Back to home page

OSCL-LXR

 
 

    


0001 /* bnx2x_main.c: QLogic Everest network driver.
0002  *
0003  * Copyright (c) 2007-2013 Broadcom Corporation
0004  * Copyright (c) 2014 QLogic Corporation
0005  * All rights reserved
0006  *
0007  * This program is free software; you can redistribute it and/or modify
0008  * it under the terms of the GNU General Public License as published by
0009  * the Free Software Foundation.
0010  *
0011  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
0012  * Written by: Eliezer Tamir
0013  * Based on code from Michael Chan's bnx2 driver
0014  * UDP CSUM errata workaround by Arik Gendelman
0015  * Slowpath and fastpath rework by Vladislav Zolotarov
0016  * Statistics and Link management by Yitchak Gertner
0017  *
0018  */
0019 
0020 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0021 
0022 #include <linux/module.h>
0023 #include <linux/moduleparam.h>
0024 #include <linux/kernel.h>
0025 #include <linux/device.h>  /* for dev_info() */
0026 #include <linux/timer.h>
0027 #include <linux/errno.h>
0028 #include <linux/ioport.h>
0029 #include <linux/slab.h>
0030 #include <linux/interrupt.h>
0031 #include <linux/pci.h>
0032 #include <linux/aer.h>
0033 #include <linux/init.h>
0034 #include <linux/netdevice.h>
0035 #include <linux/etherdevice.h>
0036 #include <linux/skbuff.h>
0037 #include <linux/dma-mapping.h>
0038 #include <linux/bitops.h>
0039 #include <linux/irq.h>
0040 #include <linux/delay.h>
0041 #include <asm/byteorder.h>
0042 #include <linux/time.h>
0043 #include <linux/ethtool.h>
0044 #include <linux/mii.h>
0045 #include <linux/if_vlan.h>
0046 #include <linux/crash_dump.h>
0047 #include <net/ip.h>
0048 #include <net/ipv6.h>
0049 #include <net/tcp.h>
0050 #include <net/vxlan.h>
0051 #include <net/checksum.h>
0052 #include <net/ip6_checksum.h>
0053 #include <linux/workqueue.h>
0054 #include <linux/crc32.h>
0055 #include <linux/crc32c.h>
0056 #include <linux/prefetch.h>
0057 #include <linux/zlib.h>
0058 #include <linux/io.h>
0059 #include <linux/semaphore.h>
0060 #include <linux/stringify.h>
0061 #include <linux/vmalloc.h>
0062 #include "bnx2x.h"
0063 #include "bnx2x_init.h"
0064 #include "bnx2x_init_ops.h"
0065 #include "bnx2x_cmn.h"
0066 #include "bnx2x_vfpf.h"
0067 #include "bnx2x_dcb.h"
0068 #include "bnx2x_sp.h"
0069 #include <linux/firmware.h>
0070 #include "bnx2x_fw_file_hdr.h"
0071 /* FW files */
0072 #define FW_FILE_VERSION                 \
0073     __stringify(BCM_5710_FW_MAJOR_VERSION) "."  \
0074     __stringify(BCM_5710_FW_MINOR_VERSION) "."  \
0075     __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
0076     __stringify(BCM_5710_FW_ENGINEERING_VERSION)
0077 
0078 #define FW_FILE_VERSION_V15             \
0079     __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
0080     __stringify(BCM_5710_FW_MINOR_VERSION) "."  \
0081     __stringify(BCM_5710_FW_REVISION_VERSION_V15) "."   \
0082     __stringify(BCM_5710_FW_ENGINEERING_VERSION)
0083 
0084 #define FW_FILE_NAME_E1     "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
0085 #define FW_FILE_NAME_E1H    "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
0086 #define FW_FILE_NAME_E2     "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
0087 #define FW_FILE_NAME_E1_V15 "bnx2x/bnx2x-e1-" FW_FILE_VERSION_V15 ".fw"
0088 #define FW_FILE_NAME_E1H_V15    "bnx2x/bnx2x-e1h-" FW_FILE_VERSION_V15 ".fw"
0089 #define FW_FILE_NAME_E2_V15 "bnx2x/bnx2x-e2-" FW_FILE_VERSION_V15 ".fw"
0090 
0091 /* Time in jiffies before concluding the transmitter is hung */
0092 #define TX_TIMEOUT      (5*HZ)
0093 
0094 MODULE_AUTHOR("Eliezer Tamir");
0095 MODULE_DESCRIPTION("QLogic "
0096            "BCM57710/57711/57711E/"
0097            "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
0098            "57840/57840_MF Driver");
0099 MODULE_LICENSE("GPL");
0100 MODULE_FIRMWARE(FW_FILE_NAME_E1);
0101 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
0102 MODULE_FIRMWARE(FW_FILE_NAME_E2);
0103 MODULE_FIRMWARE(FW_FILE_NAME_E1_V15);
0104 MODULE_FIRMWARE(FW_FILE_NAME_E1H_V15);
0105 MODULE_FIRMWARE(FW_FILE_NAME_E2_V15);
0106 
0107 int bnx2x_num_queues;
0108 module_param_named(num_queues, bnx2x_num_queues, int, 0444);
0109 MODULE_PARM_DESC(num_queues,
0110          " Set number of queues (default is as a number of CPUs)");
0111 
0112 static int disable_tpa;
0113 module_param(disable_tpa, int, 0444);
0114 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
0115 
0116 static int int_mode;
0117 module_param(int_mode, int, 0444);
0118 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
0119                 "(1 INT#x; 2 MSI)");
0120 
0121 static int dropless_fc;
0122 module_param(dropless_fc, int, 0444);
0123 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
0124 
0125 static int mrrs = -1;
0126 module_param(mrrs, int, 0444);
0127 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
0128 
0129 static int debug;
0130 module_param(debug, int, 0444);
0131 MODULE_PARM_DESC(debug, " Default debug msglevel");
0132 
0133 static struct workqueue_struct *bnx2x_wq;
0134 struct workqueue_struct *bnx2x_iov_wq;
0135 
0136 struct bnx2x_mac_vals {
0137     u32 xmac_addr;
0138     u32 xmac_val;
0139     u32 emac_addr;
0140     u32 emac_val;
0141     u32 umac_addr[2];
0142     u32 umac_val[2];
0143     u32 bmac_addr;
0144     u32 bmac_val[2];
0145 };
0146 
0147 enum bnx2x_board_type {
0148     BCM57710 = 0,
0149     BCM57711,
0150     BCM57711E,
0151     BCM57712,
0152     BCM57712_MF,
0153     BCM57712_VF,
0154     BCM57800,
0155     BCM57800_MF,
0156     BCM57800_VF,
0157     BCM57810,
0158     BCM57810_MF,
0159     BCM57810_VF,
0160     BCM57840_4_10,
0161     BCM57840_2_20,
0162     BCM57840_MF,
0163     BCM57840_VF,
0164     BCM57811,
0165     BCM57811_MF,
0166     BCM57840_O,
0167     BCM57840_MFO,
0168     BCM57811_VF
0169 };
0170 
0171 /* indexed by board_type, above */
0172 static struct {
0173     char *name;
0174 } board_info[] = {
0175     [BCM57710]  = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
0176     [BCM57711]  = { "QLogic BCM57711 10 Gigabit PCIe" },
0177     [BCM57711E] = { "QLogic BCM57711E 10 Gigabit PCIe" },
0178     [BCM57712]  = { "QLogic BCM57712 10 Gigabit Ethernet" },
0179     [BCM57712_MF]   = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
0180     [BCM57712_VF]   = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
0181     [BCM57800]  = { "QLogic BCM57800 10 Gigabit Ethernet" },
0182     [BCM57800_MF]   = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
0183     [BCM57800_VF]   = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
0184     [BCM57810]  = { "QLogic BCM57810 10 Gigabit Ethernet" },
0185     [BCM57810_MF]   = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
0186     [BCM57810_VF]   = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
0187     [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" },
0188     [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" },
0189     [BCM57840_MF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
0190     [BCM57840_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
0191     [BCM57811]  = { "QLogic BCM57811 10 Gigabit Ethernet" },
0192     [BCM57811_MF]   = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
0193     [BCM57840_O]    = { "QLogic BCM57840 10/20 Gigabit Ethernet" },
0194     [BCM57840_MFO]  = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
0195     [BCM57811_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
0196 };
0197 
0198 #ifndef PCI_DEVICE_ID_NX2_57710
0199 #define PCI_DEVICE_ID_NX2_57710     CHIP_NUM_57710
0200 #endif
0201 #ifndef PCI_DEVICE_ID_NX2_57711
0202 #define PCI_DEVICE_ID_NX2_57711     CHIP_NUM_57711
0203 #endif
0204 #ifndef PCI_DEVICE_ID_NX2_57711E
0205 #define PCI_DEVICE_ID_NX2_57711E    CHIP_NUM_57711E
0206 #endif
0207 #ifndef PCI_DEVICE_ID_NX2_57712
0208 #define PCI_DEVICE_ID_NX2_57712     CHIP_NUM_57712
0209 #endif
0210 #ifndef PCI_DEVICE_ID_NX2_57712_MF
0211 #define PCI_DEVICE_ID_NX2_57712_MF  CHIP_NUM_57712_MF
0212 #endif
0213 #ifndef PCI_DEVICE_ID_NX2_57712_VF
0214 #define PCI_DEVICE_ID_NX2_57712_VF  CHIP_NUM_57712_VF
0215 #endif
0216 #ifndef PCI_DEVICE_ID_NX2_57800
0217 #define PCI_DEVICE_ID_NX2_57800     CHIP_NUM_57800
0218 #endif
0219 #ifndef PCI_DEVICE_ID_NX2_57800_MF
0220 #define PCI_DEVICE_ID_NX2_57800_MF  CHIP_NUM_57800_MF
0221 #endif
0222 #ifndef PCI_DEVICE_ID_NX2_57800_VF
0223 #define PCI_DEVICE_ID_NX2_57800_VF  CHIP_NUM_57800_VF
0224 #endif
0225 #ifndef PCI_DEVICE_ID_NX2_57810
0226 #define PCI_DEVICE_ID_NX2_57810     CHIP_NUM_57810
0227 #endif
0228 #ifndef PCI_DEVICE_ID_NX2_57810_MF
0229 #define PCI_DEVICE_ID_NX2_57810_MF  CHIP_NUM_57810_MF
0230 #endif
0231 #ifndef PCI_DEVICE_ID_NX2_57840_O
0232 #define PCI_DEVICE_ID_NX2_57840_O   CHIP_NUM_57840_OBSOLETE
0233 #endif
0234 #ifndef PCI_DEVICE_ID_NX2_57810_VF
0235 #define PCI_DEVICE_ID_NX2_57810_VF  CHIP_NUM_57810_VF
0236 #endif
0237 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
0238 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
0239 #endif
0240 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
0241 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
0242 #endif
0243 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
0244 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE
0245 #endif
0246 #ifndef PCI_DEVICE_ID_NX2_57840_MF
0247 #define PCI_DEVICE_ID_NX2_57840_MF  CHIP_NUM_57840_MF
0248 #endif
0249 #ifndef PCI_DEVICE_ID_NX2_57840_VF
0250 #define PCI_DEVICE_ID_NX2_57840_VF  CHIP_NUM_57840_VF
0251 #endif
0252 #ifndef PCI_DEVICE_ID_NX2_57811
0253 #define PCI_DEVICE_ID_NX2_57811     CHIP_NUM_57811
0254 #endif
0255 #ifndef PCI_DEVICE_ID_NX2_57811_MF
0256 #define PCI_DEVICE_ID_NX2_57811_MF  CHIP_NUM_57811_MF
0257 #endif
0258 #ifndef PCI_DEVICE_ID_NX2_57811_VF
0259 #define PCI_DEVICE_ID_NX2_57811_VF  CHIP_NUM_57811_VF
0260 #endif
0261 
0262 static const struct pci_device_id bnx2x_pci_tbl[] = {
0263     { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
0264     { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
0265     { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
0266     { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
0267     { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
0268     { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
0269     { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
0270     { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
0271     { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
0272     { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
0273     { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
0274     { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
0275     { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
0276     { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
0277     { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
0278     { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
0279     { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
0280     { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
0281     { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
0282     { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
0283     { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
0284     { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
0285     { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
0286     { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
0287     { 0 }
0288 };
0289 
0290 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
0291 
0292 const u32 dmae_reg_go_c[] = {
0293     DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
0294     DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
0295     DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
0296     DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
0297 };
0298 
0299 /* Global resources for unloading a previously loaded device */
0300 #define BNX2X_PREV_WAIT_NEEDED 1
0301 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
0302 static LIST_HEAD(bnx2x_prev_list);
0303 
0304 /* Forward declaration */
0305 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
0306 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
0307 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
0308 
0309 /****************************************************************************
0310 * General service functions
0311 ****************************************************************************/
0312 
0313 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
0314 
0315 static void __storm_memset_dma_mapping(struct bnx2x *bp,
0316                        u32 addr, dma_addr_t mapping)
0317 {
0318     REG_WR(bp,  addr, U64_LO(mapping));
0319     REG_WR(bp,  addr + 4, U64_HI(mapping));
0320 }
0321 
0322 static void storm_memset_spq_addr(struct bnx2x *bp,
0323                   dma_addr_t mapping, u16 abs_fid)
0324 {
0325     u32 addr = XSEM_REG_FAST_MEMORY +
0326             XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
0327 
0328     __storm_memset_dma_mapping(bp, addr, mapping);
0329 }
0330 
0331 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
0332                   u16 pf_id)
0333 {
0334     REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
0335         pf_id);
0336     REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
0337         pf_id);
0338     REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
0339         pf_id);
0340     REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
0341         pf_id);
0342 }
0343 
0344 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
0345                  u8 enable)
0346 {
0347     REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
0348         enable);
0349     REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
0350         enable);
0351     REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
0352         enable);
0353     REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
0354         enable);
0355 }
0356 
0357 static void storm_memset_eq_data(struct bnx2x *bp,
0358                  struct event_ring_data *eq_data,
0359                 u16 pfid)
0360 {
0361     size_t size = sizeof(struct event_ring_data);
0362 
0363     u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
0364 
0365     __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
0366 }
0367 
0368 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
0369                  u16 pfid)
0370 {
0371     u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
0372     REG_WR16(bp, addr, eq_prod);
0373 }
0374 
0375 /* used only at init
0376  * locking is done by mcp
0377  */
0378 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
0379 {
0380     pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
0381     pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
0382     pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
0383                    PCICFG_VENDOR_ID_OFFSET);
0384 }
0385 
0386 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
0387 {
0388     u32 val;
0389 
0390     pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
0391     pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
0392     pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
0393                    PCICFG_VENDOR_ID_OFFSET);
0394 
0395     return val;
0396 }
0397 
0398 #define DMAE_DP_SRC_GRC     "grc src_addr [%08x]"
0399 #define DMAE_DP_SRC_PCI     "pci src_addr [%x:%08x]"
0400 #define DMAE_DP_DST_GRC     "grc dst_addr [%08x]"
0401 #define DMAE_DP_DST_PCI     "pci dst_addr [%x:%08x]"
0402 #define DMAE_DP_DST_NONE    "dst_addr [none]"
0403 
0404 static void bnx2x_dp_dmae(struct bnx2x *bp,
0405               struct dmae_command *dmae, int msglvl)
0406 {
0407     u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
0408     int i;
0409 
0410     switch (dmae->opcode & DMAE_COMMAND_DST) {
0411     case DMAE_CMD_DST_PCI:
0412         if (src_type == DMAE_CMD_SRC_PCI)
0413             DP(msglvl, "DMAE: opcode 0x%08x\n"
0414                "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
0415                "comp_addr [%x:%08x], comp_val 0x%08x\n",
0416                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
0417                dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
0418                dmae->comp_addr_hi, dmae->comp_addr_lo,
0419                dmae->comp_val);
0420         else
0421             DP(msglvl, "DMAE: opcode 0x%08x\n"
0422                "src [%08x], len [%d*4], dst [%x:%08x]\n"
0423                "comp_addr [%x:%08x], comp_val 0x%08x\n",
0424                dmae->opcode, dmae->src_addr_lo >> 2,
0425                dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
0426                dmae->comp_addr_hi, dmae->comp_addr_lo,
0427                dmae->comp_val);
0428         break;
0429     case DMAE_CMD_DST_GRC:
0430         if (src_type == DMAE_CMD_SRC_PCI)
0431             DP(msglvl, "DMAE: opcode 0x%08x\n"
0432                "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
0433                "comp_addr [%x:%08x], comp_val 0x%08x\n",
0434                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
0435                dmae->len, dmae->dst_addr_lo >> 2,
0436                dmae->comp_addr_hi, dmae->comp_addr_lo,
0437                dmae->comp_val);
0438         else
0439             DP(msglvl, "DMAE: opcode 0x%08x\n"
0440                "src [%08x], len [%d*4], dst [%08x]\n"
0441                "comp_addr [%x:%08x], comp_val 0x%08x\n",
0442                dmae->opcode, dmae->src_addr_lo >> 2,
0443                dmae->len, dmae->dst_addr_lo >> 2,
0444                dmae->comp_addr_hi, dmae->comp_addr_lo,
0445                dmae->comp_val);
0446         break;
0447     default:
0448         if (src_type == DMAE_CMD_SRC_PCI)
0449             DP(msglvl, "DMAE: opcode 0x%08x\n"
0450                "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
0451                "comp_addr [%x:%08x]  comp_val 0x%08x\n",
0452                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
0453                dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
0454                dmae->comp_val);
0455         else
0456             DP(msglvl, "DMAE: opcode 0x%08x\n"
0457                "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
0458                "comp_addr [%x:%08x]  comp_val 0x%08x\n",
0459                dmae->opcode, dmae->src_addr_lo >> 2,
0460                dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
0461                dmae->comp_val);
0462         break;
0463     }
0464 
0465     for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
0466         DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
0467            i, *(((u32 *)dmae) + i));
0468 }
0469 
0470 /* copy command into DMAE command memory and set DMAE command go */
0471 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
0472 {
0473     u32 cmd_offset;
0474     int i;
0475 
0476     cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
0477     for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
0478         REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
0479     }
0480     REG_WR(bp, dmae_reg_go_c[idx], 1);
0481 }
0482 
0483 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
0484 {
0485     return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
0486                DMAE_CMD_C_ENABLE);
0487 }
0488 
0489 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
0490 {
0491     return opcode & ~DMAE_CMD_SRC_RESET;
0492 }
0493 
0494 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
0495                  bool with_comp, u8 comp_type)
0496 {
0497     u32 opcode = 0;
0498 
0499     opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
0500            (dst_type << DMAE_COMMAND_DST_SHIFT));
0501 
0502     opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
0503 
0504     opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
0505     opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
0506            (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
0507     opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
0508 
0509 #ifdef __BIG_ENDIAN
0510     opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
0511 #else
0512     opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
0513 #endif
0514     if (with_comp)
0515         opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
0516     return opcode;
0517 }
0518 
0519 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
0520                       struct dmae_command *dmae,
0521                       u8 src_type, u8 dst_type)
0522 {
0523     memset(dmae, 0, sizeof(struct dmae_command));
0524 
0525     /* set the opcode */
0526     dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
0527                      true, DMAE_COMP_PCI);
0528 
0529     /* fill in the completion parameters */
0530     dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
0531     dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
0532     dmae->comp_val = DMAE_COMP_VAL;
0533 }
0534 
0535 /* issue a dmae command over the init-channel and wait for completion */
0536 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
0537                    u32 *comp)
0538 {
0539     int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
0540     int rc = 0;
0541 
0542     bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
0543 
0544     /* Lock the dmae channel. Disable BHs to prevent a dead-lock
0545      * as long as this code is called both from syscall context and
0546      * from ndo_set_rx_mode() flow that may be called from BH.
0547      */
0548 
0549     spin_lock_bh(&bp->dmae_lock);
0550 
0551     /* reset completion */
0552     *comp = 0;
0553 
0554     /* post the command on the channel used for initializations */
0555     bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
0556 
0557     /* wait for completion */
0558     udelay(5);
0559     while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
0560 
0561         if (!cnt ||
0562             (bp->recovery_state != BNX2X_RECOVERY_DONE &&
0563              bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
0564             BNX2X_ERR("DMAE timeout!\n");
0565             rc = DMAE_TIMEOUT;
0566             goto unlock;
0567         }
0568         cnt--;
0569         udelay(50);
0570     }
0571     if (*comp & DMAE_PCI_ERR_FLAG) {
0572         BNX2X_ERR("DMAE PCI error!\n");
0573         rc = DMAE_PCI_ERROR;
0574     }
0575 
0576 unlock:
0577 
0578     spin_unlock_bh(&bp->dmae_lock);
0579 
0580     return rc;
0581 }
0582 
0583 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
0584               u32 len32)
0585 {
0586     int rc;
0587     struct dmae_command dmae;
0588 
0589     if (!bp->dmae_ready) {
0590         u32 *data = bnx2x_sp(bp, wb_data[0]);
0591 
0592         if (CHIP_IS_E1(bp))
0593             bnx2x_init_ind_wr(bp, dst_addr, data, len32);
0594         else
0595             bnx2x_init_str_wr(bp, dst_addr, data, len32);
0596         return;
0597     }
0598 
0599     /* set opcode and fixed command fields */
0600     bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
0601 
0602     /* fill in addresses and len */
0603     dmae.src_addr_lo = U64_LO(dma_addr);
0604     dmae.src_addr_hi = U64_HI(dma_addr);
0605     dmae.dst_addr_lo = dst_addr >> 2;
0606     dmae.dst_addr_hi = 0;
0607     dmae.len = len32;
0608 
0609     /* issue the command and wait for completion */
0610     rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
0611     if (rc) {
0612         BNX2X_ERR("DMAE returned failure %d\n", rc);
0613 #ifdef BNX2X_STOP_ON_ERROR
0614         bnx2x_panic();
0615 #endif
0616     }
0617 }
0618 
0619 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
0620 {
0621     int rc;
0622     struct dmae_command dmae;
0623 
0624     if (!bp->dmae_ready) {
0625         u32 *data = bnx2x_sp(bp, wb_data[0]);
0626         int i;
0627 
0628         if (CHIP_IS_E1(bp))
0629             for (i = 0; i < len32; i++)
0630                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
0631         else
0632             for (i = 0; i < len32; i++)
0633                 data[i] = REG_RD(bp, src_addr + i*4);
0634 
0635         return;
0636     }
0637 
0638     /* set opcode and fixed command fields */
0639     bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
0640 
0641     /* fill in addresses and len */
0642     dmae.src_addr_lo = src_addr >> 2;
0643     dmae.src_addr_hi = 0;
0644     dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
0645     dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
0646     dmae.len = len32;
0647 
0648     /* issue the command and wait for completion */
0649     rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
0650     if (rc) {
0651         BNX2X_ERR("DMAE returned failure %d\n", rc);
0652 #ifdef BNX2X_STOP_ON_ERROR
0653         bnx2x_panic();
0654 #endif
0655     }
0656 }
0657 
0658 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
0659                       u32 addr, u32 len)
0660 {
0661     int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
0662     int offset = 0;
0663 
0664     while (len > dmae_wr_max) {
0665         bnx2x_write_dmae(bp, phys_addr + offset,
0666                  addr + offset, dmae_wr_max);
0667         offset += dmae_wr_max * 4;
0668         len -= dmae_wr_max;
0669     }
0670 
0671     bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
0672 }
0673 
0674 enum storms {
0675        XSTORM,
0676        TSTORM,
0677        CSTORM,
0678        USTORM,
0679        MAX_STORMS
0680 };
0681 
0682 #define STORMS_NUM 4
0683 #define REGS_IN_ENTRY 4
0684 
0685 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
0686                           enum storms storm,
0687                           int entry)
0688 {
0689     switch (storm) {
0690     case XSTORM:
0691         return XSTORM_ASSERT_LIST_OFFSET(entry);
0692     case TSTORM:
0693         return TSTORM_ASSERT_LIST_OFFSET(entry);
0694     case CSTORM:
0695         return CSTORM_ASSERT_LIST_OFFSET(entry);
0696     case USTORM:
0697         return USTORM_ASSERT_LIST_OFFSET(entry);
0698     case MAX_STORMS:
0699     default:
0700         BNX2X_ERR("unknown storm\n");
0701     }
0702     return -EINVAL;
0703 }
0704 
0705 static int bnx2x_mc_assert(struct bnx2x *bp)
0706 {
0707     char last_idx;
0708     int i, j, rc = 0;
0709     enum storms storm;
0710     u32 regs[REGS_IN_ENTRY];
0711     u32 bar_storm_intmem[STORMS_NUM] = {
0712         BAR_XSTRORM_INTMEM,
0713         BAR_TSTRORM_INTMEM,
0714         BAR_CSTRORM_INTMEM,
0715         BAR_USTRORM_INTMEM
0716     };
0717     u32 storm_assert_list_index[STORMS_NUM] = {
0718         XSTORM_ASSERT_LIST_INDEX_OFFSET,
0719         TSTORM_ASSERT_LIST_INDEX_OFFSET,
0720         CSTORM_ASSERT_LIST_INDEX_OFFSET,
0721         USTORM_ASSERT_LIST_INDEX_OFFSET
0722     };
0723     char *storms_string[STORMS_NUM] = {
0724         "XSTORM",
0725         "TSTORM",
0726         "CSTORM",
0727         "USTORM"
0728     };
0729 
0730     for (storm = XSTORM; storm < MAX_STORMS; storm++) {
0731         last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
0732                    storm_assert_list_index[storm]);
0733         if (last_idx)
0734             BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
0735                   storms_string[storm], last_idx);
0736 
0737         /* print the asserts */
0738         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
0739             /* read a single assert entry */
0740             for (j = 0; j < REGS_IN_ENTRY; j++)
0741                 regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
0742                       bnx2x_get_assert_list_entry(bp,
0743                                       storm,
0744                                       i) +
0745                       sizeof(u32) * j);
0746 
0747             /* log entry if it contains a valid assert */
0748             if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
0749                 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
0750                       storms_string[storm], i, regs[3],
0751                       regs[2], regs[1], regs[0]);
0752                 rc++;
0753             } else {
0754                 break;
0755             }
0756         }
0757     }
0758 
0759     BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
0760           CHIP_IS_E1(bp) ? "everest1" :
0761           CHIP_IS_E1H(bp) ? "everest1h" :
0762           CHIP_IS_E2(bp) ? "everest2" : "everest3",
0763           bp->fw_major, bp->fw_minor, bp->fw_rev);
0764 
0765     return rc;
0766 }
0767 
0768 #define MCPR_TRACE_BUFFER_SIZE  (0x800)
0769 #define SCRATCH_BUFFER_SIZE(bp) \
0770     (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
0771 
0772 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
0773 {
0774     u32 addr, val;
0775     u32 mark, offset;
0776     __be32 data[9];
0777     int word;
0778     u32 trace_shmem_base;
0779     if (BP_NOMCP(bp)) {
0780         BNX2X_ERR("NO MCP - can not dump\n");
0781         return;
0782     }
0783     netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
0784         (bp->common.bc_ver & 0xff0000) >> 16,
0785         (bp->common.bc_ver & 0xff00) >> 8,
0786         (bp->common.bc_ver & 0xff));
0787 
0788     if (pci_channel_offline(bp->pdev)) {
0789         BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
0790         return;
0791     }
0792 
0793     val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
0794     if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
0795         BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
0796 
0797     if (BP_PATH(bp) == 0)
0798         trace_shmem_base = bp->common.shmem_base;
0799     else
0800         trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
0801 
0802     /* sanity */
0803     if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
0804         trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
0805                 SCRATCH_BUFFER_SIZE(bp)) {
0806         BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
0807               trace_shmem_base);
0808         return;
0809     }
0810 
0811     addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
0812 
0813     /* validate TRCB signature */
0814     mark = REG_RD(bp, addr);
0815     if (mark != MFW_TRACE_SIGNATURE) {
0816         BNX2X_ERR("Trace buffer signature is missing.");
0817         return ;
0818     }
0819 
0820     /* read cyclic buffer pointer */
0821     addr += 4;
0822     mark = REG_RD(bp, addr);
0823     mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
0824     if (mark >= trace_shmem_base || mark < addr + 4) {
0825         BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
0826         return;
0827     }
0828     printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
0829 
0830     printk("%s", lvl);
0831 
0832     /* dump buffer after the mark */
0833     for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
0834         for (word = 0; word < 8; word++)
0835             data[word] = htonl(REG_RD(bp, offset + 4*word));
0836         data[8] = 0x0;
0837         pr_cont("%s", (char *)data);
0838     }
0839 
0840     /* dump buffer before the mark */
0841     for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
0842         for (word = 0; word < 8; word++)
0843             data[word] = htonl(REG_RD(bp, offset + 4*word));
0844         data[8] = 0x0;
0845         pr_cont("%s", (char *)data);
0846     }
0847     printk("%s" "end of fw dump\n", lvl);
0848 }
0849 
0850 static void bnx2x_fw_dump(struct bnx2x *bp)
0851 {
0852     bnx2x_fw_dump_lvl(bp, KERN_ERR);
0853 }
0854 
0855 static void bnx2x_hc_int_disable(struct bnx2x *bp)
0856 {
0857     int port = BP_PORT(bp);
0858     u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
0859     u32 val = REG_RD(bp, addr);
0860 
0861     /* in E1 we must use only PCI configuration space to disable
0862      * MSI/MSIX capability
0863      * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
0864      */
0865     if (CHIP_IS_E1(bp)) {
0866         /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
0867          * Use mask register to prevent from HC sending interrupts
0868          * after we exit the function
0869          */
0870         REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
0871 
0872         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
0873              HC_CONFIG_0_REG_INT_LINE_EN_0 |
0874              HC_CONFIG_0_REG_ATTN_BIT_EN_0);
0875     } else
0876         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
0877              HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
0878              HC_CONFIG_0_REG_INT_LINE_EN_0 |
0879              HC_CONFIG_0_REG_ATTN_BIT_EN_0);
0880 
0881     DP(NETIF_MSG_IFDOWN,
0882        "write %x to HC %d (addr 0x%x)\n",
0883        val, port, addr);
0884 
0885     REG_WR(bp, addr, val);
0886     if (REG_RD(bp, addr) != val)
0887         BNX2X_ERR("BUG! Proper val not read from IGU!\n");
0888 }
0889 
0890 static void bnx2x_igu_int_disable(struct bnx2x *bp)
0891 {
0892     u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
0893 
0894     val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
0895          IGU_PF_CONF_INT_LINE_EN |
0896          IGU_PF_CONF_ATTN_BIT_EN);
0897 
0898     DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
0899 
0900     REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
0901     if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
0902         BNX2X_ERR("BUG! Proper val not read from IGU!\n");
0903 }
0904 
0905 static void bnx2x_int_disable(struct bnx2x *bp)
0906 {
0907     if (bp->common.int_block == INT_BLOCK_HC)
0908         bnx2x_hc_int_disable(bp);
0909     else
0910         bnx2x_igu_int_disable(bp);
0911 }
0912 
0913 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
0914 {
0915     int i;
0916     u16 j;
0917     struct hc_sp_status_block_data sp_sb_data;
0918     int func = BP_FUNC(bp);
0919 #ifdef BNX2X_STOP_ON_ERROR
0920     u16 start = 0, end = 0;
0921     u8 cos;
0922 #endif
0923     if (IS_PF(bp) && disable_int)
0924         bnx2x_int_disable(bp);
0925 
0926     bp->stats_state = STATS_STATE_DISABLED;
0927     bp->eth_stats.unrecoverable_error++;
0928     DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
0929 
0930     BNX2X_ERR("begin crash dump -----------------\n");
0931 
0932     /* Indices */
0933     /* Common */
0934     if (IS_PF(bp)) {
0935         struct host_sp_status_block *def_sb = bp->def_status_blk;
0936         int data_size, cstorm_offset;
0937 
0938         BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
0939               bp->def_idx, bp->def_att_idx, bp->attn_state,
0940               bp->spq_prod_idx, bp->stats_counter);
0941         BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
0942               def_sb->atten_status_block.attn_bits,
0943               def_sb->atten_status_block.attn_bits_ack,
0944               def_sb->atten_status_block.status_block_id,
0945               def_sb->atten_status_block.attn_bits_index);
0946         BNX2X_ERR("     def (");
0947         for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
0948             pr_cont("0x%x%s",
0949                 def_sb->sp_sb.index_values[i],
0950                 (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
0951 
0952         data_size = sizeof(struct hc_sp_status_block_data) /
0953                 sizeof(u32);
0954         cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
0955         for (i = 0; i < data_size; i++)
0956             *((u32 *)&sp_sb_data + i) =
0957                 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
0958                        i * sizeof(u32));
0959 
0960         pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
0961             sp_sb_data.igu_sb_id,
0962             sp_sb_data.igu_seg_id,
0963             sp_sb_data.p_func.pf_id,
0964             sp_sb_data.p_func.vnic_id,
0965             sp_sb_data.p_func.vf_id,
0966             sp_sb_data.p_func.vf_valid,
0967             sp_sb_data.state);
0968     }
0969 
0970     for_each_eth_queue(bp, i) {
0971         struct bnx2x_fastpath *fp = &bp->fp[i];
0972         int loop;
0973         struct hc_status_block_data_e2 sb_data_e2;
0974         struct hc_status_block_data_e1x sb_data_e1x;
0975         struct hc_status_block_sm  *hc_sm_p =
0976             CHIP_IS_E1x(bp) ?
0977             sb_data_e1x.common.state_machine :
0978             sb_data_e2.common.state_machine;
0979         struct hc_index_data *hc_index_p =
0980             CHIP_IS_E1x(bp) ?
0981             sb_data_e1x.index_data :
0982             sb_data_e2.index_data;
0983         u8 data_size, cos;
0984         u32 *sb_data_p;
0985         struct bnx2x_fp_txdata txdata;
0986 
0987         if (!bp->fp)
0988             break;
0989 
0990         if (!fp->rx_cons_sb)
0991             continue;
0992 
0993         /* Rx */
0994         BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
0995               i, fp->rx_bd_prod, fp->rx_bd_cons,
0996               fp->rx_comp_prod,
0997               fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
0998         BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
0999               fp->rx_sge_prod, fp->last_max_sge,
1000               le16_to_cpu(fp->fp_hc_idx));
1001 
1002         /* Tx */
1003         for_each_cos_in_tx_queue(fp, cos)
1004         {
1005             if (!fp->txdata_ptr[cos])
1006                 break;
1007 
1008             txdata = *fp->txdata_ptr[cos];
1009 
1010             if (!txdata.tx_cons_sb)
1011                 continue;
1012 
1013             BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1014                   i, txdata.tx_pkt_prod,
1015                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
1016                   txdata.tx_bd_cons,
1017                   le16_to_cpu(*txdata.tx_cons_sb));
1018         }
1019 
1020         loop = CHIP_IS_E1x(bp) ?
1021             HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1022 
1023         /* host sb data */
1024 
1025         if (IS_FCOE_FP(fp))
1026             continue;
1027 
1028         BNX2X_ERR("     run indexes (");
1029         for (j = 0; j < HC_SB_MAX_SM; j++)
1030             pr_cont("0x%x%s",
1031                    fp->sb_running_index[j],
1032                    (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1033 
1034         BNX2X_ERR("     indexes (");
1035         for (j = 0; j < loop; j++)
1036             pr_cont("0x%x%s",
1037                    fp->sb_index_values[j],
1038                    (j == loop - 1) ? ")" : " ");
1039 
1040         /* VF cannot access FW refelection for status block */
1041         if (IS_VF(bp))
1042             continue;
1043 
1044         /* fw sb data */
1045         data_size = CHIP_IS_E1x(bp) ?
1046             sizeof(struct hc_status_block_data_e1x) :
1047             sizeof(struct hc_status_block_data_e2);
1048         data_size /= sizeof(u32);
1049         sb_data_p = CHIP_IS_E1x(bp) ?
1050             (u32 *)&sb_data_e1x :
1051             (u32 *)&sb_data_e2;
1052         /* copy sb data in here */
1053         for (j = 0; j < data_size; j++)
1054             *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1055                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1056                 j * sizeof(u32));
1057 
1058         if (!CHIP_IS_E1x(bp)) {
1059             pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1060                 sb_data_e2.common.p_func.pf_id,
1061                 sb_data_e2.common.p_func.vf_id,
1062                 sb_data_e2.common.p_func.vf_valid,
1063                 sb_data_e2.common.p_func.vnic_id,
1064                 sb_data_e2.common.same_igu_sb_1b,
1065                 sb_data_e2.common.state);
1066         } else {
1067             pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1068                 sb_data_e1x.common.p_func.pf_id,
1069                 sb_data_e1x.common.p_func.vf_id,
1070                 sb_data_e1x.common.p_func.vf_valid,
1071                 sb_data_e1x.common.p_func.vnic_id,
1072                 sb_data_e1x.common.same_igu_sb_1b,
1073                 sb_data_e1x.common.state);
1074         }
1075 
1076         /* SB_SMs data */
1077         for (j = 0; j < HC_SB_MAX_SM; j++) {
1078             pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1079                 j, hc_sm_p[j].__flags,
1080                 hc_sm_p[j].igu_sb_id,
1081                 hc_sm_p[j].igu_seg_id,
1082                 hc_sm_p[j].time_to_expire,
1083                 hc_sm_p[j].timer_value);
1084         }
1085 
1086         /* Indices data */
1087         for (j = 0; j < loop; j++) {
1088             pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1089                    hc_index_p[j].flags,
1090                    hc_index_p[j].timeout);
1091         }
1092     }
1093 
1094 #ifdef BNX2X_STOP_ON_ERROR
1095     if (IS_PF(bp)) {
1096         /* event queue */
1097         BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1098         for (i = 0; i < NUM_EQ_DESC; i++) {
1099             u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1100 
1101             BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1102                   i, bp->eq_ring[i].message.opcode,
1103                   bp->eq_ring[i].message.error);
1104             BNX2X_ERR("data: %x %x %x\n",
1105                   data[0], data[1], data[2]);
1106         }
1107     }
1108 
1109     /* Rings */
1110     /* Rx */
1111     for_each_valid_rx_queue(bp, i) {
1112         struct bnx2x_fastpath *fp = &bp->fp[i];
1113 
1114         if (!bp->fp)
1115             break;
1116 
1117         if (!fp->rx_cons_sb)
1118             continue;
1119 
1120         start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1121         end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1122         for (j = start; j != end; j = RX_BD(j + 1)) {
1123             u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1124             struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1125 
1126             BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1127                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1128         }
1129 
1130         start = RX_SGE(fp->rx_sge_prod);
1131         end = RX_SGE(fp->last_max_sge);
1132         for (j = start; j != end; j = RX_SGE(j + 1)) {
1133             u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1134             struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1135 
1136             BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1137                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1138         }
1139 
1140         start = RCQ_BD(fp->rx_comp_cons - 10);
1141         end = RCQ_BD(fp->rx_comp_cons + 503);
1142         for (j = start; j != end; j = RCQ_BD(j + 1)) {
1143             u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1144 
1145             BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1146                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1147         }
1148     }
1149 
1150     /* Tx */
1151     for_each_valid_tx_queue(bp, i) {
1152         struct bnx2x_fastpath *fp = &bp->fp[i];
1153 
1154         if (!bp->fp)
1155             break;
1156 
1157         for_each_cos_in_tx_queue(fp, cos) {
1158             struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1159 
1160             if (!fp->txdata_ptr[cos])
1161                 break;
1162 
1163             if (!txdata->tx_cons_sb)
1164                 continue;
1165 
1166             start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1167             end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1168             for (j = start; j != end; j = TX_BD(j + 1)) {
1169                 struct sw_tx_bd *sw_bd =
1170                     &txdata->tx_buf_ring[j];
1171 
1172                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1173                       i, cos, j, sw_bd->skb,
1174                       sw_bd->first_bd);
1175             }
1176 
1177             start = TX_BD(txdata->tx_bd_cons - 10);
1178             end = TX_BD(txdata->tx_bd_cons + 254);
1179             for (j = start; j != end; j = TX_BD(j + 1)) {
1180                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1181 
1182                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1183                       i, cos, j, tx_bd[0], tx_bd[1],
1184                       tx_bd[2], tx_bd[3]);
1185             }
1186         }
1187     }
1188 #endif
1189     if (IS_PF(bp)) {
1190         int tmp_msg_en = bp->msg_enable;
1191 
1192         bnx2x_fw_dump(bp);
1193         bp->msg_enable |= NETIF_MSG_HW;
1194         BNX2X_ERR("Idle check (1st round) ----------\n");
1195         bnx2x_idle_chk(bp);
1196         BNX2X_ERR("Idle check (2nd round) ----------\n");
1197         bnx2x_idle_chk(bp);
1198         bp->msg_enable = tmp_msg_en;
1199         bnx2x_mc_assert(bp);
1200     }
1201 
1202     BNX2X_ERR("end crash dump -----------------\n");
1203 }
1204 
1205 /*
1206  * FLR Support for E2
1207  *
1208  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1209  * initialization.
1210  */
1211 #define FLR_WAIT_USEC       10000   /* 10 milliseconds */
1212 #define FLR_WAIT_INTERVAL   50  /* usec */
1213 #define FLR_POLL_CNT        (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1214 
1215 struct pbf_pN_buf_regs {
1216     int pN;
1217     u32 init_crd;
1218     u32 crd;
1219     u32 crd_freed;
1220 };
1221 
1222 struct pbf_pN_cmd_regs {
1223     int pN;
1224     u32 lines_occup;
1225     u32 lines_freed;
1226 };
1227 
1228 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1229                      struct pbf_pN_buf_regs *regs,
1230                      u32 poll_count)
1231 {
1232     u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1233     u32 cur_cnt = poll_count;
1234 
1235     crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1236     crd = crd_start = REG_RD(bp, regs->crd);
1237     init_crd = REG_RD(bp, regs->init_crd);
1238 
1239     DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1240     DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1241     DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1242 
1243     while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1244            (init_crd - crd_start))) {
1245         if (cur_cnt--) {
1246             udelay(FLR_WAIT_INTERVAL);
1247             crd = REG_RD(bp, regs->crd);
1248             crd_freed = REG_RD(bp, regs->crd_freed);
1249         } else {
1250             DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1251                regs->pN);
1252             DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1253                regs->pN, crd);
1254             DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1255                regs->pN, crd_freed);
1256             break;
1257         }
1258     }
1259     DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1260        poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1261 }
1262 
1263 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1264                      struct pbf_pN_cmd_regs *regs,
1265                      u32 poll_count)
1266 {
1267     u32 occup, to_free, freed, freed_start;
1268     u32 cur_cnt = poll_count;
1269 
1270     occup = to_free = REG_RD(bp, regs->lines_occup);
1271     freed = freed_start = REG_RD(bp, regs->lines_freed);
1272 
1273     DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1274     DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1275 
1276     while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1277         if (cur_cnt--) {
1278             udelay(FLR_WAIT_INTERVAL);
1279             occup = REG_RD(bp, regs->lines_occup);
1280             freed = REG_RD(bp, regs->lines_freed);
1281         } else {
1282             DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1283                regs->pN);
1284             DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1285                regs->pN, occup);
1286             DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1287                regs->pN, freed);
1288             break;
1289         }
1290     }
1291     DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1292        poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1293 }
1294 
1295 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1296                     u32 expected, u32 poll_count)
1297 {
1298     u32 cur_cnt = poll_count;
1299     u32 val;
1300 
1301     while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1302         udelay(FLR_WAIT_INTERVAL);
1303 
1304     return val;
1305 }
1306 
1307 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1308                     char *msg, u32 poll_cnt)
1309 {
1310     u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1311     if (val != 0) {
1312         BNX2X_ERR("%s usage count=%d\n", msg, val);
1313         return 1;
1314     }
1315     return 0;
1316 }
1317 
1318 /* Common routines with VF FLR cleanup */
1319 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1320 {
1321     /* adjust polling timeout */
1322     if (CHIP_REV_IS_EMUL(bp))
1323         return FLR_POLL_CNT * 2000;
1324 
1325     if (CHIP_REV_IS_FPGA(bp))
1326         return FLR_POLL_CNT * 120;
1327 
1328     return FLR_POLL_CNT;
1329 }
1330 
1331 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1332 {
1333     struct pbf_pN_cmd_regs cmd_regs[] = {
1334         {0, (CHIP_IS_E3B0(bp)) ?
