc = o->send_cmd(bp, params);
6543 
6544         mutex_unlock(&o->one_pending_mutex);
6545 
6546         if (rc) {
6547             o->next_state = BNX2X_F_STATE_MAX;
6548             clear_bit(cmd, pending);
6549             smp_mb__after_atomic();
6550             return rc;
6551         }
6552 
6553         if (test_bit(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
6554             rc = o->wait_comp(bp, o, cmd);
6555             if (rc)
6556                 return rc;
6557 
6558             return 0;
6559         }
6560     }
6561 
6562     return !!test_bit(cmd, pending);
6563 }