1335             PBF_REG_TQ_OCCUPANCY_Q0 :
1336             PBF_REG_P0_TQ_OCCUPANCY,
1337             (CHIP_IS_E3B0(bp)) ?
1338             PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1339             PBF_REG_P0_TQ_LINES_FREED_CNT},
1340         {1, (CHIP_IS_E3B0(bp)) ?
1341             PBF_REG_TQ_OCCUPANCY_Q1 :
1342             PBF_REG_P1_TQ_OCCUPANCY,
1343             (CHIP_IS_E3B0(bp)) ?
1344             PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1345             PBF_REG_P1_TQ_LINES_FREED_CNT},
1346         {4, (CHIP_IS_E3B0(bp)) ?
1347             PBF_REG_TQ_OCCUPANCY_LB_Q :
1348             PBF_REG_P4_TQ_OCCUPANCY,
1349             (CHIP_IS_E3B0(bp)) ?
1350             PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1351             PBF_REG_P4_TQ_LINES_FREED_CNT}
1352     };
1353 
1354     struct pbf_pN_buf_regs buf_regs[] = {
1355         {0, (CHIP_IS_E3B0(bp)) ?
1356             PBF_REG_INIT_CRD_Q0 :
1357             PBF_REG_P0_INIT_CRD ,
1358             (CHIP_IS_E3B0(bp)) ?
1359             PBF_REG_CREDIT_Q0 :
1360             PBF_REG_P0_CREDIT,
1361             (CHIP_IS_E3B0(bp)) ?
1362             PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1363             PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1364         {1, (CHIP_IS_E3B0(bp)) ?
1365             PBF_REG_INIT_CRD_Q1 :
1366             PBF_REG_P1_INIT_CRD,
1367             (CHIP_IS_E3B0(bp)) ?
1368             PBF_REG_CREDIT_Q1 :
1369             PBF_REG_P1_CREDIT,
1370             (CHIP_IS_E3B0(bp)) ?
1371             PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1372             PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1373         {4, (CHIP_IS_E3B0(bp)) ?
1374             PBF_REG_INIT_CRD_LB_Q :
1375             PBF_REG_P4_INIT_CRD,
1376             (CHIP_IS_E3B0(bp)) ?
1377             PBF_REG_CREDIT_LB_Q :
1378             PBF_REG_P4_CREDIT,
1379             (CHIP_IS_E3B0(bp)) ?
1380             PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1381             PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1382     };
1383 
1384     int i;
1385 
1386     /* Verify the command queues are flushed P0, P1, P4 */
1387     for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1388         bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1389 
1390     /* Verify the transmission buffers are flushed P0, P1, P4 */
1391     for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1392         bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1393 }
1394 
1395 #define OP_GEN_PARAM(param) \
1396     (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1397 
1398 #define OP_GEN_TYPE(type) \
1399     (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1400 
1401 #define OP_GEN_AGG_VECT(index) \
1402     (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1403 
1404 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1405 {
1406     u32 op_gen_command = 0;
1407     u32 comp_addr = BAR_CSTRORM_INTMEM +
1408             CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1409 
1410     if (REG_RD(bp, comp_addr)) {
1411         BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1412         return 1;
1413     }
1414 
1415     op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1416     op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1417     op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1418     op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1419 
1420     DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1421     REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1422 
1423     if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1424         BNX2X_ERR("FW final cleanup did not succeed\n");
1425         DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1426            (REG_RD(bp, comp_addr)));
1427         bnx2x_panic();
1428         return 1;
1429     }
1430     /* Zero completion for next FLR */
1431     REG_WR(bp, comp_addr, 0);
1432 
1433     return 0;
1434 }
1435 
1436 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1437 {
1438     u16 status;
1439 
1440     pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1441     return status & PCI_EXP_DEVSTA_TRPND;
1442 }
1443 
1444 /* PF FLR specific routines
1445 */
1446 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1447 {
1448     /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1449     if (bnx2x_flr_clnup_poll_hw_counter(bp,
1450             CFC_REG_NUM_LCIDS_INSIDE_PF,
1451             "CFC PF usage counter timed out",
1452             poll_cnt))
1453         return 1;
1454 
1455     /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1456     if (bnx2x_flr_clnup_poll_hw_counter(bp,
1457             DORQ_REG_PF_USAGE_CNT,
1458             "DQ PF usage counter timed out",
1459             poll_cnt))
1460         return 1;
1461 
1462     /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1463     if (bnx2x_flr_clnup_poll_hw_counter(bp,
1464             QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1465             "QM PF usage counter timed out",
1466             poll_cnt))
1467         return 1;
1468 
1469     /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1470     if (bnx2x_flr_clnup_poll_hw_counter(bp,
1471             TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1472             "Timers VNIC usage counter timed out",
1473             poll_cnt))
1474         return 1;
1475     if (bnx2x_flr_clnup_poll_hw_counter(bp,
1476             TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1477             "Timers NUM_SCANS usage counter timed out",
1478             poll_cnt))
1479         return 1;
1480 
1481     /* Wait DMAE PF usage counter to zero */
1482     if (bnx2x_flr_clnup_poll_hw_counter(bp,
1483             dmae_reg_go_c[INIT_DMAE_C(bp)],
1484             "DMAE command register timed out",
1485             poll_cnt))
1486         return 1;
1487 
1488     return 0;
1489 }
1490 
1491 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1492 {
1493     u32 val;
1494 
1495     val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1496     DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1497 
1498     val = REG_RD(bp, PBF_REG_DISABLE_PF);
1499     DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1500 
1501     val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1502     DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1503 
1504     val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1505     DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1506 
1507     val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1508     DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1509 
1510     val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1511     DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1512 
1513     val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1514     DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1515 
1516     val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1517     DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1518        val);
1519 }
1520 
1521 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1522 {
1523     u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1524 
1525     DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1526 
1527     /* Re-enable PF target read access */
1528     REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1529 
1530     /* Poll HW usage counters */
1531     DP(BNX2X_MSG_SP, "Polling usage counters\n");
1532     if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1533         return -EBUSY;
1534 
1535     /* Zero the igu 'trailing edge' and 'leading edge' */
1536 
1537     /* Send the FW cleanup command */
1538     if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1539         return -EBUSY;
1540 
1541     /* ATC cleanup */
1542 
1543     /* Verify TX hw is flushed */
1544     bnx2x_tx_hw_flushed(bp, poll_cnt);
1545 
1546     /* Wait 100ms (not adjusted according to platform) */
1547     msleep(100);
1548 
1549     /* Verify no pending pci transactions */
1550     if (bnx2x_is_pcie_pending(bp->pdev))
1551         BNX2X_ERR("PCIE Transactions still pending\n");
1552 
1553     /* Debug */
1554     bnx2x_hw_enable_status(bp);
1555 
1556     /*
1557      * Master enable - Due to WB DMAE writes performed before this
1558      * register is re-initialized as part of the regular function init
1559      */
1560     REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1561 
1562     return 0;
1563 }
1564 
1565 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1566 {
1567     int port = BP_PORT(bp);
1568     u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1569     u32 val = REG_RD(bp, addr);
1570     bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1571     bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1572     bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1573 
1574     if (msix) {
1575         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1576              HC_CONFIG_0_REG_INT_LINE_EN_0);
1577         val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1578             HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1579         if (single_msix)
1580             val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1581     } else if (msi) {
1582         val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1583         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1584             HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1585             HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1586     } else {
1587         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1588             HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1589             HC_CONFIG_0_REG_INT_LINE_EN_0 |
1590             HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1591 
1592         if (!CHIP_IS_E1(bp)) {
1593             DP(NETIF_MSG_IFUP,
1594                "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1595 
1596             REG_WR(bp, addr, val);
1597 
1598             val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1599         }
1600     }
1601 
1602     if (CHIP_IS_E1(bp))
1603         REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1604 
1605     DP(NETIF_MSG_IFUP,
1606        "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1607        (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1608 
1609     REG_WR(bp, addr, val);
1610     /*
1611      * Ensure that HC_CONFIG is written before leading/trailing edge config
1612      */
1613     barrier();
1614 
1615     if (!CHIP_IS_E1(bp)) {
1616         /* init leading/trailing edge */
1617         if (IS_MF(bp)) {
1618             val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1619             if (bp->port.pmf)
1620                 /* enable nig and gpio3 attention */
1621                 val |= 0x1100;
1622         } else
1623             val = 0xffff;
1624 
1625         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1626         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1627     }
1628 }
1629 
1630 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1631 {
1632     u32 val;
1633     bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1634     bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1635     bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1636 
1637     val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1638 
1639     if (msix) {
1640         val &= ~(IGU_PF_CONF_INT_LINE_EN |
1641              IGU_PF_CONF_SINGLE_ISR_EN);
1642         val |= (IGU_PF_CONF_MSI_MSIX_EN |
1643             IGU_PF_CONF_ATTN_BIT_EN);
1644 
1645         if (single_msix)
1646             val |= IGU_PF_CONF_SINGLE_ISR_EN;
1647     } else if (msi) {
1648         val &= ~IGU_PF_CONF_INT_LINE_EN;
1649         val |= (IGU_PF_CONF_MSI_MSIX_EN |
1650             IGU_PF_CONF_ATTN_BIT_EN |
1651             IGU_PF_CONF_SINGLE_ISR_EN);
1652     } else {
1653         val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1654         val |= (IGU_PF_CONF_INT_LINE_EN |
1655             IGU_PF_CONF_ATTN_BIT_EN |
1656             IGU_PF_CONF_SINGLE_ISR_EN);
1657     }
1658 
1659     /* Clean previous status - need to configure igu prior to ack*/
1660     if ((!msix) || single_msix) {
1661         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1662         bnx2x_ack_int(bp);
1663     }
1664 
1665     val |= IGU_PF_CONF_FUNC_EN;
1666 
1667     DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1668        val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1669 
1670     REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1671 
1672     if (val & IGU_PF_CONF_INT_LINE_EN)
1673         pci_intx(bp->pdev, true);
1674 
1675     barrier();
1676 
1677     /* init leading/trailing edge */
1678     if (IS_MF(bp)) {
1679         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1680         if (bp->port.pmf)
1681             /* enable nig and gpio3 attention */
1682             val |= 0x1100;
1683     } else
1684         val = 0xffff;
1685 
1686     REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1687     REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1688 }
1689 
1690 void bnx2x_int_enable(struct bnx2x *bp)
1691 {
1692     if (bp->common.int_block == INT_BLOCK_HC)
1693         bnx2x_hc_int_enable(bp);
1694     else
1695         bnx2x_igu_int_enable(bp);
1696 }
1697 
1698 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1699 {
1700     int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1701     int i, offset;
1702 
1703     if (disable_hw)
1704         /* prevent the HW from sending interrupts */
1705         bnx2x_int_disable(bp);
1706 
1707     /* make sure all ISRs are done */
1708     if (msix) {
1709         synchronize_irq(bp->msix_table[0].vector);
1710         offset = 1;
1711         if (CNIC_SUPPORT(bp))
1712             offset++;
1713         for_each_eth_queue(bp, i)
1714             synchronize_irq(bp->msix_table[offset++].vector);
1715     } else
1716         synchronize_irq(bp->pdev->irq);
1717 
1718     /* make sure sp_task is not running */
1719     cancel_delayed_work(&bp->sp_task);
1720     cancel_delayed_work(&bp->period_task);
1721     flush_workqueue(bnx2x_wq);
1722 }
1723 
1724 /* fast path */
1725 
1726 /*
1727  * General service functions
1728  */
1729 
1730 /* Return true if succeeded to acquire the lock */
1731 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1732 {
1733     u32 lock_status;
1734     u32 resource_bit = (1 << resource);
1735     int func = BP_FUNC(bp);
1736     u32 hw_lock_control_reg;
1737 
1738     DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1739        "Trying to take a lock on resource %d\n", resource);
1740 
1741     /* Validating that the resource is within range */
1742     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1743         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1744            "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1745            resource, HW_LOCK_MAX_RESOURCE_VALUE);
1746         return false;
1747     }
1748 
1749     if (func <= 5)
1750         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1751     else
1752         hw_lock_control_reg =
1753                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1754 
1755     /* Try to acquire the lock */
1756     REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1757     lock_status = REG_RD(bp, hw_lock_control_reg);
1758     if (lock_status & resource_bit)
1759         return true;
1760 
1761     DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1762        "Failed to get a lock on resource %d\n", resource);
1763     return false;
1764 }
1765 
1766 /**
1767  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1768  *
1769  * @bp: driver handle
1770  *
1771  * Returns the recovery leader resource id according to the engine this function
1772  * belongs to. Currently only only 2 engines is supported.
1773  */
1774 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1775 {
1776     if (BP_PATH(bp))
1777         return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1778     else
1779         return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1780 }
1781 
1782 /**
1783  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1784  *
1785  * @bp: driver handle
1786  *
1787  * Tries to acquire a leader lock for current engine.
1788  */
1789 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1790 {
1791     return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1792 }
1793 
1794 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1795 
1796 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1797 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1798 {
1799     /* Set the interrupt occurred bit for the sp-task to recognize it
1800      * must ack the interrupt and transition according to the IGU
1801      * state machine.
1802      */
1803     atomic_set(&bp->interrupt_occurred, 1);
1804 
1805     /* The sp_task must execute only after this bit
1806      * is set, otherwise we will get out of sync and miss all
1807      * further interrupts. Hence, the barrier.
1808      */
1809     smp_wmb();
1810 
1811     /* schedule sp_task to workqueue */
1812     return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1813 }
1814 
1815 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1816 {
1817     struct bnx2x *bp = fp->bp;
1818     int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1819     int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1820     enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1821     struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1822 
1823     DP(BNX2X_MSG_SP,
1824        "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1825        fp->index, cid, command, bp->state,
1826        rr_cqe->ramrod_cqe.ramrod_type);
1827 
1828     /* If cid is within VF range, replace the slowpath object with the
1829      * one corresponding to this VF
1830      */
1831     if (cid >= BNX2X_FIRST_VF_CID  &&
1832         cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1833         bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1834 
1835     switch (command) {
1836     case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1837         DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1838         drv_cmd = BNX2X_Q_CMD_UPDATE;
1839         break;
1840 
1841     case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1842         DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1843         drv_cmd = BNX2X_Q_CMD_SETUP;
1844         break;
1845 
1846     case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1847         DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1848         drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1849         break;
1850 
1851     case (RAMROD_CMD_ID_ETH_HALT):
1852         DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1853         drv_cmd = BNX2X_Q_CMD_HALT;
1854         break;
1855 
1856     case (RAMROD_CMD_ID_ETH_TERMINATE):
1857         DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1858         drv_cmd = BNX2X_Q_CMD_TERMINATE;
1859         break;
1860 
1861     case (RAMROD_CMD_ID_ETH_EMPTY):
1862         DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1863         drv_cmd = BNX2X_Q_CMD_EMPTY;
1864         break;
1865 
1866     case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1867         DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1868         drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1869         break;
1870 
1871     default:
1872         BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1873               command, fp->index);
1874         return;
1875     }
1876 
1877     if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1878         q_obj->complete_cmd(bp, q_obj, drv_cmd))
1879         /* q_obj->complete_cmd() failure means that this was
1880          * an unexpected completion.
1881          *
1882          * In this case we don't want to increase the bp->spq_left
1883          * because apparently we haven't sent this command the first
1884          * place.
1885          */
1886 #ifdef BNX2X_STOP_ON_ERROR
1887         bnx2x_panic();
1888 #else
1889         return;
1890 #endif
1891 
1892     smp_mb__before_atomic();
1893     atomic_inc(&bp->cq_spq_left);
1894     /* push the change in bp->spq_left and towards the memory */
1895     smp_mb__after_atomic();
1896 
1897     DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1898 
1899     if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1900         (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1901         /* if Q update ramrod is completed for last Q in AFEX vif set
1902          * flow, then ACK MCP at the end
1903          *
1904          * mark pending ACK to MCP bit.
1905          * prevent case that both bits are cleared.
1906          * At the end of load/unload driver checks that
1907          * sp_state is cleared, and this order prevents
1908          * races
1909          */
1910         smp_mb__before_atomic();
1911         set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1912         wmb();
1913         clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1914         smp_mb__after_atomic();
1915 
1916         /* schedule the sp task as mcp ack is required */
1917         bnx2x_schedule_sp_task(bp);
1918     }
1919 
1920     return;
1921 }
1922 
1923 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1924 {
1925     struct bnx2x *bp = netdev_priv(dev_instance);
1926     u16 status = bnx2x_ack_int(bp);
1927     u16 mask;
1928     int i;
1929     u8 cos;
1930 
1931     /* Return here if interrupt is shared and it's not for us */
1932     if (unlikely(status == 0)) {
1933         DP(NETIF_MSG_INTR, "not our interrupt!\n");
1934         return IRQ_NONE;
1935     }
1936     DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1937 
1938 #ifdef BNX2X_STOP_ON_ERROR
1939     if (unlikely(bp->panic))
1940         return IRQ_HANDLED;
1941 #endif
1942 
1943     for_each_eth_queue(bp, i) {
1944         struct bnx2x_fastpath *fp = &bp->fp[i];
1945 
1946         mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1947         if (status & mask) {
1948             /* Handle Rx or Tx according to SB id */
1949             for_each_cos_in_tx_queue(fp, cos)
1950                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1951             prefetch(&fp->sb_running_index[SM_RX_ID]);
1952             napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1953             status &= ~mask;
1954         }
1955     }
1956 
1957     if (CNIC_SUPPORT(bp)) {
1958         mask = 0x2;
1959         if (status & (mask | 0x1)) {
1960             struct cnic_ops *c_ops = NULL;
1961 
1962             rcu_read_lock();
1963             c_ops = rcu_dereference(bp->cnic_ops);
1964             if (c_ops && (bp->cnic_eth_dev.drv_state &
1965                       CNIC_DRV_STATE_HANDLES_IRQ))
1966                 c_ops->cnic_handler(bp->cnic_data, NULL);
1967             rcu_read_unlock();
1968 
1969             status &= ~mask;
1970         }
1971     }
1972 
1973     if (unlikely(status & 0x1)) {
1974 
1975         /* schedule sp task to perform default status block work, ack
1976          * attentions and enable interrupts.
1977          */
1978         bnx2x_schedule_sp_task(bp);
1979 
1980         status &= ~0x1;
1981         if (!status)
1982             return IRQ_HANDLED;
1983     }
1984 
1985     if (unlikely(status))
1986         DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1987            status);
1988 
1989     return IRQ_HANDLED;
1990 }
1991 
1992 /* Link */
1993 
1994 /*
1995  * General service functions
1996  */
1997 
1998 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1999 {
2000     u32 lock_status;
2001     u32 resource_bit = (1 << resource);
2002     int func = BP_FUNC(bp);
2003     u32 hw_lock_control_reg;
2004     int cnt;
2005 
2006     /* Validating that the resource is within range */
2007     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2008         BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2009            resource, HW_LOCK_MAX_RESOURCE_VALUE);
2010         return -EINVAL;
2011     }
2012 
2013     if (func <= 5) {
2014         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2015     } else {
2016         hw_lock_control_reg =
2017                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2018     }
2019 
2020     /* Validating that the resource is not already taken */
2021     lock_status = REG_RD(bp, hw_lock_control_reg);
2022     if (lock_status & resource_bit) {
2023         BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2024            lock_status, resource_bit);
2025         return -EEXIST;
2026     }
2027 
2028     /* Try for 5 second every 5ms */
2029     for (cnt = 0; cnt < 1000; cnt++) {
2030         /* Try to acquire the lock */
2031         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2032         lock_status = REG_RD(bp, hw_lock_control_reg);
2033         if (lock_status & resource_bit)
2034             return 0;
2035 
2036         usleep_range(5000, 10000);
2037     }
2038     BNX2X_ERR("Timeout\n");
2039     return -EAGAIN;
2040 }
2041 
2042 int bnx2x_release_leader_lock(struct bnx2x *bp)
2043 {
2044     return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2045 }
2046 
2047 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2048 {
2049     u32 lock_status;
2050     u32 resource_bit = (1 << resource);
2051     int func = BP_FUNC(bp);
2052     u32 hw_lock_control_reg;
2053 
2054     /* Validating that the resource is within range */
2055     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2056         BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2057            resource, HW_LOCK_MAX_RESOURCE_VALUE);
2058         return -EINVAL;
2059     }
2060 
2061     if (func <= 5) {
2062         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2063     } else {
2064         hw_lock_control_reg =
2065                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2066     }
2067 
2068     /* Validating that the resource is currently taken */
2069     lock_status = REG_RD(bp, hw_lock_control_reg);
2070     if (!(lock_status & resource_bit)) {
2071         BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2072               lock_status, resource_bit);
2073         return -EFAULT;
2074     }
2075 
2076     REG_WR(bp, hw_lock_control_reg, resource_bit);
2077     return 0;
2078 }
2079 
2080 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2081 {
2082     /* The GPIO should be swapped if swap register is set and active */
2083     int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2084              REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2085     int gpio_shift = gpio_num +
2086             (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2087     u32 gpio_mask = (1 << gpio_shift);
2088     u32 gpio_reg;
2089     int value;
2090 
2091     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2092         BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2093         return -EINVAL;
2094     }
2095 
2096     /* read GPIO value */
2097     gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2098 
2099     /* get the requested pin value */
2100     if ((gpio_reg & gpio_mask) == gpio_mask)
2101         value = 1;
2102     else
2103         value = 0;
2104 
2105     return value;
2106 }
2107 
2108 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2109 {
2110     /* The GPIO should be swapped if swap register is set and active */
2111     int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2112              REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2113     int gpio_shift = gpio_num +
2114             (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2115     u32 gpio_mask = (1 << gpio_shift);
2116     u32 gpio_reg;
2117 
2118     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2119         BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2120         return -EINVAL;
2121     }
2122 
2123     bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2124     /* read GPIO and mask except the float bits */
2125     gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2126 
2127     switch (mode) {
2128     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2129         DP(NETIF_MSG_LINK,
2130            "Set GPIO %d (shift %d) -> output low\n",
2131            gpio_num, gpio_shift);
2132         /* clear FLOAT and set CLR */
2133         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2134         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2135         break;
2136 
2137     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2138         DP(NETIF_MSG_LINK,
2139            "Set GPIO %d (shift %d) -> output high\n",
2140            gpio_num, gpio_shift);
2141         /* clear FLOAT and set SET */
2142         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2143         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2144         break;
2145 
2146     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2147         DP(NETIF_MSG_LINK,
2148            "Set GPIO %d (shift %d) -> input\n",
2149            gpio_num, gpio_shift);
2150         /* set FLOAT */
2151         gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2152         break;
2153 
2154     default:
2155         break;
2156     }
2157 
2158     REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2159     bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2160 
2161     return 0;
2162 }
2163 
2164 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2165 {
2166     u32 gpio_reg = 0;
2167     int rc = 0;
2168 
2169     /* Any port swapping should be handled by caller. */
2170 
2171     bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2172     /* read GPIO and mask except the float bits */
2173     gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2174     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2175     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2176     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2177 
2178     switch (mode) {
2179     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2180         DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2181         /* set CLR */
2182         gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2183         break;
2184 
2185     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2186         DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2187         /* set SET */
2188         gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2189         break;
2190 
2191     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2192         DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2193         /* set FLOAT */
2194         gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2195         break;
2196 
2197     default:
2198         BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2199         rc = -EINVAL;
2200         break;
2201     }
2202 
2203     if (rc == 0)
2204         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2205 
2206     bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2207 
2208     return rc;
2209 }
2210 
2211 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2212 {
2213     /* The GPIO should be swapped if swap register is set and active */
2214     int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2215              REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2216     int gpio_shift = gpio_num +
2217             (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2218     u32 gpio_mask = (1 << gpio_shift);
2219     u32 gpio_reg;
2220 
2221     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2222         BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2223         return -EINVAL;
2224     }
2225 
2226     bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2227     /* read GPIO int */
2228     gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2229 
2230     switch (mode) {
2231     case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2232         DP(NETIF_MSG_LINK,
2233            "Clear GPIO INT %d (shift %d) -> output low\n",
2234            gpio_num, gpio_shift);
2235         /* clear SET and set CLR */
2236         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2237         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2238         break;
2239 
2240     case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2241         DP(NETIF_MSG_LINK,
2242            "Set GPIO INT %d (shift %d) -> output high\n",
2243            gpio_num, gpio_shift);
2244         /* clear CLR and set SET */
2245         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2246         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2247         break;
2248 
2249     default:
2250         break;
2251     }
2252 
2253     REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2254     bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2255 
2256     return 0;
2257 }
2258 
2259 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2260 {
2261     u32 spio_reg;
2262 
2263     /* Only 2 SPIOs are configurable */
2264     if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2265         BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2266         return -EINVAL;
2267     }
2268 
2269     bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2270     /* read SPIO and mask except the float bits */
2271     spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2272 
2273     switch (mode) {
2274     case MISC_SPIO_OUTPUT_LOW:
2275         DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2276         /* clear FLOAT and set CLR */
2277         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2278         spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2279         break;
2280 
2281     case MISC_SPIO_OUTPUT_HIGH:
2282         DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2283         /* clear FLOAT and set SET */
2284         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2285         spio_reg |=  (spio << MISC_SPIO_SET_POS);
2286         break;
2287 
2288     case MISC_SPIO_INPUT_HI_Z:
2289         DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2290         /* set FLOAT */
2291         spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2292         break;
2293 
2294     default:
2295         break;
2296     }
2297 
2298     REG_WR(bp, MISC_REG_SPIO, spio_reg);
2299     bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2300 
2301     return 0;
2302 }
2303 
2304 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2305 {
2306     u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2307 
2308     bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2309                        ADVERTISED_Pause);
2310     switch (bp->link_vars.ieee_fc &
2311         MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2312     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2313         bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2314                           ADVERTISED_Pause);
2315         break;
2316 
2317     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2318         bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2319         break;
2320 
2321     default:
2322         break;
2323     }
2324 }
2325 
2326 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2327 {
2328     /* Initialize link parameters structure variables
2329      * It is recommended to turn off RX FC for jumbo frames
2330      *  for better performance
2331      */
2332     if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2333         bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2334     else
2335         bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2336 }
2337 
2338 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2339 {
2340     u32 pause_enabled = 0;
2341 
2342     if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2343         if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2344             pause_enabled = 1;
2345 
2346         REG_WR(bp, BAR_USTRORM_INTMEM +
2347                USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2348                pause_enabled);
2349     }
2350 
2351     DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2352        pause_enabled ? "enabled" : "disabled");
2353 }
2354 
2355 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2356 {
2357     int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2358     u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2359 
2360     if (!BP_NOMCP(bp)) {
2361         bnx2x_set_requested_fc(bp);
2362         bnx2x_acquire_phy_lock(bp);
2363 
2364         if (load_mode == LOAD_DIAG) {
2365             struct link_params *lp = &bp->link_params;
2366             lp->loopback_mode = LOOPBACK_XGXS;
2367             /* Prefer doing PHY loopback at highest speed */
2368             if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2369                 if (lp->speed_cap_mask[cfx_idx] &
2370                     PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2371                     lp->req_line_speed[cfx_idx] =
2372                     SPEED_20000;
2373                 else if (lp->speed_cap_mask[cfx_idx] &
2374                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2375                         lp->req_line_speed[cfx_idx] =
2376                         SPEED_10000;
2377                 else
2378                     lp->req_line_speed[cfx_idx] =
2379                     SPEED_1000;
2380             }
2381         }
2382 
2383         if (load_mode == LOAD_LOOPBACK_EXT) {
2384             struct link_params *lp = &bp->link_params;
2385             lp->loopback_mode = LOOPBACK_EXT;
2386         }
2387 
2388         rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2389 
2390         bnx2x_release_phy_lock(bp);
2391 
2392         bnx2x_init_dropless_fc(bp);
2393 
2394         bnx2x_calc_fc_adv(bp);
2395 
2396         if (bp->link_vars.link_up) {
2397             bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2398             bnx2x_link_report(bp);
2399         }
2400         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2401         bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2402         return rc;
2403     }
2404     BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2405     return -EINVAL;
2406 }
2407 
2408 void bnx2x_link_set(struct bnx2x *bp)
2409 {
2410     if (!BP_NOMCP(bp)) {
2411         bnx2x_acquire_phy_lock(bp);
2412         bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2413         bnx2x_release_phy_lock(bp);
2414 
2415         bnx2x_init_dropless_fc(bp);
2416 
2417         bnx2x_calc_fc_adv(bp);
2418     } else
2419         BNX2X_ERR("Bootcode is missing - can not set link\n");
2420 }
2421 
2422 static void bnx2x__link_reset(struct bnx2x *bp)
2423 {
2424     if (!BP_NOMCP(bp)) {
2425         bnx2x_acquire_phy_lock(bp);
2426         bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2427         bnx2x_release_phy_lock(bp);
2428     } else
2429         BNX2X_ERR("Bootcode is missing - can not reset link\n");
2430 }
2431 
2432 void bnx2x_force_link_reset(struct bnx2x *bp)
2433 {
2434     bnx2x_acquire_phy_lock(bp);
2435     bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2436     bnx2x_release_phy_lock(bp);
2437 }
2438 
2439 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2440 {
2441     u8 rc = 0;
2442 
2443     if (!BP_NOMCP(bp)) {
2444         bnx2x_acquire_phy_lock(bp);
2445         rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2446                      is_serdes);
2447         bnx2x_release_phy_lock(bp);
2448     } else
2449         BNX2X_ERR("Bootcode is missing - can not test link\n");
2450 
2451     return rc;
2452 }
2453 
2454 /* Calculates the sum of vn_min_rates.
2455    It's needed for further normalizing of the min_rates.
2456    Returns:
2457      sum of vn_min_rates.
2458        or
2459      0 - if all the min_rates are 0.
2460      In the later case fairness algorithm should be deactivated.
2461      If not all min_rates are zero then those that are zeroes will be set to 1.
2462  */
2463 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2464                       struct cmng_init_input *input)
2465 {
2466     int all_zero = 1;
2467     int vn;
2468 
2469     for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2470         u32 vn_cfg = bp->mf_config[vn];
2471         u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2472                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2473 
2474         /* Skip hidden vns */
2475         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2476             vn_min_rate = 0;
2477         /* If min rate is zero - set it to 1 */
2478         else if (!vn_min_rate)
2479             vn_min_rate = DEF_MIN_RATE;
2480         else
2481             all_zero = 0;
2482 
2483         input->vnic_min_rate[vn] = vn_min_rate;
2484     }
2485 
2486     /* if ETS or all min rates are zeros - disable fairness */
2487     if (BNX2X_IS_ETS_ENABLED(bp)) {
2488         input->flags.cmng_enables &=
2489                     ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2490         DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2491     } else if (all_zero) {
2492         input->flags.cmng_enables &=
2493                     ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2494         DP(NETIF_MSG_IFUP,
2495            "All MIN values are zeroes fairness will be disabled\n");
2496     } else
2497         input->flags.cmng_enables |=
2498                     CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2499 }
2500 
2501 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2502                     struct cmng_init_input *input)
2503 {
2504     u16 vn_max_rate;
2505     u32 vn_cfg = bp->mf_config[vn];
2506 
2507     if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2508         vn_max_rate = 0;
2509     else {
2510         u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2511 
2512         if (IS_MF_PERCENT_BW(bp)) {
2513             /* maxCfg in percents of linkspeed */
2514             vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2515         } else /* SD modes */
2516             /* maxCfg is absolute in 100Mb units */
2517             vn_max_rate = maxCfg * 100;
2518     }
2519 
2520     DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2521 
2522     input->vnic_max_rate[vn] = vn_max_rate;
2523 }
2524 
2525 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2526 {
2527     if (CHIP_REV_IS_SLOW(bp))
2528         return CMNG_FNS_NONE;
2529     if (IS_MF(bp))
2530         return CMNG_FNS_MINMAX;
2531 
2532     return CMNG_FNS_NONE;
2533 }
2534 
2535 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2536 {
2537     int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2538 
2539     if (BP_NOMCP(bp))
2540         return; /* what should be the default value in this case */
2541 
2542     /* For 2 port configuration the absolute function number formula
2543      * is:
2544      *      abs_func = 2 * vn + BP_PORT + BP_PATH
2545      *
2546      *      and there are 4 functions per port
2547      *
2548      * For 4 port configuration it is
2549      *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2550      *
2551      *      and there are 2 functions per port
2552      */
2553     for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2554         int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2555 
2556         if (func >= E1H_FUNC_MAX)
2557             break;
2558 
2559         bp->mf_config[vn] =
2560             MF_CFG_RD(bp, func_mf_config[func].config);
2561     }
2562     if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2563         DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2564         bp->flags |= MF_FUNC_DIS;
2565     } else {
2566         DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2567         bp->flags &= ~MF_FUNC_DIS;
2568     }
2569 }
2570 
2571 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2572 {
2573     struct cmng_init_input input;
2574     memset(&input, 0, sizeof(struct cmng_init_input));
2575 
2576     input.port_rate = bp->link_vars.line_speed;
2577 
2578     if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2579         int vn;
2580 
2581         /* read mf conf from shmem */
2582         if (read_cfg)
2583             bnx2x_read_mf_cfg(bp);
2584 
2585         /* vn_weight_sum and enable fairness if not 0 */
2586         bnx2x_calc_vn_min(bp, &input);
2587 
2588         /* calculate and set min-max rate for each vn */
2589         if (bp->port.pmf)
2590             for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2591                 bnx2x_calc_vn_max(bp, vn, &input);
2592 
2593         /* always enable rate shaping and fairness */
2594         input.flags.cmng_enables |=
2595                     CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2596 
2597         bnx2x_init_cmng(&input, &bp->cmng);
2598         return;
2599     }
2600 
2601     /* rate shaping and fairness are disabled */
2602     DP(NETIF_MSG_IFUP,
2603        "rate shaping and fairness are disabled\n");
2604 }
2605 
2606 static void storm_memset_cmng(struct bnx2x *bp,
2607                   struct cmng_init *cmng,
2608                   u8 port)
2609 {
2610     int vn;
2611     size_t size = sizeof(struct cmng_struct_per_port);
2612 
2613     u32 addr = BAR_XSTRORM_INTMEM +
2614             XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2615 
2616     __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2617 
2618     for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2619         int func = func_by_vn(bp, vn);
2620 
2621         addr = BAR_XSTRORM_INTMEM +
2622                XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2623         size = sizeof(struct rate_shaping_vars_per_vn);
2624         __storm_memset_struct(bp, addr, size,
2625                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2626 
2627         addr = BAR_XSTRORM_INTMEM +
2628                XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2629         size = sizeof(struct fairness_vars_per_vn);
2630         __storm_memset_struct(bp, addr, size,
2631                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2632     }
2633 }
2634 
2635 /* init cmng mode in HW according to local configuration */
2636 void bnx2x_set_local_cmng(struct bnx2x *bp)
2637 {
2638     int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2639 
2640     if (cmng_fns != CMNG_FNS_NONE) {
2641         bnx2x_cmng_fns_init(bp, false, cmng_fns);
2642         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2643     } else {
2644         /* rate shaping and fairness are disabled */
2645         DP(NETIF_MSG_IFUP,
2646            "single function mode without fairness\n");
2647     }
2648 }
2649 
2650 /* This function is called upon link interrupt */
2651 static void bnx2x_link_attn(struct bnx2x *bp)
2652 {
2653     /* Make sure that we are synced with the current statistics */
2654     bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2655 
2656     bnx2x_link_update(&bp->link_params, &bp->link_vars);
2657 
2658     bnx2x_init_dropless_fc(bp);
2659 
2660     if (bp->link_vars.link_up) {
2661 
2662         if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2663             struct host_port_stats *pstats;
2664 
2665             pstats = bnx2x_sp(bp, port_stats);
2666             /* reset old mac stats */
2667             memset(&(pstats->mac_stx[0]), 0,
2668                    sizeof(struct mac_stx));
2669         }
2670         if (bp->state == BNX2X_STATE_OPEN)
2671             bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2672     }
2673 
2674     if (bp->link_vars.link_up && bp->link_vars.line_speed)
2675         bnx2x_set_local_cmng(bp);
2676 
2677     __bnx2x_link_report(bp);
2678 
2679     if (IS_MF(bp))
2680         bnx2x_link_sync_notify(bp);
2681 }
2682 
2683 void bnx2x__link_status_update(struct bnx2x *bp)
2684 {
2685     if (bp->state != BNX2X_STATE_OPEN)
2686         return;
2687 
2688     /* read updated dcb configuration */
2689     if (IS_PF(bp)) {
2690         bnx2x_dcbx_pmf_update(bp);
2691         bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2692         if (bp->link_vars.link_up)
2693             bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2694         else
2695             bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2696             /* indicate link status */
2697         bnx2x_link_report(bp);
2698 
2699     } else { /* VF */
2700         bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2701                       SUPPORTED_10baseT_Full |
2702                       SUPPORTED_100baseT_Half |
2703                       SUPPORTED_100baseT_Full |
2704                       SUPPORTED_1000baseT_Full |
2705                       SUPPORTED_2500baseX_Full |
2706                       SUPPORTED_10000baseT_Full |
2707                       SUPPORTED_TP |
2708                       SUPPORTED_FIBRE |
2709                       SUPPORTED_Autoneg |
2710                       SUPPORTED_Pause |
2711                       SUPPORTED_Asym_Pause);
2712         bp->port.advertising[0] = bp->port.supported[0];
2713 
2714         bp->link_params.bp = bp;
2715         bp->link_params.port = BP_PORT(bp);
2716         bp->link_params.req_duplex[0] = DUPLEX_FULL;
2717         bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2718         bp->link_params.req_line_speed[0] = SPEED_10000;
2719         bp->link_params.speed_cap_mask[0] = 0x7f0000;
2720         bp->link_params.switch_cfg = SWITCH_CFG_10G;
2721         bp->link_vars.mac_type = MAC_TYPE_BMAC;
2722         bp->link_vars.line_speed = SPEED_10000;
2723         bp->link_vars.link_status =
2724             (LINK_STATUS_LINK_UP |
2725              LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2726         bp->link_vars.link_up = 1;
2727         bp->link_vars.duplex = DUPLEX_FULL;
2728         bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2729         __bnx2x_link_report(bp);
2730 
2731         bnx2x_sample_bulletin(bp);
2732 
2733         /* if bulletin board did not have an update for link status
2734          * __bnx2x_link_report will report current status
2735          * but it will NOT duplicate report in case of already reported
2736          * during sampling bulletin board.
2737          */
2738         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2739     }
2740 }
2741 
2742 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2743                   u16 vlan_val, u8 allowed_prio)
2744 {
2745     struct bnx2x_func_state_params func_params = {NULL};
2746     struct bnx2x_func_afex_update_params *f_update_params =
2747         &func_params.params.afex_update;
2748 
2749     func_params.f_obj = &bp->func_obj;
2750     func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2751 
2752     /* no need to wait for RAMROD completion, so don't
2753      * set RAMROD_COMP_WAIT flag
2754      */
2755 
2756     f_update_params->vif_id = vifid;
2757     f_update_params->afex_default_vlan = vlan_val;
2758     f_update_params->allowed_priorities = allowed_prio;
2759 
2760     /* if ramrod can not be sent, response to MCP immediately */
2761     if (bnx2x_func_state_change(bp, &func_params) < 0)
2762         bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2763 
2764     return 0;
2765 }
2766 
2767 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2768                       u16 vif_index, u8 func_bit_map)
2769 {
2770     struct bnx2x_func_state_params func_params = {NULL};
2771     struct bnx2x_func_afex_viflists_params *update_params =
2772         &func_params.params.afex_viflists;
2773     int rc;
2774     u32 drv_msg_code;
2775 
2776     /* validate only LIST_SET and LIST_GET are received from switch */
2777     if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2778         BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2779               cmd_type);
2780 
2781     func_params.f_obj = &bp->func_obj;
2782     func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2783 
2784     /* set parameters according to cmd_type */
2785     update_params->afex_vif_list_command = cmd_type;
2786     update_params->vif_list_index = vif_index;
2787     update_params->func_bit_map =
2788         (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2789     update_params->func_to_clear = 0;
2790     drv_msg_code =
2791         (cmd_type == VIF_LIST_RULE_GET) ?
2792         DRV_MSG_CODE_AFEX_LISTGET_ACK :
2793         DRV_MSG_CODE_AFEX_LISTSET_ACK;
2794 
2795     /* if ramrod can not be sent, respond to MCP immediately for
2796      * SET and GET requests (other are not triggered from MCP)
2797      */
2798     rc = bnx2x_func_state_change(bp, &func_params);
2799     if (rc < 0)
2800         bnx2x_fw_command(bp, drv_msg_code, 0);
2801 
2802     return 0;
2803 }
2804 
2805 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2806 {
2807     struct afex_stats afex_stats;
2808     u32 func = BP_ABS_FUNC(bp);
2809     u32 mf_config;
2810     u16 vlan_val;
2811     u32 vlan_prio;
2812     u16 vif_id;
2813     u8 allowed_prio;
2814     u8 vlan_mode;
2815     u32 addr_to_write, vifid, addrs, stats_type, i;
2816 
2817     if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2818         vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2819         DP(BNX2X_MSG_MCP,
2820            "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2821         bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2822     }
2823 
2824     if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2825         vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2826         addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2827         DP(BNX2X_MSG_MCP,
2828            "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2829            vifid, addrs);
2830         bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2831                            addrs);
2832     }
2833 
2834     if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2835         addr_to_write = SHMEM2_RD(bp,
2836             afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2837         stats_type = SHMEM2_RD(bp,
2838             afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2839 
2840         DP(BNX2X_MSG_MCP,
2841            "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2842            addr_to_write);
2843 
2844         bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2845 
2846         /* write response to scratchpad, for MCP */
2847         for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2848             REG_WR(bp, addr_to_write + i*sizeof(u32),
2849                    *(((u32 *)(&afex_stats))+i));
2850 
2851         /* send ack message to MCP */
2852         bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2853     }
2854 
2855     if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2856         mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2857         bp->mf_config[BP_VN(bp)] = mf_config;
2858         DP(BNX2X_MSG_MCP,
2859            "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2860            mf_config);
2861 
2862         /* if VIF_SET is "enabled" */
2863         if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2864             /* set rate limit directly to internal RAM */
2865             struct cmng_init_input cmng_input;
2866             struct rate_shaping_vars_per_vn m_rs_vn;
2867             size_t size = sizeof(struct rate_shaping_vars_per_vn);
2868             u32 addr = BAR_XSTRORM_INTMEM +
2869                 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2870 
2871             bp->mf_config[BP_VN(bp)] = mf_config;
2872 
2873             bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2874             m_rs_vn.vn_counter.rate =
2875                 cmng_input.vnic_max_rate[BP_VN(bp)];
2876             m_rs_vn.vn_counter.quota =
2877                 (m_rs_vn.vn_counter.rate *
2878                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2879 
2880             __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2881 
2882             /* read relevant values from mf_cfg struct in shmem */
2883             vif_id =
2884                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2885                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2886                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2887             vlan_val =
2888                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2889                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2890                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2891             vlan_prio = (mf_config &
2892                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2893                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2894             vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2895             vlan_mode =
2896                 (MF_CFG_RD(bp,
2897                        func_mf_config[func].afex_config) &
2898                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2899                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2900             allowed_prio =
2901                 (MF_CFG_RD(bp,
2902                        func_mf_config[func].afex_config) &
2903                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2904                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2905 
2906             /* send ramrod to FW, return in case of failure */
2907             if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2908                            allowed_prio))
2909                 return;
2910 
2911             bp->afex_def_vlan_tag = vlan_val;
2912             bp->afex_vlan_mode = vlan_mode;
2913         } else {
2914             /* notify link down because BP->flags is disabled */
2915             bnx2x_link_report(bp);
2916 
2917             /* send INVALID VIF ramrod to FW */
2918             bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2919 
2920             /* Reset the default afex VLAN */
2921             bp->afex_def_vlan_tag = -1;
2922         }
2923     }
2924 }
2925 
2926 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2927 {
2928     struct bnx2x_func_switch_update_params *switch_update_params;
2929     struct bnx2x_func_state_params func_params;
2930 
2931     memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2932     switch_update_params = &func_params.params.switch_update;
2933     func_params.f_obj = &bp->func_obj;
2934     func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2935 
2936     /* Prepare parameters for function state transitions */
2937     __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2938     __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2939 
2940     if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2941         int func = BP_ABS_FUNC(bp);
2942         u32 val;
2943 
2944         /* Re-learn the S-tag from shmem */
2945         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2946                 FUNC_MF_CFG_E1HOV_TAG_MASK;
2947         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2948             bp->mf_ov = val;
2949         } else {
2950             BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2951             goto fail;
2952         }
2953 
2954         /* Configure new S-tag in LLH */
2955         REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2956                bp->mf_ov);
2957 
2958         /* Send Ramrod to update FW of change */
2959         __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2960               &switch_update_params->changes);
2961         switch_update_params->vlan = bp->mf_ov;
2962 
2963         if (bnx2x_func_state_change(bp, &func_params) < 0) {
2964             BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2965                   bp->mf_ov);
2966             goto fail;
2967         } else {
2968             DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2969                bp->mf_ov);
2970         }
2971     } else {
2972         goto fail;
2973     }
2974 
2975     bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2976     return;
2977 fail:
2978     bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2979 }
2980 
2981 static void bnx2x_pmf_update(struct bnx2x *bp)
2982 {
2983     int port = BP_PORT(bp);
2984     u32 val;
2985 
2986     bp->port.pmf = 1;
2987     DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2988 
2989     /*
2990      * We need the mb() to ensure the ordering between the writing to
2991      * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2992      */
2993     smp_mb();
2994 
2995     /* queue a periodic task */
2996     queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2997 
2998     bnx2x_dcbx_pmf_update(bp);
2999 
3000     /* enable nig attention */
3001     val = (0xff0f | (1 << (BP_VN(bp) + 4)));
3002     if (bp->common.int_block == INT_BLOCK_HC) {
3003         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
3004         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
3005     } else if (!CHIP_IS_E1x(bp)) {
3006         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
3007         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
3008     }
3009 
3010     bnx2x_stats_handle(bp, STATS_EVENT_PMF);
3011 }
3012 
3013 /* end of Link */
3014 
3015 /* slow path */
3016 
3017 /*
3018  * General service functions
3019  */
3020 
3021 /* send the MCP a request, block until there is a reply */
3022 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3023 {
3024     int mb_idx = BP_FW_MB_IDX(bp);
3025     u32 seq;
3026     u32 rc = 0;
3027     u32 cnt = 1;
3028     u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3029 
3030     mutex_lock(&bp->fw_mb_mutex);
3031     seq = ++bp->fw_seq;
3032     SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3033     SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3034 
3035     DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3036             (command | seq), param);
3037 
3038     do {
3039         /* let the FW do it's magic ... */
3040         msleep(delay);
3041 
3042         rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3043 
3044         /* Give the FW up to 5 second (500*10ms) */
3045     } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3046 
3047     DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3048        cnt*delay, rc, seq);
3049 
3050     /* is this a reply to our command? */
3051     if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3052         rc &= FW_MSG_CODE_MASK;
3053     else {
3054         /* FW BUG! */
3055         BNX2X_ERR("FW failed to respond!\n");
3056         bnx2x_fw_dump(bp);
3057         rc = 0;
3058     }
3059     mutex_unlock(&bp->fw_mb_mutex);
3060 
3061     return rc;
3062 }
3063 
3064 static void storm_memset_func_cfg(struct bnx2x *bp,
3065                  struct tstorm_eth_function_common_config *tcfg,
3066                  u16 abs_fid)
3067 {
3068     size_t size = sizeof(struct tstorm_eth_function_common_config);
3069 
3070     u32 addr = BAR_TSTRORM_INTMEM +
3071             TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3072 
3073     __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3074 }
3075 
3076 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3077 {
3078     if (CHIP_IS_E1x(bp)) {
3079         struct tstorm_eth_function_common_config tcfg = {0};
3080 
3081         storm_memset_func_cfg(bp, &tcfg, p->func_id);
3082     }
3083 
3084     /* Enable the function in the FW */
3085     storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3086     storm_memset_func_en(bp, p->func_id, 1);
3087 
3088     /* spq */
3089     if (p->spq_active) {
3090         storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3091         REG_WR(bp, XSEM_REG_FAST_MEMORY +
3092                XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3093     }
3094 }
3095 
3096 /**
3097  * bnx2x_get_common_flags - Return common flags
3098  *
3099  * @bp:     device handle
3100  * @fp:     queue handle
3101  * @zero_stats: TRUE if statistics zeroing is needed
3102  *
3103  * Return the flags that are common for the Tx-only and not normal connections.
3104  */
3105 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3106                         struct bnx2x_fastpath *fp,
3107                         bool zero_stats)
3108 {
3109     unsigned long flags = 0;
3110 
3111     /* PF driver will always initialize the Queue to an ACTIVE state */
3112     __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3113 
3114     /* tx only connections collect statistics (on the same index as the
3115      * parent connection). The statistics are zeroed when the parent
3116      * connection is initialized.
3117      */
3118 
3119     __set_bit(BNX2X_Q_FLG_STATS, &flags);
3120     if (zero_stats)
3121         __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3122 
3123     if (bp->flags & TX_SWITCHING)
3124         __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3125 
3126     __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3127     __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3128 
3129 #ifdef BNX2X_STOP_ON_ERROR
3130     __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3131 #endif
3132 
3133     return flags;
3134 }
3135 
3136 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3137                        struct bnx2x_fastpath *fp,
3138                        bool leading)
3139 {
3140     unsigned long flags = 0;
3141 
3142     /* calculate other queue flags */
3143     if (IS_MF_SD(bp))
3144         __set_bit(BNX2X_Q_FLG_OV, &flags);
3145 
3146     if (IS_FCOE_FP(fp)) {
3147         __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3148         /* For FCoE - force usage of default priority (for afex) */
3149         __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3150     }
3151 
3152     if (fp->mode != TPA_MODE_DISABLED) {
3153         __set_bit(BNX2X_Q_FLG_TPA, &flags);
3154         __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3155         if (fp->mode == TPA_MODE_GRO)
3156             __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3157     }
3158 
3159     if (leading) {
3160         __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3161         __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3162     }
3163 
3164     /* Always set HW VLAN stripping */
3165     __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3166 
3167     /* configure silent vlan removal */
3168     if (IS_MF_AFEX(bp))
3169         __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3170 
3171     return flags | bnx2x_get_common_flags(bp, fp, true);
3172 }
3173 
3174 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3175     struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3176     u8 cos)
3177 {
3178     gen_init->stat_id = bnx2x_stats_id(fp);
3179     gen_init->spcl_id = fp->cl_id;
3180 
3181     /* Always use mini-jumbo MTU for FCoE L2 ring */
3182     if (IS_FCOE_FP(fp))
3183         gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3184     else
3185         gen_init->mtu = bp->dev->mtu;
3186 
3187     gen_init->cos = cos;
3188 
3189     gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3190 }
3191 
3192 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3193     struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3194     struct bnx2x_rxq_setup_params *rxq_init)
3195 {
3196     u8 max_sge = 0;
3197     u16 sge_sz = 0;
3198     u16 tpa_agg_size = 0;
3199 
3200     if (fp->mode != TPA_MODE_DISABLED) {
3201         pause->sge_th_lo = SGE_TH_LO(bp);
3202         pause->sge_th_hi = SGE_TH_HI(bp);
3203 
3204         /* validate SGE ring has enough to cross high threshold */
3205         WARN_ON(bp->dropless_fc &&
3206                 pause->sge_th_hi + FW_PREFETCH_CNT >
3207                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3208 
3209         tpa_agg_size = TPA_AGG_SIZE;
3210         max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3211             SGE_PAGE_SHIFT;
3212         max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3213               (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3214         sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3215     }
3216 
3217     /* pause - not for e1 */
3218     if (!CHIP_IS_E1(bp)) {
3219         pause->bd_th_lo = BD_TH_LO(bp);
3220         pause->bd_th_hi = BD_TH_HI(bp);
3221 
3222         pause->rcq_th_lo = RCQ_TH_LO(bp);
3223         pause->rcq_th_hi = RCQ_TH_HI(bp);
3224         /*
3225          * validate that rings have enough entries to cross
3226          * high thresholds
3227          */
3228         WARN_ON(bp->dropless_fc &&
3229                 pause->bd_th_hi + FW_PREFETCH_CNT >
3230                 bp->rx_ring_size);
3231         WARN_ON(bp->dropless_fc &&
3232                 pause->rcq_th_hi + FW_PREFETCH_CNT >
3233                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3234 
3235         pause->pri_map = 1;
3236     }
3237 
3238     /* rxq setup */
3239     rxq_init->dscr_map = fp->rx_desc_mapping;
3240     rxq_init->sge_map = fp->rx_sge_mapping;
3241     rxq_init->rcq_map = fp->rx_comp_mapping;
3242     rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3243 
3244     /* This should be a maximum number of data bytes that may be
3245      * placed on the BD (not including paddings).
3246      */
3247     rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3248                BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3249 
3250     rxq_init->cl_qzone_id = fp->cl_qzone_id;
3251     rxq_init->tpa_agg_sz = tpa_agg_size;
3252     rxq_init->sge_buf_sz = sge_sz;
3253     rxq_init->max_sges_pkt = max_sge;
3254     rxq_init->rss_engine_id = BP_FUNC(bp);
3255     rxq_init->mcast_engine_id = BP_FUNC(bp);
3256 
3257     /* Maximum number or simultaneous TPA aggregation for this Queue.
3258      *
3259      * For PF Clients it should be the maximum available number.
3260      * VF driver(s) may want to define it to a smaller value.
3261      */
3262     rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3263 
3264     rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3265     rxq_init->fw_sb_id = fp->fw_sb_id;
3266 
3267     if (IS_FCOE_FP(fp))
3268         rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3269     else
3270         rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3271     /* configure silent vlan removal
3272      * if multi function mode is afex, then mask default vlan
3273      */
3274     if (IS_MF_AFEX(bp)) {
3275         rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3276         rxq_init->silent_removal_mask = VLAN_VID_MASK;
3277     }
3278 }
3279 
3280 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3281     struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3282     u8 cos)
3283 {
3284     txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3285     txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3286     txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3287     txq_init->fw_sb_id = fp->fw_sb_id;
3288 
3289     /*
3290      * set the tss leading client id for TX classification ==
3291      * leading RSS client id
3292      */
3293     txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3294 
3295     if (IS_FCOE_FP(fp)) {
3296         txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3297         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3298     }
3299 }
3300 
3301 static void bnx2x_pf_init(struct bnx2x *bp)
3302 {
3303     struct bnx2x_func_init_params func_init = {0};
3304     struct event_ring_data eq_data = { {0} };
3305 
3306     if (!CHIP_IS_E1x(bp)) {
3307         /* reset IGU PF statistics: MSIX + ATTN */
3308         /* PF */
3309         REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3310                BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3311                (CHIP_MODE_IS_4_PORT(bp) ?
3312                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3313         /* ATTN */
3314         REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3315                BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3316                BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3317                (CHIP_MODE_IS_4_PORT(bp) ?
3318                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3319     }
3320 
3321     func_init.spq_active = true;
3322     func_init.pf_id = BP_FUNC(bp);
3323     func_init.func_id = BP_FUNC(bp);
3324     func_init.spq_map = bp->spq_mapping;
3325     func_init.spq_prod = bp->spq_prod_idx;
3326 
3327     bnx2x_func_init(bp, &func_init);
3328 
3329     memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3330 
3331     /*
3332      * Congestion management values depend on the link rate
3333      * There is no active link so initial link rate is set to 10 Gbps.
3334      * When the link comes up The congestion management values are
3335      * re-calculated according to the actual link rate.
3336      */
3337     bp->link_vars.line_speed = SPEED_10000;
3338     bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3339 
3340     /* Only the PMF sets the HW */
3341     if (bp->port.pmf)
3342         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3343 
3344     /* init Event Queue - PCI bus guarantees correct endianity*/
3345     eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3346     eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3347     eq_data.producer = bp->eq_prod;
3348     eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3349     eq_data.sb_id = DEF_SB_ID;
3350     storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3351 }
3352 
3353 static void bnx2x_e1h_disable(struct bnx2x *bp)
3354 {
3355     int port = BP_PORT(bp);
3356 
3357     bnx2x_tx_disable(bp);
3358 
3359     REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3360 }
3361 
3362 static void bnx2x_e1h_enable(struct bnx2x *bp)
3363 {
3364     int port = BP_PORT(bp);
3365 
3366     if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3367         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3368 
3369     /* Tx queue should be only re-enabled */
3370     netif_tx_wake_all_queues(bp->dev);
3371 
3372     /*
3373      * Should not call netif_carrier_on since it will be called if the link
3374      * is up when checking for link state
3375      */
3376 }
3377 
3378 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3379 
3380 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3381 {
3382     struct eth_stats_info *ether_stat =
3383         &bp->slowpath->drv_info_to_mcp.ether_stat;
3384     struct bnx2x_vlan_mac_obj *mac_obj =
3385         &bp->sp_objs->mac_obj;
3386     int i;
3387 
3388     strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3389         ETH_STAT_INFO_VERSION_LEN);
3390 
3391     /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3392      * mac_local field in ether_stat struct. The base address is offset by 2
3393      * bytes to account for the field being 8 bytes but a mac address is
3394      * only 6 bytes. Likewise, the stride for the get_n_elements function is
3395      * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3396      * allocated by the ether_stat struct, so the macs will land in their
3397      * proper positions.
3398      */
3399     for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3400         memset(ether_stat->mac_local + i, 0,
3401                sizeof(ether_stat->mac_local[0]));
3402     mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3403                 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3404                 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3405                 ETH_ALEN);
3406     ether_stat->mtu_size = bp->dev->mtu;
3407     if (bp->dev->features & NETIF_F_RXCSUM)
3408         ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3409     if (bp->dev->features & NETIF_F_TSO)
3410         ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3411     ether_stat->feature_flags |= bp->common.boot_mode;
3412 
3413     ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3414 
3415     ether_stat->txq_size = bp->tx_ring_size;
3416     ether_stat->rxq_size = bp->rx_ring_size;
3417 
3418 #ifdef CONFIG_BNX2X_SRIOV
3419     ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3420 #endif
3421 }
3422 
3423 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3424 {
3425     struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3426     struct fcoe_stats_info *fcoe_stat =
3427         &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3428 
3429     if (!CNIC_LOADED(bp))
3430         return;
3431 
3432     memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3433 
3434     fcoe_stat->qos_priority =
3435         app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3436 
3437     /* insert FCoE stats from ramrod response */
3438     if (!NO_FCOE(bp)) {
3439         struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3440             &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3441             tstorm_queue_statistics;
3442 
3443         struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3444             &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3445             xstorm_queue_statistics;
3446 
3447         struct fcoe_statistics_params *fw_fcoe_stat =
3448             &bp->fw_stats_data->fcoe;
3449 
3450         ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3451               fcoe_stat->rx_bytes_lo,
3452               fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3453 
3454         ADD_64_LE(fcoe_stat->rx_bytes_hi,
3455               fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3456               fcoe_stat->rx_bytes_lo,
3457               fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3458 
3459         ADD_64_LE(fcoe_stat->rx_bytes_hi,
3460               fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3461               fcoe_stat->rx_bytes_lo,
3462               fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3463 
3464         ADD_64_LE(fcoe_stat->rx_bytes_hi,
3465               fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3466               fcoe_stat->rx_bytes_lo,
3467               fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3468 
3469         ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3470               fcoe_stat->rx_frames_lo,
3471               fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3472 
3473         ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3474               fcoe_stat->rx_frames_lo,
3475               fcoe_q_tstorm_stats->rcv_ucast_pkts);
3476 
3477         ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3478               fcoe_stat->rx_frames_lo,
3479               fcoe_q_tstorm_stats->rcv_bcast_pkts);
3480 
3481         ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3482               fcoe_stat->rx_frames_lo,
3483               fcoe_q_tstorm_stats->rcv_mcast_pkts);
3484 
3485         ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3486               fcoe_stat->tx_bytes_lo,
3487               fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3488 
3489         ADD_64_LE(fcoe_stat->tx_bytes_hi,
3490               fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3491               fcoe_stat->tx_bytes_lo,
3492               fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3493 
3494         ADD_64_LE(fcoe_stat->tx_bytes_hi,
3495               fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3496               fcoe_stat->tx_bytes_lo,
3497               fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3498 
3499         ADD_64_LE(fcoe_stat->tx_bytes_hi,
3500               fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3501               fcoe_stat->tx_bytes_lo,
3502               fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3503 
3504         ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3505               fcoe_stat->tx_frames_lo,
3506               fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3507 
3508         ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3509               fcoe_stat->tx_frames_lo,
3510               fcoe_q_xstorm_stats->ucast_pkts_sent);
3511 
3512         ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3513               fcoe_stat->tx_frames_lo,
3514               fcoe_q_xstorm_stats->bcast_pkts_sent);
3515 
3516         ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3517               fcoe_stat->tx_frames_lo,
3518               fcoe_q_xstorm_stats->mcast_pkts_sent);
3519     }
3520 
3521     /* ask L5 driver to add data to the struct */
3522     bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3523 }
3524 
3525 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3526 {
3527     struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3528     struct iscsi_stats_info *iscsi_stat =
3529         &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3530 
3531     if (!CNIC_LOADED(bp))
3532         return;
3533 
3534     memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3535            ETH_ALEN);
3536 
3537     iscsi_stat->qos_priority =
3538         app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3539 
3540     /* ask L5 driver to add data to the struct */
3541     bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3542 }
3543 
3544 /* called due to MCP event (on pmf):
3545  *  reread new bandwidth configuration
3546  *  configure FW
3547  *  notify others function about the change
3548  */
3549 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3550 {
3551     /* Workaround for MFW bug.
3552      * MFW is not supposed to generate BW attention in
3553      * single function mode.
3554      */
3555     if (!IS_MF(bp)) {
3556         DP(BNX2X_MSG_MCP,
3557            "Ignoring MF BW config in single function mode\n");
3558         return;
3559     }
3560 
3561     if (bp->link_vars.link_up) {
3562         bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3563         bnx2x_link_sync_notify(bp);
3564     }
3565     storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3566 }
3567 
3568 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3569 {
3570     bnx2x_config_mf_bw(bp);
3571     bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3572 }
3573 
3574 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3575 {
3576     DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3577     bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3578 }
3579 
3580 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH    (20)
3581 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT     (25)
3582 
3583 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3584 {
3585     enum drv_info_opcode op_code;
3586     u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3587     bool release = false;
3588     int wait;
3589 
3590     /* if drv_info version supported by MFW doesn't match - send NACK */
3591     if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3592         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3593         return;
3594     }
3595 
3596     op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3597           DRV_INFO_CONTROL_OP_CODE_SHIFT;
3598 
3599     /* Must prevent other flows from accessing drv_info_to_mcp */
3600     mutex_lock(&bp->drv_info_mutex);
3601 
3602     memset(&bp->slowpath->drv_info_to_mcp, 0,
3603            sizeof(union drv_info_to_mcp));
3604 
3605     switch (op_code) {
3606     case ETH_STATS_OPCODE:
3607         bnx2x_drv_info_ether_stat(bp);
3608         break;
3609     case FCOE_STATS_OPCODE:
3610         bnx2x_drv_info_fcoe_stat(bp);
3611         break;
3612     case ISCSI_STATS_OPCODE:
3613         bnx2x_drv_info_iscsi_stat(bp);
3614         break;
3615     default:
3616         /* if op code isn't supported - send NACK */
3617         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3618         goto out;
3619     }
3620 
3621     /* if we got drv_info attn from MFW then these fields are defined in
3622      * shmem2 for sure
3623      */
3624     SHMEM2_WR(bp, drv_info_host_addr_lo,
3625         U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3626     SHMEM2_WR(bp, drv_info_host_addr_hi,
3627         U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3628 
3629     bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3630 
3631     /* Since possible management wants both this and get_driver_version
3632      * need to wait until management notifies us it finished utilizing
3633      * the buffer.
3634      */
3635     if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3636         DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3637     } else if (!bp->drv_info_mng_owner) {
3638         u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3639 
3640         for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3641             u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3642 
3643             /* Management is done; need to clear indication */
3644             if (indication & bit) {
3645                 SHMEM2_WR(bp, mfw_drv_indication,
3646                       indication & ~bit);
3647                 release = true;
3648                 break;
3649             }
3650 
3651             msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3652         }
3653     }
3654     if (!release) {
3655         DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3656         bp->drv_info_mng_owner = true;
3657     }
3658 
3659 out:
3660     mutex_unlock(&bp->drv_info_mutex);
3661 }
3662 
3663 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3664 {
3665     u8 vals[4];
3666     int i = 0;
3667 
3668     if (bnx2x_format) {
3669         i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3670                &vals[0], &vals[1], &vals[2], &vals[3]);
3671         if (i > 0)
3672             vals[0] -= '0';
3673     } else {
3674         i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3675                &vals[0], &vals[1], &vals[2], &vals[3]);
3676     }
3677 
3678     while (i < 4)
3679         vals[i++] = 0;
3680 
3681     return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3682 }
3683 
3684 void bnx2x_update_mng_version(struct bnx2x *bp)
3685 {
3686     u32 iscsiver = DRV_VER_NOT_LOADED;
3687     u32 fcoever = DRV_VER_NOT_LOADED;
3688     u32 ethver = DRV_VER_NOT_LOADED;
3689     int idx = BP_FW_MB_IDX(bp);
3690     u8 *version;
3691 
3692     if (!SHMEM2_HAS(bp, func_os_drv_ver))
3693         return;
3694 
3695     mutex_lock(&bp->drv_info_mutex);
3696     /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3697     if (bp->drv_info_mng_owner)
3698         goto out;
3699 
3700     if (bp->state != BNX2X_STATE_OPEN)
3701         goto out;
3702 
3703     /* Parse ethernet driver version */
3704     ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3705     if (!CNIC_LOADED(bp))
3706         goto out;
3707 
3708     /* Try getting storage driver version via cnic */
3709     memset(&bp->slowpath->drv_info_to_mcp, 0,
3710            sizeof(union drv_info_to_mcp));
3711     bnx2x_drv_info_iscsi_stat(bp);
3712     version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3713     iscsiver = bnx2x_update_mng_version_utility(version, false);
3714 
3715     memset(&bp->slowpath->drv_info_to_mcp, 0,
3716            sizeof(union drv_info_to_mcp));
3717     bnx2x_drv_info_fcoe_stat(bp);
3718     version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3719     fcoever = bnx2x_update_mng_version_utility(version, false);
3720 
3721 out:
3722     SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3723     SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3724     SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3725 
3726     mutex_unlock(&bp->drv_info_mutex);
3727 
3728     DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3729        ethver, iscsiver, fcoever);
3730 }
3731 
3732 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3733 {
3734     u32 drv_ver;
3735     u32 valid_dump;
3736 
3737     if (!SHMEM2_HAS(bp, drv_info))
3738         return;
3739 
3740     /* Update Driver load time, possibly broken in y2038 */
3741     SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3742 
3743     drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3744     SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3745 
3746     SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3747 
3748     /* Check & notify On-Chip dump. */
3749     valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3750 
3751     if (valid_dump & FIRST_DUMP_VALID)
3752         DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3753 
3754     if (valid_dump & SECOND_DUMP_VALID)
3755         DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3756 }
3757 
3758 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3759 {
3760     u32 cmd_ok, cmd_fail;
3761 
3762     /* sanity */
3763     if (event & DRV_STATUS_DCC_EVENT_MASK &&
3764         event & DRV_STATUS_OEM_EVENT_MASK) {
3765         BNX2X_ERR("Received simultaneous events %08x\n", event);
3766         return;
3767     }
3768 
3769     if (event & DRV_STATUS_DCC_EVENT_MASK) {
3770         cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3771         cmd_ok = DRV_MSG_CODE_DCC_OK;
3772     } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3773         cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3774         cmd_ok = DRV_MSG_CODE_OEM_OK;
3775     }
3776 
3777     DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3778 
3779     if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3780              DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3781         /* This is the only place besides the function initialization
3782          * where the bp->flags can change so it is done without any
3783          * locks
3784          */
3785         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3786             DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3787             bp->flags |= MF_FUNC_DIS;
3788 
3789             bnx2x_e1h_disable(bp);
3790         } else {
3791             DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3792             bp->flags &= ~MF_FUNC_DIS;
3793 
3794             bnx2x_e1h_enable(bp);
3795         }
3796         event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3797                DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3798     }
3799 
3800     if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3801              DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3802         bnx2x_config_mf_bw(bp);
3803         event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3804                DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3805     }
3806 
3807     /* Report results to MCP */
3808     if (event)
3809         bnx2x_fw_command(bp, cmd_fail, 0);
3810     else
3811         bnx2x_fw_command(bp, cmd_ok, 0);
3812 }
3813 
3814 /* must be called under the spq lock */
3815 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3816 {
3817     struct eth_spe *next_spe = bp->spq_prod_bd;
3818 
3819     if (bp->spq_prod_bd == bp->spq_last_bd) {
3820         bp->spq_prod_bd = bp->spq;
3821         bp->spq_prod_idx = 0;
3822         DP(BNX2X_MSG_SP, "end of spq\n");
3823     } else {
3824         bp->spq_prod_bd++;
3825         bp->spq_prod_idx++;
3826     }
3827     return next_spe;
3828 }
3829 
3830 /* must be called under the spq lock */
3831 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3832 {
3833     int func = BP_FUNC(bp);
3834 
3835     /*
3836      * Make sure that BD data is updated before writing the producer:
3837      * BD data is written to the memory, the producer is read from the
3838      * memory, thus we need a full memory barrier to ensure the ordering.
3839      */
3840     mb();
3841 
3842     REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3843              bp->spq_prod_idx);
3844 }
3845 
3846 /**
3847  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3848  *
3849  * @cmd:    command to check
3850  * @cmd_type:   command type
3851  */
3852 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3853 {
3854     if ((cmd_type == NONE_CONNECTION_TYPE) ||
3855         (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3856         (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3857         (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3858         (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3859         (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3860         (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3861         return true;
3862     else
3863         return false;
3864 }
3865 
3866 /**
3867  * bnx2x_sp_post - place a single command on an SP ring
3868  *
3869  * @bp:     driver handle
3870  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3871  * @cid:    SW CID the command is related to
3872  * @data_hi:    command private data address (high 32 bits)
3873  * @data_lo:    command private data address (low 32 bits)
3874  * @cmd_type:   command type (e.g. NONE, ETH)
3875  *
3876  * SP data is handled as if it's always an address pair, thus data fields are
3877  * not swapped to little endian in upper functions. Instead this function swaps
3878  * data as if it's two u32 fields.
3879  */
3880 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3881           u32 data_hi, u32 data_lo, int cmd_type)
3882 {
3883     struct eth_spe *spe;
3884     u16 type;
3885     bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3886 
3887 #ifdef BNX2X_STOP_ON_ERROR
3888     if (unlikely(bp->panic)) {
3889         BNX2X_ERR("Can't post SP when there is panic\n");
3890         return -EIO;
3891     }
3892 #endif
3893 
3894     spin_lock_bh(&bp->spq_lock);
3895 
3896     if (common) {
3897         if (!atomic_read(&bp->eq_spq_left)) {
3898             BNX2X_ERR("BUG! EQ ring full!\n");
3899             spin_unlock_bh(&bp->spq_lock);
3900             bnx2x_panic();
3901             return -EBUSY;
3902         }
3903     } else if (!atomic_read(&bp->cq_spq_left)) {
3904             BNX2X_ERR("BUG! SPQ ring full!\n");
3905             spin_unlock_bh(&bp->spq_lock);
3906             bnx2x_panic();
3907             return -EBUSY;
3908     }
3909 
3910     spe = bnx2x_sp_get_next(bp);
3911 
3912     /* CID needs port number to be encoded int it */
3913     spe->hdr.conn_and_cmd_data =
3914             cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3915                     HW_CID(bp, cid));
3916 
3917     /* In some cases, type may already contain the func-id
3918      * mainly in SRIOV related use cases, so we add it here only
3919      * if it's not already set.
3920      */
3921     if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3922         type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3923             SPE_HDR_CONN_TYPE;
3924         type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3925              SPE_HDR_FUNCTION_ID);
3926     } else {
3927         type = cmd_type;
3928     }
3929 
3930     spe->hdr.type = cpu_to_le16(type);
3931 
3932     spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3933     spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3934 
3935     /*
3936      * It's ok if the actual decrement is issued towards the memory
3937      * somewhere between the spin_lock and spin_unlock. Thus no
3938      * more explicit memory barrier is needed.
3939      */
3940     if (common)
3941         atomic_dec(&bp->eq_spq_left);
3942     else
3943         atomic_dec(&bp->cq_spq_left);
3944 
3945     DP(BNX2X_MSG_SP,
3946        "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3947        bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3948        (u32)(U64_LO(bp->spq_mapping) +
3949        (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3950        HW_CID(bp, cid), data_hi, data_lo, type,
3951        atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3952 
3953     bnx2x_sp_prod_update(bp);
3954     spin_unlock_bh(&bp->spq_lock);
3955     return 0;
3956 }
3957 
3958 /* acquire split MCP access lock register */
3959 static int bnx2x_acquire_alr(struct bnx2x *bp)
3960 {
3961     u32 j, val;
3962     int rc = 0;
3963 
3964     might_sleep();
3965     for (j = 0; j < 1000; j++) {
3966         REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3967         val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3968         if (val & MCPR_ACCESS_LOCK_LOCK)
3969             break;
3970 
3971         usleep_range(5000, 10000);
3972     }
3973     if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3974         BNX2X_ERR("Cannot acquire MCP access lock register\n");
3975         rc = -EBUSY;
3976     }
3977 
3978     return rc;
3979 }
3980 
3981 /* release split MCP access lock register */
3982 static void bnx2x_release_alr(struct bnx2x *bp)
3983 {
3984     REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3985 }
3986 
3987 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3988 #define BNX2X_DEF_SB_IDX    0x0002
3989 
3990 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3991 {
3992     struct host_sp_status_block *def_sb = bp->def_status_blk;
3993     u16 rc = 0;
3994 
3995     barrier(); /* status block is written to by the chip */
3996     if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3997         bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3998         rc |= BNX2X_DEF_SB_ATT_IDX;
3999     }
4000 
4001     if (bp->def_idx != def_sb->sp_sb.running_index) {
4002         bp->def_idx = def_sb->sp_sb.running_index;
4003         rc |= BNX2X_DEF_SB_IDX;
4004     }
4005 
4006     /* Do not reorder: indices reading should complete before handling */
4007     barrier();
4008     return rc;
4009 }
4010 
4011 /*
4012  * slow path service functions
4013  */
4014 
4015 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
4016 {
4017     int port = BP_PORT(bp);
4018     u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4019                   MISC_REG_AEU_MASK_ATTN_FUNC_0;
4020     u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4021                        NIG_REG_MASK_INTERRUPT_PORT0;
4022     u32 aeu_mask;
4023     u32 nig_mask = 0;
4024     u32 reg_addr;
4025 
4026     if (bp->attn_state & asserted)
4027         BNX2X_ERR("IGU ERROR\n");
4028 
4029     bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4030     aeu_mask = REG_RD(bp, aeu_addr);
4031 
4032     DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4033        aeu_mask, asserted);
4034     aeu_mask &= ~(asserted & 0x3ff);
4035     DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4036 
4037     REG_WR(bp, aeu_addr, aeu_mask);
4038     bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4039 
4040     DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4041     bp->attn_state |= asserted;
4042     DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4043 
4044     if (asserted & ATTN_HARD_WIRED_MASK) {
4045         if (asserted & ATTN_NIG_FOR_FUNC) {
4046 
4047             bnx2x_acquire_phy_lock(bp);
4048 
4049             /* save nig interrupt mask */
4050             nig_mask = REG_RD(bp, nig_int_mask_addr);
4051 
4052             /* If nig_mask is not set, no need to call the update
4053              * function.
4054              */
4055             if (nig_mask) {
4056                 REG_WR(bp, nig_int_mask_addr, 0);
4057 
4058                 bnx2x_link_attn(bp);
4059             }
4060 
4061             /* handle unicore attn? */
4062         }
4063         if (asserted & ATTN_SW_TIMER_4_FUNC)
4064             DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4065 
4066         if (asserted & GPIO_2_FUNC)
4067             DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4068 
4069         if (asserted & GPIO_3_FUNC)
4070             DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4071 
4072         if (asserted & GPIO_4_FUNC)
4073             DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4074 
4075         if (port == 0) {
4076             if (asserted & ATTN_GENERAL_ATTN_1) {
4077                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4078                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4079             }
4080             if (asserted & ATTN_GENERAL_ATTN_2) {
4081                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4082                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4083             }
4084             if (asserted & ATTN_GENERAL_ATTN_3) {
4085                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4086                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4087             }
4088         } else {
4089             if (asserted & ATTN_GENERAL_ATTN_4) {
4090                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4091                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4092             }
4093             if (asserted & ATTN_GENERAL_ATTN_5) {
4094                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4095                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4096             }
4097             if (asserted & ATTN_GENERAL_ATTN_6) {
4098                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4099                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4100             }
4101         }
4102 
4103     } /* if hardwired */
4104 
4105     if (bp->common.int_block == INT_BLOCK_HC)
4106         reg_addr = (HC_REG_COMMAND_REG + port*32 +
4107                 COMMAND_REG_ATTN_BITS_SET);
4108     else
4109         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4110 
4111     DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4112        (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4113     REG_WR(bp, reg_addr, asserted);
4114 
4115     /* now set back the mask */
4116     if (asserted & ATTN_NIG_FOR_FUNC) {
4117         /* Verify that IGU ack through BAR was written before restoring
4118          * NIG mask. This loop should exit after 2-3 iterations max.
4119          */
4120         if (bp->common.int_block != INT_BLOCK_HC) {
4121             u32 cnt = 0, igu_acked;
4122             do {
4123                 igu_acked = REG_RD(bp,
4124                            IGU_REG_ATTENTION_ACK_BITS);
4125             } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4126                  (++cnt < MAX_IGU_ATTN_ACK_TO));
4127             if (!igu_acked)
4128                 DP(NETIF_MSG_HW,
4129                    "Failed to verify IGU ack on time\n");
4130             barrier();
4131         }
4132         REG_WR(bp, nig_int_mask_addr, nig_mask);
4133         bnx2x_release_phy_lock(bp);
4134     }
4135 }
4136 
4137 static void bnx2x_fan_failure(struct bnx2x *bp)
4138 {
4139     int port = BP_PORT(bp);
4140     u32 ext_phy_config;
4141     /* mark the failure */
4142     ext_phy_config =
4143         SHMEM_RD(bp,
4144              dev_info.port_hw_config[port].external_phy_config);
4145 
4146     ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4147     ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4148     SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4149          ext_phy_config);
4150 
4151     /* log the failure */
4152     netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4153                 "Please contact OEM Support for assistance\n");
4154 
4155     /* Schedule device reset (unload)
4156      * This is due to some boards consuming sufficient power when driver is
4157      * up to overheat if fan fails.
4158      */
4159     bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4160 }
4161 
4162 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4163 {
4164     int port = BP_PORT(bp);
4165     int reg_offset;
4166     u32 val;
4167 
4168     reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4169                  MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4170 
4171     if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4172 
4173         val = REG_RD(bp, reg_offset);
4174         val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4175         REG_WR(bp, reg_offset, val);
4176 
4177         BNX2X_ERR("SPIO5 hw attention\n");
4178 
4179         /* Fan failure attention */
4180         bnx2x_hw_reset_phy(&bp->link_params);
4181         bnx2x_fan_failure(bp);
4182     }
4183 
4184     if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4185         bnx2x_acquire_phy_lock(bp);
4186         bnx2x_handle_module_detect_int(&bp->link_params);
4187         bnx2x_release_phy_lock(bp);
4188     }
4189 
4190     if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4191 
4192         val = REG_RD(bp, reg_offset);
4193         val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4194         REG_WR(bp, reg_offset, val);
4195 
4196         BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4197               (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4198         bnx2x_panic();
4199     }
4200 }
4201 
4202 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4203 {
4204     u32 val;
4205 
4206     if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4207 
4208         val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4209         BNX2X_ERR("DB hw attention 0x%x\n", val);
4210         /* DORQ discard attention */
4211         if (val & 0x2)
4212             BNX2X_ERR("FATAL error from DORQ\n");
4213     }
4214 
4215     if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4216 
4217         int port = BP_PORT(bp);
4218         int reg_offset;
4219 
4220         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4221                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4222 
4223         val = REG_RD(bp, reg_offset);
4224         val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4225         REG_WR(bp, reg_offset, val);
4226 
4227         BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4228               (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4229         bnx2x_panic();
4230     }
4231 }
4232 
4233 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4234 {
4235     u32 val;
4236 
4237     if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4238 
4239         val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4240         BNX2X_ERR("CFC hw attention 0x%x\n", val);
4241         /* CFC error attention */
4242         if (val & 0x2)
4243             BNX2X_ERR("FATAL error from CFC\n");
4244     }
4245 
4246     if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4247         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4248         BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4249         /* RQ_USDMDP_FIFO_OVERFLOW */
4250         if (val & 0x18000)
4251             BNX2X_ERR("FATAL error from PXP\n");
4252 
4253         if (!CHIP_IS_E1x(bp)) {
4254             val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4255             BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4256         }
4257     }
4258 
4259     if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4260 
4261         int port = BP_PORT(bp);
4262         int reg_offset;
4263 
4264         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4265                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4266 
4267         val = REG_RD(bp, reg_offset);
4268         val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4269         REG_WR(bp, reg_offset, val);
4270 
4271         BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4272               (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4273         bnx2x_panic();
4274     }
4275 }
4276 
4277 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4278 {
4279     u32 val;
4280 
4281     if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4282 
4283         if (attn & BNX2X_PMF_LINK_ASSERT) {
4284             int func = BP_FUNC(bp);
4285 
4286             REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4287             bnx2x_read_mf_cfg(bp);
4288             bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4289                     func_mf_config[BP_ABS_FUNC(bp)].config);
4290             val = SHMEM_RD(bp,
4291                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
4292 
4293             if (val & (DRV_STATUS_DCC_EVENT_MASK |
4294                    DRV_STATUS_OEM_EVENT_MASK))
4295                 bnx2x_oem_event(bp,
4296                     (val & (DRV_STATUS_DCC_EVENT_MASK |
4297                         DRV_STATUS_OEM_EVENT_MASK)));
4298 
4299             if (val & DRV_STATUS_SET_MF_BW)
4300                 bnx2x_set_mf_bw(bp);
4301 
4302             if (val & DRV_STATUS_DRV_INFO_REQ)
4303                 bnx2x_handle_drv_info_req(bp);
4304 
4305             if (val & DRV_STATUS_VF_DISABLED)
4306                 bnx2x_schedule_iov_task(bp,
4307                             BNX2X_IOV_HANDLE_FLR);
4308 
4309             if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4310                 bnx2x_pmf_update(bp);
4311 
4312             if (bp->port.pmf &&
4313                 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4314                 bp->dcbx_enabled > 0)
4315                 /* start dcbx state machine */
4316                 bnx2x_dcbx_set_params(bp,
4317                     BNX2X_DCBX_STATE_NEG_RECEIVED);
4318             if (val & DRV_STATUS_AFEX_EVENT_MASK)
4319                 bnx2x_handle_afex_cmd(bp,
4320                     val & DRV_STATUS_AFEX_EVENT_MASK);
4321             if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4322                 bnx2x_handle_eee_event(bp);
4323 
4324             if (val & DRV_STATUS_OEM_UPDATE_SVID)
4325                 bnx2x_schedule_sp_rtnl(bp,
4326                     BNX2X_SP_RTNL_UPDATE_SVID, 0);
4327 
4328             if (bp->link_vars.periodic_flags &
4329                 PERIODIC_FLAGS_LINK_EVENT) {
4330                 /*  sync with link */
4331                 bnx2x_acquire_phy_lock(bp);
4332                 bp->link_vars.periodic_flags &=
4333                     ~PERIODIC_FLAGS_LINK_EVENT;
4334                 bnx2x_release_phy_lock(bp);
4335                 if (IS_MF(bp))
4336                     bnx2x_link_sync_notify(bp);
4337                 bnx2x_link_report(bp);
4338             }
4339             /* Always call it here: bnx2x_link_report() will
4340              * prevent the link indication duplication.
4341              */
4342             bnx2x__link_status_update(bp);
4343         } else if (attn & BNX2X_MC_ASSERT_BITS) {
4344 
4345             BNX2X_ERR("MC assert!\n");
4346             bnx2x_mc_assert(bp);
4347             REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4348             REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4349             REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4350             REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4351             bnx2x_panic();
4352 
4353         } else if (attn & BNX2X_MCP_ASSERT) {
4354 
4355             BNX2X_ERR("MCP assert!\n");
4356             REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4357             bnx2x_fw_dump(bp);
4358 
4359         } else
4360             BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4361     }
4362 
4363     if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4364         BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4365         if (attn & BNX2X_GRC_TIMEOUT) {
4366             val = CHIP_IS_E1(bp) ? 0 :
4367                     REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4368             BNX2X_ERR("GRC time-out 0x%08x\n", val);
4369         }
4370         if (attn & BNX2X_GRC_RSV) {
4371             val = CHIP_IS_E1(bp) ? 0 :
4372                     REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4373             BNX2X_ERR("GRC reserved 0x%08x\n", val);
4374         }
4375         REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4376     }
4377 }
4378 
4379 /*
4380  * Bits map:
4381  * 0-7   - Engine0 load counter.
4382  * 8-15  - Engine1 load counter.
4383  * 16    - Engine0 RESET_IN_PROGRESS bit.
4384  * 17    - Engine1 RESET_IN_PROGRESS bit.
4385  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4386  *         on the engine
4387  * 19    - Engine1 ONE_IS_LOADED.
4388  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4389  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4390  *         just the one belonging to its engine).
4391  *
4392  */
4393 #define BNX2X_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
4394 
4395 #define BNX2X_PATH0_LOAD_CNT_MASK   0x000000ff
4396 #define BNX2X_PATH0_LOAD_CNT_SHIFT  0
4397 #define BNX2X_PATH1_LOAD_CNT_MASK   0x0000ff00
4398 #define BNX2X_PATH1_LOAD_CNT_SHIFT  8
4399 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
4400 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
4401 #define BNX2X_GLOBAL_RESET_BIT      0x00040000
4402 
4403 /*
4404  * Set the GLOBAL_RESET bit.
4405  *
4406  * Should be run under rtnl lock
4407  */
4408 void bnx2x_set_reset_global(struct bnx2x *bp)
4409 {
4410     u32 val;
4411     bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4412     val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4413     REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4414     bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4415 }
4416 
4417 /*
4418  * Clear the GLOBAL_RESET bit.
4419  *
4420  * Should be run under rtnl lock
4421  */
4422 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4423 {
4424     u32 val;
4425     bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4426     val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4427     REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4428     bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4429 }
4430 
4431 /*
4432  * Checks the GLOBAL_RESET bit.
4433  *
4434  * should be run under rtnl lock
4435  */
4436 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4437 {
4438     u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4439 
4440     DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4441     return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4442 }
4443 
4444 /*
4445  * Clear RESET_IN_PROGRESS bit for the current engine.
4446  *
4447  * Should be run under rtnl lock
4448  */
4449 static void bnx2x_set_reset_done(struct bnx2x *bp)
4450 {
4451     u32 val;
4452     u32 bit = BP_PATH(bp) ?
4453         BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4454     bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4455     val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4456 
4457     /* Clear the bit */
4458     val &= ~bit;
4459     REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4460 
4461     bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4462 }
4463 
4464 /*
4465  * Set RESET_IN_PROGRESS for the current engine.
4466  *
4467  * should be run under rtnl lock
4468  */
4469 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4470 {
4471     u32 val;
4472     u32 bit = BP_PATH(bp) ?
4473         BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4474     bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4475     val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4476 
4477     /* Set the bit */
4478     val |= bit;
4479     REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4480     bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4481 }
4482 
4483 /*
4484  * Checks the RESET_IN_PROGRESS bit for the given engine.
4485  * should be run under rtnl lock
4486  */
4487 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4488 {
4489     u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4490     u32 bit = engine ?
4491         BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4492 
4493     /* return false if bit is set */
4494     return (val & bit) ? false : true;
4495 }
4496 
4497 /*
4498  * set pf load for the current pf.
4499  *
4500  * should be run under rtnl lock
4501  */
4502 void bnx2x_set_pf_load(struct bnx2x *bp)
4503 {
4504     u32 val1, val;
4505     u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4506                  BNX2X_PATH0_LOAD_CNT_MASK;
4507     u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4508                  BNX2X_PATH0_LOAD_CNT_SHIFT;
4509 
4510     bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4511     val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4512 
4513     DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4514 
4515     /* get the current counter value */
4516     val1 = (val & mask) >> shift;
4517 
4518     /* set bit of that PF */
4519     val1 |= (1 << bp->pf_num);
4520 
4521     /* clear the old value */
4522     val &= ~mask;
4523 
4524     /* set the new one */
4525     val |= ((val1 << shift) & mask);
4526 
4527     REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4528     bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4529 }
4530 
4531 /**
4532  * bnx2x_clear_pf_load - clear pf load mark
4533  *
4534  * @bp:     driver handle
4535  *
4536  * Should be run under rtnl lock.
4537  * Decrements the load counter for the current engine. Returns
4538  * whether other functions are still loaded
4539  */
4540 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4541 {
4542     u32 val1, val;
4543     u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4544                  BNX2X_PATH0_LOAD_CNT_MASK;
4545     u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4546                  BNX2X_PATH0_LOAD_CNT_SHIFT;
4547 
4548     bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4549     val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4550     DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4551 
4552     /* get the current counter value */
4553     val1 = (val & mask) >> shift;
4554 
4555     /* clear bit of that PF */
4556     val1 &= ~(1 << bp->pf_num);
4557 
4558     /* clear the old value */
4559     val &= ~mask;
4560 
4561     /* set the new one */
4562     val |= ((val1 << shift) & mask);
4563 
4564     REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4565     bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4566     return val1 != 0;
4567 }
4568 
4569 /*
4570  * Read the load status for the current engine.
4571  *
4572  * should be run under rtnl lock
4573  */
4574 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4575 {
4576     u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4577                  BNX2X_PATH0_LOAD_CNT_MASK);
4578     u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4579                  BNX2X_PATH0_LOAD_CNT_SHIFT);
4580     u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4581 
4582     DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4583 
4584     val = (val & mask) >> shift;
4585 
4586     DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4587        engine, val);
4588 
4589     return val != 0;
4590 }
4591 
4592 static void _print_parity(struct bnx2x *bp, u32 reg)
4593 {
4594     pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4595 }
4596 
4597 static void _print_next_block(int idx, const char *blk)
4598 {
4599     pr_cont("%s%s", idx ? ", " : "", blk);
4600 }
4601 
4602 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4603                         int *par_num, bool print)
4604 {
4605     u32 cur_bit;
4606     bool res;
4607     int i;
4608 
4609     res = false;
4610 
4611     for (i = 0; sig; i++) {
4612         cur_bit = (0x1UL << i);
4613         if (sig & cur_bit) {
4614             res |= true; /* Each bit is real error! */
4615 
4616             if (print) {
4617                 switch (cur_bit) {
4618                 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4619                     _print_next_block((*par_num)++, "BRB");
4620                     _print_parity(bp,
4621                               BRB1_REG_BRB1_PRTY_STS);
4622                     break;
4623                 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4624                     _print_next_block((*par_num)++,
4625                               "PARSER");
4626                     _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4627                     break;
4628                 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4629                     _print_next_block((*par_num)++, "TSDM");
4630                     _print_parity(bp,
4631                               TSDM_REG_TSDM_PRTY_STS);
4632                     break;
4633                 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4634                     _print_next_block((*par_num)++,
4635                               "SEARCHER");
4636                     _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4637                     break;
4638                 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4639                     _print_next_block((*par_num)++, "TCM");
4640                     _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4641                     break;
4642                 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4643                     _print_next_block((*par_num)++,
4644                               "TSEMI");
4645                     _print_parity(bp,
4646                               TSEM_REG_TSEM_PRTY_STS_0);
4647                     _print_parity(bp,
4648                               TSEM_REG_TSEM_PRTY_STS_1);
4649                     break;
4650                 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4651                     _print_next_block((*par_num)++, "XPB");
4652                     _print_parity(bp, GRCBASE_XPB +
4653                               PB_REG_PB_PRTY_STS);
4654                     break;
4655                 }
4656             }
4657 
4658             /* Clear the bit */
4659             sig &= ~cur_bit;
4660         }
4661     }
4662 
4663     return res;
4664 }
4665 
4666 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4667                         int *par_num, bool *global,
4668                         bool print)
4669 {
4670     u32 cur_bit;
4671     bool res;
4672     int i;
4673 
4674     res = false;
4675 
4676     for (i = 0; sig; i++) {
4677         cur_bit = (0x1UL << i);
4678         if (sig & cur_bit) {
4679             res |= true; /* Each bit is real error! */
4680             switch (cur_bit) {
4681             case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4682                 if (print) {
4683                     _print_next_block((*par_num)++, "PBF");
4684                     _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4685                 }
4686                 break;
4687             case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4688                 if (print) {
4689                     _print_next_block((*par_num)++, "QM");
4690                     _print_parity(bp, QM_REG_QM_PRTY_STS);
4691                 }
4692                 break;
4693             case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4694                 if (print) {
4695                     _print_next_block((*par_num)++, "TM");
4696                     _print_parity(bp, TM_REG_TM_PRTY_STS);
4697                 }
4698                 break;
4699             case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4700                 if (print) {
4701                     _print_next_block((*par_num)++, "XSDM");
4702                     _print_parity(bp,
4703                               XSDM_REG_XSDM_PRTY_STS);
4704                 }
4705                 break;
4706             case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4707                 if (print) {
4708                     _print_next_block((*par_num)++, "XCM");
4709                     _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4710                 }
4711                 break;
4712             case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4713                 if (print) {
4714                     _print_next_block((*par_num)++,
4715                               "XSEMI");
4716                     _print_parity(bp,
4717                               XSEM_REG_XSEM_PRTY_STS_0);
4718                     _print_parity(bp,
4719                               XSEM_REG_XSEM_PRTY_STS_1);
4720                 }
4721                 break;
4722             case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4723                 if (print) {
4724                     _print_next_block((*par_num)++,
4725                               "DOORBELLQ");
4726                     _print_parity(bp,
4727                               DORQ_REG_DORQ_PRTY_STS);
4728                 }
4729                 break;
4730             case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4731                 if (print) {
4732                     _print_next_block((*par_num)++, "NIG");
4733                     if (CHIP_IS_E1x(bp)) {
4734                         _print_parity(bp,
4735                             NIG_REG_NIG_PRTY_STS);
4736                     } else {
4737                         _print_parity(bp,
4738                             NIG_REG_NIG_PRTY_STS_0);
4739                         _print_parity(bp,
4740                             NIG_REG_NIG_PRTY_STS_1);
4741                     }
4742                 }
4743                 break;
4744             case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4745                 if (print)
4746                     _print_next_block((*par_num)++,
4747                               "VAUX PCI CORE");
4748                 *global = true;
4749                 break;
4750             case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4751                 if (print) {
4752                     _print_next_block((*par_num)++,
4753                               "DEBUG");
4754                     _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4755                 }
4756                 break;
4757             case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4758                 if (print) {
4759                     _print_next_block((*par_num)++, "USDM");
4760                     _print_parity(bp,
4761                               USDM_REG_USDM_PRTY_STS);
4762                 }
4763                 break;
4764             case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4765                 if (print) {
4766                     _print_next_block((*par_num)++, "UCM");
4767                     _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4768                 }
4769                 break;
4770             case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4771                 if (print) {
4772                     _print_next_block((*par_num)++,
4773                               "USEMI");
4774                     _print_parity(bp,
4775                               USEM_REG_USEM_PRTY_STS_0);
4776                     _print_parity(bp,
4777                               USEM_REG_USEM_PRTY_STS_1);
4778                 }
4779                 break;
4780             case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4781                 if (print) {
4782                     _print_next_block((*par_num)++, "UPB");
4783                     _print_parity(bp, GRCBASE_UPB +
4784                               PB_REG_PB_PRTY_STS);
4785                 }
4786                 break;
4787             case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4788                 if (print) {
4789                     _print_next_block((*par_num)++, "CSDM");
4790                     _print_parity(bp,
4791                               CSDM_REG_CSDM_PRTY_STS);
4792                 }
4793                 break;
4794             case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4795                 if (print) {
4796                     _print_next_block((*par_num)++, "CCM");
4797                     _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4798                 }
4799                 break;
4800             }
4801 
4802             /* Clear the bit */
4803             sig &= ~cur_bit;
4804         }
4805     }
4806 
4807     return res;
4808 }
4809 
4810 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4811                         int *par_num, bool print)
4812 {
4813     u32 cur_bit;
4814     bool res;
4815     int i;
4816 
4817     res = false;
4818 
4819     for (i = 0; sig; i++) {
4820         cur_bit = (0x1UL << i);
4821         if (sig & cur_bit) {
4822             res = true; /* Each bit is real error! */
4823             if (print) {
4824                 switch (cur_bit) {
4825                 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4826                     _print_next_block((*par_num)++,
4827                               "CSEMI");
4828                     _print_parity(bp,
4829                               CSEM_REG_CSEM_PRTY_STS_0);
4830                     _print_parity(bp,
4831                               CSEM_REG_CSEM_PRTY_STS_1);
4832                     break;
4833                 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4834                     _print_next_block((*par_num)++, "PXP");
4835                     _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4836                     _print_parity(bp,
4837                               PXP2_REG_PXP2_PRTY_STS_0);
4838                     _print_parity(bp,
4839                               PXP2_REG_PXP2_PRTY_STS_1);
4840                     break;
4841                 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4842                     _print_next_block((*par_num)++,
4843                               "PXPPCICLOCKCLIENT");
4844                     break;
4845                 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4846                     _print_next_block((*par_num)++, "CFC");
4847                     _print_parity(bp,
4848                               CFC_REG_CFC_PRTY_STS);
4849                     break;
4850                 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4851                     _print_next_block((*par_num)++, "CDU");
4852                     _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4853                     break;
4854                 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4855                     _print_next_block((*par_num)++, "DMAE");
4856                     _print_parity(bp,
4857                               DMAE_REG_DMAE_PRTY_STS);
4858                     break;
4859                 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4860                     _print_next_block((*par_num)++, "IGU");
4861                     if (CHIP_IS_E1x(bp))
4862                         _print_parity(bp,
4863                             HC_REG_HC_PRTY_STS);
4864                     else
4865                         _print_parity(bp,
4866                             IGU_REG_IGU_PRTY_STS);
4867                     break;
4868                 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4869                     _print_next_block((*par_num)++, "MISC");
4870                     _print_parity(bp,
4871                               MISC_REG_MISC_PRTY_STS);
4872                     break;
4873                 }
4874             }
4875 
4876             /* Clear the bit */
4877             sig &= ~cur_bit;
4878         }
4879     }
4880 
4881     return res;
4882 }
4883 
4884 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4885                         int *par_num, bool *global,
4886                         bool print)
4887 {
4888     bool res = false;
4889     u32 cur_bit;
4890     int i;
4891 
4892     for (i = 0; sig; i++) {
4893         cur_bit = (0x1UL << i);
4894         if (sig & cur_bit) {
4895             switch (cur_bit) {
4896             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4897                 if (print)
4898                     _print_next_block((*par_num)++,
4899                               "MCP ROM");
4900                 *global = true;
4901                 res = true;
4902                 break;
4903             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4904                 if (print)
4905                     _print_next_block((*par_num)++,
4906                               "MCP UMP RX");
4907                 *global = true;
4908                 res = true;
4909                 break;
4910             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4911                 if (print)
4912                     _print_next_block((*par_num)++,
4913                               "MCP UMP TX");
4914                 *global = true;
4915                 res = true;
4916                 break;
4917             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4918                 (*par_num)++;
4919                 /* clear latched SCPAD PATIRY from MCP */
4920                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4921                        1UL << 10);
4922                 break;
4923             }
4924 
4925             /* Clear the bit */
4926             sig &= ~cur_bit;
4927         }
4928     }
4929 
4930     return res;
4931 }
4932 
4933 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4934                         int *par_num, bool print)
4935 {
4936     u32 cur_bit;
4937     bool res;
4938     int i;
4939 
4940     res = false;
4941 
4942     for (i = 0; sig; i++) {
4943         cur_bit = (0x1UL << i);
4944         if (sig & cur_bit) {
4945             res = true; /* Each bit is real error! */
4946             if (print) {
4947                 switch (cur_bit) {
4948                 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4949                     _print_next_block((*par_num)++,
4950                               "PGLUE_B");
4951                     _print_parity(bp,
4952                               PGLUE_B_REG_PGLUE_B_PRTY_STS);
4953                     break;
4954                 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4955                     _print_next_block((*par_num)++, "ATC");
4956                     _print_parity(bp,
4957                               ATC_REG_ATC_PRTY_STS);
4958                     break;
4959                 }
4960             }
4961             /* Clear the bit */
4962             sig &= ~cur_bit;
4963         }
4964     }
4965 
4966     return res;
4967 }
4968 
4969 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4970                   u32 *sig)
4971 {
4972     bool res = false;
4973 
4974     if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4975         (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4976         (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4977         (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4978         (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4979         int par_num = 0;
4980 
4981         DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4982                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4983               sig[0] & HW_PRTY_ASSERT_SET_0,
4984               sig[1] & HW_PRTY_ASSERT_SET_1,
4985               sig[2] & HW_PRTY_ASSERT_SET_2,
4986               sig[3] & HW_PRTY_ASSERT_SET_3,
4987               sig[4] & HW_PRTY_ASSERT_SET_4);
4988         if (print) {
4989             if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4990                  (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4991                  (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4992                  (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4993                  (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4994                 netdev_err(bp->dev,
4995                        "Parity errors detected in blocks: ");
4996             } else {
4997                 print = false;
4998             }
4999         }
5000         res |= bnx2x_check_blocks_with_parity0(bp,
5001             sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
5002         res |= bnx2x_check_blocks_with_parity1(bp,
5003             sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
5004         res |= bnx2x_check_blocks_with_parity2(bp,
5005             sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
5006         res |= bnx2x_check_blocks_with_parity3(bp,
5007             sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
5008         res |= bnx2x_check_blocks_with_parity4(bp,
5009             sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
5010 
5011         if (print)
5012             pr_cont("\n");
5013     }
5014 
5015     return res;
5016 }
5017 
5018 /**
5019  * bnx2x_chk_parity_attn - checks for parity attentions.
5020  *
5021  * @bp:     driver handle
5022  * @global: true if there was a global attention
5023  * @print:  show parity attention in syslog
5024  */
5025 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5026 {
5027     struct attn_route attn = { {0} };
5028     int port = BP_PORT(bp);
5029 
5030     attn.sig[0] = REG_RD(bp,
5031         MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5032                  port*4);
5033     attn.sig[1] = REG_RD(bp,
5034         MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5035                  port*4);
5036     attn.sig[2] = REG_RD(bp,
5037         MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5038                  port*4);
5039     attn.sig[3] = REG_RD(bp,
5040         MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5041                  port*4);
5042     /* Since MCP attentions can't be disabled inside the block, we need to
5043      * read AEU registers to see whether they're currently disabled
5044      */
5045     attn.sig[3] &= ((REG_RD(bp,
5046                 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5047                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5048              MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5049             ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5050 
5051     if (!CHIP_IS_E1x(bp))
5052         attn.sig[4] = REG_RD(bp,
5053             MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5054                      port*4);
5055 
5056     return bnx2x_parity_attn(bp, global, print, attn.sig);
5057 }
5058 
5059 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5060 {
5061     u32 val;
5062     if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5063 
5064         val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5065         BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5066         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5067             BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5068         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5069             BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5070         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5071             BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5072         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5073             BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5074         if (val &
5075             PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5076             BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5077         if (val &
5078             PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5079             BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5080         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5081             BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5082         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5083             BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5084         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5085             BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5086     }
5087     if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5088         val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5089         BNX2X_ERR("ATC hw attention 0x%x\n", val);
5090         if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5091             BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5092         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5093             BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5094         if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5095             BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5096         if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5097             BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5098         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5099             BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5100         if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5101             BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5102     }
5103 
5104     if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5105             AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5106         BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5107         (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5108             AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5109     }
5110 }
5111 
5112 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5113 {
5114     struct attn_route attn, *group_mask;
5115     int port = BP_PORT(bp);
5116     int index;
5117     u32 reg_addr;
5118     u32 val;
5119     u32 aeu_mask;
5120     bool global = false;
5121 
5122     /* need to take HW lock because MCP or other port might also
5123        try to handle this event */
5124     bnx2x_acquire_alr(bp);
5125 
5126     if (bnx2x_chk_parity_attn(bp, &global, true)) {
5127 #ifndef BNX2X_STOP_ON_ERROR
5128         bp->recovery_state = BNX2X_RECOVERY_INIT;
5129         schedule_delayed_work(&bp->sp_rtnl_task, 0);
5130         /* Disable HW interrupts */
5131         bnx2x_int_disable(bp);
5132         /* In case of parity errors don't handle attentions so that
5133          * other function would "see" parity errors.
5134          */
5135 #else
5136         bnx2x_panic();
5137 #endif
5138         bnx2x_release_alr(bp);
5139         return;
5140     }
5141 
5142     attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5143     attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5144     attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5145     attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5146     if (!CHIP_IS_E1x(bp))
5147         attn.sig[4] =
5148               REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5149     else
5150         attn.sig[4] = 0;
5151 
5152     DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5153        attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5154 
5155     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5156         if (deasserted & (1 << index)) {
5157             group_mask = &bp->attn_group[index];
5158 
5159             DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5160                index,
5161                group_mask->sig[0], group_mask->sig[1],
5162                group_mask->sig[2], group_mask->sig[3],
5163                group_mask->sig[4]);
5164 
5165             bnx2x_attn_int_deasserted4(bp,
5166                     attn.sig[4] & group_mask->sig[4]);
5167             bnx2x_attn_int_deasserted3(bp,
5168                     attn.sig[3] & group_mask->sig[3]);
5169             bnx2x_attn_int_deasserted1(bp,
5170                     attn.sig[1] & group_mask->sig[1]);
5171             bnx2x_attn_int_deasserted2(bp,
5172                     attn.sig[2] & group_mask->sig[2]);
5173             bnx2x_attn_int_deasserted0(bp,
5174                     attn.sig[0] & group_mask->sig[0]);
5175         }
5176     }
5177 
5178     bnx2x_release_alr(bp);
5179 
5180     if (bp->common.int_block == INT_BLOCK_HC)
5181         reg_addr = (HC_REG_COMMAND_REG + port*32 +
5182                 COMMAND_REG_ATTN_BITS_CLR);
5183     else
5184         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5185 
5186     val = ~deasserted;
5187     DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5188        (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5189     REG_WR(bp, reg_addr, val);
5190 
5191     if (~bp->attn_state & deasserted)
5192         BNX2X_ERR("IGU ERROR\n");
5193 
5194     reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5195               MISC_REG_AEU_MASK_ATTN_FUNC_0;
5196 
5197     bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5198     aeu_mask = REG_RD(bp, reg_addr);
5199 
5200     DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5201        aeu_mask, deasserted);
5202     aeu_mask |= (deasserted & 0x3ff);
5203     DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5204 
5205     REG_WR(bp, reg_addr, aeu_mask);
5206     bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5207 
5208     DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5209     bp->attn_state &= ~deasserted;
5210     DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5211 }
5212 
5213 static void bnx2x_attn_int(struct bnx2x *bp)
5214 {
5215     /* read local copy of bits */
5216     u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5217                                 attn_bits);
5218     u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5219                                 attn_bits_ack);
5220     u32 attn_state = bp->attn_state;
5221 
5222     /* look for changed bits */
5223     u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5224     u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5225 
5226     DP(NETIF_MSG_HW,
5227        "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5228        attn_bits, attn_ack, asserted, deasserted);
5229 
5230     if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5231         BNX2X_ERR("BAD attention state\n");
5232 
5233     /* handle bits that were raised */
5234     if (asserted)
5235         bnx2x_attn_int_asserted(bp, asserted);
5236 
5237     if (deasserted)
5238         bnx2x_attn_int_deasserted(bp, deasserted);
5239 }
5240 
5241 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5242               u16 index, u8 op, u8 update)
5243 {
5244     u32 igu_addr = bp->igu_base_addr;
5245     igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5246     bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5247                  igu_addr);
5248 }
5249 
5250 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5251 {
5252     /* No memory barriers */
5253     storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5254 }
5255 
5256 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5257                       union event_ring_elem *elem)
5258 {
5259     u8 err = elem->message.error;
5260 
5261     if (!bp->cnic_eth_dev.starting_cid  ||
5262         (cid < bp->cnic_eth_dev.starting_cid &&
5263         cid != bp->cnic_eth_dev.iscsi_l2_cid))
5264         return 1;
5265 
5266     DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5267 
5268     if (unlikely(err)) {
5269 
5270         BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5271               cid);
5272         bnx2x_panic_dump(bp, false);
5273     }
5274     bnx2x_cnic_cfc_comp(bp, cid, err);
5275     return 0;
5276 }
5277 
5278 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5279 {
5280     struct bnx2x_mcast_ramrod_params rparam;
5281     int rc;
5282 
5283     memset(&rparam, 0, sizeof(rparam));
5284 
5285     rparam.mcast_obj = &bp->mcast_obj;
5286 
5287     netif_addr_lock_bh(bp->dev);
5288 
5289     /* Clear pending state for the last command */
5290     bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5291 
5292     /* If there are pending mcast commands - send them */
5293     if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5294         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5295         if (rc < 0)
5296             BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5297                   rc);
5298     }
5299 
5300     netif_addr_unlock_bh(bp->dev);
5301 }
5302 
5303 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5304                         union event_ring_elem *elem)
5305 {
5306     unsigned long ramrod_flags = 0;
5307     int rc = 0;
5308     u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5309     u32 cid = echo & BNX2X_SWCID_MASK;
5310     struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5311 
5312     /* Always push next commands out, don't wait here */
5313     __set_bit(RAMROD_CONT, &ramrod_flags);
5314 
5315     switch (echo >> BNX2X_SWCID_SHIFT) {
5316     case BNX2X_FILTER_MAC_PENDING:
5317         DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5318         if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5319             vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5320         else
5321             vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5322 
5323         break;
5324     case BNX2X_FILTER_VLAN_PENDING:
5325         DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5326         vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5327         break;
5328     case BNX2X_FILTER_MCAST_PENDING:
5329         DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5330         /* This is only relevant for 57710 where multicast MACs are
5331          * configured as unicast MACs using the same ramrod.
5332          */
5333         bnx2x_handle_mcast_eqe(bp);
5334         return;
5335     default:
5336         BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5337         return;
5338     }
5339 
5340     rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5341 
5342     if (rc < 0)
5343         BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5344     else if (rc > 0)
5345         DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5346 }
5347 
5348 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5349 
5350 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5351 {
5352     netif_addr_lock_bh(bp->dev);
5353 
5354     clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5355 
5356     /* Send rx_mode command again if was requested */
5357     if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5358         bnx2x_set_storm_rx_mode(bp);
5359     else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5360                     &bp->sp_state))
5361         bnx2x_set_iscsi_eth_rx_mode(bp, true);
5362     else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5363                     &bp->sp_state))
5364         bnx2x_set_iscsi_eth_rx_mode(bp, false);
5365 
5366     netif_addr_unlock_bh(bp->dev);
5367 }
5368 
5369 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5370                           union event_ring_elem *elem)
5371 {
5372     if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5373         DP(BNX2X_MSG_SP,
5374            "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5375            elem->message.data.vif_list_event.func_bit_map);
5376         bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5377             elem->message.data.vif_list_event.func_bit_map);
5378     } else if (elem->message.data.vif_list_event.echo ==
5379            VIF_LIST_RULE_SET) {
5380         DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5381         bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5382     }
5383 }
5384 
5385 /* called with rtnl_lock */
5386 static void bnx2x_after_function_update(struct bnx2x *bp)
5387 {
5388     int q, rc;
5389     struct bnx2x_fastpath *fp;
5390     struct bnx2x_queue_state_params queue_params = {NULL};
5391     struct bnx2x_queue_update_params *q_update_params =
5392         &queue_params.params.update;
5393 
5394     /* Send Q update command with afex vlan removal values for all Qs */
5395     queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5396 
5397     /* set silent vlan removal values according to vlan mode */
5398     __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5399           &q_update_params->update_flags);
5400     __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5401           &q_update_params->update_flags);
5402     __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5403 
5404     /* in access mode mark mask and value are 0 to strip all vlans */
5405     if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5406         q_update_params->silent_removal_value = 0;
5407         q_update_params->silent_removal_mask = 0;
5408     } else {
5409         q_update_params->silent_removal_value =
5410             (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5411         q_update_params->silent_removal_mask = VLAN_VID_MASK;
5412     }
5413 
5414     for_each_eth_queue(bp, q) {
5415         /* Set the appropriate Queue object */
5416         fp = &bp->fp[q];
5417         queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5418 
5419         /* send the ramrod */
5420         rc = bnx2x_queue_state_change(bp, &queue_params);
5421         if (rc < 0)
5422             BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5423                   q);
5424     }
5425 
5426     if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5427         fp = &bp->fp[FCOE_IDX(bp)];
5428         queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5429 
5430         /* clear pending completion bit */
5431         __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5432 
5433         /* mark latest Q bit */
5434         smp_mb__before_atomic();
5435         set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5436         smp_mb__after_atomic();
5437 
5438         /* send Q update ramrod for FCoE Q */
5439         rc = bnx2x_queue_state_change(bp, &queue_params);
5440         if (rc < 0)
5441             BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5442                   q);
5443     } else {
5444         /* If no FCoE ring - ACK MCP now */
5445         bnx2x_link_report(bp);
5446         bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5447     }
5448 }
5449 
5450 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5451     struct bnx2x *bp, u32 cid)
5452 {
5453     DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5454 
5455     if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5456         return &bnx2x_fcoe_sp_obj(bp, q_obj);
5457     else
5458         return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5459 }
5460 
5461 static void bnx2x_eq_int(struct bnx2x *bp)
5462 {
5463     u16 hw_cons, sw_cons, sw_prod;
5464     union event_ring_elem *elem;
5465     u8 echo;
5466     u32 cid;
5467     u8 opcode;
5468     int rc, spqe_cnt = 0;
5469     struct bnx2x_queue_sp_obj *q_obj;
5470     struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5471     struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5472 
5473     hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5474 
5475     /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5476      * when we get the next-page we need to adjust so the loop
5477      * condition below will be met. The next element is the size of a
5478      * regular element and hence incrementing by 1
5479      */
5480     if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5481         hw_cons++;
5482 
5483     /* This function may never run in parallel with itself for a
5484      * specific bp, thus there is no need in "paired" read memory
5485      * barrier here.
5486      */
5487     sw_cons = bp->eq_cons;
5488     sw_prod = bp->eq_prod;
5489 
5490     DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5491             hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5492 
5493     for (; sw_cons != hw_cons;
5494           sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5495 
5496         elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5497 
5498         rc = bnx2x_iov_eq_sp_event(bp, elem);
5499         if (!rc) {
5500             DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5501                rc);
5502             goto next_spqe;
5503         }
5504 
5505         opcode = elem->message.opcode;
5506 
5507         /* handle eq element */
5508         switch (opcode) {
5509         case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5510             bnx2x_vf_mbx_schedule(bp,
5511                           &elem->message.data.vf_pf_event);
5512             continue;
5513 
5514         case EVENT_RING_OPCODE_STAT_QUERY:
5515             DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5516                    "got statistics comp event %d\n",
5517                    bp->stats_comp++);
5518             /* nothing to do with stats comp */
5519             goto next_spqe;
5520 
5521         case EVENT_RING_OPCODE_CFC_DEL:
5522             /* handle according to cid range */
5523             /*
5524              * we may want to verify here that the bp state is
5525              * HALTING
5526              */
5527 
5528             /* elem CID originates from FW; actually LE */
5529             cid = SW_CID(elem->message.data.cfc_del_event.cid);
5530 
5531             DP(BNX2X_MSG_SP,
5532                "got delete ramrod for MULTI[%d]\n", cid);
5533 
5534             if (CNIC_LOADED(bp) &&
5535                 !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5536                 goto next_spqe;
5537 
5538             q_obj = bnx2x_cid_to_q_obj(bp, cid);
5539 
5540             if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5541                 break;
5542 
5543             goto next_spqe;
5544 
5545         case EVENT_RING_OPCODE_STOP_TRAFFIC:
5546             DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5547             bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5548             if (f_obj->complete_cmd(bp, f_obj,
5549                         BNX2X_F_CMD_TX_STOP))
5550                 break;
5551             goto next_spqe;
5552 
5553         case EVENT_RING_OPCODE_START_TRAFFIC:
5554             DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5555             bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5556             if (f_obj->complete_cmd(bp, f_obj,
5557                         BNX2X_F_CMD_TX_START))
5558                 break;
5559             goto next_spqe;
5560 
5561         case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5562             echo = elem->message.data.function_update_event.echo;
5563             if (echo == SWITCH_UPDATE) {
5564                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5565                    "got FUNC_SWITCH_UPDATE ramrod\n");
5566                 if (f_obj->complete_cmd(
5567                     bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5568                     break;
5569 
5570             } else {
5571                 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5572 
5573                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5574                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
5575                 f_obj->complete_cmd(bp, f_obj,
5576                             BNX2X_F_CMD_AFEX_UPDATE);
5577 
5578                 /* We will perform the Queues update from
5579                  * sp_rtnl task as all Queue SP operations
5580                  * should run under rtnl_lock.
5581                  */
5582                 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5583             }
5584 
5585             goto next_spqe;
5586 
5587         case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5588             f_obj->complete_cmd(bp, f_obj,
5589                         BNX2X_F_CMD_AFEX_VIFLISTS);
5590             bnx2x_after_afex_vif_lists(bp, elem);
5591             goto next_spqe;
5592         case EVENT_RING_OPCODE_FUNCTION_START:
5593             DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5594                "got FUNC_START ramrod\n");
5595             if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5596                 break;
5597 
5598             goto next_spqe;
5599 
5600         case EVENT_RING_OPCODE_FUNCTION_STOP:
5601             DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5602                "got FUNC_STOP ramrod\n");
5603             if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5604                 break;
5605 
5606             goto next_spqe;
5607 
5608         case EVENT_RING_OPCODE_SET_TIMESYNC:
5609             DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5610                "got set_timesync ramrod completion\n");
5611             if (f_obj->complete_cmd(bp, f_obj,
5612                         BNX2X_F_CMD_SET_TIMESYNC))
5613                 break;
5614             goto next_spqe;
5615         }
5616 
5617         switch (opcode | bp->state) {
5618         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5619               BNX2X_STATE_OPEN):
5620         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5621               BNX2X_STATE_OPENING_WAIT4_PORT):
5622         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5623               BNX2X_STATE_CLOSING_WAIT4_HALT):
5624             DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5625                SW_CID(elem->message.data.eth_event.echo));
5626             rss_raw->clear_pending(rss_raw);
5627             break;
5628 
5629         case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5630         case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5631         case (EVENT_RING_OPCODE_SET_MAC |
5632               BNX2X_STATE_CLOSING_WAIT4_HALT):
5633         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5634               BNX2X_STATE_OPEN):
5635         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5636               BNX2X_STATE_DIAG):
5637         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5638               BNX2X_STATE_CLOSING_WAIT4_HALT):
5639             DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5640             bnx2x_handle_classification_eqe(bp, elem);
5641             break;
5642 
5643         case (EVENT_RING_OPCODE_MULTICAST_RULES |
5644               BNX2X_STATE_OPEN):
5645         case (EVENT_RING_OPCODE_MULTICAST_RULES |
5646               BNX2X_STATE_DIAG):
5647         case (EVENT_RING_OPCODE_MULTICAST_RULES |
5648               BNX2X_STATE_CLOSING_WAIT4_HALT):
5649             DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5650             bnx2x_handle_mcast_eqe(bp);
5651             break;
5652 
5653         case (EVENT_RING_OPCODE_FILTERS_RULES |
5654               BNX2X_STATE_OPEN):
5655         case (EVENT_RING_OPCODE_FILTERS_RULES |
5656               BNX2X_STATE_DIAG):
5657         case (EVENT_RING_OPCODE_FILTERS_RULES |
5658               BNX2X_STATE_CLOSING_WAIT4_HALT):
5659             DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5660             bnx2x_handle_rx_mode_eqe(bp);
5661             break;
5662         default:
5663             /* unknown event log error and continue */
5664             BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5665                   elem->message.opcode, bp->state);
5666         }
5667 next_spqe:
5668         spqe_cnt++;
5669     } /* for */
5670 
5671     smp_mb__before_atomic();
5672     atomic_add(spqe_cnt, &bp->eq_spq_left);
5673 
5674     bp->eq_cons = sw_cons;
5675     bp->eq_prod = sw_prod;
5676     /* Make sure that above mem writes were issued towards the memory */
5677     smp_wmb();
5678 
5679     /* update producer */
5680     bnx2x_update_eq_prod(bp, bp->eq_prod);
5681 }
5682 
5683 static void bnx2x_sp_task(struct work_struct *work)
5684 {
5685     struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5686 
5687     DP(BNX2X_MSG_SP, "sp task invoked\n");
5688 
5689     /* make sure the atomic interrupt_occurred has been written */
5690     smp_rmb();
5691     if (atomic_read(&bp->interrupt_occurred)) {
5692 
5693         /* what work needs to be performed? */
5694         u16 status = bnx2x_update_dsb_idx(bp);
5695 
5696         DP(BNX2X_MSG_SP, "status %x\n", status);
5697         DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5698         atomic_set(&bp->interrupt_occurred, 0);
5699 
5700         /* HW attentions */
5701         if (status & BNX2X_DEF_SB_ATT_IDX) {
5702             bnx2x_attn_int(bp);
5703             status &= ~BNX2X_DEF_SB_ATT_IDX;
5704         }
5705 
5706         /* SP events: STAT_QUERY and others */
5707         if (status & BNX2X_DEF_SB_IDX) {
5708             struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5709 
5710             if (FCOE_INIT(bp) &&
5711                 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5712                 /* Prevent local bottom-halves from running as
5713                  * we are going to change the local NAPI list.
5714                  */
5715                 local_bh_disable();
5716                 napi_schedule(&bnx2x_fcoe(bp, napi));
5717                 local_bh_enable();
5718             }
5719 
5720             /* Handle EQ completions */
5721             bnx2x_eq_int(bp);
5722             bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5723                      le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5724 
5725             status &= ~BNX2X_DEF_SB_IDX;
5726         }
5727 
5728         /* if status is non zero then perhaps something went wrong */
5729         if (unlikely(status))
5730             DP(BNX2X_MSG_SP,
5731                "got an unknown interrupt! (status 0x%x)\n", status);
5732 
5733         /* ack status block only if something was actually handled */
5734         bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5735                  le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5736     }
5737 
5738     /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5739     if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5740                    &bp->sp_state)) {
5741         bnx2x_link_report(bp);
5742         bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5743     }
5744 }
5745 
5746 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5747 {
5748     struct net_device *dev = dev_instance;
5749     struct bnx2x *bp = netdev_priv(dev);
5750 
5751     bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5752              IGU_INT_DISABLE, 0);
5753 
5754 #ifdef BNX2X_STOP_ON_ERROR
5755     if (unlikely(bp->panic))
5756         return IRQ_HANDLED;
5757 #endif
5758 
5759     if (CNIC_LOADED(bp)) {
5760         struct cnic_ops *c_ops;
5761 
5762         rcu_read_lock();
5763         c_ops = rcu_dereference(bp->cnic_ops);
5764         if (c_ops)
5765             c_ops->cnic_handler(bp->cnic_data, NULL);
5766         rcu_read_unlock();
5767     }
5768 
5769     /* schedule sp task to perform default status block work, ack
5770      * attentions and enable interrupts.
5771      */
5772     bnx2x_schedule_sp_task(bp);
5773 
5774     return IRQ_HANDLED;
5775 }
5776 
5777 /* end of slow path */
5778 
5779 void bnx2x_drv_pulse(struct bnx2x *bp)
5780 {
5781     SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5782          bp->fw_drv_pulse_wr_seq);
5783 }
5784 
5785 static void bnx2x_timer(struct timer_list *t)
5786 {
5787     struct bnx2x *bp = from_timer(bp, t, timer);
5788 
5789     if (!netif_running(bp->dev))
5790         return;
5791 
5792     if (IS_PF(bp) &&
5793         !BP_NOMCP(bp)) {
5794         int mb_idx = BP_FW_MB_IDX(bp);
5795         u16 drv_pulse;
5796         u16 mcp_pulse;
5797 
5798         ++bp->fw_drv_pulse_wr_seq;
5799         bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5800         drv_pulse = bp->fw_drv_pulse_wr_seq;
5801         bnx2x_drv_pulse(bp);
5802 
5803         mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5804                  MCP_PULSE_SEQ_MASK);
5805         /* The delta between driver pulse and mcp response
5806          * should not get too big. If the MFW is more than 5 pulses
5807          * behind, we should worry about it enough to generate an error
5808          * log.
5809          */
5810         if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5811             BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5812                   drv_pulse, mcp_pulse);
5813     }
5814 
5815     if (bp->state == BNX2X_STATE_OPEN)
5816         bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5817 
5818     /* sample pf vf bulletin board for new posts from pf */
5819     if (IS_VF(bp))
5820         bnx2x_timer_sriov(bp);
5821 
5822     mod_timer(&bp->timer, jiffies + bp->current_interval);
5823 }
5824 
5825 /* end of Statistics */
5826 
5827 /* nic init */
5828 
5829 /*
5830  * nic init service functions
5831  */
5832 
5833 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5834 {
5835     u32 i;
5836     if (!(len%4) && !(addr%4))
5837         for (i = 0; i < len; i += 4)
5838             REG_WR(bp, addr + i, fill);
5839     else
5840         for (i = 0; i < len; i++)
5841             REG_WR8(bp, addr + i, fill);
5842 }
5843 
5844 /* helper: writes FP SP data to FW - data_size in dwords */
5845 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5846                 int fw_sb_id,
5847                 u32 *sb_data_p,
5848                 u32 data_size)
5849 {
5850     int index;
5851     for (index = 0; index < data_size; index++)
5852         REG_WR(bp, BAR_CSTRORM_INTMEM +
5853             CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5854             sizeof(u32)*index,
5855             *(sb_data_p + index));
5856 }
5857 
5858 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5859 {
5860     u32 *sb_data_p;
5861     u32 data_size = 0;
5862     struct hc_status_block_data_e2 sb_data_e2;
5863     struct hc_status_block_data_e1x sb_data_e1x;
5864 
5865     /* disable the function first */
5866     if (!CHIP_IS_E1x(bp)) {
5867         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5868         sb_data_e2.common.state = SB_DISABLED;
5869         sb_data_e2.common.p_func.vf_valid = false;
5870         sb_data_p = (u32 *)&sb_data_e2;
5871         data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5872     } else {
5873         memset(&sb_data_e1x, 0,
5874                sizeof(struct hc_status_block_data_e1x));
5875         sb_data_e1x.common.state = SB_DISABLED;
5876         sb_data_e1x.common.p_func.vf_valid = false;
5877         sb_data_p = (u32 *)&sb_data_e1x;
5878         data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5879     }
5880     bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5881 
5882     bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5883             CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5884             CSTORM_STATUS_BLOCK_SIZE);
5885     bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5886             CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5887             CSTORM_SYNC_BLOCK_SIZE);
5888 }
5889 
5890 /* helper:  writes SP SB data to FW */
5891 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5892         struct hc_sp_status_block_data *sp_sb_data)
5893 {
5894     int func = BP_FUNC(bp);
5895     int i;
5896     for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5897         REG_WR(bp, BAR_CSTRORM_INTMEM +
5898             CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5899             i*sizeof(u32),
5900             *((u32 *)sp_sb_data + i));
5901 }
5902 
5903 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5904 {
5905     int func = BP_FUNC(bp);
5906     struct hc_sp_status_block_data sp_sb_data;
5907     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5908 
5909     sp_sb_data.state = SB_DISABLED;
5910     sp_sb_data.p_func.vf_valid = false;
5911 
5912     bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5913 
5914     bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5915             CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5916             CSTORM_SP_STATUS_BLOCK_SIZE);
5917     bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5918             CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5919             CSTORM_SP_SYNC_BLOCK_SIZE);
5920 }
5921 
5922 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5923                        int igu_sb_id, int igu_seg_id)
5924 {
5925     hc_sm->igu_sb_id = igu_sb_id;
5926     hc_sm->igu_seg_id = igu_seg_id;
5927     hc_sm->timer_value = 0xFF;
5928     hc_sm->time_to_expire = 0xFFFFFFFF;
5929 }
5930 
5931 /* allocates state machine ids. */
5932 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5933 {
5934     /* zero out state machine indices */
5935     /* rx indices */
5936     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5937 
5938     /* tx indices */
5939     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5940     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5941     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5942     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5943 
5944     /* map indices */
5945     /* rx indices */
5946     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5947         SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5948 
5949     /* tx indices */
5950     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5951         SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5952     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5953         SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5954     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5955         SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5956     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5957         SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5958 }
5959 
5960 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5961               u8 vf_valid, int fw_sb_id, int igu_sb_id)
5962 {
5963     int igu_seg_id;
5964 
5965     struct hc_status_block_data_e2 sb_data_e2;
5966     struct hc_status_block_data_e1x sb_data_e1x;
5967     struct hc_status_block_sm  *hc_sm_p;
5968     int data_size;
5969     u32 *sb_data_p;
5970 
5971     if (CHIP_INT_MODE_IS_BC(bp))
5972         igu_seg_id = HC_SEG_ACCESS_NORM;
5973     else
5974         igu_seg_id = IGU_SEG_ACCESS_NORM;
5975 
5976     bnx2x_zero_fp_sb(bp, fw_sb_id);
5977 
5978     if (!CHIP_IS_E1x(bp)) {
5979         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5980         sb_data_e2.common.state = SB_ENABLED;
5981         sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5982         sb_data_e2.common.p_func.vf_id = vfid;
5983         sb_data_e2.common.p_func.vf_valid = vf_valid;
5984         sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5985         sb_data_e2.common.same_igu_sb_1b = true;
5986         sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5987         sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5988         hc_sm_p = sb_data_e2.common.state_machine;
5989         sb_data_p = (u32 *)&sb_data_e2;
5990         data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5991         bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5992     } else {
5993         memset(&sb_data_e1x, 0,
5994                sizeof(struct hc_status_block_data_e1x));
5995         sb_data_e1x.common.state = SB_ENABLED;
5996         sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5997         sb_data_e1x.common.p_func.vf_id = 0xff;
5998         sb_data_e1x.common.p_func.vf_valid = false;
5999         sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
6000         sb_data_e1x.common.same_igu_sb_1b = true;
6001         sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
6002         sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
6003         hc_sm_p = sb_data_e1x.common.state_machine;
6004         sb_data_p = (u32 *)&sb_data_e1x;
6005         data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
6006         bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
6007     }
6008 
6009     bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
6010                        igu_sb_id, igu_seg_id);
6011     bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
6012                        igu_sb_id, igu_seg_id);
6013 
6014     DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
6015 
6016     /* write indices to HW - PCI guarantees endianity of regpairs */
6017     bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
6018 }
6019 
6020 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6021                      u16 tx_usec, u16 rx_usec)
6022 {
6023     bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6024                     false, rx_usec);
6025     bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6026                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6027                        tx_usec);
6028     bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6029                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6030                        tx_usec);
6031     bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6032                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6033                        tx_usec);
6034 }
6035 
6036 static void bnx2x_init_def_sb(struct bnx2x *bp)
6037 {
6038     struct host_sp_status_block *def_sb = bp->def_status_blk;
6039     dma_addr_t mapping = bp->def_status_blk_mapping;
6040     int igu_sp_sb_index;
6041     int igu_seg_id;
6042     int port = BP_PORT(bp);
6043     int func = BP_FUNC(bp);
6044     int reg_offset, reg_offset_en5;
6045     u64 section;
6046     int index;
6047     struct hc_sp_status_block_data sp_sb_data;
6048     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6049 
6050     if (CHIP_INT_MODE_IS_BC(bp)) {
6051         igu_sp_sb_index = DEF_SB_IGU_ID;
6052         igu_seg_id = HC_SEG_ACCESS_DEF;
6053     } else {
6054         igu_sp_sb_index = bp->igu_dsb_id;
6055         igu_seg_id = IGU_SEG_ACCESS_DEF;
6056     }
6057 
6058     /* ATTN */
6059     section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6060                         atten_status_block);
6061     def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6062 
6063     bp->attn_state = 0;
6064 
6065     reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6066                  MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6067     reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6068                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6069     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6070         int sindex;
6071         /* take care of sig[0]..sig[4] */
6072         for (sindex = 0; sindex < 4; sindex++)
6073             bp->attn_group[index].sig[sindex] =
6074                REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6075 
6076         if (!CHIP_IS_E1x(bp))
6077             /*
6078              * enable5 is separate from the rest of the registers,
6079              * and therefore the address skip is 4
6080              * and not 16 between the different groups
6081              */
6082             bp->attn_group[index].sig[4] = REG_RD(bp,
6083                     reg_offset_en5 + 0x4*index);
6084         else
6085             bp->attn_group[index].sig[4] = 0;
6086     }
6087 
6088     if (bp->common.int_block == INT_BLOCK_HC) {
6089         reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6090                      HC_REG_ATTN_MSG0_ADDR_L);
6091 
6092         REG_WR(bp, reg_offset, U64_LO(section));
6093         REG_WR(bp, reg_offset + 4, U64_HI(section));
6094     } else if (!CHIP_IS_E1x(bp)) {
6095         REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6096         REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6097     }
6098 
6099     section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6100                         sp_sb);
6101 
6102     bnx2x_zero_sp_sb(bp);
6103 
6104     /* PCI guarantees endianity of regpairs */
6105     sp_sb_data.state        = SB_ENABLED;
6106     sp_sb_data.host_sb_addr.lo  = U64_LO(section);
6107     sp_sb_data.host_sb_addr.hi  = U64_HI(section);
6108     sp_sb_data.igu_sb_id        = igu_sp_sb_index;
6109     sp_sb_data.igu_seg_id       = igu_seg_id;
6110     sp_sb_data.p_func.pf_id     = func;
6111     sp_sb_data.p_func.vnic_id   = BP_VN(bp);
6112     sp_sb_data.p_func.vf_id     = 0xff;
6113 
6114     bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6115 
6116     bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6117 }
6118 
6119 void bnx2x_update_coalesce(struct bnx2x *bp)
6120 {
6121     int i;
6122 
6123     for_each_eth_queue(bp, i)
6124         bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6125                      bp->tx_ticks, bp->rx_ticks);
6126 }
6127 
6128 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6129 {
6130     spin_lock_init(&bp->spq_lock);
6131     atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6132 
6133     bp->spq_prod_idx = 0;
6134     bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6135     bp->spq_prod_bd = bp->spq;
6136     bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6137 }
6138 
6139 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6140 {
6141     int i;
6142     for (i = 1; i <= NUM_EQ_PAGES; i++) {
6143         union event_ring_elem *elem =
6144             &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6145 
6146         elem->next_page.addr.hi =
6147             cpu_to_le32(U64_HI(bp->eq_mapping +
6148                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6149         elem->next_page.addr.lo =
6150             cpu_to_le32(U64_LO(bp->eq_mapping +
6151                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6152     }
6153     bp->eq_cons = 0;
6154     bp->eq_prod = NUM_EQ_DESC;
6155     bp->eq_cons_sb = BNX2X_EQ_INDEX;
6156     /* we want a warning message before it gets wrought... */
6157     atomic_set(&bp->eq_spq_left,
6158         min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6159 }
6160 
6161 /* called with netif_addr_lock_bh() */
6162 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6163                    unsigned long rx_mode_flags,
6164                    unsigned long rx_accept_flags,
6165                    unsigned long tx_accept_flags,
6166                    unsigned long ramrod_flags)
6167 {
6168     struct bnx2x_rx_mode_ramrod_params ramrod_param;
6169     int rc;
6170 
6171     memset(&ramrod_param, 0, sizeof(ramrod_param));
6172 
6173     /* Prepare ramrod parameters */
6174     ramrod_param.cid = 0;
6175     ramrod_param.cl_id = cl_id;
6176     ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6177     ramrod_param.func_id = BP_FUNC(bp);
6178 
6179     ramrod_param.pstate = &bp->sp_state;
6180     ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6181 
6182     ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6183     ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6184 
6185     set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6186 
6187     ramrod_param.ramrod_flags = ramrod_flags;
6188     ramrod_param.rx_mode_flags = rx_mode_flags;
6189 
6190     ramrod_param.rx_accept_flags = rx_accept_flags;
6191     ramrod_param.tx_accept_flags = tx_accept_flags;
6192 
6193     rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6194     if (rc < 0) {
6195         BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6196         return rc;
6197     }
6198 
6199     return 0;
6200 }
6201 
6202 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6203                    unsigned long *rx_accept_flags,
6204                    unsigned long *tx_accept_flags)
6205 {
6206     /* Clear the flags first */
6207     *rx_accept_flags = 0;
6208     *tx_accept_flags = 0;
6209 
6210     switch (rx_mode) {
6211     case BNX2X_RX_MODE_NONE:
6212         /*
6213          * 'drop all' supersedes any accept flags that may have been
6214          * passed to the function.
6215          */
6216         break;
6217     case BNX2X_RX_MODE_NORMAL:
6218         __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6219         __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6220         __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6221 
6222         /* internal switching mode */
6223         __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6224         __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6225         __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6226 
6227         if (bp->accept_any_vlan) {
6228             __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6229             __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6230         }
6231 
6232         break;
6233     case BNX2X_RX_MODE_ALLMULTI:
6234         __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6235         __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6236         __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6237 
6238         /* internal switching mode */
6239         __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6240         __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6241         __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6242 
6243         if (bp->accept_any_vlan) {
6244             __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6245             __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6246         }
6247 
6248         break;
6249     case BNX2X_RX_MODE_PROMISC:
6250         /* According to definition of SI mode, iface in promisc mode
6251          * should receive matched and unmatched (in resolution of port)
6252          * unicast packets.
6253          */
6254         __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6255         __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6256         __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6257         __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6258 
6259         /* internal switching mode */
6260         __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6261         __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6262 
6263         if (IS_MF_SI(bp))
6264             __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6265         else
6266             __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6267 
6268         __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6269         __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6270 
6271         break;
6272     default:
6273         BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6274         return -EINVAL;
6275     }
6276 
6277     return 0;
6278 }
6279 
6280 /* called with netif_addr_lock_bh() */
6281 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6282 {
6283     unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6284     unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6285     int rc;
6286 
6287     if (!NO_FCOE(bp))
6288         /* Configure rx_mode of FCoE Queue */
6289         __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6290 
6291     rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6292                      &tx_accept_flags);
6293     if (rc)
6294         return rc;
6295 
6296     __set_bit(RAMROD_RX, &ramrod_flags);
6297     __set_bit(RAMROD_TX, &ramrod_flags);
6298 
6299     return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6300                    rx_accept_flags, tx_accept_flags,
6301                    ramrod_flags);
6302 }
6303 
6304 static void bnx2x_init_internal_common(struct bnx2x *bp)
6305 {
6306     int i;
6307 
6308     /* Zero this manually as its initialization is
6309        currently missing in the initTool */
6310     for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6311         REG_WR(bp, BAR_USTRORM_INTMEM +
6312                USTORM_AGG_DATA_OFFSET + i * 4, 0);
6313     if (!CHIP_IS_E1x(bp)) {
6314         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6315             CHIP_INT_MODE_IS_BC(bp) ?
6316             HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6317     }
6318 }
6319 
6320 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6321 {
6322     switch (load_code) {
6323     case FW_MSG_CODE_DRV_LOAD_COMMON:
6324     case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6325         bnx2x_init_internal_common(bp);
6326         fallthrough;
6327 
6328     case FW_MSG_CODE_DRV_LOAD_PORT:
6329         /* nothing to do */
6330         fallthrough;
6331 
6332     case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6333         /* internal memory per function is
6334            initialized inside bnx2x_pf_init */
6335         break;
6336 
6337     default:
6338         BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6339         break;
6340     }
6341 }
6342 
6343 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6344 {
6345     return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6346 }
6347 
6348 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6349 {
6350     return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6351 }
6352 
6353 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6354 {
6355     if (CHIP_IS_E1x(fp->bp))
6356         return BP_L_ID(fp->bp) + fp->index;
6357     else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6358         return bnx2x_fp_igu_sb_id(fp);
6359 }
6360 
6361 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6362 {
6363     struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6364     u8 cos;
6365     unsigned long q_type = 0;
6366     u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6367     fp->rx_queue = fp_idx;
6368     fp->cid = fp_idx;
6369     fp->cl_id = bnx2x_fp_cl_id(fp);
6370     fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6371     fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6372     /* qZone id equals to FW (per path) client id */
6373     fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6374 
6375     /* init shortcut */
6376     fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6377 
6378     /* Setup SB indices */
6379     fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6380 
6381     /* Configure Queue State object */
6382     __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6383     __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6384 
6385     BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6386 
6387     /* init tx data */
6388     for_each_cos_in_tx_queue(fp, cos) {
6389         bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6390                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6391                   FP_COS_TO_TXQ(fp, cos, bp),
6392                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
6393         cids[cos] = fp->txdata_ptr[cos]->cid;
6394     }
6395 
6396     /* nothing more for vf to do here */
6397     if (IS_VF(bp))
6398         return;
6399 
6400     bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6401               fp->fw_sb_id, fp->igu_sb_id);
6402     bnx2x_update_fpsb_idx(fp);
6403     bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6404                  fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6405                  bnx2x_sp_mapping(bp, q_rdata), q_type);
6406 
6407     /**
6408      * Configure classification DBs: Always enable Tx switching
6409      */
6410     bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6411 
6412     DP(NETIF_MSG_IFUP,
6413        "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6414        fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6415        fp->igu_sb_id);
6416 }
6417 
6418 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6419 {
6420     int i;
6421 
6422     for (i = 1; i <= NUM_TX_RINGS; i++) {
6423         struct eth_tx_next_bd *tx_next_bd =
6424             &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6425 
6426         tx_next_bd->addr_hi =
6427             cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6428                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6429         tx_next_bd->addr_lo =
6430             cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6431                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6432     }
6433 
6434     *txdata->tx_cons_sb = cpu_to_le16(0);
6435 
6436     SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6437     txdata->tx_db.data.zero_fill1 = 0;
6438     txdata->tx_db.data.prod = 0;
6439 
6440     txdata->tx_pkt_prod = 0;
6441     txdata->tx_pkt_cons = 0;
6442     txdata->tx_bd_prod = 0;
6443     txdata->tx_bd_cons = 0;
6444     txdata->tx_pkt = 0;
6445 }
6446 
6447 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6448 {
6449     int i;
6450 
6451     for_each_tx_queue_cnic(bp, i)
6452         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6453 }
6454 
6455 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6456 {
6457     int i;
6458     u8 cos;
6459 
6460     for_each_eth_queue(bp, i)
6461         for_each_cos_in_tx_queue(&bp->fp[i], cos)
6462             bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6463 }
6464 
6465 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6466 {
6467     struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6468     unsigned long q_type = 0;
6469 
6470     bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6471     bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6472                              BNX2X_FCOE_ETH_CL_ID_IDX);
6473     bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6474     bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6475     bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6476     bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6477     bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6478               fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6479               fp);
6480 
6481     DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6482 
6483     /* qZone id equals to FW (per path) client id */
6484     bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6485     /* init shortcut */
6486     bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6487         bnx2x_rx_ustorm_prods_offset(fp);
6488 
6489     /* Configure Queue State object */
6490     __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6491     __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6492 
6493     /* No multi-CoS for FCoE L2 client */
6494     BUG_ON(fp->max_cos != 1);
6495 
6496     bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6497                  &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6498                  bnx2x_sp_mapping(bp, q_rdata), q_type);
6499 
6500     DP(NETIF_MSG_IFUP,
6501        "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6502        fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6503        fp->igu_sb_id);
6504 }
6505 
6506 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6507 {
6508     if (!NO_FCOE(bp))
6509         bnx2x_init_fcoe_fp(bp);
6510 
6511     bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6512               BNX2X_VF_ID_INVALID, false,
6513               bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6514 
6515     /* ensure status block indices were read */
6516     rmb();
6517     bnx2x_init_rx_rings_cnic(bp);
6518     bnx2x_init_tx_rings_cnic(bp);
6519 
6520     /* flush all */
6521     mb();
6522 }
6523 
6524 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6525 {
6526     int i;
6527 
6528     /* Setup NIC internals and enable interrupts */
6529     for_each_eth_queue(bp, i)
6530         bnx2x_init_eth_fp(bp, i);
6531 
6532     /* ensure status block indices were read */
6533     rmb();
6534     bnx2x_init_rx_rings(bp);
6535     bnx2x_init_tx_rings(bp);
6536 
6537     if (IS_PF(bp)) {
6538         /* Initialize MOD_ABS interrupts */
6539         bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6540                        bp->common.shmem_base,
6541                        bp->common.shmem2_base, BP_PORT(bp));
6542 
6543         /* initialize the default status block and sp ring */
6544         bnx2x_init_def_sb(bp);
6545         bnx2x_update_dsb_idx(bp);
6546         bnx2x_init_sp_ring(bp);
6547     } else {
6548         bnx2x_memset_stats(bp);
6549     }
6550 }
6551 
6552 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6553 {
6554     bnx2x_init_eq_ring(bp);
6555     bnx2x_init_internal(bp, load_code);
6556     bnx2x_pf_init(bp);
6557     bnx2x_stats_init(bp);
6558 
6559     /* flush all before enabling interrupts */
6560     mb();
6561 
6562     bnx2x_int_enable(bp);
6563 
6564     /* Check for SPIO5 */
6565     bnx2x_attn_int_deasserted0(bp,
6566         REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6567                    AEU_INPUTS_ATTN_BITS_SPIO5);
6568 }
6569 
6570 /* gzip service functions */
6571 static int bnx2x_gunzip_init(struct bnx2x *bp)
6572 {
6573     bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6574                         &bp->gunzip_mapping, GFP_KERNEL);
6575     if (bp->gunzip_buf  == NULL)
6576         goto gunzip_nomem1;
6577 
6578     bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6579     if (bp->strm  == NULL)
6580         goto gunzip_nomem2;
6581 
6582     bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6583     if (bp->strm->workspace == NULL)
6584         goto gunzip_nomem3;
6585 
6586     return 0;
6587 
6588 gunzip_nomem3:
6589     kfree(bp->strm);
6590     bp->strm = NULL;
6591 
6592 gunzip_nomem2:
6593     dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6594               bp->gunzip_mapping);
6595     bp->gunzip_buf = NULL;
6596 
6597 gunzip_nomem1:
6598     BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6599     return -ENOMEM;
6600 }
6601 
6602 static void bnx2x_gunzip_end(struct bnx2x *bp)
6603 {
6604     if (bp->strm) {
6605         vfree(bp->strm->workspace);
6606         kfree(bp->strm);
6607         bp->strm = NULL;
6608     }
6609 
6610     if (bp->gunzip_buf) {
6611         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6612                   bp->gunzip_mapping);
6613         bp->gunzip_buf = NULL;
6614     }
6615 }
6616 
6617 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6618 {
6619     int n, rc;
6620 
6621     /* check gzip header */
6622     if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6623         BNX2X_ERR("Bad gzip header\n");
6624         return -EINVAL;
6625     }
6626 
6627     n = 10;
6628 
6629 #define FNAME               0x8
6630 
6631     if (zbuf[3] & FNAME)
6632         while ((zbuf[n++] != 0) && (n < len));
6633 
6634     bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6635     bp->strm->avail_in = len - n;
6636     bp->strm->next_out = bp->gunzip_buf;
6637     bp->strm->avail_out = FW_BUF_SIZE;
6638 
6639     rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6640     if (rc != Z_OK)
6641         return rc;
6642 
6643     rc = zlib_inflate(bp->strm, Z_FINISH);
6644     if ((rc != Z_OK) && (rc != Z_STREAM_END))
6645         netdev_err(bp->dev, "Firmware decompression error: %s\n",
6646                bp->strm->msg);
6647 
6648     bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6649     if (bp->gunzip_outlen & 0x3)
6650         netdev_err(bp->dev,
6651                "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6652                 bp->gunzip_outlen);
6653     bp->gunzip_outlen >>= 2;
6654 
6655     zlib_inflateEnd(bp->strm);
6656 
6657     if (rc == Z_STREAM_END)
6658         return 0;
6659 
6660     return rc;
6661 }
6662 
6663 /* nic load/unload */
6664 
6665 /*
6666  * General service functions
6667  */
6668 
6669 /* send a NIG loopback debug packet */
6670 static void bnx2x_lb_pckt(struct bnx2x *bp)
6671 {
6672     u32 wb_write[3];
6673 
6674     /* Ethernet source and destination addresses */
6675     wb_write[0] = 0x55555555;
6676     wb_write[1] = 0x55555555;
6677     wb_write[2] = 0x20;     /* SOP */
6678     REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6679 
6680     /* NON-IP protocol */
6681     wb_write[0] = 0x09000000;
6682     wb_write[1] = 0x55555555;
6683     wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
6684     REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6685 }
6686 
6687 /* some of the internal memories
6688  * are not directly readable from the driver
6689  * to test them we send debug packets
6690  */
6691 static int bnx2x_int_mem_test(struct bnx2x *bp)
6692 {
6693     int factor;
6694     int count, i;
6695     u32 val = 0;
6696 
6697     if (CHIP_REV_IS_FPGA(bp))
6698         factor = 120;
6699     else if (CHIP_REV_IS_EMUL(bp))
6700         factor = 200;
6701     else
6702         factor = 1;
6703 
6704     /* Disable inputs of parser neighbor blocks */
6705     REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6706     REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6707     REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6708     REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6709 
6710     /*  Write 0 to parser credits for CFC search request */
6711     REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6712 
6713     /* send Ethernet packet */
6714     bnx2x_lb_pckt(bp);
6715 
6716     /* TODO do i reset NIG statistic? */
6717     /* Wait until NIG register shows 1 packet of size 0x10 */
6718     count = 1000 * factor;
6719     while (count) {
6720 
6721         bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6722         val = *bnx2x_sp(bp, wb_data[0]);
6723         if (val == 0x10)
6724             break;
6725 
6726         usleep_range(10000, 20000);
6727         count--;
6728     }
6729     if (val != 0x10) {
6730         BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6731         return -1;
6732     }
6733 
6734     /* Wait until PRS register shows 1 packet */
6735     count = 1000 * factor;
6736     while (count) {
6737         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6738         if (val == 1)
6739             break;
6740 
6741         usleep_range(10000, 20000);
6742         count--;
6743     }
6744     if (val != 0x1) {
6745         BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6746         return -2;
6747     }
6748 
6749     /* Reset and init BRB, PRS */
6750     REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6751     msleep(50);
6752     REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6753     msleep(50);
6754     bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6755     bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6756 
6757     DP(NETIF_MSG_HW, "part2\n");
6758 
6759     /* Disable inputs of parser neighbor blocks */
6760     REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6761     REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6762     REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6763     REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6764 
6765     /* Write 0 to parser credits for CFC search request */
6766     REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6767 
6768     /* send 10 Ethernet packets */
6769     for (i = 0; i < 10; i++)
6770         bnx2x_lb_pckt(bp);
6771 
6772     /* Wait until NIG register shows 10 + 1
6773        packets of size 11*0x10 = 0xb0 */
6774     count = 1000 * factor;
6775     while (count) {
6776 
6777         bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6778         val = *bnx2x_sp(bp, wb_data[0]);
6779         if (val == 0xb0)
6780             break;
6781 
6782         usleep_range(10000, 20000);
6783         count--;
6784     }
6785     if (val != 0xb0) {
6786         BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6787         return -3;
6788     }
6789 
6790     /* Wait until PRS register shows 2 packets */
6791     val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6792     if (val != 2)
6793         BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6794 
6795     /* Write 1 to parser credits for CFC search request */
6796     REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6797 
6798     /* Wait until PRS register shows 3 packets */
6799     msleep(10 * factor);
6800     /* Wait until NIG register shows 1 packet of size 0x10 */
6801     val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6802     if (val != 3)
6803         BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6804 
6805     /* clear NIG EOP FIFO */
6806     for (i = 0; i < 11; i++)
6807         REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6808     val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6809     if (val != 1) {
6810         BNX2X_ERR("clear of NIG failed\n");
6811         return -4;
6812     }
6813 
6814     /* Reset and init BRB, PRS, NIG */
6815     REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6816     msleep(50);
6817     REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6818     msleep(50);
6819     bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6820     bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6821     if (!CNIC_SUPPORT(bp))
6822         /* set NIC mode */
6823         REG_WR(bp, PRS_REG_NIC_MODE, 1);
6824 
6825     /* Enable inputs of parser neighbor blocks */
6826     REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6827     REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6828     REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6829     REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6830 
6831     DP(NETIF_MSG_HW, "done\n");
6832 
6833     return 0; /* OK */
6834 }
6835 
6836 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6837 {
6838     u32 val;
6839 
6840     REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6841     if (!CHIP_IS_E1x(bp))
6842         REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6843     else
6844         REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6845     REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6846     REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6847     /*
6848      * mask read length error interrupts in brb for parser
6849      * (parsing unit and 'checksum and crc' unit)
6850      * these errors are legal (PU reads fixed length and CAC can cause
6851      * read length error on truncated packets)
6852      */
6853     REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6854     REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6855     REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6856     REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6857     REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6858     REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6859 /*  REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6860 /*  REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6861     REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6862     REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6863     REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6864 /*  REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6865 /*  REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6866     REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6867     REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6868     REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6869     REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6870 /*  REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6871 /*  REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6872 
6873     val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6874         PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6875         PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6876     if (!CHIP_IS_E1x(bp))
6877         val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6878             PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6879     REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6880 
6881     REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6882     REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6883     REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6884 /*  REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6885 
6886     if (!CHIP_IS_E1x(bp))
6887         /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6888         REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6889 
6890     REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6891     REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6892 /*  REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6893     REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
6894 }
6895 
6896 static void bnx2x_reset_common(struct bnx2x *bp)
6897 {
6898     u32 val = 0x1400;
6899 
6900     /* reset_common */
6901     REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6902            0xd3ffff7f);
6903 
6904     if (CHIP_IS_E3(bp)) {
6905         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6906         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6907     }
6908 
6909     REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6910 }
6911 
6912 static void bnx2x_setup_dmae(struct bnx2x *bp)
6913 {
6914     bp->dmae_ready = 0;
6915     spin_lock_init(&bp->dmae_lock);
6916 }
6917 
6918 static void bnx2x_init_pxp(struct bnx2x *bp)
6919 {
6920     u16 devctl;
6921     int r_order, w_order;
6922 
6923     pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6924     DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6925     w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6926     if (bp->mrrs == -1)
6927         r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6928     else {
6929         DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6930         r_order = bp->mrrs;
6931     }
6932 
6933     bnx2x_init_pxp_arb(bp, r_order, w_order);
6934 }
6935 
6936 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6937 {
6938     int is_required;
6939     u32 val;
6940     int port;
6941 
6942     if (BP_NOMCP(bp))
6943         return;
6944 
6945     is_required = 0;
6946     val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6947           SHARED_HW_CFG_FAN_FAILURE_MASK;
6948 
6949     if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6950         is_required = 1;
6951 
6952     /*
6953      * The fan failure mechanism is usually related to the PHY type since
6954      * the power consumption of the board is affected by the PHY. Currently,
6955      * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6956      */
6957     else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6958         for (port = PORT_0; port < PORT_MAX; port++) {
6959             is_required |=
6960                 bnx2x_fan_failure_det_req(
6961                     bp,
6962                     bp->common.shmem_base,
6963                     bp->common.shmem2_base,
6964                     port);
6965         }
6966 
6967     DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6968 
6969     if (is_required == 0)
6970         return;
6971 
6972     /* Fan failure is indicated by SPIO 5 */
6973     bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6974 
6975     /* set to active low mode */
6976     val = REG_RD(bp, MISC_REG_SPIO_INT);
6977     val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6978     REG_WR(bp, MISC_REG_SPIO_INT, val);
6979 
6980     /* enable interrupt to signal the IGU */
6981     val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6982     val |= MISC_SPIO_SPIO5;
6983     REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6984 }
6985 
6986 void bnx2x_pf_disable(struct bnx2x *bp)
6987 {
6988     u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6989     val &= ~IGU_PF_CONF_FUNC_EN;
6990 
6991     REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6992     REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6993     REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6994 }
6995 
6996 static void bnx2x__common_init_phy(struct bnx2x *bp)
6997 {
6998     u32 shmem_base[2], shmem2_base[2];
6999     /* Avoid common init in case MFW supports LFA */
7000     if (SHMEM2_RD(bp, size) >
7001         (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
7002         return;
7003     shmem_base[0] =  bp->common.shmem_base;
7004     shmem2_base[0] = bp->common.shmem2_base;
7005     if (!CHIP_IS_E1x(bp)) {
7006         shmem_base[1] =
7007             SHMEM2_RD(bp, other_shmem_base_addr);
7008         shmem2_base[1] =
7009             SHMEM2_RD(bp, other_shmem2_base_addr);
7010     }
7011     bnx2x_acquire_phy_lock(bp);
7012     bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
7013                   bp->common.chip_id);
7014     bnx2x_release_phy_lock(bp);
7015 }
7016 
7017 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
7018 {
7019     REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7020     REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7021     REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7022     REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7023     REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7024 
7025     /* make sure this value is 0 */
7026     REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7027 
7028     REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7029     REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7030     REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7031     REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7032 }
7033 
7034 static void bnx2x_set_endianity(struct bnx2x *bp)
7035 {
7036 #ifdef __BIG_ENDIAN
7037     bnx2x_config_endianity(bp, 1);
7038 #else
7039     bnx2x_config_endianity(bp, 0);
7040 #endif
7041 }
7042 
7043 static void bnx2x_reset_endianity(struct bnx2x *bp)
7044 {
7045     bnx2x_config_endianity(bp, 0);
7046 }
7047 
7048 /**
7049  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7050  *
7051  * @bp:     driver handle
7052  */
7053 static int bnx2x_init_hw_common(struct bnx2x *bp)
7054 {
7055     u32 val;
7056 
7057     DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7058 
7059     /*
7060      * take the RESET lock to protect undi_unload flow from accessing
7061      * registers while we're resetting the chip
7062      */
7063     bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7064 
7065     bnx2x_reset_common(bp);
7066     REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7067 
7068     val = 0xfffc;
7069     if (CHIP_IS_E3(bp)) {
7070         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7071         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7072     }
7073     REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7074 
7075     bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7076 
7077     bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7078 
7079     if (!CHIP_IS_E1x(bp)) {
7080         u8 abs_func_id;
7081 
7082         /**
7083          * 4-port mode or 2-port mode we need to turn of master-enable
7084          * for everyone, after that, turn it back on for self.
7085          * so, we disregard multi-function or not, and always disable
7086          * for all functions on the given path, this means 0,2,4,6 for
7087          * path 0 and 1,3,5,7 for path 1
7088          */
7089         for (abs_func_id = BP_PATH(bp);
7090              abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7091             if (abs_func_id == BP_ABS_FUNC(bp)) {
7092                 REG_WR(bp,
7093                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7094                     1);
7095                 continue;
7096             }
7097 
7098             bnx2x_pretend_func(bp, abs_func_id);
7099             /* clear pf enable */
7100             bnx2x_pf_disable(bp);
7101             bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7102         }
7103     }
7104 
7105     bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7106     if (CHIP_IS_E1(bp)) {
7107         /* enable HW interrupt from PXP on USDM overflow
7108            bit 16 on INT_MASK_0 */
7109         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7110     }
7111 
7112     bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7113     bnx2x_init_pxp(bp);
7114     bnx2x_set_endianity(bp);
7115     bnx2x_ilt_init_page_size(bp, INITOP_SET);
7116 
7117     if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7118         REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7119 
7120     /* let the HW do it's magic ... */
7121     msleep(100);
7122     /* finish PXP init */
7123     val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7124     if (val != 1) {
7125         BNX2X_ERR("PXP2 CFG failed\n");
7126         return -EBUSY;
7127     }
7128     val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7129     if (val != 1) {
7130         BNX2X_ERR("PXP2 RD_INIT failed\n");
7131         return -EBUSY;
7132     }
7133 
7134     /* Timers bug workaround E2 only. We need to set the entire ILT to
7135      * have entries with value "0" and valid bit on.
7136      * This needs to be done by the first PF that is loaded in a path
7137      * (i.e. common phase)
7138      */
7139     if (!CHIP_IS_E1x(bp)) {
7140 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7141  * (i.e. vnic3) to start even if it is marked as "scan-off".
7142  * This occurs when a different function (func2,3) is being marked
7143  * as "scan-off". Real-life scenario for example: if a driver is being
7144  * load-unloaded while func6,7 are down. This will cause the timer to access
7145  * the ilt, translate to a logical address and send a request to read/write.
7146  * Since the ilt for the function that is down is not valid, this will cause
7147  * a translation error which is unrecoverable.
7148  * The Workaround is intended to make sure that when this happens nothing fatal
7149  * will occur. The workaround:
7150  *  1.  First PF driver which loads on a path will:
7151  *      a.  After taking the chip out of reset, by using pretend,
7152  *          it will write "0" to the following registers of
7153  *          the other vnics.
7154  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7155  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7156  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7157  *          And for itself it will write '1' to
7158  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7159  *          dmae-operations (writing to pram for example.)
7160  *          note: can be done for only function 6,7 but cleaner this
7161  *            way.
7162  *      b.  Write zero+valid to the entire ILT.
7163  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7164  *          VNIC3 (of that port). The range allocated will be the
7165  *          entire ILT. This is needed to prevent  ILT range error.
7166  *  2.  Any PF driver load flow:
7167  *      a.  ILT update with the physical addresses of the allocated
7168  *          logical pages.
7169  *      b.  Wait 20msec. - note that this timeout is needed to make
7170  *          sure there are no requests in one of the PXP internal
7171  *          queues with "old" ILT addresses.
7172  *      c.  PF enable in the PGLC.
7173  *      d.  Clear the was_error of the PF in the PGLC. (could have
7174  *          occurred while driver was down)
7175  *      e.  PF enable in the CFC (WEAK + STRONG)
7176  *      f.  Timers scan enable
7177  *  3.  PF driver unload flow:
7178  *      a.  Clear the Timers scan_en.
7179  *      b.  Polling for scan_on=0 for that PF.
7180  *      c.  Clear the PF enable bit in the PXP.
7181  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
7182  *      e.  Write zero+valid to all ILT entries (The valid bit must
7183  *          stay set)
7184  *      f.  If this is VNIC 3 of a port then also init
7185  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
7186  *          to the last entry in the ILT.
7187  *
7188  *  Notes:
7189  *  Currently the PF error in the PGLC is non recoverable.
7190  *  In the future the there will be a recovery routine for this error.
7191  *  Currently attention is masked.
7192  *  Having an MCP lock on the load/unload process does not guarantee that
7193  *  there is no Timer disable during Func6/7 enable. This is because the
7194  *  Timers scan is currently being cleared by the MCP on FLR.
7195  *  Step 2.d can be done only for PF6/7 and the driver can also check if
7196  *  there is error before clearing it. But the flow above is simpler and
7197  *  more general.
7198  *  All ILT entries are written by zero+valid and not just PF6/7
7199  *  ILT entries since in the future the ILT entries allocation for
7200  *  PF-s might be dynamic.
7201  */
7202         struct ilt_client_info ilt_cli;
7203         struct bnx2x_ilt ilt;
7204         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7205         memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7206 
7207         /* initialize dummy TM client */
7208         ilt_cli.start = 0;
7209         ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7210         ilt_cli.client_num = ILT_CLIENT_TM;
7211 
7212         /* Step 1: set zeroes to all ilt page entries with valid bit on
7213          * Step 2: set the timers first/last ilt entry to point
7214          * to the entire range to prevent ILT range error for 3rd/4th
7215          * vnic (this code assumes existence of the vnic)
7216          *
7217          * both steps performed by call to bnx2x_ilt_client_init_op()
7218          * with dummy TM client
7219          *
7220          * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7221          * and his brother are split registers
7222          */
7223         bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7224         bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7225         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7226 
7227         REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7228         REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7229         REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7230     }
7231 
7232     REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7233     REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7234 
7235     if (!CHIP_IS_E1x(bp)) {
7236         int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7237                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7238         bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7239 
7240         bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7241 
7242         /* let the HW do it's magic ... */
7243         do {
7244             msleep(200);
7245             val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7246         } while (factor-- && (val != 1));
7247 
7248         if (val != 1) {
7249             BNX2X_ERR("ATC_INIT failed\n");
7250             return -EBUSY;
7251         }
7252     }
7253 
7254     bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7255 
7256     bnx2x_iov_init_dmae(bp);
7257 
7258     /* clean the DMAE memory */
7259     bp->dmae_ready = 1;
7260     bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7261 
7262     bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7263 
7264     bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7265 
7266     bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7267 
7268     bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7269 
7270     bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7271     bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7272     bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7273     bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7274 
7275     bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7276 
7277     /* QM queues pointers table */
7278     bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7279 
7280     /* soft reset pulse */
7281     REG_WR(bp, QM_REG_SOFT_RESET, 1);
7282     REG_WR(bp, QM_REG_SOFT_RESET, 0);
7283 
7284     if (CNIC_SUPPORT(bp))
7285         bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7286 
7287     bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7288 
7289     if (!CHIP_REV_IS_SLOW(bp))
7290         /* enable hw interrupt from doorbell Q */
7291         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7292 
7293     bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7294 
7295     bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7296     REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7297 
7298     if (!CHIP_IS_E1(bp))
7299         REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7300 
7301     if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7302         if (IS_MF_AFEX(bp)) {
7303             /* configure that VNTag and VLAN headers must be
7304              * received in afex mode
7305              */
7306             REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7307             REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7308             REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7309             REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7310             REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7311         } else {
7312             /* Bit-map indicating which L2 hdrs may appear
7313              * after the basic Ethernet header
7314              */
7315             REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7316                    bp->path_has_ovlan ? 7 : 6);
7317         }
7318     }
7319 
7320     bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7321     bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7322     bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7323     bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7324 
7325     if (!CHIP_IS_E1x(bp)) {
7326         /* reset VFC memories */
7327         REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7328                VFC_MEMORIES_RST_REG_CAM_RST |
7329                VFC_MEMORIES_RST_REG_RAM_RST);
7330         REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7331                VFC_MEMORIES_RST_REG_CAM_RST |
7332                VFC_MEMORIES_RST_REG_RAM_RST);
7333 
7334         msleep(20);
7335     }
7336 
7337     bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7338     bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7339     bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7340     bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7341 
7342     /* sync semi rtc */
7343     REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7344            0x80000000);
7345     REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7346            0x80000000);
7347 
7348     bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7349     bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7350     bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7351 
7352     if (!CHIP_IS_E1x(bp)) {
7353         if (IS_MF_AFEX(bp)) {
7354             /* configure that VNTag and VLAN headers must be
7355              * sent in afex mode
7356              */
7357             REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7358             REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7359             REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7360             REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7361             REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7362         } else {
7363             REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7364                    bp->path_has_ovlan ? 7 : 6);
7365         }
7366     }
7367 
7368     REG_WR(bp, SRC_REG_SOFT_RST, 1);
7369 
7370     bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7371 
7372     if (CNIC_SUPPORT(bp)) {
7373         REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7374         REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7375         REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7376         REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7377         REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7378         REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7379         REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7380         REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7381         REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7382         REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7383     }
7384     REG_WR(bp, SRC_REG_SOFT_RST, 0);
7385 
7386     if (sizeof(union cdu_context) != 1024)
7387         /* we currently assume that a context is 1024 bytes */
7388         dev_alert(&bp->pdev->dev,
7389               "please adjust the size of cdu_context(%ld)\n",
7390               (long)sizeof(union cdu_context));
7391 
7392     bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7393     val = (4 << 24) + (0 << 12) + 1024;
7394     REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7395 
7396     bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7397     REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7398     /* enable context validation interrupt from CFC */
7399     REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7400 
7401     /* set the thresholds to prevent CFC/CDU race */
7402     REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7403 
7404     bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7405 
7406     if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7407         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7408 
7409     bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7410     bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7411 
7412     /* Reset PCIE errors for debug */
7413     REG_WR(bp, 0x2814, 0xffffffff);
7414     REG_WR(bp, 0x3820, 0xffffffff);
7415 
7416     if (!CHIP_IS_E1x(bp)) {
7417         REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7418                (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7419                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7420         REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7421                (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7422                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7423                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7424         REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7425                (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7426                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7427                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7428     }
7429 
7430     bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7431     if (!CHIP_IS_E1(bp)) {
7432         /* in E3 this done in per-port section */
7433         if (!CHIP_IS_E3(bp))
7434             REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7435     }
7436     if (CHIP_IS_E1H(bp))
7437         /* not applicable for E2 (and above ...) */
7438         REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7439 
7440     if (CHIP_REV_IS_SLOW(bp))
7441         msleep(200);
7442 
7443     /* finish CFC init */
7444     val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7445     if (val != 1) {
7446         BNX2X_ERR("CFC LL_INIT failed\n");
7447         return -EBUSY;
7448     }
7449     val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7450     if (val != 1) {
7451         BNX2X_ERR("CFC AC_INIT failed\n");
7452         return -EBUSY;
7453     }
7454     val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7455     if (val != 1) {
7456         BNX2X_ERR("CFC CAM_INIT failed\n");
7457         return -EBUSY;
7458     }
7459     REG_WR(bp, CFC_REG_DEBUG0, 0);
7460 
7461     if (CHIP_IS_E1(bp)) {
7462         /* read NIG statistic
7463            to see if this is our first up since powerup */
7464         bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7465         val = *bnx2x_sp(bp, wb_data[0]);
7466 
7467         /* do internal memory self test */
7468         if ((val == 0) && bnx2x_int_mem_test(bp)) {
7469             BNX2X_ERR("internal mem self test failed\n");
7470             return -EBUSY;
7471         }
7472     }
7473 
7474     bnx2x_setup_fan_failure_detection(bp);
7475 
7476     /* clear PXP2 attentions */
7477     REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7478 
7479     bnx2x_enable_blocks_attention(bp);
7480     bnx2x_enable_blocks_parity(bp);
7481 
7482     if (!BP_NOMCP(bp)) {
7483         if (CHIP_IS_E1x(bp))
7484             bnx2x__common_init_phy(bp);
7485     } else
7486         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7487 
7488     if (SHMEM2_HAS(bp, netproc_fw_ver))
7489         SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7490 
7491     return 0;
7492 }
7493 
7494 /**
7495  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7496  *
7497  * @bp:     driver handle
7498  */
7499 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7500 {
7501     int rc = bnx2x_init_hw_common(bp);
7502 
7503     if (rc)
7504         return rc;
7505 
7506     /* In E2 2-PORT mode, same ext phy is used for the two paths */
7507     if (!BP_NOMCP(bp))
7508         bnx2x__common_init_phy(bp);
7509 
7510     return 0;
7511 }
7512 
7513 static int bnx2x_init_hw_port(struct bnx2x *bp)
7514 {
7515     int port = BP_PORT(bp);
7516     int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7517     u32 low, high;
7518     u32 val, reg;
7519 
7520     DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7521 
7522     REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7523 
7524     bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7525     bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7526     bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7527 
7528     /* Timers bug workaround: disables the pf_master bit in pglue at
7529      * common phase, we need to enable it here before any dmae access are
7530      * attempted. Therefore we manually added the enable-master to the
7531      * port phase (it also happens in the function phase)
7532      */
7533     if (!CHIP_IS_E1x(bp))
7534         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7535 
7536     bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7537     bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7538     bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7539     bnx2x_init_block(bp, BLOCK_QM, init_phase);
7540 
7541     bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7542     bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7543     bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7544     bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7545 
7546     /* QM cid (connection) count */
7547     bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7548 
7549     if (CNIC_SUPPORT(bp)) {
7550         bnx2x_init_block(bp, BLOCK_TM, init_phase);
7551         REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7552         REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7553     }
7554 
7555     bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7556 
7557     bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7558 
7559     if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7560 
7561         if (IS_MF(bp))
7562             low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7563         else if (bp->dev->mtu > 4096) {
7564             if (bp->flags & ONE_PORT_FLAG)
7565                 low = 160;
7566             else {
7567                 val = bp->dev->mtu;
7568                 /* (24*1024 + val*4)/256 */
7569                 low = 96 + (val/64) +
7570                         ((val % 64) ? 1 : 0);
7571             }
7572         } else
7573             low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7574         high = low + 56;    /* 14*1024/256 */
7575         REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7576         REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7577     }
7578 
7579     if (CHIP_MODE_IS_4_PORT(bp))
7580         REG_WR(bp, (BP_PORT(bp) ?
7581                 BRB1_REG_MAC_GUARANTIED_1 :
7582                 BRB1_REG_MAC_GUARANTIED_0), 40);
7583 
7584     bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7585     if (CHIP_IS_E3B0(bp)) {
7586         if (IS_MF_AFEX(bp)) {
7587             /* configure headers for AFEX mode */
7588             REG_WR(bp, BP_PORT(bp) ?
7589                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7590                    PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7591             REG_WR(bp, BP_PORT(bp) ?
7592                    PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7593                    PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7594             REG_WR(bp, BP_PORT(bp) ?
7595                    PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7596                    PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7597         } else {
7598             /* Ovlan exists only if we are in multi-function +
7599              * switch-dependent mode, in switch-independent there
7600              * is no ovlan headers
7601              */
7602             REG_WR(bp, BP_PORT(bp) ?
7603                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7604                    PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7605                    (bp->path_has_ovlan ? 7 : 6));
7606         }
7607     }
7608 
7609     bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7610     bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7611     bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7612     bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7613 
7614     bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7615     bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7616     bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7617     bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7618 
7619     bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7620     bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7621 
7622     bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7623 
7624     if (CHIP_IS_E1x(bp)) {
7625         /* configure PBF to work without PAUSE mtu 9000 */
7626         REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7627 
7628         /* update threshold */
7629         REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7630         /* update init credit */
7631         REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7632 
7633         /* probe changes */
7634         REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7635         udelay(50);
7636         REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7637     }
7638 
7639     if (CNIC_SUPPORT(bp))
7640         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7641 
7642     bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7643     bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7644 
7645     if (CHIP_IS_E1(bp)) {
7646         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7647         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7648     }
7649     bnx2x_init_block(bp, BLOCK_HC, init_phase);
7650 
7651     bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7652 
7653     bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7654     /* init aeu_mask_attn_func_0/1:
7655      *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7656      *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7657      *             bits 4-7 are used for "per vn group attention" */
7658     val = IS_MF(bp) ? 0xF7 : 0x7;
7659     /* Enable DCBX attention for all but E1 */
7660     val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7661     REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7662 
7663     /* SCPAD_PARITY should NOT trigger close the gates */
7664     reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7665     REG_WR(bp, reg,
7666            REG_RD(bp, reg) &
7667            ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7668 
7669     reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7670     REG_WR(bp, reg,
7671            REG_RD(bp, reg) &
7672            ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7673 
7674     bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7675 
7676     if (!CHIP_IS_E1x(bp)) {
7677         /* Bit-map indicating which L2 hdrs may appear after the
7678          * basic Ethernet header
7679          */
7680         if (IS_MF_AFEX(bp))
7681             REG_WR(bp, BP_PORT(bp) ?
7682                    NIG_REG_P1_HDRS_AFTER_BASIC :
7683                    NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7684         else
7685             REG_WR(bp, BP_PORT(bp) ?
7686                    NIG_REG_P1_HDRS_AFTER_BASIC :
7687                    NIG_REG_P0_HDRS_AFTER_BASIC,
7688                    IS_MF_SD(bp) ? 7 : 6);
7689 
7690         if (CHIP_IS_E3(bp))
7691             REG_WR(bp, BP_PORT(bp) ?
7692                    NIG_REG_LLH1_MF_MODE :
7693                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
7694     }
7695     if (!CHIP_IS_E3(bp))
7696         REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7697 
7698     if (!CHIP_IS_E1(bp)) {
7699         /* 0x2 disable mf_ov, 0x1 enable */
7700         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7701                (IS_MF_SD(bp) ? 0x1 : 0x2));
7702 
7703         if (!CHIP_IS_E1x(bp)) {
7704             val = 0;
7705             switch (bp->mf_mode) {
7706             case MULTI_FUNCTION_SD:
7707                 val = 1;
7708                 break;
7709             case MULTI_FUNCTION_SI:
7710             case MULTI_FUNCTION_AFEX:
7711                 val = 2;
7712                 break;
7713             }
7714 
7715             REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7716                           NIG_REG_LLH0_CLS_TYPE), val);
7717         }
7718         {
7719             REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7720             REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7721             REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7722         }
7723     }
7724 
7725     /* If SPIO5 is set to generate interrupts, enable it for this port */
7726     val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7727     if (val & MISC_SPIO_SPIO5) {
7728         u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7729                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7730         val = REG_RD(bp, reg_addr);
7731         val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7732         REG_WR(bp, reg_addr, val);
7733     }
7734 
7735     if (CHIP_IS_E3B0(bp))
7736         bp->flags |= PTP_SUPPORTED;
7737 
7738     return 0;
7739 }
7740 
7741 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7742 {
7743     int reg;
7744     u32 wb_write[2];
7745 
7746     if (CHIP_IS_E1(bp))
7747         reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7748     else
7749         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7750 
7751     wb_write[0] = ONCHIP_ADDR1(addr);
7752     wb_write[1] = ONCHIP_ADDR2(addr);
7753     REG_WR_DMAE(bp, reg, wb_write, 2);
7754 }
7755 
7756 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7757 {
7758     u32 data, ctl, cnt = 100;
7759     u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7760     u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7761     u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7762     u32 sb_bit =  1 << (idu_sb_id%32);
7763     u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7764     u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7765 
7766     /* Not supported in BC mode */
7767     if (CHIP_INT_MODE_IS_BC(bp))
7768         return;
7769 
7770     data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7771             << IGU_REGULAR_CLEANUP_TYPE_SHIFT)  |
7772         IGU_REGULAR_CLEANUP_SET             |
7773         IGU_REGULAR_BCLEANUP;
7774 
7775     ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT     |
7776           func_encode << IGU_CTRL_REG_FID_SHIFT     |
7777           IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7778 
7779     DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7780              data, igu_addr_data);
7781     REG_WR(bp, igu_addr_data, data);
7782     barrier();
7783     DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7784               ctl, igu_addr_ctl);
7785     REG_WR(bp, igu_addr_ctl, ctl);
7786     barrier();
7787 
7788     /* wait for clean up to finish */
7789     while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7790         msleep(20);
7791 
7792     if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7793         DP(NETIF_MSG_HW,
7794            "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7795               idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7796     }
7797 }
7798 
7799 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7800 {
7801     bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7802 }
7803 
7804 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7805 {
7806     u32 i, base = FUNC_ILT_BASE(func);
7807     for (i = base; i < base + ILT_PER_FUNC; i++)
7808         bnx2x_ilt_wr(bp, i, 0);
7809 }
7810 
7811 static void bnx2x_init_searcher(struct bnx2x *bp)
7812 {
7813     int port = BP_PORT(bp);
7814     bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7815     /* T1 hash bits value determines the T1 number of entries */
7816     REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7817 }
7818 
7819 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7820 {
7821     int rc;
7822     struct bnx2x_func_state_params func_params = {NULL};
7823     struct bnx2x_func_switch_update_params *switch_update_params =
7824         &func_params.params.switch_update;
7825 
7826     /* Prepare parameters for function state transitions */
7827     __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7828     __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7829 
7830     func_params.f_obj = &bp->func_obj;
7831     func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7832 
7833     /* Function parameters */
7834     __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7835           &switch_update_params->changes);
7836     if (suspend)
7837         __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7838               &switch_update_params->changes);
7839 
7840     rc = bnx2x_func_state_change(bp, &func_params);
7841 
7842     return rc;
7843 }
7844 
7845 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7846 {
7847     int rc, i, port = BP_PORT(bp);
7848     int vlan_en = 0, mac_en[NUM_MACS];
7849 
7850     /* Close input from network */
7851     if (bp->mf_mode == SINGLE_FUNCTION) {
7852         bnx2x_set_rx_filter(&bp->link_params, 0);
7853     } else {
7854         vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7855                    NIG_REG_LLH0_FUNC_EN);
7856         REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7857               NIG_REG_LLH0_FUNC_EN, 0);
7858         for (i = 0; i < NUM_MACS; i++) {
7859             mac_en[i] = REG_RD(bp, port ?
7860                          (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7861                           4 * i) :
7862                          (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7863                           4 * i));
7864             REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7865                           4 * i) :
7866                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7867         }
7868     }
7869 
7870     /* Close BMC to host */
7871     REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7872            NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7873 
7874     /* Suspend Tx switching to the PF. Completion of this ramrod
7875      * further guarantees that all the packets of that PF / child
7876      * VFs in BRB were processed by the Parser, so it is safe to
7877      * change the NIC_MODE register.
7878      */
7879     rc = bnx2x_func_switch_update(bp, 1);
7880     if (rc) {
7881         BNX2X_ERR("Can't suspend tx-switching!\n");
7882         return rc;
7883     }
7884 
7885     /* Change NIC_MODE register */
7886     REG_WR(bp, PRS_REG_NIC_MODE, 0);
7887 
7888     /* Open input from network */
7889     if (bp->mf_mode == SINGLE_FUNCTION) {
7890         bnx2x_set_rx_filter(&bp->link_params, 1);
7891     } else {
7892         REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7893               NIG_REG_LLH0_FUNC_EN, vlan_en);
7894         for (i = 0; i < NUM_MACS; i++) {
7895             REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7896                           4 * i) :
7897                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7898                   mac_en[i]);
7899         }
7900     }
7901 
7902     /* Enable BMC to host */
7903     REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7904            NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7905 
7906     /* Resume Tx switching to the PF */
7907     rc = bnx2x_func_switch_update(bp, 0);
7908     if (rc) {
7909         BNX2X_ERR("Can't resume tx-switching!\n");
7910         return rc;
7911     }
7912 
7913     DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7914     return 0;
7915 }
7916 
7917 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7918 {
7919     int rc;
7920 
7921     bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7922 
7923     if (CONFIGURE_NIC_MODE(bp)) {
7924         /* Configure searcher as part of function hw init */
7925         bnx2x_init_searcher(bp);
7926 
7927         /* Reset NIC mode */
7928         rc = bnx2x_reset_nic_mode(bp);
7929         if (rc)
7930             BNX2X_ERR("Can't change NIC mode!\n");
7931         return rc;
7932     }
7933 
7934     return 0;
7935 }
7936 
7937 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7938  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7939  * the addresses of the transaction, resulting in was-error bit set in the pci
7940  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7941  * to clear the interrupt which detected this from the pglueb and the was done
7942  * bit
7943  */
7944 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7945 {
7946     if (!CHIP_IS_E1x(bp))
7947         REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7948                1 << BP_ABS_FUNC(bp));
7949 }
7950 
7951 static int bnx2x_init_hw_func(struct bnx2x *bp)
7952 {
7953     int port = BP_PORT(bp);
7954     int func = BP_FUNC(bp);
7955     int init_phase = PHASE_PF0 + func;
7956     struct bnx2x_ilt *ilt = BP_ILT(bp);
7957     u16 cdu_ilt_start;
7958     u32 addr, val;
7959     u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7960     int i, main_mem_width, rc;
7961 
7962     DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7963 
7964     /* FLR cleanup - hmmm */
7965     if (!CHIP_IS_E1x(bp)) {
7966         rc = bnx2x_pf_flr_clnup(bp);
7967         if (rc) {
7968             bnx2x_fw_dump(bp);
7969             return rc;
7970         }
7971     }
7972 
7973     /* set MSI reconfigure capability */
7974     if (bp->common.int_block == INT_BLOCK_HC) {
7975         addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7976         val = REG_RD(bp, addr);
7977         val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7978         REG_WR(bp, addr, val);
7979     }
7980 
7981     bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7982     bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7983 
7984     ilt = BP_ILT(bp);
7985     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7986 
7987     if (IS_SRIOV(bp))
7988         cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7989     cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7990 
7991     /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7992      * those of the VFs, so start line should be reset
7993      */
7994     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7995     for (i = 0; i < L2_ILT_LINES(bp); i++) {
7996         ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7997         ilt->lines[cdu_ilt_start + i].page_mapping =
7998             bp->context[i].cxt_mapping;
7999         ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
8000     }
8001 
8002     bnx2x_ilt_init_op(bp, INITOP_SET);
8003 
8004     if (!CONFIGURE_NIC_MODE(bp)) {
8005         bnx2x_init_searcher(bp);
8006         REG_WR(bp, PRS_REG_NIC_MODE, 0);
8007         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
8008     } else {
8009         /* Set NIC mode */
8010         REG_WR(bp, PRS_REG_NIC_MODE, 1);
8011         DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
8012     }
8013 
8014     if (!CHIP_IS_E1x(bp)) {
8015         u32 pf_conf = IGU_PF_CONF_FUNC_EN;
8016 
8017         /* Turn on a single ISR mode in IGU if driver is going to use
8018          * INT#x or MSI
8019          */
8020         if (!(bp->flags & USING_MSIX_FLAG))
8021             pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8022         /*
8023          * Timers workaround bug: function init part.
8024          * Need to wait 20msec after initializing ILT,
8025          * needed to make sure there are no requests in
8026          * one of the PXP internal queues with "old" ILT addresses
8027          */
8028         msleep(20);
8029         /*
8030          * Master enable - Due to WB DMAE writes performed before this
8031          * register is re-initialized as part of the regular function
8032          * init
8033          */
8034         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8035         /* Enable the function in IGU */
8036         REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8037     }
8038 
8039     bp->dmae_ready = 1;
8040 
8041     bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8042 
8043     bnx2x_clean_pglue_errors(bp);
8044 
8045     bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8046     bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8047     bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8048     bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8049     bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8050     bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8051     bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8052     bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8053     bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8054     bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8055     bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8056     bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8057     bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8058 
8059     if (!CHIP_IS_E1x(bp))
8060         REG_WR(bp, QM_REG_PF_EN, 1);
8061 
8062     if (!CHIP_IS_E1x(bp)) {
8063         REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8064         REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8065         REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8066         REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8067     }
8068     bnx2x_init_block(bp, BLOCK_QM, init_phase);
8069 
8070     bnx2x_init_block(bp, BLOCK_TM, init_phase);
8071     bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8072     REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8073 
8074     bnx2x_iov_init_dq(bp);
8075 
8076     bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8077     bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8078     bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8079     bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8080     bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8081     bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8082     bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8083     bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8084     bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8085     if (!CHIP_IS_E1x(bp))
8086         REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8087 
8088     bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8089 
8090     bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8091 
8092     if (!CHIP_IS_E1x(bp))
8093         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8094 
8095     if (IS_MF(bp)) {
8096         if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8097             REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8098             REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8099                    bp->mf_ov);
8100         }
8101     }
8102 
8103     bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8104 
8105     /* HC init per function */
8106     if (bp->common.int_block == INT_BLOCK_HC) {
8107         if (CHIP_IS_E1H(bp)) {
8108             REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8109 
8110             REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8111             REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8112         }
8113         bnx2x_init_block(bp, BLOCK_HC, init_phase);
8114 
8115     } else {
8116         int num_segs, sb_idx, prod_offset;
8117 
8118         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8119 
8120         if (!CHIP_IS_E1x(bp)) {
8121             REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8122             REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8123         }
8124 
8125         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8126 
8127         if (!CHIP_IS_E1x(bp)) {
8128             int dsb_idx = 0;
8129             /**
8130              * Producer memory:
8131              * E2 mode: address 0-135 match to the mapping memory;
8132              * 136 - PF0 default prod; 137 - PF1 default prod;
8133              * 138 - PF2 default prod; 139 - PF3 default prod;
8134              * 140 - PF0 attn prod;    141 - PF1 attn prod;
8135              * 142 - PF2 attn prod;    143 - PF3 attn prod;
8136              * 144-147 reserved.
8137              *
8138              * E1.5 mode - In backward compatible mode;
8139              * for non default SB; each even line in the memory
8140              * holds the U producer and each odd line hold
8141              * the C producer. The first 128 producers are for
8142              * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8143              * producers are for the DSB for each PF.
8144              * Each PF has five segments: (the order inside each
8145              * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8146              * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8147              * 144-147 attn prods;
8148              */
8149             /* non-default-status-blocks */
8150             num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8151                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8152             for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8153                 prod_offset = (bp->igu_base_sb + sb_idx) *
8154                     num_segs;
8155 
8156                 for (i = 0; i < num_segs; i++) {
8157                     addr = IGU_REG_PROD_CONS_MEMORY +
8158                             (prod_offset + i) * 4;
8159                     REG_WR(bp, addr, 0);
8160                 }
8161                 /* send consumer update with value 0 */
8162                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8163                          USTORM_ID, 0, IGU_INT_NOP, 1);
8164                 bnx2x_igu_clear_sb(bp,
8165                            bp->igu_base_sb + sb_idx);
8166             }
8167 
8168             /* default-status-blocks */
8169             num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8170                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8171 
8172             if (CHIP_MODE_IS_4_PORT(bp))
8173                 dsb_idx = BP_FUNC(bp);
8174             else
8175                 dsb_idx = BP_VN(bp);
8176 
8177             prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8178                        IGU_BC_BASE_DSB_PROD + dsb_idx :
8179                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
8180 
8181             /*
8182              * igu prods come in chunks of E1HVN_MAX (4) -
8183              * does not matters what is the current chip mode
8184              */
8185             for (i = 0; i < (num_segs * E1HVN_MAX);
8186                  i += E1HVN_MAX) {
8187                 addr = IGU_REG_PROD_CONS_MEMORY +
8188                             (prod_offset + i)*4;
8189                 REG_WR(bp, addr, 0);
8190             }
8191             /* send consumer update with 0 */
8192             if (CHIP_INT_MODE_IS_BC(bp)) {
8193                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8194                          USTORM_ID, 0, IGU_INT_NOP, 1);
8195                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8196                          CSTORM_ID, 0, IGU_INT_NOP, 1);
8197                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8198                          XSTORM_ID, 0, IGU_INT_NOP, 1);
8199                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8200                          TSTORM_ID, 0, IGU_INT_NOP, 1);
8201                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8202                          ATTENTION_ID, 0, IGU_INT_NOP, 1);
8203             } else {
8204                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8205                          USTORM_ID, 0, IGU_INT_NOP, 1);
8206                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8207                          ATTENTION_ID, 0, IGU_INT_NOP, 1);
8208             }
8209             bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8210 
8211             /* !!! These should become driver const once
8212                rf-tool supports split-68 const */
8213             REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8214             REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8215             REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8216             REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8217             REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8218             REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8219         }
8220     }
8221 
8222     /* Reset PCIE errors for debug */
8223     REG_WR(bp, 0x2114, 0xffffffff);
8224     REG_WR(bp, 0x2120, 0xffffffff);
8225 
8226     if (CHIP_IS_E1x(bp)) {
8227         main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8228         main_mem_base = HC_REG_MAIN_MEMORY +
8229                 BP_PORT(bp) * (main_mem_size * 4);
8230         main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8231         main_mem_width = 8;
8232 
8233         val = REG_RD(bp, main_mem_prty_clr);
8234         if (val)
8235             DP(NETIF_MSG_HW,
8236                "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8237                val);
8238 
8239         /* Clear "false" parity errors in MSI-X table */
8240         for (i = main_mem_base;
8241              i < main_mem_base + main_mem_size * 4;
8242              i += main_mem_width) {
8243             bnx2x_read_dmae(bp, i, main_mem_width / 4);
8244             bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8245                      i, main_mem_width / 4);
8246         }
8247         /* Clear HC parity attention */
8248         REG_RD(bp, main_mem_prty_clr);
8249     }
8250 
8251 #ifdef BNX2X_STOP_ON_ERROR
8252     /* Enable STORMs SP logging */
8253     REG_WR8(bp, BAR_USTRORM_INTMEM +
8254            USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8255     REG_WR8(bp, BAR_TSTRORM_INTMEM +
8256            TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8257     REG_WR8(bp, BAR_CSTRORM_INTMEM +
8258            CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8259     REG_WR8(bp, BAR_XSTRORM_INTMEM +
8260            XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8261 #endif
8262 
8263     bnx2x_phy_probe(&bp->link_params);
8264 
8265     return 0;
8266 }
8267 
8268 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8269 {
8270     bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8271 
8272     if (!CHIP_IS_E1x(bp))
8273         BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8274                    sizeof(struct host_hc_status_block_e2));
8275     else
8276         BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8277                    sizeof(struct host_hc_status_block_e1x));
8278 
8279     BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8280 }
8281 
8282 void bnx2x_free_mem(struct bnx2x *bp)
8283 {
8284     int i;
8285 
8286     BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8287                bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8288 
8289     if (IS_VF(bp))
8290         return;
8291 
8292     BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8293                sizeof(struct host_sp_status_block));
8294 
8295     BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8296                sizeof(struct bnx2x_slowpath));
8297 
8298     for (i = 0; i < L2_ILT_LINES(bp); i++)
8299         BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8300                    bp->context[i].size);
8301     bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8302 
8303     BNX2X_FREE(bp->ilt->lines);
8304 
8305     BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8306 
8307     BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8308                BCM_PAGE_SIZE * NUM_EQ_PAGES);
8309 
8310     BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8311 
8312     bnx2x_iov_free_mem(bp);
8313 }
8314 
8315 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8316 {
8317     if (!CHIP_IS_E1x(bp)) {
8318         /* size = the status block + ramrod buffers */
8319         bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8320                             sizeof(struct host_hc_status_block_e2));
8321         if (!bp->cnic_sb.e2_sb)
8322             goto alloc_mem_err;
8323     } else {
8324         bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8325                              sizeof(struct host_hc_status_block_e1x));
8326         if (!bp->cnic_sb.e1x_sb)
8327             goto alloc_mem_err;
8328     }
8329 
8330     if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8331         /* allocate searcher T2 table, as it wasn't allocated before */
8332         bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8333         if (!bp->t2)
8334             goto alloc_mem_err;
8335     }
8336 
8337     /* write address to which L5 should insert its values */
8338     bp->cnic_eth_dev.addr_drv_info_to_mcp =
8339         &bp->slowpath->drv_info_to_mcp;
8340 
8341     if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8342         goto alloc_mem_err;
8343 
8344     return 0;
8345 
8346 alloc_mem_err:
8347     bnx2x_free_mem_cnic(bp);
8348     BNX2X_ERR("Can't allocate memory\n");
8349     return -ENOMEM;
8350 }
8351 
8352 int bnx2x_alloc_mem(struct bnx2x *bp)
8353 {
8354     int i, allocated, context_size;
8355 
8356     if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8357         /* allocate searcher T2 table */
8358         bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8359         if (!bp->t2)
8360             goto alloc_mem_err;
8361     }
8362 
8363     bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8364                          sizeof(struct host_sp_status_block));
8365     if (!bp->def_status_blk)
8366         goto alloc_mem_err;
8367 
8368     bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8369                        sizeof(struct bnx2x_slowpath));
8370     if (!bp->slowpath)
8371         goto alloc_mem_err;
8372 
8373     /* Allocate memory for CDU context:
8374      * This memory is allocated separately and not in the generic ILT
8375      * functions because CDU differs in few aspects:
8376      * 1. There are multiple entities allocating memory for context -
8377      * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8378      * its own ILT lines.
8379      * 2. Since CDU page-size is not a single 4KB page (which is the case
8380      * for the other ILT clients), to be efficient we want to support
8381      * allocation of sub-page-size in the last entry.
8382      * 3. Context pointers are used by the driver to pass to FW / update
8383      * the context (for the other ILT clients the pointers are used just to
8384      * free the memory during unload).
8385      */
8386     context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8387 
8388     for (i = 0, allocated = 0; allocated < context_size; i++) {
8389         bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8390                       (context_size - allocated));
8391         bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8392                               bp->context[i].size);
8393         if (!bp->context[i].vcxt)
8394             goto alloc_mem_err;
8395         allocated += bp->context[i].size;
8396     }
8397     bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8398                  GFP_KERNEL);
8399     if (!bp->ilt->lines)
8400         goto alloc_mem_err;
8401 
8402     if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8403         goto alloc_mem_err;
8404 
8405     if (bnx2x_iov_alloc_mem(bp))
8406         goto alloc_mem_err;
8407 
8408     /* Slow path ring */
8409     bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8410     if (!bp->spq)
8411         goto alloc_mem_err;
8412 
8413     /* EQ */
8414     bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8415                       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8416     if (!bp->eq_ring)
8417         goto alloc_mem_err;
8418 
8419     return 0;
8420 
8421 alloc_mem_err:
8422     bnx2x_free_mem(bp);
8423     BNX2X_ERR("Can't allocate memory\n");
8424     return -ENOMEM;
8425 }
8426 
8427 /*
8428  * Init service functions
8429  */
8430 
8431 int bnx2x_set_mac_one(struct bnx2x *bp, const u8 *mac,
8432               struct bnx2x_vlan_mac_obj *obj, bool set,
8433               int mac_type, unsigned long *ramrod_flags)
8434 {
8435     int rc;
8436     struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8437 
8438     memset(&ramrod_param, 0, sizeof(ramrod_param));
8439 
8440     /* Fill general parameters */
8441     ramrod_param.vlan_mac_obj = obj;
8442     ramrod_param.ramrod_flags = *ramrod_flags;
8443 
8444     /* Fill a user request section if needed */
8445     if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8446         memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8447 
8448         __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8449 
8450         /* Set the command: ADD or DEL */
8451         if (set)
8452             ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8453         else
8454             ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8455     }
8456 
8457     rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8458 
8459     if (rc == -EEXIST) {
8460         DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8461         /* do not treat adding same MAC as error */
8462         rc = 0;
8463     } else if (rc < 0)
8464         BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8465 
8466     return rc;
8467 }
8468 
8469 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8470                struct bnx2x_vlan_mac_obj *obj, bool set,
8471                unsigned long *ramrod_flags)
8472 {
8473     int rc;
8474     struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8475 
8476     memset(&ramrod_param, 0, sizeof(ramrod_param));
8477 
8478     /* Fill general parameters */
8479     ramrod_param.vlan_mac_obj = obj;
8480     ramrod_param.ramrod_flags = *ramrod_flags;
8481 
8482     /* Fill a user request section if needed */
8483     if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8484         ramrod_param.user_req.u.vlan.vlan = vlan;
8485         __set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8486         /* Set the command: ADD or DEL */
8487         if (set)
8488             ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8489         else
8490             ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8491     }
8492 
8493     rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8494 
8495     if (rc == -EEXIST) {
8496         /* Do not treat adding same vlan as error. */
8497         DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8498         rc = 0;
8499     } else if (rc < 0) {
8500         BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8501     }
8502 
8503     return rc;
8504 }
8505 
8506 void bnx2x_clear_vlan_info(struct bnx2x *bp)
8507 {
8508     struct bnx2x_vlan_entry *vlan;
8509 
8510     /* Mark that hw forgot all entries */
8511     list_for_each_entry(vlan, &bp->vlan_reg, link)
8512         vlan->hw = false;
8513 
8514     bp->vlan_cnt = 0;
8515 }
8516 
8517 static int bnx2x_del_all_vlans(struct bnx2x *bp)
8518 {
8519     struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8520     unsigned long ramrod_flags = 0, vlan_flags = 0;
8521     int rc;
8522 
8523     __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8524     __set_bit(BNX2X_VLAN, &vlan_flags);
8525     rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8526     if (rc)
8527         return rc;
8528 
8529     bnx2x_clear_vlan_info(bp);
8530 
8531     return 0;
8532 }
8533 
8534 int bnx2x_del_all_macs(struct bnx2x *bp,
8535                struct bnx2x_vlan_mac_obj *mac_obj,
8536                int mac_type, bool wait_for_comp)
8537 {
8538     int rc;
8539     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8540 
8541     /* Wait for completion of requested */
8542     if (wait_for_comp)
8543         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8544 
8545     /* Set the mac type of addresses we want to clear */
8546     __set_bit(mac_type, &vlan_mac_flags);
8547 
8548     rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8549     if (rc < 0)
8550         BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8551 
8552     return rc;
8553 }
8554 
8555 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8556 {
8557     if (IS_PF(bp)) {
8558         unsigned long ramrod_flags = 0;
8559 
8560         DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8561         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8562         return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8563                      &bp->sp_objs->mac_obj, set,
8564                      BNX2X_ETH_MAC, &ramrod_flags);
8565     } else { /* vf */
8566         return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8567                          bp->fp->index, set);
8568     }
8569 }
8570 
8571 int bnx2x_setup_leading(struct bnx2x *bp)
8572 {
8573     if (IS_PF(bp))
8574         return bnx2x_setup_queue(bp, &bp->fp[0], true);
8575     else /* VF */
8576         return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8577 }
8578 
8579 /**
8580  * bnx2x_set_int_mode - configure interrupt mode
8581  *
8582  * @bp:     driver handle
8583  *
8584  * In case of MSI-X it will also try to enable MSI-X.
8585  */
8586 int bnx2x_set_int_mode(struct bnx2x *bp)
8587 {
8588     int rc = 0;
8589 
8590     if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8591         BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8592         return -EINVAL;
8593     }
8594 
8595     switch (int_mode) {
8596     case BNX2X_INT_MODE_MSIX:
8597         /* attempt to enable msix */
8598         rc = bnx2x_enable_msix(bp);
8599 
8600         /* msix attained */
8601         if (!rc)
8602             return 0;
8603 
8604         /* vfs use only msix */
8605         if (rc && IS_VF(bp))
8606             return rc;
8607 
8608         /* failed to enable multiple MSI-X */
8609         BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8610                    bp->num_queues,
8611                    1 + bp->num_cnic_queues);
8612 
8613         fallthrough;
8614     case BNX2X_INT_MODE_MSI:
8615         bnx2x_enable_msi(bp);
8616 
8617         fallthrough;
8618     case BNX2X_INT_MODE_INTX:
8619         bp->num_ethernet_queues = 1;
8620         bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8621         BNX2X_DEV_INFO("set number of queues to 1\n");
8622         break;
8623     default:
8624         BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8625         return -EINVAL;
8626     }
8627     return 0;
8628 }
8629 
8630 /* must be called prior to any HW initializations */
8631 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8632 {
8633     if (IS_SRIOV(bp))
8634         return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8635     return L2_ILT_LINES(bp);
8636 }
8637 
8638 void bnx2x_ilt_set_info(struct bnx2x *bp)
8639 {
8640     struct ilt_client_info *ilt_client;
8641     struct bnx2x_ilt *ilt = BP_ILT(bp);
8642     u16 line = 0;
8643 
8644     ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8645     DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8646 
8647     /* CDU */
8648     ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8649     ilt_client->client_num = ILT_CLIENT_CDU;
8650     ilt_client->page_size = CDU_ILT_PAGE_SZ;
8651     ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8652     ilt_client->start = line;
8653     line += bnx2x_cid_ilt_lines(bp);
8654 
8655     if (CNIC_SUPPORT(bp))
8656         line += CNIC_ILT_LINES;
8657     ilt_client->end = line - 1;
8658 
8659     DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8660        ilt_client->start,
8661        ilt_client->end,
8662        ilt_client->page_size,
8663        ilt_client->flags,
8664        ilog2(ilt_client->page_size >> 12));
8665 
8666     /* QM */
8667     if (QM_INIT(bp->qm_cid_count)) {
8668         ilt_client = &ilt->clients[ILT_CLIENT_QM];
8669         ilt_client->client_num = ILT_CLIENT_QM;
8670         ilt_client->page_size = QM_ILT_PAGE_SZ;
8671         ilt_client->flags = 0;
8672         ilt_client->start = line;
8673 
8674         /* 4 bytes for each cid */
8675         line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8676                              QM_ILT_PAGE_SZ);
8677 
8678         ilt_client->end = line - 1;
8679 
8680         DP(NETIF_MSG_IFUP,
8681            "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8682            ilt_client->start,
8683            ilt_client->end,
8684            ilt_client->page_size,
8685            ilt_client->flags,
8686            ilog2(ilt_client->page_size >> 12));
8687     }
8688 
8689     if (CNIC_SUPPORT(bp)) {
8690         /* SRC */
8691         ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8692         ilt_client->client_num = ILT_CLIENT_SRC;
8693         ilt_client->page_size = SRC_ILT_PAGE_SZ;
8694         ilt_client->flags = 0;
8695         ilt_client->start = line;
8696         line += SRC_ILT_LINES;
8697         ilt_client->end = line - 1;
8698 
8699         DP(NETIF_MSG_IFUP,
8700            "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8701            ilt_client->start,
8702            ilt_client->end,
8703            ilt_client->page_size,
8704            ilt_client->flags,
8705            ilog2(ilt_client->page_size >> 12));
8706 
8707         /* TM */
8708         ilt_client = &ilt->clients[ILT_CLIENT_TM];
8709         ilt_client->client_num = ILT_CLIENT_TM;
8710         ilt_client->page_size = TM_ILT_PAGE_SZ;
8711         ilt_client->flags = 0;
8712         ilt_client->start = line;
8713         line += TM_ILT_LINES;
8714         ilt_client->end = line - 1;
8715 
8716         DP(NETIF_MSG_IFUP,
8717            "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8718            ilt_client->start,
8719            ilt_client->end,
8720            ilt_client->page_size,
8721            ilt_client->flags,
8722            ilog2(ilt_client->page_size >> 12));
8723     }
8724 
8725     BUG_ON(line > ILT_MAX_LINES);
8726 }
8727 
8728 /**
8729  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8730  *
8731  * @bp:         driver handle
8732  * @fp:         pointer to fastpath
8733  * @init_params:    pointer to parameters structure
8734  *
8735  * parameters configured:
8736  *      - HC configuration
8737  *      - Queue's CDU context
8738  */
8739 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8740     struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8741 {
8742     u8 cos;
8743     int cxt_index, cxt_offset;
8744 
8745     /* FCoE Queue uses Default SB, thus has no HC capabilities */
8746     if (!IS_FCOE_FP(fp)) {
8747         __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8748         __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8749 
8750         /* If HC is supported, enable host coalescing in the transition
8751          * to INIT state.
8752          */
8753         __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8754         __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8755 
8756         /* HC rate */
8757         init_params->rx.hc_rate = bp->rx_ticks ?
8758             (1000000 / bp->rx_ticks) : 0;
8759         init_params->tx.hc_rate = bp->tx_ticks ?
8760             (1000000 / bp->tx_ticks) : 0;
8761 
8762         /* FW SB ID */
8763         init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8764             fp->fw_sb_id;
8765 
8766         /*
8767          * CQ index among the SB indices: FCoE clients uses the default
8768          * SB, therefore it's different.
8769          */
8770         init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8771         init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8772     }
8773 
8774     /* set maximum number of COSs supported by this queue */
8775     init_params->max_cos = fp->max_cos;
8776 
8777     DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8778         fp->index, init_params->max_cos);
8779 
8780     /* set the context pointers queue object */
8781     for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8782         cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8783         cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8784                 ILT_PAGE_CIDS);
8785         init_params->cxts[cos] =
8786             &bp->context[cxt_index].vcxt[cxt_offset].eth;
8787     }
8788 }
8789 
8790 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8791             struct bnx2x_queue_state_params *q_params,
8792             struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8793             int tx_index, bool leading)
8794 {
8795     memset(tx_only_params, 0, sizeof(*tx_only_params));
8796 
8797     /* Set the command */
8798     q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8799 
8800     /* Set tx-only QUEUE flags: don't zero statistics */
8801     tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8802 
8803     /* choose the index of the cid to send the slow path on */
8804     tx_only_params->cid_index = tx_index;
8805 
8806     /* Set general TX_ONLY_SETUP parameters */
8807     bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8808 
8809     /* Set Tx TX_ONLY_SETUP parameters */
8810     bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8811 
8812     DP(NETIF_MSG_IFUP,
8813        "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8814        tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8815        q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8816        tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8817 
8818     /* send the ramrod */
8819     return bnx2x_queue_state_change(bp, q_params);
8820 }
8821 
8822 /**
8823  * bnx2x_setup_queue - setup queue
8824  *
8825  * @bp:     driver handle
8826  * @fp:     pointer to fastpath
8827  * @leading:    is leading
8828  *
8829  * This function performs 2 steps in a Queue state machine
8830  *      actually: 1) RESET->INIT 2) INIT->SETUP
8831  */
8832 
8833 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8834                bool leading)
8835 {
8836     struct bnx2x_queue_state_params q_params = {NULL};
8837     struct bnx2x_queue_setup_params *setup_params =
8838                         &q_params.params.setup;
8839     struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8840                         &q_params.params.tx_only;
8841     int rc;
8842     u8 tx_index;
8843 
8844     DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8845 
8846     /* reset IGU state skip FCoE L2 queue */
8847     if (!IS_FCOE_FP(fp))
8848         bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8849                  IGU_INT_ENABLE, 0);
8850 
8851     q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8852     /* We want to wait for completion in this context */
8853     __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8854 
8855     /* Prepare the INIT parameters */
8856     bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8857 
8858     /* Set the command */
8859     q_params.cmd = BNX2X_Q_CMD_INIT;
8860 
8861     /* Change the state to INIT */
8862     rc = bnx2x_queue_state_change(bp, &q_params);
8863     if (rc) {
8864         BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8865         return rc;
8866     }
8867 
8868     DP(NETIF_MSG_IFUP, "init complete\n");
8869 
8870     /* Now move the Queue to the SETUP state... */
8871     memset(setup_params, 0, sizeof(*setup_params));
8872 
8873     /* Set QUEUE flags */
8874     setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8875 
8876     /* Set general SETUP parameters */
8877     bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8878                 FIRST_TX_COS_INDEX);
8879 
8880     bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8881                 &setup_params->rxq_params);
8882 
8883     bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8884                FIRST_TX_COS_INDEX);
8885 
8886     /* Set the command */
8887     q_params.cmd = BNX2X_Q_CMD_SETUP;
8888 
8889     if (IS_FCOE_FP(fp))
8890         bp->fcoe_init = true;
8891 
8892     /* Change the state to SETUP */
8893     rc = bnx2x_queue_state_change(bp, &q_params);
8894     if (rc) {
8895         BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8896         return rc;
8897     }
8898 
8899     /* loop through the relevant tx-only indices */
8900     for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8901           tx_index < fp->max_cos;
8902           tx_index++) {
8903 
8904         /* prepare and send tx-only ramrod*/
8905         rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8906                       tx_only_params, tx_index, leading);
8907         if (rc) {
8908             BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8909                   fp->index, tx_index);
8910             return rc;
8911         }
8912     }
8913 
8914     return rc;
8915 }
8916 
8917 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8918 {
8919     struct bnx2x_fastpath *fp = &bp->fp[index];
8920     struct bnx2x_fp_txdata *txdata;
8921     struct bnx2x_queue_state_params q_params = {NULL};
8922     int rc, tx_index;
8923 
8924     DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8925 
8926     q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8927     /* We want to wait for completion in this context */
8928     __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8929 
8930     /* close tx-only connections */
8931     for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8932          tx_index < fp->max_cos;
8933          tx_index++){
8934 
8935         /* ascertain this is a normal queue*/
8936         txdata = fp->txdata_ptr[tx_index];
8937 
8938         DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8939                             txdata->txq_index);
8940 
8941         /* send halt terminate on tx-only connection */
8942         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8943         memset(&q_params.params.terminate, 0,
8944                sizeof(q_params.params.terminate));
8945         q_params.params.terminate.cid_index = tx_index;
8946 
8947         rc = bnx2x_queue_state_change(bp, &q_params);
8948         if (rc)
8949             return rc;
8950 
8951         /* send halt terminate on tx-only connection */
8952         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8953         memset(&q_params.params.cfc_del, 0,
8954                sizeof(q_params.params.cfc_del));
8955         q_params.params.cfc_del.cid_index = tx_index;
8956         rc = bnx2x_queue_state_change(bp, &q_params);
8957         if (rc)
8958             return rc;
8959     }
8960     /* Stop the primary connection: */
8961     /* ...halt the connection */
8962     q_params.cmd = BNX2X_Q_CMD_HALT;
8963     rc = bnx2x_queue_state_change(bp, &q_params);
8964     if (rc)
8965         return rc;
8966 
8967     /* ...terminate the connection */
8968     q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8969     memset(&q_params.params.terminate, 0,
8970            sizeof(q_params.params.terminate));
8971     q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8972     rc = bnx2x_queue_state_change(bp, &q_params);
8973     if (rc)
8974         return rc;
8975     /* ...delete cfc entry */
8976     q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8977     memset(&q_params.params.cfc_del, 0,
8978            sizeof(q_params.params.cfc_del));
8979     q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8980     return bnx2x_queue_state_change(bp, &q_params);
8981 }
8982 
8983 static void bnx2x_reset_func(struct bnx2x *bp)
8984 {
8985     int port = BP_PORT(bp);
8986     int func = BP_FUNC(bp);
8987     int i;
8988 
8989     /* Disable the function in the FW */
8990     REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8991     REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8992     REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8993     REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8994 
8995     /* FP SBs */
8996     for_each_eth_queue(bp, i) {
8997         struct bnx2x_fastpath *fp = &bp->fp[i];
8998         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8999                CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
9000                SB_DISABLED);
9001     }
9002 
9003     if (CNIC_LOADED(bp))
9004         /* CNIC SB */
9005         REG_WR8(bp, BAR_CSTRORM_INTMEM +
9006             CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
9007             (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
9008 
9009     /* SP SB */
9010     REG_WR8(bp, BAR_CSTRORM_INTMEM +
9011         CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
9012         SB_DISABLED);
9013 
9014     for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
9015         REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
9016                0);
9017 
9018     /* Configure IGU */
9019     if (bp->common.int_block == INT_BLOCK_HC) {
9020         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
9021         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9022     } else {
9023         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9024         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9025     }
9026 
9027     if (CNIC_LOADED(bp)) {
9028         /* Disable Timer scan */
9029         REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9030         /*
9031          * Wait for at least 10ms and up to 2 second for the timers
9032          * scan to complete
9033          */
9034         for (i = 0; i < 200; i++) {
9035             usleep_range(10000, 20000);
9036             if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9037                 break;
9038         }
9039     }
9040     /* Clear ILT */
9041     bnx2x_clear_func_ilt(bp, func);
9042 
9043     /* Timers workaround bug for E2: if this is vnic-3,
9044      * we need to set the entire ilt range for this timers.
9045      */
9046     if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9047         struct ilt_client_info ilt_cli;
9048         /* use dummy TM client */
9049         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9050         ilt_cli.start = 0;
9051         ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9052         ilt_cli.client_num = ILT_CLIENT_TM;
9053 
9054         bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9055     }
9056 
9057     /* this assumes that reset_port() called before reset_func()*/
9058     if (!CHIP_IS_E1x(bp))
9059         bnx2x_pf_disable(bp);
9060 
9061     bp->dmae_ready = 0;
9062 }
9063 
9064 static void bnx2x_reset_port(struct bnx2x *bp)
9065 {
9066     int port = BP_PORT(bp);
9067     u32 val;
9068 
9069     /* Reset physical Link */
9070     bnx2x__link_reset(bp);
9071 
9072     REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9073 
9074     /* Do not rcv packets to BRB */
9075     REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9076     /* Do not direct rcv packets that are not for MCP to the BRB */
9077     REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9078                NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9079 
9080     /* Configure AEU */
9081     REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9082 
9083     msleep(100);
9084     /* Check for BRB port occupancy */
9085     val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9086     if (val)
9087         DP(NETIF_MSG_IFDOWN,
9088            "BRB1 is not empty  %d blocks are occupied\n", val);
9089 
9090     /* TODO: Close Doorbell port? */
9091 }
9092 
9093 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9094 {
9095     struct bnx2x_func_state_params func_params = {NULL};
9096 
9097     /* Prepare parameters for function state transitions */
9098     __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9099 
9100     func_params.f_obj = &bp->func_obj;
9101     func_params.cmd = BNX2X_F_CMD_HW_RESET;
9102 
9103     func_params.params.hw_init.load_phase = load_code;
9104 
9105     return bnx2x_func_state_change(bp, &func_params);
9106 }
9107 
9108 static int bnx2x_func_stop(struct bnx2x *bp)
9109 {
9110     struct bnx2x_func_state_params func_params = {NULL};
9111     int rc;
9112 
9113     /* Prepare parameters for function state transitions */
9114     __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9115     func_params.f_obj = &bp->func_obj;
9116     func_params.cmd = BNX2X_F_CMD_STOP;
9117 
9118     /*
9119      * Try to stop the function the 'good way'. If fails (in case
9120      * of a parity error during bnx2x_chip_cleanup()) and we are
9121      * not in a debug mode, perform a state transaction in order to
9122      * enable further HW_RESET transaction.
9123      */
9124     rc = bnx2x_func_state_change(bp, &func_params);
9125     if (rc) {
9126 #ifdef BNX2X_STOP_ON_ERROR
9127         return rc;
9128 #else
9129         BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9130         __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9131         return bnx2x_func_state_change(bp, &func_params);
9132 #endif
9133     }
9134 
9135     return 0;
9136 }
9137 
9138 /**
9139  * bnx2x_send_unload_req - request unload mode from the MCP.
9140  *
9141  * @bp:         driver handle
9142  * @unload_mode:    requested function's unload mode
9143  *
9144  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9145  */
9146 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9147 {
9148     u32 reset_code = 0;
9149     int port = BP_PORT(bp);
9150 
9151     /* Select the UNLOAD request mode */
9152     if (unload_mode == UNLOAD_NORMAL)
9153         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9154 
9155     else if (bp->flags & NO_WOL_FLAG)
9156         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9157 
9158     else if (bp->wol) {
9159         u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9160         const u8 *mac_addr = bp->dev->dev_addr;
9161         struct pci_dev *pdev = bp->pdev;
9162         u32 val;
9163         u16 pmc;
9164 
9165         /* The mac address is written to entries 1-4 to
9166          * preserve entry 0 which is used by the PMF
9167          */
9168         u8 entry = (BP_VN(bp) + 1)*8;
9169 
9170         val = (mac_addr[0] << 8) | mac_addr[1];
9171         EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9172 
9173         val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9174               (mac_addr[4] << 8) | mac_addr[5];
9175         EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9176 
9177         /* Enable the PME and clear the status */
9178         pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9179         pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9180         pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9181 
9182         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9183 
9184     } else
9185         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9186 
9187     /* Send the request to the MCP */
9188     if (!BP_NOMCP(bp))
9189         reset_code = bnx2x_fw_command(bp, reset_code, 0);
9190     else {
9191         int path = BP_PATH(bp);
9192 
9193         DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9194            path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9195            bnx2x_load_count[path][2]);
9196         bnx2x_load_count[path][0]--;
9197         bnx2x_load_count[path][1 + port]--;
9198         DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9199            path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9200            bnx2x_load_count[path][2]);
9201         if (bnx2x_load_count[path][0] == 0)
9202             reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9203         else if (bnx2x_load_count[path][1 + port] == 0)
9204             reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9205         else
9206             reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9207     }
9208 
9209     return reset_code;
9210 }
9211 
9212 /**
9213  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9214  *
9215  * @bp:     driver handle
9216  * @keep_link:      true iff link should be kept up
9217  */
9218 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9219 {
9220     u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9221 
9222     /* Report UNLOAD_DONE to MCP */
9223     if (!BP_NOMCP(bp))
9224         bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9225 }
9226 
9227 static int bnx2x_func_wait_started(struct bnx2x *bp)
9228 {
9229     int tout = 50;
9230     int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9231 
9232     if (!bp->port.pmf)
9233         return 0;
9234 
9235     /*
9236      * (assumption: No Attention from MCP at this stage)
9237      * PMF probably in the middle of TX disable/enable transaction
9238      * 1. Sync IRS for default SB
9239      * 2. Sync SP queue - this guarantees us that attention handling started
9240      * 3. Wait, that TX disable/enable transaction completes
9241      *
9242      * 1+2 guarantee that if DCBx attention was scheduled it already changed
9243      * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9244      * received completion for the transaction the state is TX_STOPPED.
9245      * State will return to STARTED after completion of TX_STOPPED-->STARTED
9246      * transaction.
9247      */
9248 
9249     /* make sure default SB ISR is done */
9250     if (msix)
9251         synchronize_irq(bp->msix_table[0].vector);
9252     else
9253         synchronize_irq(bp->pdev->irq);
9254 
9255     flush_workqueue(bnx2x_wq);
9256     flush_workqueue(bnx2x_iov_wq);
9257 
9258     while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9259                 BNX2X_F_STATE_STARTED && tout--)
9260         msleep(20);
9261 
9262     if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9263                         BNX2X_F_STATE_STARTED) {
9264 #ifdef BNX2X_STOP_ON_ERROR
9265         BNX2X_ERR("Wrong function state\n");
9266         return -EBUSY;
9267 #else
9268         /*
9269          * Failed to complete the transaction in a "good way"
9270          * Force both transactions with CLR bit
9271          */
9272         struct bnx2x_func_state_params func_params = {NULL};
9273 
9274         DP(NETIF_MSG_IFDOWN,
9275            "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9276 
9277         func_params.f_obj = &bp->func_obj;
9278         __set_bit(RAMROD_DRV_CLR_ONLY,
9279                     &func_params.ramrod_flags);
9280 
9281         /* STARTED-->TX_ST0PPED */
9282         func_params.cmd = BNX2X_F_CMD_TX_STOP;
9283         bnx2x_func_state_change(bp, &func_params);
9284 
9285         /* TX_ST0PPED-->STARTED */
9286         func_params.cmd = BNX2X_F_CMD_TX_START;
9287         return bnx2x_func_state_change(bp, &func_params);
9288 #endif
9289     }
9290 
9291     return 0;
9292 }
9293 
9294 static void bnx2x_disable_ptp(struct bnx2x *bp)
9295 {
9296     int port = BP_PORT(bp);
9297 
9298     /* Disable sending PTP packets to host */
9299     REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9300            NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9301 
9302     /* Reset PTP event detection rules */
9303     REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9304            NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9305     REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9306            NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9307     REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9308            NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9309     REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9310            NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9311 
9312     /* Disable the PTP feature */
9313     REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9314            NIG_REG_P0_PTP_EN, 0x0);
9315 }
9316 
9317 /* Called during unload, to stop PTP-related stuff */
9318 static void bnx2x_stop_ptp(struct bnx2x *bp)
9319 {
9320     /* Cancel PTP work queue. Should be done after the Tx queues are
9321      * drained to prevent additional scheduling.
9322      */
9323     cancel_work_sync(&bp->ptp_task);
9324 
9325     if (bp->ptp_tx_skb) {
9326         dev_kfree_skb_any(bp->ptp_tx_skb);
9327         bp->ptp_tx_skb = NULL;
9328     }
9329 
9330     /* Disable PTP in HW */
9331     bnx2x_disable_ptp(bp);
9332 
9333     DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9334 }
9335 
9336 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9337 {
9338     int port = BP_PORT(bp);
9339     int i, rc = 0;
9340     u8 cos;
9341     struct bnx2x_mcast_ramrod_params rparam = {NULL};
9342     u32 reset_code;
9343 
9344     /* Wait until tx fastpath tasks complete */
9345     for_each_tx_queue(bp, i) {
9346         struct bnx2x_fastpath *fp = &bp->fp[i];
9347 
9348         for_each_cos_in_tx_queue(fp, cos)
9349             rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9350 #ifdef BNX2X_STOP_ON_ERROR
9351         if (rc)
9352             return;
9353 #endif
9354     }
9355 
9356     /* Give HW time to discard old tx messages */
9357     usleep_range(1000, 2000);
9358 
9359     /* Clean all ETH MACs */
9360     rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9361                 false);
9362     if (rc < 0)
9363         BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9364 
9365     /* Clean up UC list  */
9366     rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9367                 true);
9368     if (rc < 0)
9369         BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9370               rc);
9371 
9372     /* The whole *vlan_obj structure may be not initialized if VLAN
9373      * filtering offload is not supported by hardware. Currently this is
9374      * true for all hardware covered by CHIP_IS_E1x().
9375      */
9376     if (!CHIP_IS_E1x(bp)) {
9377         /* Remove all currently configured VLANs */
9378         rc = bnx2x_del_all_vlans(bp);
9379         if (rc < 0)
9380             BNX2X_ERR("Failed to delete all VLANs\n");
9381     }
9382 
9383     /* Disable LLH */
9384     if (!CHIP_IS_E1(bp))
9385         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9386 
9387     /* Set "drop all" (stop Rx).
9388      * We need to take a netif_addr_lock() here in order to prevent
9389      * a race between the completion code and this code.
9390      */
9391     netif_addr_lock_bh(bp->dev);
9392     /* Schedule the rx_mode command */
9393     if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9394         set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9395     else if (bp->slowpath)
9396         bnx2x_set_storm_rx_mode(bp);
9397 
9398     /* Cleanup multicast configuration */
9399     rparam.mcast_obj = &bp->mcast_obj;
9400     rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9401     if (rc < 0)
9402         BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9403 
9404     netif_addr_unlock_bh(bp->dev);
9405 
9406     bnx2x_iov_chip_cleanup(bp);
9407 
9408     /*
9409      * Send the UNLOAD_REQUEST to the MCP. This will return if
9410      * this function should perform FUNC, PORT or COMMON HW
9411      * reset.
9412      */
9413     reset_code = bnx2x_send_unload_req(bp, unload_mode);
9414 
9415     /*
9416      * (assumption: No Attention from MCP at this stage)
9417      * PMF probably in the middle of TX disable/enable transaction
9418      */
9419     rc = bnx2x_func_wait_started(bp);
9420     if (rc) {
9421         BNX2X_ERR("bnx2x_func_wait_started failed\n");
9422 #ifdef BNX2X_STOP_ON_ERROR
9423         return;
9424 #endif
9425     }
9426 
9427     /* Close multi and leading connections
9428      * Completions for ramrods are collected in a synchronous way
9429      */
9430     for_each_eth_queue(bp, i)
9431         if (bnx2x_stop_queue(bp, i))
9432 #ifdef BNX2X_STOP_ON_ERROR
9433             return;
9434 #else
9435             goto unload_error;
9436 #endif
9437 
9438     if (CNIC_LOADED(bp)) {
9439         for_each_cnic_queue(bp, i)
9440             if (bnx2x_stop_queue(bp, i))
9441 #ifdef BNX2X_STOP_ON_ERROR
9442                 return;
9443 #else
9444                 goto unload_error;
9445 #endif
9446     }
9447 
9448     /* If SP settings didn't get completed so far - something
9449      * very wrong has happen.
9450      */
9451     if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9452         BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9453 
9454 #ifndef BNX2X_STOP_ON_ERROR
9455 unload_error:
9456 #endif
9457     rc = bnx2x_func_stop(bp);
9458     if (rc) {
9459         BNX2X_ERR("Function stop failed!\n");
9460 #ifdef BNX2X_STOP_ON_ERROR
9461         return;
9462 #endif
9463     }
9464 
9465     /* stop_ptp should be after the Tx queues are drained to prevent
9466      * scheduling to the cancelled PTP work queue. It should also be after
9467      * function stop ramrod is sent, since as part of this ramrod FW access
9468      * PTP registers.
9469      */
9470     if (bp->flags & PTP_SUPPORTED) {
9471         bnx2x_stop_ptp(bp);
9472         if (bp->ptp_clock) {
9473             ptp_clock_unregister(bp->ptp_clock);
9474             bp->ptp_clock = NULL;
9475         }
9476     }
9477 
9478     /* Disable HW interrupts, NAPI */
9479     bnx2x_netif_stop(bp, 1);
9480     /* Delete all NAPI objects */
9481     bnx2x_del_all_napi(bp);
9482     if (CNIC_LOADED(bp))
9483         bnx2x_del_all_napi_cnic(bp);
9484 
9485     /* Release IRQs */
9486     bnx2x_free_irq(bp);
9487 
9488     /* Reset the chip, unless PCI function is offline. If we reach this
9489      * point following a PCI error handling, it means device is really
9490      * in a bad state and we're about to remove it, so reset the chip
9491      * is not a good idea.
9492      */
9493     if (!pci_channel_offline(bp->pdev)) {
9494         rc = bnx2x_reset_hw(bp, reset_code);
9495         if (rc)
9496             BNX2X_ERR("HW_RESET failed\n");
9497     }
9498 
9499     /* Report UNLOAD_DONE to MCP */
9500     bnx2x_send_unload_done(bp, keep_link);
9501 }
9502 
9503 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9504 {
9505     u32 val;
9506 
9507     DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9508 
9509     if (CHIP_IS_E1(bp)) {
9510         int port = BP_PORT(bp);
9511         u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9512             MISC_REG_AEU_MASK_ATTN_FUNC_0;
9513 
9514         val = REG_RD(bp, addr);
9515         val &= ~(0x300);
9516         REG_WR(bp, addr, val);
9517     } else {
9518         val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9519         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9520              MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9521         REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9522     }
9523 }
9524 
9525 /* Close gates #2, #3 and #4: */
9526 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9527 {
9528     u32 val;
9529 
9530     /* Gates #2 and #4a are closed/opened for "not E1" only */
9531     if (!CHIP_IS_E1(bp)) {
9532         /* #4 */
9533         REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9534         /* #2 */
9535         REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9536     }
9537 
9538     /* #3 */
9539     if (CHIP_IS_E1x(bp)) {
9540         /* Prevent interrupts from HC on both ports */
9541         val = REG_RD(bp, HC_REG_CONFIG_1);
9542         REG_WR(bp, HC_REG_CONFIG_1,
9543                (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9544                (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9545 
9546         val = REG_RD(bp, HC_REG_CONFIG_0);
9547         REG_WR(bp, HC_REG_CONFIG_0,
9548                (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9549                (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9550     } else {
9551         /* Prevent incoming interrupts in IGU */
9552         val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9553 
9554         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9555                (!close) ?
9556                (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9557                (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9558     }
9559 
9560     DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9561         close ? "closing" : "opening");
9562 }
9563 
9564 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9565 
9566 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9567 {
9568     /* Do some magic... */
9569     u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9570     *magic_val = val & SHARED_MF_CLP_MAGIC;
9571     MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9572 }
9573 
9574 /**
9575  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9576  *
9577  * @bp:     driver handle
9578  * @magic_val:  old value of the `magic' bit.
9579  */
9580 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9581 {
9582     /* Restore the `magic' bit value... */
9583     u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9584     MF_CFG_WR(bp, shared_mf_config.clp_mb,
9585         (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9586 }
9587 
9588 /**
9589  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9590  *
9591  * @bp:     driver handle
9592  * @magic_val:  old value of 'magic' bit.
9593  *
9594  * Takes care of CLP configurations.
9595  */
9596 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9597 {
9598     u32 shmem;
9599     u32 validity_offset;
9600 
9601     DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9602 
9603     /* Set `magic' bit in order to save MF config */
9604     if (!CHIP_IS_E1(bp))
9605         bnx2x_clp_reset_prep(bp, magic_val);
9606 
9607     /* Get shmem offset */
9608     shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9609     validity_offset =
9610         offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9611 
9612     /* Clear validity map flags */
9613     if (shmem > 0)
9614         REG_WR(bp, shmem + validity_offset, 0);
9615 }
9616 
9617 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9618 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9619 
9620 /**
9621  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9622  *
9623  * @bp: driver handle
9624  */
9625 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9626 {
9627     /* special handling for emulation and FPGA,
9628        wait 10 times longer */
9629     if (CHIP_REV_IS_SLOW(bp))
9630         msleep(MCP_ONE_TIMEOUT*10);
9631     else
9632         msleep(MCP_ONE_TIMEOUT);
9633 }
9634 
9635 /*
9636  * initializes bp->common.shmem_base and waits for validity signature to appear
9637  */
9638 static int bnx2x_init_shmem(struct bnx2x *bp)
9639 {
9640     int cnt = 0;
9641     u32 val = 0;
9642 
9643     do {
9644         bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9645 
9646         /* If we read all 0xFFs, means we are in PCI error state and
9647          * should bail out to avoid crashes on adapter's FW reads.
9648          */
9649         if (bp->common.shmem_base == 0xFFFFFFFF) {
9650             bp->flags |= NO_MCP_FLAG;
9651             return -ENODEV;
9652         }
9653 
9654         if (bp->common.shmem_base) {
9655             val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9656             if (val & SHR_MEM_VALIDITY_MB)
9657                 return 0;
9658         }
9659 
9660         bnx2x_mcp_wait_one(bp);
9661 
9662     } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9663 
9664     BNX2X_ERR("BAD MCP validity signature\n");
9665 
9666     return -ENODEV;
9667 }
9668 
9669 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9670 {
9671     int rc = bnx2x_init_shmem(bp);
9672 
9673     /* Restore the `magic' bit value */
9674     if (!CHIP_IS_E1(bp))
9675         bnx2x_clp_reset_done(bp, magic_val);
9676 
9677     return rc;
9678 }
9679 
9680 static void bnx2x_pxp_prep(struct bnx2x *bp)
9681 {
9682     if (!CHIP_IS_E1(bp)) {
9683         REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9684         REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9685     }
9686 }
9687 
9688 /*
9689  * Reset the whole chip except for:
9690  *      - PCIE core
9691  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9692  *              one reset bit)
9693  *      - IGU
9694  *      - MISC (including AEU)
9695  *      - GRC
9696  *      - RBCN, RBCP
9697  */
9698 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9699 {
9700     u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9701     u32 global_bits2, stay_reset2;
9702 
9703     /*
9704      * Bits that have to be set in reset_mask2 if we want to reset 'global'
9705      * (per chip) blocks.
9706      */
9707     global_bits2 =
9708         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9709         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9710 
9711     /* Don't reset the following blocks.
9712      * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9713      *            reset, as in 4 port device they might still be owned
9714      *            by the MCP (there is only one leader per path).
9715      */
9716     not_reset_mask1 =
9717         MISC_REGISTERS_RESET_REG_1_RST_HC |
9718         MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9719         MISC_REGISTERS_RESET_REG_1_RST_PXP;
9720 
9721     not_reset_mask2 =
9722         MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9723         MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9724         MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9725         MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9726         MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9727         MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9728         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9729         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9730         MISC_REGISTERS_RESET_REG_2_RST_ATC |
9731         MISC_REGISTERS_RESET_REG_2_PGLC |
9732         MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9733         MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9734         MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9735         MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9736         MISC_REGISTERS_RESET_REG_2_UMAC0 |
9737         MISC_REGISTERS_RESET_REG_2_UMAC1;
9738 
9739     /*
9740      * Keep the following blocks in reset:
9741      *  - all xxMACs are handled by the bnx2x_link code.
9742      */
9743     stay_reset2 =
9744         MISC_REGISTERS_RESET_REG_2_XMAC |
9745         MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9746 
9747     /* Full reset masks according to the chip */
9748     reset_mask1 = 0xffffffff;
9749 
9750     if (CHIP_IS_E1(bp))
9751         reset_mask2 = 0xffff;
9752     else if (CHIP_IS_E1H(bp))
9753         reset_mask2 = 0x1ffff;
9754     else if (CHIP_IS_E2(bp))
9755         reset_mask2 = 0xfffff;
9756     else /* CHIP_IS_E3 */
9757         reset_mask2 = 0x3ffffff;
9758 
9759     /* Don't reset global blocks unless we need to */
9760     if (!global)
9761         reset_mask2 &= ~global_bits2;
9762 
9763     /*
9764      * In case of attention in the QM, we need to reset PXP
9765      * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9766      * because otherwise QM reset would release 'close the gates' shortly
9767      * before resetting the PXP, then the PSWRQ would send a write
9768      * request to PGLUE. Then when PXP is reset, PGLUE would try to
9769      * read the payload data from PSWWR, but PSWWR would not
9770      * respond. The write queue in PGLUE would stuck, dmae commands
9771      * would not return. Therefore it's important to reset the second
9772      * reset register (containing the
9773      * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9774      * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9775      * bit).
9776      */
9777     REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9778            reset_mask2 & (~not_reset_mask2));
9779 
9780     REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9781            reset_mask1 & (~not_reset_mask1));
9782 
9783     barrier();
9784 
9785     REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9786            reset_mask2 & (~stay_reset2));
9787 
9788     barrier();
9789 
9790     REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9791 }
9792 
9793 /**
9794  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9795  * It should get cleared in no more than 1s.
9796  *
9797  * @bp: driver handle
9798  *
9799  * It should get cleared in no more than 1s. Returns 0 if
9800  * pending writes bit gets cleared.
9801  */
9802 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9803 {
9804     u32 cnt = 1000;
9805     u32 pend_bits = 0;
9806 
9807     do {
9808         pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9809 
9810         if (pend_bits == 0)
9811             break;
9812 
9813         usleep_range(1000, 2000);
9814     } while (cnt-- > 0);
9815 
9816     if (cnt <= 0) {
9817         BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9818               pend_bits);
9819         return -EBUSY;
9820     }
9821 
9822     return 0;
9823 }
9824 
9825 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9826 {
9827     int cnt = 1000;
9828     u32 val = 0;
9829     u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9830     u32 tags_63_32 = 0;
9831 
9832     /* Empty the Tetris buffer, wait for 1s */
9833     do {
9834         sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9835         blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9836         port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9837         port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9838         pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9839         if (CHIP_IS_E3(bp))
9840             tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9841 
9842         if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9843             ((port_is_idle_0 & 0x1) == 0x1) &&
9844             ((port_is_idle_1 & 0x1) == 0x1) &&
9845             (pgl_exp_rom2 == 0xffffffff) &&
9846             (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9847             break;
9848         usleep_range(1000, 2000);
9849     } while (cnt-- > 0);
9850 
9851     if (cnt <= 0) {
9852         BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9853         BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9854               sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9855               pgl_exp_rom2);
9856         return -EAGAIN;
9857     }
9858 
9859     barrier();
9860 
9861     /* Close gates #2, #3 and #4 */
9862     bnx2x_set_234_gates(bp, true);
9863 
9864     /* Poll for IGU VQs for 57712 and newer chips */
9865     if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9866         return -EAGAIN;
9867 
9868     /* TBD: Indicate that "process kill" is in progress to MCP */
9869 
9870     /* Clear "unprepared" bit */
9871     REG_WR(bp, MISC_REG_UNPREPARED, 0);
9872     barrier();
9873 
9874     /* Wait for 1ms to empty GLUE and PCI-E core queues,
9875      * PSWHST, GRC and PSWRD Tetris buffer.
9876      */
9877     usleep_range(1000, 2000);
9878 
9879     /* Prepare to chip reset: */
9880     /* MCP */
9881     if (global)
9882         bnx2x_reset_mcp_prep(bp, &val);
9883 
9884     /* PXP */
9885     bnx2x_pxp_prep(bp);
9886     barrier();
9887 
9888     /* reset the chip */
9889     bnx2x_process_kill_chip_reset(bp, global);
9890     barrier();
9891 
9892     /* clear errors in PGB */
9893     if (!CHIP_IS_E1x(bp))
9894         REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9895 
9896     /* Recover after reset: */
9897     /* MCP */
9898     if (global && bnx2x_reset_mcp_comp(bp, val))
9899         return -EAGAIN;
9900 
9901     /* TBD: Add resetting the NO_MCP mode DB here */
9902 
9903     /* Open the gates #2, #3 and #4 */
9904     bnx2x_set_234_gates(bp, false);
9905 
9906     /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9907      * reset state, re-enable attentions. */
9908 
9909     return 0;
9910 }
9911 
9912 static int bnx2x_leader_reset(struct bnx2x *bp)
9913 {
9914     int rc = 0;
9915     bool global = bnx2x_reset_is_global(bp);
9916     u32 load_code;
9917 
9918     /* if not going to reset MCP - load "fake" driver to reset HW while
9919      * driver is owner of the HW
9920      */
9921     if (!global && !BP_NOMCP(bp)) {
9922         load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9923                          DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9924         if (!load_code) {
9925             BNX2X_ERR("MCP response failure, aborting\n");
9926             rc = -EAGAIN;
9927             goto exit_leader_reset;
9928         }
9929         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9930             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9931             BNX2X_ERR("MCP unexpected resp, aborting\n");
9932             rc = -EAGAIN;
9933             goto exit_leader_reset2;
9934         }
9935         load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9936         if (!load_code) {
9937             BNX2X_ERR("MCP response failure, aborting\n");
9938             rc = -EAGAIN;
9939             goto exit_leader_reset2;
9940         }
9941     }
9942 
9943     /* Try to recover after the failure */
9944     if (bnx2x_process_kill(bp, global)) {
9945         BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9946               BP_PATH(bp));
9947         rc = -EAGAIN;
9948         goto exit_leader_reset2;
9949     }
9950 
9951     /*
9952      * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9953      * state.
9954      */
9955     bnx2x_set_reset_done(bp);
9956     if (global)
9957         bnx2x_clear_reset_global(bp);
9958 
9959 exit_leader_reset2:
9960     /* unload "fake driver" if it was loaded */
9961     if (!global && !BP_NOMCP(bp)) {
9962         bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9963         bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9964     }
9965 exit_leader_reset:
9966     bp->is_leader = 0;
9967     bnx2x_release_leader_lock(bp);
9968     smp_mb();
9969     return rc;
9970 }
9971 
9972 static void bnx2x_recovery_failed(struct bnx2x *bp)
9973 {
9974     netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9975 
9976     /* Disconnect this device */
9977     netif_device_detach(bp->dev);
9978 
9979     /*
9980      * Block ifup for all function on this engine until "process kill"
9981      * or power cycle.
9982      */
9983     bnx2x_set_reset_in_progress(bp);
9984 
9985     /* Shut down the power */
9986     bnx2x_set_power_state(bp, PCI_D3hot);
9987 
9988     bp->recovery_state = BNX2X_RECOVERY_FAILED;
9989 
9990     smp_mb();
9991 }
9992 
9993 /*
9994  * Assumption: runs under rtnl lock. This together with the fact
9995  * that it's called only from bnx2x_sp_rtnl() ensure that it
9996  * will never be called when netif_running(bp->dev) is false.
9997  */
9998 static void bnx2x_parity_recover(struct bnx2x *bp)
9999 {
10000     u32 error_recovered, error_unrecovered;
10001     bool is_parity, global = false;
10002 #ifdef CONFIG_BNX2X_SRIOV
10003     int vf_idx;
10004 
10005     for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) {
10006         struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
10007 
10008         if (vf)
10009             vf->state = VF_LOST;
10010     }
10011 #endif
10012     DP(NETIF_MSG_HW, "Handling parity\n");
10013     while (1) {
10014         switch (bp->recovery_state) {
10015         case BNX2X_RECOVERY_INIT:
10016             DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
10017             is_parity = bnx2x_chk_parity_attn(bp, &global, false);
10018             WARN_ON(!is_parity);
10019 
10020             /* Try to get a LEADER_LOCK HW lock */
10021             if (bnx2x_trylock_leader_lock(bp)) {
10022                 bnx2x_set_reset_in_progress(bp);
10023                 /*
10024                  * Check if there is a global attention and if
10025                  * there was a global attention, set the global
10026                  * reset bit.
10027                  */
10028 
10029                 if (global)
10030                     bnx2x_set_reset_global(bp);
10031 
10032                 bp->is_leader = 1;
10033             }
10034 
10035             /* Stop the driver */
10036             /* If interface has been removed - break */
10037             if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10038                 return;
10039 
10040             bp->recovery_state = BNX2X_RECOVERY_WAIT;
10041 
10042             /* Ensure "is_leader", MCP command sequence and
10043              * "recovery_state" update values are seen on other
10044              * CPUs.
10045              */
10046             smp_mb();
10047             break;
10048 
10049         case BNX2X_RECOVERY_WAIT:
10050             DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10051             if (bp->is_leader) {
10052                 int other_engine = BP_PATH(bp) ? 0 : 1;
10053                 bool other_load_status =
10054                     bnx2x_get_load_status(bp, other_engine);
10055                 bool load_status =
10056                     bnx2x_get_load_status(bp, BP_PATH(bp));
10057                 global = bnx2x_reset_is_global(bp);
10058 
10059                 /*
10060                  * In case of a parity in a global block, let
10061                  * the first leader that performs a
10062                  * leader_reset() reset the global blocks in
10063                  * order to clear global attentions. Otherwise
10064                  * the gates will remain closed for that
10065                  * engine.
10066                  */
10067                 if (load_status ||
10068                     (global && other_load_status)) {
10069                     /* Wait until all other functions get
10070                      * down.
10071                      */
10072                     schedule_delayed_work(&bp->sp_rtnl_task,
10073                                 HZ/10);
10074                     return;
10075                 } else {
10076                     /* If all other functions got down -
10077                      * try to bring the chip back to
10078                      * normal. In any case it's an exit
10079                      * point for a leader.
10080                      */
10081                     if (bnx2x_leader_reset(bp)) {
10082                         bnx2x_recovery_failed(bp);
10083                         return;
10084                     }
10085 
10086                     /* If we are here, means that the
10087                      * leader has succeeded and doesn't
10088                      * want to be a leader any more. Try
10089                      * to continue as a none-leader.
10090                      */
10091                     break;
10092                 }
10093             } else { /* non-leader */
10094                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10095                     /* Try to get a LEADER_LOCK HW lock as
10096                      * long as a former leader may have
10097                      * been unloaded by the user or
10098                      * released a leadership by another
10099                      * reason.
10100                      */
10101                     if (bnx2x_trylock_leader_lock(bp)) {
10102                         /* I'm a leader now! Restart a
10103                          * switch case.
10104                          */
10105                         bp->is_leader = 1;
10106                         break;
10107                     }
10108 
10109                     schedule_delayed_work(&bp->sp_rtnl_task,
10110                                 HZ/10);
10111                     return;
10112 
10113                 } else {
10114                     /*
10115                      * If there was a global attention, wait
10116                      * for it to be cleared.
10117                      */
10118                     if (bnx2x_reset_is_global(bp)) {
10119                         schedule_delayed_work(
10120                             &bp->sp_rtnl_task,
10121                             HZ/10);
10122                         return;
10123                     }
10124 
10125                     error_recovered =
10126                       bp->eth_stats.recoverable_error;
10127                     error_unrecovered =
10128                       bp->eth_stats.unrecoverable_error;
10129                     bp->recovery_state =
10130                         BNX2X_RECOVERY_NIC_LOADING;
10131                     if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10132                         error_unrecovered++;
10133                         netdev_err(bp->dev,
10134                                "Recovery failed. Power cycle needed\n");
10135                         /* Disconnect this device */
10136                         netif_device_detach(bp->dev);
10137                         /* Shut down the power */
10138                         bnx2x_set_power_state(
10139                             bp, PCI_D3hot);
10140                         smp_mb();
10141                     } else {
10142                         bp->recovery_state =
10143                             BNX2X_RECOVERY_DONE;
10144                         error_recovered++;
10145                         smp_mb();
10146                     }
10147                     bp->eth_stats.recoverable_error =
10148                         error_recovered;
10149                     bp->eth_stats.unrecoverable_error =
10150                         error_unrecovered;
10151 
10152                     return;
10153                 }
10154             }
10155         default:
10156             return;
10157         }
10158     }
10159 }
10160 
10161 static int bnx2x_udp_port_update(struct bnx2x *bp)
10162 {
10163     struct bnx2x_func_switch_update_params *switch_update_params;
10164     struct bnx2x_func_state_params func_params = {NULL};
10165     u16 vxlan_port = 0, geneve_port = 0;
10166     int rc;
10167 
10168     switch_update_params = &func_params.params.switch_update;
10169 
10170     /* Prepare parameters for function state transitions */
10171     __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10172     __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10173 
10174     func_params.f_obj = &bp->func_obj;
10175     func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10176 
10177     /* Function parameters */
10178     __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10179           &switch_update_params->changes);
10180 
10181     if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]) {
10182         geneve_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10183         switch_update_params->geneve_dst_port = geneve_port;
10184     }
10185 
10186     if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]) {
10187         vxlan_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10188         switch_update_params->vxlan_dst_port = vxlan_port;
10189     }
10190 
10191     /* Re-enable inner-rss for the offloaded UDP tunnels */
10192     __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10193           &switch_update_params->changes);
10194 
10195     rc = bnx2x_func_state_change(bp, &func_params);
10196     if (rc)
10197         BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10198               vxlan_port, geneve_port, rc);
10199     else
10200         DP(BNX2X_MSG_SP,
10201            "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10202            vxlan_port, geneve_port);
10203 
10204     return rc;
10205 }
10206 
10207 static int bnx2x_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
10208 {
10209     struct bnx2x *bp = netdev_priv(netdev);
10210     struct udp_tunnel_info ti;
10211 
10212     udp_tunnel_nic_get_port(netdev, table, 0, &ti);
10213     bp->udp_tunnel_ports[table] = be16_to_cpu(ti.port);
10214 
10215     return bnx2x_udp_port_update(bp);
10216 }
10217 
10218 static const struct udp_tunnel_nic_info bnx2x_udp_tunnels = {
10219     .sync_table = bnx2x_udp_tunnel_sync,
10220     .flags      = UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
10221               UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
10222     .tables     = {
10223         { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
10224         { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
10225     },
10226 };
10227 
10228 static int bnx2x_close(struct net_device *dev);
10229 
10230 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10231  * scheduled on a general queue in order to prevent a dead lock.
10232  */
10233 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10234 {
10235     struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10236 
10237     rtnl_lock();
10238 
10239     if (!netif_running(bp->dev)) {
10240         rtnl_unlock();
10241         return;
10242     }
10243 
10244     if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10245 #ifdef BNX2X_STOP_ON_ERROR
10246         BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10247               "you will need to reboot when done\n");
10248         goto sp_rtnl_not_reset;
10249 #endif
10250         /*
10251          * Clear all pending SP commands as we are going to reset the
10252          * function anyway.
10253          */
10254         bp->sp_rtnl_state = 0;
10255         smp_mb();
10256 
10257         bnx2x_parity_recover(bp);
10258 
10259         rtnl_unlock();
10260         return;
10261     }
10262 
10263     if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10264 #ifdef BNX2X_STOP_ON_ERROR
10265         BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10266               "you will need to reboot when done\n");
10267         goto sp_rtnl_not_reset;
10268 #endif
10269 
10270         /*
10271          * Clear all pending SP commands as we are going to reset the
10272          * function anyway.
10273          */
10274         bp->sp_rtnl_state = 0;
10275         smp_mb();
10276 
10277         /* Immediately indicate link as down */
10278         bp->link_vars.link_up = 0;
10279         bp->force_link_down = true;
10280         netif_carrier_off(bp->dev);
10281         BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10282 
10283         bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10284         /* When ret value shows failure of allocation failure,
10285          * the nic is rebooted again. If open still fails, a error
10286          * message to notify the user.
10287          */
10288         if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10289             bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10290             if (bnx2x_nic_load(bp, LOAD_NORMAL))
10291                 BNX2X_ERR("Open the NIC fails again!\n");
10292         }
10293         rtnl_unlock();
10294         return;
10295     }
10296 #ifdef BNX2X_STOP_ON_ERROR
10297 sp_rtnl_not_reset:
10298 #endif
10299     if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10300         bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10301     if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10302         bnx2x_after_function_update(bp);
10303     /*
10304      * in case of fan failure we need to reset id if the "stop on error"
10305      * debug flag is set, since we trying to prevent permanent overheating
10306      * damage
10307      */
10308     if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10309         DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10310         netif_device_detach(bp->dev);
10311         bnx2x_close(bp->dev);
10312         rtnl_unlock();
10313         return;
10314     }
10315 
10316     if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10317         DP(BNX2X_MSG_SP,
10318            "sending set mcast vf pf channel message from rtnl sp-task\n");
10319         bnx2x_vfpf_set_mcast(bp->dev);
10320     }
10321     if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10322                    &bp->sp_rtnl_state)){
10323         if (netif_carrier_ok(bp->dev)) {
10324             bnx2x_tx_disable(bp);
10325             BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10326         }
10327     }
10328 
10329     if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10330         DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10331         bnx2x_set_rx_mode_inner(bp);
10332     }
10333 
10334     if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10335                    &bp->sp_rtnl_state))
10336         bnx2x_pf_set_vfs_vlan(bp);
10337 
10338     if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10339         bnx2x_dcbx_stop_hw_tx(bp);
10340         bnx2x_dcbx_resume_hw_tx(bp);
10341     }
10342 
10343     if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10344                    &bp->sp_rtnl_state))
10345         bnx2x_update_mng_version(bp);
10346 
10347     if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10348         bnx2x_handle_update_svid_cmd(bp);
10349 
10350     /* work which needs rtnl lock not-taken (as it takes the lock itself and
10351      * can be called from other contexts as well)
10352      */
10353     rtnl_unlock();
10354 
10355     /* enable SR-IOV if applicable */
10356     if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10357                            &bp->sp_rtnl_state)) {
10358         bnx2x_disable_sriov(bp);
10359         bnx2x_enable_sriov(bp);
10360     }
10361 }
10362 
10363 static void bnx2x_period_task(struct work_struct *work)
10364 {
10365     struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10366 
10367     if (!netif_running(bp->dev))
10368         goto period_task_exit;
10369 
10370     if (CHIP_REV_IS_SLOW(bp)) {
10371         BNX2X_ERR("period task called on emulation, ignoring\n");
10372         goto period_task_exit;
10373     }
10374 
10375     bnx2x_acquire_phy_lock(bp);
10376     /*
10377      * The barrier is needed to ensure the ordering between the writing to
10378      * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10379      * the reading here.
10380      */
10381     smp_mb();
10382     if (bp->port.pmf) {
10383         bnx2x_period_func(&bp->link_params, &bp->link_vars);
10384 
10385         /* Re-queue task in 1 sec */
10386         queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10387     }
10388 
10389     bnx2x_release_phy_lock(bp);
10390 period_task_exit:
10391     return;
10392 }
10393 
10394 /*
10395  * Init service functions
10396  */
10397 
10398 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10399 {
10400     u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10401     u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10402     return base + (BP_ABS_FUNC(bp)) * stride;
10403 }
10404 
10405 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10406                      u8 port, u32 reset_reg,
10407                      struct bnx2x_mac_vals *vals)
10408 {
10409     u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10410     u32 base_addr;
10411 
10412     if (!(mask & reset_reg))
10413         return false;
10414 
10415     BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10416     base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10417     vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10418     vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10419     REG_WR(bp, vals->umac_addr[port], 0);
10420 
10421     return true;
10422 }
10423 
10424 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10425                     struct bnx2x_mac_vals *vals)
10426 {
10427     u32 val, base_addr, offset, mask, reset_reg;
10428     bool mac_stopped = false;
10429     u8 port = BP_PORT(bp);
10430 
10431     /* reset addresses as they also mark which values were changed */
10432     memset(vals, 0, sizeof(*vals));
10433 
10434     reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10435 
10436     if (!CHIP_IS_E3(bp)) {
10437         val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10438         mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10439         if ((mask & reset_reg) && val) {
10440             u32 wb_data[2];
10441             BNX2X_DEV_INFO("Disable bmac Rx\n");
10442             base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10443                         : NIG_REG_INGRESS_BMAC0_MEM;
10444             offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10445                         : BIGMAC_REGISTER_BMAC_CONTROL;
10446 
10447             /*
10448              * use rd/wr since we cannot use dmae. This is safe
10449              * since MCP won't access the bus due to the request
10450              * to unload, and no function on the path can be
10451              * loaded at this time.
10452              */
10453             wb_data[0] = REG_RD(bp, base_addr + offset);
10454             wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10455             vals->bmac_addr = base_addr + offset;
10456             vals->bmac_val[0] = wb_data[0];
10457             vals->bmac_val[1] = wb_data[1];
10458             wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10459             REG_WR(bp, vals->bmac_addr, wb_data[0]);
10460             REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10461         }
10462         BNX2X_DEV_INFO("Disable emac Rx\n");
10463         vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10464         vals->emac_val = REG_RD(bp, vals->emac_addr);
10465         REG_WR(bp, vals->emac_addr, 0);
10466         mac_stopped = true;
10467     } else {
10468         if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10469             BNX2X_DEV_INFO("Disable xmac Rx\n");
10470             base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10471             val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10472             REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10473                    val & ~(1 << 1));
10474             REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10475                    val | (1 << 1));
10476             vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10477             vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10478             REG_WR(bp, vals->xmac_addr, 0);
10479             mac_stopped = true;
10480         }
10481 
10482         mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10483                                 reset_reg, vals);
10484         mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10485                                 reset_reg, vals);
10486     }
10487 
10488     if (mac_stopped)
10489         msleep(20);
10490 }
10491 
10492 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10493 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10494                     0x1848 + ((f) << 4))
10495 #define BNX2X_PREV_UNDI_RCQ(val)    ((val) & 0xffff)
10496 #define BNX2X_PREV_UNDI_BD(val)     ((val) >> 16 & 0xffff)
10497 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
10498 
10499 #define BCM_5710_UNDI_FW_MF_MAJOR   (0x07)
10500 #define BCM_5710_UNDI_FW_MF_MINOR   (0x08)
10501 #define BCM_5710_UNDI_FW_MF_VERS    (0x05)
10502 
10503 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10504 {
10505     /* UNDI marks its presence in DORQ -
10506      * it initializes CID offset for normal bell to 0x7
10507      */
10508     if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10509         MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10510         return false;
10511 
10512     if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10513         BNX2X_DEV_INFO("UNDI previously loaded\n");
10514         return true;
10515     }
10516 
10517     return false;
10518 }
10519 
10520 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10521 {
10522     u16 rcq, bd;
10523     u32 addr, tmp_reg;
10524 
10525     if (BP_FUNC(bp) < 2)
10526         addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10527     else
10528         addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10529 
10530     tmp_reg = REG_RD(bp, addr);
10531     rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10532     bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10533 
10534     tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10535     REG_WR(bp, addr, tmp_reg);
10536 
10537     BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10538                BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10539 }
10540 
10541 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10542 {
10543     u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10544                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10545     if (!rc) {
10546         BNX2X_ERR("MCP response failure, aborting\n");
10547         return -EBUSY;
10548     }
10549 
10550     return 0;
10551 }
10552 
10553 static struct bnx2x_prev_path_list *
10554         bnx2x_prev_path_get_entry(struct bnx2x *bp)
10555 {
10556     struct bnx2x_prev_path_list *tmp_list;
10557 
10558     list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10559         if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10560             bp->pdev->bus->number == tmp_list->bus &&
10561             BP_PATH(bp) == tmp_list->path)
10562             return tmp_list;
10563 
10564     return NULL;
10565 }
10566 
10567 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10568 {
10569     struct bnx2x_prev_path_list *tmp_list;
10570     int rc;
10571 
10572     rc = down_interruptible(&bnx2x_prev_sem);
10573     if (rc) {
10574         BNX2X_ERR("Received %d when tried to take lock\n", rc);
10575         return rc;
10576     }
10577 
10578     tmp_list = bnx2x_prev_path_get_entry(bp);
10579     if (tmp_list) {
10580         tmp_list->aer = 1;
10581         rc = 0;
10582     } else {
10583         BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10584               BP_PATH(bp));
10585     }
10586 
10587     up(&bnx2x_prev_sem);
10588 
10589     return rc;
10590 }
10591 
10592 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10593 {
10594     struct bnx2x_prev_path_list *tmp_list;
10595     bool rc = false;
10596 
10597     if (down_trylock(&bnx2x_prev_sem))
10598         return false;
10599 
10600     tmp_list = bnx2x_prev_path_get_entry(bp);
10601     if (tmp_list) {
10602         if (tmp_list->aer) {
10603             DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10604                BP_PATH(bp));
10605         } else {
10606             rc = true;
10607             BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10608                        BP_PATH(bp));
10609         }
10610     }
10611 
10612     up(&bnx2x_prev_sem);
10613 
10614     return rc;
10615 }
10616 
10617 bool bnx2x_port_after_undi(struct bnx2x *bp)
10618 {
10619     struct bnx2x_prev_path_list *entry;
10620     bool val;
10621 
10622     down(&bnx2x_prev_sem);
10623 
10624     entry = bnx2x_prev_path_get_entry(bp);
10625     val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10626 
10627     up(&bnx2x_prev_sem);
10628 
10629     return val;
10630 }
10631 
10632 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10633 {
10634     struct bnx2x_prev_path_list *tmp_list;
10635     int rc;
10636 
10637     rc = down_interruptible(&bnx2x_prev_sem);
10638     if (rc) {
10639         BNX2X_ERR("Received %d when tried to take lock\n", rc);
10640         return rc;
10641     }
10642 
10643     /* Check whether the entry for this path already exists */
10644     tmp_list = bnx2x_prev_path_get_entry(bp);
10645     if (tmp_list) {
10646         if (!tmp_list->aer) {
10647             BNX2X_ERR("Re-Marking the path.\n");
10648         } else {
10649             DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10650                BP_PATH(bp));
10651             tmp_list->aer = 0;
10652         }
10653         up(&bnx2x_prev_sem);
10654         return 0;
10655     }
10656     up(&bnx2x_prev_sem);
10657 
10658     /* Create an entry for this path and add it */
10659     tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10660     if (!tmp_list) {
10661         BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10662         return -ENOMEM;
10663     }
10664 
10665     tmp_list->bus = bp->pdev->bus->number;
10666     tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10667     tmp_list->path = BP_PATH(bp);
10668     tmp_list->aer = 0;
10669     tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10670 
10671     rc = down_interruptible(&bnx2x_prev_sem);
10672     if (rc) {
10673         BNX2X_ERR("Received %d when tried to take lock\n", rc);
10674         kfree(tmp_list);
10675     } else {
10676         DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10677            BP_PATH(bp));
10678         list_add(&tmp_list->list, &bnx2x_prev_list);
10679         up(&bnx2x_prev_sem);
10680     }
10681 
10682     return rc;
10683 }
10684 
10685 static int bnx2x_do_flr(struct bnx2x *bp)
10686 {
10687     struct pci_dev *dev = bp->pdev;
10688 
10689     if (CHIP_IS_E1x(bp)) {
10690         BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10691         return -EINVAL;
10692     }
10693 
10694     /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10695     if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10696         BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10697               bp->common.bc_ver);
10698         return -EINVAL;
10699     }
10700 
10701     if (!pci_wait_for_pending_transaction(dev))
10702         dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10703 
10704     BNX2X_DEV_INFO("Initiating FLR\n");
10705     bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10706 
10707     return 0;
10708 }
10709 
10710 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10711 {
10712     int rc;
10713 
10714     BNX2X_DEV_INFO("Uncommon unload Flow\n");
10715 
10716     /* Test if previous unload process was already finished for this path */
10717     if (bnx2x_prev_is_path_marked(bp))
10718         return bnx2x_prev_mcp_done(bp);
10719 
10720     BNX2X_DEV_INFO("Path is unmarked\n");
10721 
10722     /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10723     if (bnx2x_prev_is_after_undi(bp))
10724         goto out;
10725 
10726     /* If function has FLR capabilities, and existing FW version matches
10727      * the one required, then FLR will be sufficient to clean any residue
10728      * left by previous driver
10729      */
10730     rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10731 
10732     if (!rc) {
10733         /* fw version is good */
10734         BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10735         rc = bnx2x_do_flr(bp);
10736     }
10737 
10738     if (!rc) {
10739         /* FLR was performed */
10740         BNX2X_DEV_INFO("FLR successful\n");
10741         return 0;
10742     }
10743 
10744     BNX2X_DEV_INFO("Could not FLR\n");
10745 
10746 out:
10747     /* Close the MCP request, return failure*/
10748     rc = bnx2x_prev_mcp_done(bp);
10749     if (!rc)
10750         rc = BNX2X_PREV_WAIT_NEEDED;
10751 
10752     return rc;
10753 }
10754 
10755 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10756 {
10757     u32 reset_reg, tmp_reg = 0, rc;
10758     bool prev_undi = false;
10759     struct bnx2x_mac_vals mac_vals;
10760 
10761     /* It is possible a previous function received 'common' answer,
10762      * but hasn't loaded yet, therefore creating a scenario of
10763      * multiple functions receiving 'common' on the same path.
10764      */
10765     BNX2X_DEV_INFO("Common unload Flow\n");
10766 
10767     memset(&mac_vals, 0, sizeof(mac_vals));
10768 
10769     if (bnx2x_prev_is_path_marked(bp))
10770         return bnx2x_prev_mcp_done(bp);
10771 
10772     reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10773 
10774     /* Reset should be performed after BRB is emptied */
10775     if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10776         u32 timer_count = 1000;
10777 
10778         /* Close the MAC Rx to prevent BRB from filling up */
10779         bnx2x_prev_unload_close_mac(bp, &mac_vals);
10780 
10781         /* close LLH filters for both ports towards the BRB */
10782         bnx2x_set_rx_filter(&bp->link_params, 0);
10783         bp->link_params.port ^= 1;
10784         bnx2x_set_rx_filter(&bp->link_params, 0);
10785         bp->link_params.port ^= 1;
10786 
10787         /* Check if the UNDI driver was previously loaded */
10788         if (bnx2x_prev_is_after_undi(bp)) {
10789             prev_undi = true;
10790             /* clear the UNDI indication */
10791             REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10792             /* clear possible idle check errors */
10793             REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10794         }
10795         if (!CHIP_IS_E1x(bp))
10796             /* block FW from writing to host */
10797             REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10798 
10799         /* wait until BRB is empty */
10800         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10801         while (timer_count) {
10802             u32 prev_brb = tmp_reg;
10803 
10804             tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10805             if (!tmp_reg)
10806                 break;
10807 
10808             BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10809 
10810             /* reset timer as long as BRB actually gets emptied */
10811             if (prev_brb > tmp_reg)
10812                 timer_count = 1000;
10813             else
10814                 timer_count--;
10815 
10816             /* If UNDI resides in memory, manually increment it */
10817             if (prev_undi)
10818                 bnx2x_prev_unload_undi_inc(bp, 1);
10819 
10820             udelay(10);
10821         }
10822 
10823         if (!timer_count)
10824             BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10825     }
10826 
10827     /* No packets are in the pipeline, path is ready for reset */
10828     bnx2x_reset_common(bp);
10829 
10830     if (mac_vals.xmac_addr)
10831         REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10832     if (mac_vals.umac_addr[0])
10833         REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10834     if (mac_vals.umac_addr[1])
10835         REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10836     if (mac_vals.emac_addr)
10837         REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10838     if (mac_vals.bmac_addr) {
10839         REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10840         REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10841     }
10842 
10843     rc = bnx2x_prev_mark_path(bp, prev_undi);
10844     if (rc) {
10845         bnx2x_prev_mcp_done(bp);
10846         return rc;
10847     }
10848 
10849     return bnx2x_prev_mcp_done(bp);
10850 }
10851 
10852 static int bnx2x_prev_unload(struct bnx2x *bp)
10853 {
10854     int time_counter = 10;
10855     u32 rc, fw, hw_lock_reg, hw_lock_val;
10856     BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10857 
10858     /* clear hw from errors which may have resulted from an interrupted
10859      * dmae transaction.
10860      */
10861     bnx2x_clean_pglue_errors(bp);
10862 
10863     /* Release previously held locks */
10864     hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10865               (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10866               (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10867 
10868     hw_lock_val = REG_RD(bp, hw_lock_reg);
10869     if (hw_lock_val) {
10870         if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10871             BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10872             REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10873                    (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10874         }
10875 
10876         BNX2X_DEV_INFO("Release Previously held hw lock\n");
10877         REG_WR(bp, hw_lock_reg, 0xffffffff);
10878     } else
10879         BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10880 
10881     if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10882         BNX2X_DEV_INFO("Release previously held alr\n");
10883         bnx2x_release_alr(bp);
10884     }
10885 
10886     do {
10887         int aer = 0;
10888         /* Lock MCP using an unload request */
10889         fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10890         if (!fw) {
10891             BNX2X_ERR("MCP response failure, aborting\n");
10892             rc = -EBUSY;
10893             break;
10894         }
10895 
10896         rc = down_interruptible(&bnx2x_prev_sem);
10897         if (rc) {
10898             BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10899                   rc);
10900         } else {
10901             /* If Path is marked by EEH, ignore unload status */
10902             aer = !!(bnx2x_prev_path_get_entry(bp) &&
10903                  bnx2x_prev_path_get_entry(bp)->aer);
10904             up(&bnx2x_prev_sem);
10905         }
10906 
10907         if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10908             rc = bnx2x_prev_unload_common(bp);
10909             break;
10910         }
10911 
10912         /* non-common reply from MCP might require looping */
10913         rc = bnx2x_prev_unload_uncommon(bp);
10914         if (rc != BNX2X_PREV_WAIT_NEEDED)
10915             break;
10916 
10917         msleep(20);
10918     } while (--time_counter);
10919 
10920     if (!time_counter || rc) {
10921         BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10922         rc = -EPROBE_DEFER;
10923     }
10924 
10925     /* Mark function if its port was used to boot from SAN */
10926     if (bnx2x_port_after_undi(bp))
10927         bp->link_params.feature_config_flags |=
10928             FEATURE_CONFIG_BOOT_FROM_SAN;
10929 
10930     BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10931 
10932     return rc;
10933 }
10934 
10935 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10936 {
10937     u32 val, val2, val3, val4, id, boot_mode;
10938     u16 pmc;
10939 
10940     /* Get the chip revision id and number. */
10941     /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10942     val = REG_RD(bp, MISC_REG_CHIP_NUM);
10943     id = ((val & 0xffff) << 16);
10944     val = REG_RD(bp, MISC_REG_CHIP_REV);
10945     id |= ((val & 0xf) << 12);
10946 
10947     /* Metal is read from PCI regs, but we can't access >=0x400 from
10948      * the configuration space (so we need to reg_rd)
10949      */
10950     val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10951     id |= (((val >> 24) & 0xf) << 4);
10952     val = REG_RD(bp, MISC_REG_BOND_ID);
10953     id |= (val & 0xf);
10954     bp->common.chip_id = id;
10955 
10956     /* force 57811 according to MISC register */
10957     if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10958         if (CHIP_IS_57810(bp))
10959             bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10960                 (bp->common.chip_id & 0x0000FFFF);
10961         else if (CHIP_IS_57810_MF(bp))
10962             bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10963                 (bp->common.chip_id & 0x0000FFFF);
10964         bp->common.chip_id |= 0x1;
10965     }
10966 
10967     /* Set doorbell size */
10968     bp->db_size = (1 << BNX2X_DB_SHIFT);
10969 
10970     if (!CHIP_IS_E1x(bp)) {
10971         val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10972         if ((val & 1) == 0)
10973             val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10974         else
10975             val = (val >> 1) & 1;
10976         BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10977                                "2_PORT_MODE");
10978         bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10979                          CHIP_2_PORT_MODE;
10980 
10981         if (CHIP_MODE_IS_4_PORT(bp))
10982             bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10983         else
10984             bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10985     } else {
10986         bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10987         bp->pfid = bp->pf_num;          /* 0..7 */
10988     }
10989 
10990     BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10991 
10992     bp->link_params.chip_id = bp->common.chip_id;
10993     BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10994 
10995     val = (REG_RD(bp, 0x2874) & 0x55);
10996     if ((bp->common.chip_id & 0x1) ||
10997         (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10998         bp->flags |= ONE_PORT_FLAG;
10999         BNX2X_DEV_INFO("single port device\n");
11000     }
11001 
11002     val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11003     bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11004                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
11005     BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11006                bp->common.flash_size, bp->common.flash_size);
11007 
11008     bnx2x_init_shmem(bp);
11009 
11010     bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11011                     MISC_REG_GENERIC_CR_1 :
11012                     MISC_REG_GENERIC_CR_0));
11013 
11014     bp->link_params.shmem_base = bp->common.shmem_base;
11015     bp->link_params.shmem2_base = bp->common.shmem2_base;
11016     if (SHMEM2_RD(bp, size) >
11017         (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11018         bp->link_params.lfa_base =
11019         REG_RD(bp, bp->common.shmem2_base +
11020                (u32)offsetof(struct shmem2_region,
11021                      lfa_host_addr[BP_PORT(bp)]));
11022     else
11023         bp->link_params.lfa_base = 0;
11024     BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11025                bp->common.shmem_base, bp->common.shmem2_base);
11026 
11027     if (!bp->common.shmem_base) {
11028         BNX2X_DEV_INFO("MCP not active\n");
11029         bp->flags |= NO_MCP_FLAG;
11030         return;
11031     }
11032 
11033     bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11034     BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11035 
11036     bp->link_params.hw_led_mode = ((bp->common.hw_config &
11037                     SHARED_HW_CFG_LED_MODE_MASK) >>
11038                        SHARED_HW_CFG_LED_MODE_SHIFT);
11039 
11040     bp->link_params.feature_config_flags = 0;
11041     val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11042     if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11043         bp->link_params.feature_config_flags |=
11044                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11045     else
11046         bp->link_params.feature_config_flags &=
11047                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11048 
11049     val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11050     bp->common.bc_ver = val;
11051     BNX2X_DEV_INFO("bc_ver %X\n", val);
11052     if (val < BNX2X_BC_VER) {
11053         /* for now only warn
11054          * later we might need to enforce this */
11055         BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11056               BNX2X_BC_VER, val);
11057     }
11058     bp->link_params.feature_config_flags |=
11059                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11060                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11061 
11062     bp->link_params.feature_config_flags |=
11063         (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11064         FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11065     bp->link_params.feature_config_flags |=
11066         (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11067         FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11068     bp->link_params.feature_config_flags |=
11069         (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11070         FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11071 
11072     bp->link_params.feature_config_flags |=
11073         (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11074         FEATURE_CONFIG_MT_SUPPORT : 0;
11075 
11076     bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11077             BC_SUPPORTS_PFC_STATS : 0;
11078 
11079     bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11080             BC_SUPPORTS_FCOE_FEATURES : 0;
11081 
11082     bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11083             BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11084 
11085     bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11086             BC_SUPPORTS_RMMOD_CMD : 0;
11087 
11088     boot_mode = SHMEM_RD(bp,
11089             dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11090             PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11091     switch (boot_mode) {
11092     case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11093         bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11094         break;
11095     case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11096         bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11097         break;
11098     case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11099         bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11100         break;
11101     case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11102         bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11103         break;
11104     }
11105 
11106     pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11107     bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11108 
11109     BNX2X_DEV_INFO("%sWoL capable\n",
11110                (bp->flags & NO_WOL_FLAG) ? "not " : "");
11111 
11112     val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11113     val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11114     val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11115     val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11116 
11117     dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11118          val, val2, val3, val4);
11119 }
11120 
11121 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11122 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11123 
11124 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11125 {
11126     int pfid = BP_FUNC(bp);
11127     int igu_sb_id;
11128     u32 val;
11129     u8 fid, igu_sb_cnt = 0;
11130 
11131     bp->igu_base_sb = 0xff;
11132     if (CHIP_INT_MODE_IS_BC(bp)) {
11133         int vn = BP_VN(bp);
11134         igu_sb_cnt = bp->igu_sb_cnt;
11135         bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11136             FP_SB_MAX_E1x;
11137 
11138         bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11139             (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11140 
11141         return 0;
11142     }
11143 
11144     /* IGU in normal mode - read CAM */
11145     for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11146          igu_sb_id++) {
11147         val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11148         if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11149             continue;
11150         fid = IGU_FID(val);
11151         if ((fid & IGU_FID_ENCODE_IS_PF)) {
11152             if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11153                 continue;
11154             if (IGU_VEC(val) == 0)
11155                 /* default status block */
11156                 bp->igu_dsb_id = igu_sb_id;
11157             else {
11158                 if (bp->igu_base_sb == 0xff)
11159                     bp->igu_base_sb = igu_sb_id;
11160                 igu_sb_cnt++;
11161             }
11162         }
11163     }
11164 
11165 #ifdef CONFIG_PCI_MSI
11166     /* Due to new PF resource allocation by MFW T7.4 and above, it's
11167      * optional that number of CAM entries will not be equal to the value
11168      * advertised in PCI.
11169      * Driver should use the minimal value of both as the actual status
11170      * block count
11171      */
11172     bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11173 #endif
11174 
11175     if (igu_sb_cnt == 0) {
11176         BNX2X_ERR("CAM configuration error\n");
11177         return -EINVAL;
11178     }
11179 
11180     return 0;
11181 }
11182 
11183 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11184 {
11185     int cfg_size = 0, idx, port = BP_PORT(bp);
11186 
11187     /* Aggregation of supported attributes of all external phys */
11188     bp->port.supported[0] = 0;
11189     bp->port.supported[1] = 0;
11190     switch (bp->link_params.num_phys) {
11191     case 1:
11192         bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11193         cfg_size = 1;
11194         break;
11195     case 2:
11196         bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11197         cfg_size = 1;
11198         break;
11199     case 3:
11200         if (bp->link_params.multi_phy_config &
11201             PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11202             bp->port.supported[1] =
11203                 bp->link_params.phy[EXT_PHY1].supported;
11204             bp->port.supported[0] =
11205                 bp->link_params.phy[EXT_PHY2].supported;
11206         } else {
11207             bp->port.supported[0] =
11208                 bp->link_params.phy[EXT_PHY1].supported;
11209             bp->port.supported[1] =
11210                 bp->link_params.phy[EXT_PHY2].supported;
11211         }
11212         cfg_size = 2;
11213         break;
11214     }
11215 
11216     if (!(bp->port.supported[0] || bp->port.supported[1])) {
11217         BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11218                SHMEM_RD(bp,
11219                dev_info.port_hw_config[port].external_phy_config),
11220                SHMEM_RD(bp,
11221                dev_info.port_hw_config[port].external_phy_config2));
11222         return;
11223     }
11224 
11225     if (CHIP_IS_E3(bp))
11226         bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11227     else {
11228         switch (switch_cfg) {
11229         case SWITCH_CFG_1G:
11230             bp->port.phy_addr = REG_RD(
11231                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11232             break;
11233         case SWITCH_CFG_10G:
11234             bp->port.phy_addr = REG_RD(
11235                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11236             break;
11237         default:
11238             BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11239                   bp->port.link_config[0]);
11240             return;
11241         }
11242     }
11243     BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11244     /* mask what we support according to speed_cap_mask per configuration */
11245     for (idx = 0; idx < cfg_size; idx++) {
11246         if (!(bp->link_params.speed_cap_mask[idx] &
11247                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11248             bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11249 
11250         if (!(bp->link_params.speed_cap_mask[idx] &
11251                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11252             bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11253 
11254         if (!(bp->link_params.speed_cap_mask[idx] &
11255                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11256             bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11257 
11258         if (!(bp->link_params.speed_cap_mask[idx] &
11259                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11260             bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11261 
11262         if (!(bp->link_params.speed_cap_mask[idx] &
11263                     PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11264             bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11265                              SUPPORTED_1000baseT_Full);
11266 
11267         if (!(bp->link_params.speed_cap_mask[idx] &
11268                     PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11269             bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11270 
11271         if (!(bp->link_params.speed_cap_mask[idx] &
11272                     PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11273             bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11274 
11275         if (!(bp->link_params.speed_cap_mask[idx] &
11276                     PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11277             bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11278     }
11279 
11280     BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11281                bp->port.supported[1]);
11282 }
11283 
11284 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11285 {
11286     u32 link_config, idx, cfg_size = 0;
11287     bp->port.advertising[0] = 0;
11288     bp->port.advertising[1] = 0;
11289     switch (bp->link_params.num_phys) {
11290     case 1:
11291     case 2:
11292         cfg_size = 1;
11293         break;
11294     case 3:
11295         cfg_size = 2;
11296         break;
11297     }
11298     for (idx = 0; idx < cfg_size; idx++) {
11299         bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11300         link_config = bp->port.link_config[idx];
11301         switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11302         case PORT_FEATURE_LINK_SPEED_AUTO:
11303             if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11304                 bp->link_params.req_line_speed[idx] =
11305                     SPEED_AUTO_NEG;
11306                 bp->port.advertising[idx] |=
11307                     bp->port.supported[idx];
11308                 if (bp->link_params.phy[EXT_PHY1].type ==
11309                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11310                     bp->port.advertising[idx] |=
11311                     (SUPPORTED_100baseT_Half |
11312                      SUPPORTED_100baseT_Full);
11313             } else {
11314                 /* force 10G, no AN */
11315                 bp->link_params.req_line_speed[idx] =
11316                     SPEED_10000;
11317                 bp->port.advertising[idx] |=
11318                     (ADVERTISED_10000baseT_Full |
11319                      ADVERTISED_FIBRE);
11320                 continue;
11321             }
11322             break;
11323 
11324         case PORT_FEATURE_LINK_SPEED_10M_FULL:
11325             if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11326                 bp->link_params.req_line_speed[idx] =
11327                     SPEED_10;
11328                 bp->port.advertising[idx] |=
11329                     (ADVERTISED_10baseT_Full |
11330                      ADVERTISED_TP);
11331             } else {
11332                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11333                         link_config,
11334                     bp->link_params.speed_cap_mask[idx]);
11335                 return;
11336             }
11337             break;
11338 
11339         case PORT_FEATURE_LINK_SPEED_10M_HALF:
11340             if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11341                 bp->link_params.req_line_speed[idx] =
11342                     SPEED_10;
11343                 bp->link_params.req_duplex[idx] =
11344                     DUPLEX_HALF;
11345                 bp->port.advertising[idx] |=
11346                     (ADVERTISED_10baseT_Half |
11347                      ADVERTISED_TP);
11348             } else {
11349                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11350                         link_config,
11351                       bp->link_params.speed_cap_mask[idx]);
11352                 return;
11353             }
11354             break;
11355 
11356         case PORT_FEATURE_LINK_SPEED_100M_FULL:
11357             if (bp->port.supported[idx] &
11358                 SUPPORTED_100baseT_Full) {
11359                 bp->link_params.req_line_speed[idx] =
11360                     SPEED_100;
11361                 bp->port.advertising[idx] |=
11362                     (ADVERTISED_100baseT_Full |
11363                      ADVERTISED_TP);
11364             } else {
11365                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11366                         link_config,
11367                       bp->link_params.speed_cap_mask[idx]);
11368                 return;
11369             }
11370             break;
11371 
11372         case PORT_FEATURE_LINK_SPEED_100M_HALF:
11373             if (bp->port.supported[idx] &
11374                 SUPPORTED_100baseT_Half) {
11375                 bp->link_params.req_line_speed[idx] =
11376                                 SPEED_100;
11377                 bp->link_params.req_duplex[idx] =
11378                                 DUPLEX_HALF;
11379                 bp->port.advertising[idx] |=
11380                     (ADVERTISED_100baseT_Half |
11381                      ADVERTISED_TP);
11382             } else {
11383                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11384                     link_config,
11385                     bp->link_params.speed_cap_mask[idx]);
11386                 return;
11387             }
11388             break;
11389 
11390         case PORT_FEATURE_LINK_SPEED_1G:
11391             if (bp->port.supported[idx] &
11392                 SUPPORTED_1000baseT_Full) {
11393                 bp->link_params.req_line_speed[idx] =
11394                     SPEED_1000;
11395                 bp->port.advertising[idx] |=
11396                     (ADVERTISED_1000baseT_Full |
11397                      ADVERTISED_TP);
11398             } else if (bp->port.supported[idx] &
11399                    SUPPORTED_1000baseKX_Full) {
11400                 bp->link_params.req_line_speed[idx] =
11401                     SPEED_1000;
11402                 bp->port.advertising[idx] |=
11403                     ADVERTISED_1000baseKX_Full;
11404             } else {
11405                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11406                     link_config,
11407                     bp->link_params.speed_cap_mask[idx]);
11408                 return;
11409             }
11410             break;
11411 
11412         case PORT_FEATURE_LINK_SPEED_2_5G:
11413             if (bp->port.supported[idx] &
11414                 SUPPORTED_2500baseX_Full) {
11415                 bp->link_params.req_line_speed[idx] =
11416                     SPEED_2500;
11417                 bp->port.advertising[idx] |=
11418                     (ADVERTISED_2500baseX_Full |
11419                         ADVERTISED_TP);
11420             } else {
11421                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11422                     link_config,
11423                     bp->link_params.speed_cap_mask[idx]);
11424                 return;
11425             }
11426             break;
11427 
11428         case PORT_FEATURE_LINK_SPEED_10G_CX4:
11429             if (bp->port.supported[idx] &
11430                 SUPPORTED_10000baseT_Full) {
11431                 bp->link_params.req_line_speed[idx] =
11432                     SPEED_10000;
11433                 bp->port.advertising[idx] |=
11434                     (ADVERTISED_10000baseT_Full |
11435                         ADVERTISED_FIBRE);
11436             } else if (bp->port.supported[idx] &
11437                    SUPPORTED_10000baseKR_Full) {
11438                 bp->link_params.req_line_speed[idx] =
11439                     SPEED_10000;
11440                 bp->port.advertising[idx] |=
11441                     (ADVERTISED_10000baseKR_Full |
11442                         ADVERTISED_FIBRE);
11443             } else {
11444                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11445                     link_config,
11446                     bp->link_params.speed_cap_mask[idx]);
11447                 return;
11448             }
11449             break;
11450         case PORT_FEATURE_LINK_SPEED_20G:
11451             bp->link_params.req_line_speed[idx] = SPEED_20000;
11452 
11453             break;
11454         default:
11455             BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11456                   link_config);
11457                 bp->link_params.req_line_speed[idx] =
11458                             SPEED_AUTO_NEG;
11459                 bp->port.advertising[idx] =
11460                         bp->port.supported[idx];
11461             break;
11462         }
11463 
11464         bp->link_params.req_flow_ctrl[idx] = (link_config &
11465                      PORT_FEATURE_FLOW_CONTROL_MASK);
11466         if (bp->link_params.req_flow_ctrl[idx] ==
11467             BNX2X_FLOW_CTRL_AUTO) {
11468             if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11469                 bp->link_params.req_flow_ctrl[idx] =
11470                             BNX2X_FLOW_CTRL_NONE;
11471             else
11472                 bnx2x_set_requested_fc(bp);
11473         }
11474 
11475         BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11476                    bp->link_params.req_line_speed[idx],
11477                    bp->link_params.req_duplex[idx],
11478                    bp->link_params.req_flow_ctrl[idx],
11479                    bp->port.advertising[idx]);
11480     }
11481 }
11482 
11483 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11484 {
11485     __be16 mac_hi_be = cpu_to_be16(mac_hi);
11486     __be32 mac_lo_be = cpu_to_be32(mac_lo);
11487     memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11488     memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11489 }
11490 
11491 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11492 {
11493     int port = BP_PORT(bp);
11494     u32 config;
11495     u32 ext_phy_type, ext_phy_config, eee_mode;
11496 
11497     bp->link_params.bp = bp;
11498     bp->link_params.port = port;
11499 
11500     bp->link_params.lane_config =
11501         SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11502 
11503     bp->link_params.speed_cap_mask[0] =
11504         SHMEM_RD(bp,
11505              dev_info.port_hw_config[port].speed_capability_mask) &
11506         PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11507     bp->link_params.speed_cap_mask[1] =
11508         SHMEM_RD(bp,
11509              dev_info.port_hw_config[port].speed_capability_mask2) &
11510         PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11511     bp->port.link_config[0] =
11512         SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11513 
11514     bp->port.link_config[1] =
11515         SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11516 
11517     bp->link_params.multi_phy_config =
11518         SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11519     /* If the device is capable of WoL, set the default state according
11520      * to the HW
11521      */
11522     config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11523     bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11524            (config & PORT_FEATURE_WOL_ENABLED));
11525 
11526     if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11527         PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11528         bp->flags |= NO_ISCSI_FLAG;
11529     if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11530         PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11531         bp->flags |= NO_FCOE_FLAG;
11532 
11533     BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11534                bp->link_params.lane_config,
11535                bp->link_params.speed_cap_mask[0],
11536                bp->port.link_config[0]);
11537 
11538     bp->link_params.switch_cfg = (bp->port.link_config[0] &
11539                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
11540     bnx2x_phy_probe(&bp->link_params);
11541     bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11542 
11543     bnx2x_link_settings_requested(bp);
11544 
11545     /*
11546      * If connected directly, work with the internal PHY, otherwise, work
11547      * with the external PHY
11548      */
11549     ext_phy_config =
11550         SHMEM_RD(bp,
11551              dev_info.port_hw_config[port].external_phy_config);
11552     ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11553     if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11554         bp->mdio.prtad = bp->port.phy_addr;
11555 
11556     else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11557          (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11558         bp->mdio.prtad =
11559             XGXS_EXT_PHY_ADDR(ext_phy_config);
11560 
11561     /* Configure link feature according to nvram value */
11562     eee_mode = (((SHMEM_RD(bp, dev_info.
11563               port_feature_config[port].eee_power_mode)) &
11564              PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11565             PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11566     if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11567         bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11568                        EEE_MODE_ENABLE_LPI |
11569                        EEE_MODE_OUTPUT_TIME;
11570     } else {
11571         bp->link_params.eee_mode = 0;
11572     }
11573 }
11574 
11575 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11576 {
11577     u32 no_flags = NO_ISCSI_FLAG;
11578     int port = BP_PORT(bp);
11579     u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11580                 drv_lic_key[port].max_iscsi_conn);
11581 
11582     if (!CNIC_SUPPORT(bp)) {
11583         bp->flags |= no_flags;
11584         return;
11585     }
11586 
11587     /* Get the number of maximum allowed iSCSI connections */
11588     bp->cnic_eth_dev.max_iscsi_conn =
11589         (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11590         BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11591 
11592     BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11593                bp->cnic_eth_dev.max_iscsi_conn);
11594 
11595     /*
11596      * If maximum allowed number of connections is zero -
11597      * disable the feature.
11598      */
11599     if (!bp->cnic_eth_dev.max_iscsi_conn)
11600         bp->flags |= no_flags;
11601 }
11602 
11603 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11604 {
11605     /* Port info */
11606     bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11607         MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11608     bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11609         MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11610 
11611     /* Node info */
11612     bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11613         MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11614     bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11615         MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11616 }
11617 
11618 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11619 {
11620     u8 count = 0;
11621 
11622     if (IS_MF(bp)) {
11623         u8 fid;
11624 
11625         /* iterate over absolute function ids for this path: */
11626         for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11627             if (IS_MF_SD(bp)) {
11628                 u32 cfg = MF_CFG_RD(bp,
11629                             func_mf_config[fid].config);
11630 
11631                 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11632                     ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11633                         FUNC_MF_CFG_PROTOCOL_FCOE))
11634                     count++;
11635             } else {
11636                 u32 cfg = MF_CFG_RD(bp,
11637                             func_ext_config[fid].
11638                                       func_cfg);
11639 
11640                 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11641                     (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11642                     count++;
11643             }
11644         }
11645     } else { /* SF */
11646         int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11647 
11648         for (port = 0; port < port_cnt; port++) {
11649             u32 lic = SHMEM_RD(bp,
11650                        drv_lic_key[port].max_fcoe_conn) ^
11651                   FW_ENCODE_32BIT_PATTERN;
11652             if (lic)
11653                 count++;
11654         }
11655     }
11656 
11657     return count;
11658 }
11659 
11660 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11661 {
11662     int port = BP_PORT(bp);
11663     int func = BP_ABS_FUNC(bp);
11664     u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11665                 drv_lic_key[port].max_fcoe_conn);
11666     u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11667 
11668     if (!CNIC_SUPPORT(bp)) {
11669         bp->flags |= NO_FCOE_FLAG;
11670         return;
11671     }
11672 
11673     /* Get the number of maximum allowed FCoE connections */
11674     bp->cnic_eth_dev.max_fcoe_conn =
11675         (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11676         BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11677 
11678     /* Calculate the number of maximum allowed FCoE tasks */
11679     bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11680 
11681     /* check if FCoE resources must be shared between different functions */
11682     if (num_fcoe_func)
11683         bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11684 
11685     /* Read the WWN: */
11686     if (!IS_MF(bp)) {
11687         /* Port info */
11688         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11689             SHMEM_RD(bp,
11690                  dev_info.port_hw_config[port].
11691                  fcoe_wwn_port_name_upper);
11692         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11693             SHMEM_RD(bp,
11694                  dev_info.port_hw_config[port].
11695                  fcoe_wwn_port_name_lower);
11696 
11697         /* Node info */
11698         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11699             SHMEM_RD(bp,
11700                  dev_info.port_hw_config[port].
11701                  fcoe_wwn_node_name_upper);
11702         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11703             SHMEM_RD(bp,
11704                  dev_info.port_hw_config[port].
11705                  fcoe_wwn_node_name_lower);
11706     } else if (!IS_MF_SD(bp)) {
11707         /* Read the WWN info only if the FCoE feature is enabled for
11708          * this function.
11709          */
11710         if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11711             bnx2x_get_ext_wwn_info(bp, func);
11712     } else {
11713         if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11714             bnx2x_get_ext_wwn_info(bp, func);
11715     }
11716 
11717     BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11718 
11719     /*
11720      * If maximum allowed number of connections is zero -
11721      * disable the feature.
11722      */
11723     if (!bp->cnic_eth_dev.max_fcoe_conn) {
11724         bp->flags |= NO_FCOE_FLAG;
11725         eth_zero_addr(bp->fip_mac);
11726     }
11727 }
11728 
11729 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11730 {
11731     /*
11732      * iSCSI may be dynamically disabled but reading
11733      * info here we will decrease memory usage by driver
11734      * if the feature is disabled for good
11735      */
11736     bnx2x_get_iscsi_info(bp);
11737     bnx2x_get_fcoe_info(bp);
11738 }
11739 
11740 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11741 {
11742     u32 val, val2;
11743     int func = BP_ABS_FUNC(bp);
11744     int port = BP_PORT(bp);
11745     u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11746     u8 *fip_mac = bp->fip_mac;
11747 
11748     if (IS_MF(bp)) {
11749         /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11750          * FCoE MAC then the appropriate feature should be disabled.
11751          * In non SD mode features configuration comes from struct
11752          * func_ext_config.
11753          */
11754         if (!IS_MF_SD(bp)) {
11755             u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11756             if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11757                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11758                          iscsi_mac_addr_upper);
11759                 val = MF_CFG_RD(bp, func_ext_config[func].
11760                         iscsi_mac_addr_lower);
11761                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11762                 BNX2X_DEV_INFO
11763                     ("Read iSCSI MAC: %pM\n", iscsi_mac);
11764             } else {
11765                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11766             }
11767 
11768             if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11769                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11770                          fcoe_mac_addr_upper);
11771                 val = MF_CFG_RD(bp, func_ext_config[func].
11772                         fcoe_mac_addr_lower);
11773                 bnx2x_set_mac_buf(fip_mac, val, val2);
11774                 BNX2X_DEV_INFO
11775                     ("Read FCoE L2 MAC: %pM\n", fip_mac);
11776             } else {
11777                 bp->flags |= NO_FCOE_FLAG;
11778             }
11779 
11780             bp->mf_ext_config = cfg;
11781 
11782         } else { /* SD MODE */
11783             if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11784                 /* use primary mac as iscsi mac */
11785                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11786 
11787                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11788                 BNX2X_DEV_INFO
11789                     ("Read iSCSI MAC: %pM\n", iscsi_mac);
11790             } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11791                 /* use primary mac as fip mac */
11792                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11793                 BNX2X_DEV_INFO("SD FCoE MODE\n");
11794                 BNX2X_DEV_INFO
11795                     ("Read FIP MAC: %pM\n", fip_mac);
11796             }
11797         }
11798 
11799         /* If this is a storage-only interface, use SAN mac as
11800          * primary MAC. Notice that for SD this is already the case,
11801          * as the SAN mac was copied from the primary MAC.
11802          */
11803         if (IS_MF_FCOE_AFEX(bp))
11804             eth_hw_addr_set(bp->dev, fip_mac);
11805     } else {
11806         val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11807                 iscsi_mac_upper);
11808         val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11809                    iscsi_mac_lower);
11810         bnx2x_set_mac_buf(iscsi_mac, val, val2);
11811 
11812         val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11813                 fcoe_fip_mac_upper);
11814         val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11815                    fcoe_fip_mac_lower);
11816         bnx2x_set_mac_buf(fip_mac, val, val2);
11817     }
11818 
11819     /* Disable iSCSI OOO if MAC configuration is invalid. */
11820     if (!is_valid_ether_addr(iscsi_mac)) {
11821         bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11822         eth_zero_addr(iscsi_mac);
11823     }
11824 
11825     /* Disable FCoE if MAC configuration is invalid. */
11826     if (!is_valid_ether_addr(fip_mac)) {
11827         bp->flags |= NO_FCOE_FLAG;
11828         eth_zero_addr(bp->fip_mac);
11829     }
11830 }
11831 
11832 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11833 {
11834     u32 val, val2;
11835     int func = BP_ABS_FUNC(bp);
11836     int port = BP_PORT(bp);
11837     u8 addr[ETH_ALEN] = {};
11838 
11839     /* Zero primary MAC configuration */
11840     eth_hw_addr_set(bp->dev, addr);
11841 
11842     if (BP_NOMCP(bp)) {
11843         BNX2X_ERROR("warning: random MAC workaround active\n");
11844         eth_hw_addr_random(bp->dev);
11845     } else if (IS_MF(bp)) {
11846         val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11847         val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11848         if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11849             (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) {
11850             bnx2x_set_mac_buf(addr, val, val2);
11851             eth_hw_addr_set(bp->dev, addr);
11852         }
11853 
11854         if (CNIC_SUPPORT(bp))
11855             bnx2x_get_cnic_mac_hwinfo(bp);
11856     } else {
11857         /* in SF read MACs from port configuration */
11858         val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11859         val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11860         bnx2x_set_mac_buf(addr, val, val2);
11861         eth_hw_addr_set(bp->dev, addr);
11862 
11863         if (CNIC_SUPPORT(bp))
11864             bnx2x_get_cnic_mac_hwinfo(bp);
11865     }
11866 
11867     if (!BP_NOMCP(bp)) {
11868         /* Read physical port identifier from shmem */
11869         val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11870         val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11871         bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11872         bp->flags |= HAS_PHYS_PORT_ID;
11873     }
11874 
11875     memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11876 
11877     if (!is_valid_ether_addr(bp->dev->dev_addr))
11878         dev_err(&bp->pdev->dev,
11879             "bad Ethernet MAC address configuration: %pM\n"
11880             "change it manually before bringing up the appropriate network interface\n",
11881             bp->dev->dev_addr);
11882 }
11883 
11884 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11885 {
11886     int tmp;
11887     u32 cfg;
11888 
11889     if (IS_VF(bp))
11890         return false;
11891 
11892     if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11893         /* Take function: tmp = func */
11894         tmp = BP_ABS_FUNC(bp);
11895         cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11896         cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11897     } else {
11898         /* Take port: tmp = port */
11899         tmp = BP_PORT(bp);
11900         cfg = SHMEM_RD(bp,
11901                    dev_info.port_hw_config[tmp].generic_features);
11902         cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11903     }
11904     return cfg;
11905 }
11906 
11907 static void validate_set_si_mode(struct bnx2x *bp)
11908 {
11909     u8 func = BP_ABS_FUNC(bp);
11910     u32 val;
11911 
11912     val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11913 
11914     /* check for legal mac (upper bytes) */
11915     if (val != 0xffff) {
11916         bp->mf_mode = MULTI_FUNCTION_SI;
11917         bp->mf_config[BP_VN(bp)] =
11918             MF_CFG_RD(bp, func_mf_config[func].config);
11919     } else
11920         BNX2X_DEV_INFO("illegal MAC address for SI\n");
11921 }
11922 
11923 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11924 {
11925     int /*abs*/func = BP_ABS_FUNC(bp);
11926     int vn;
11927     u32 val = 0, val2 = 0;
11928     int rc = 0;
11929 
11930     /* Validate that chip access is feasible */
11931     if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11932         dev_err(&bp->pdev->dev,
11933             "Chip read returns all Fs. Preventing probe from continuing\n");
11934         return -EINVAL;
11935     }
11936 
11937     bnx2x_get_common_hwinfo(bp);
11938 
11939     /*
11940      * initialize IGU parameters
11941      */
11942     if (CHIP_IS_E1x(bp)) {
11943         bp->common.int_block = INT_BLOCK_HC;
11944 
11945         bp->igu_dsb_id = DEF_SB_IGU_ID;
11946         bp->igu_base_sb = 0;
11947     } else {
11948         bp->common.int_block = INT_BLOCK_IGU;
11949 
11950         /* do not allow device reset during IGU info processing */
11951         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11952 
11953         val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11954 
11955         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11956             int tout = 5000;
11957 
11958             BNX2X_DEV_INFO("FORCING Normal Mode\n");
11959 
11960             val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11961             REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11962             REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11963 
11964             while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11965                 tout--;
11966                 usleep_range(1000, 2000);
11967             }
11968 
11969             if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11970                 dev_err(&bp->pdev->dev,
11971                     "FORCING Normal Mode failed!!!\n");
11972                 bnx2x_release_hw_lock(bp,
11973                               HW_LOCK_RESOURCE_RESET);
11974                 return -EPERM;
11975             }
11976         }
11977 
11978         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11979             BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11980             bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11981         } else
11982             BNX2X_DEV_INFO("IGU Normal Mode\n");
11983 
11984         rc = bnx2x_get_igu_cam_info(bp);
11985         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11986         if (rc)
11987             return rc;
11988     }
11989 
11990     /*
11991      * set base FW non-default (fast path) status block id, this value is
11992      * used to initialize the fw_sb_id saved on the fp/queue structure to
11993      * determine the id used by the FW.
11994      */
11995     if (CHIP_IS_E1x(bp))
11996         bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11997     else /*
11998           * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11999           * the same queue are indicated on the same IGU SB). So we prefer
12000           * FW and IGU SBs to be the same value.
12001           */
12002         bp->base_fw_ndsb = bp->igu_base_sb;
12003 
12004     BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
12005                "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
12006                bp->igu_sb_cnt, bp->base_fw_ndsb);
12007 
12008     /*
12009      * Initialize MF configuration
12010      */
12011     bp->mf_ov = 0;
12012     bp->mf_mode = 0;
12013     bp->mf_sub_mode = 0;
12014     vn = BP_VN(bp);
12015 
12016     if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12017         BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12018                    bp->common.shmem2_base, SHMEM2_RD(bp, size),
12019                   (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12020 
12021         if (SHMEM2_HAS(bp, mf_cfg_addr))
12022             bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12023         else
12024             bp->common.mf_cfg_base = bp->common.shmem_base +
12025                 offsetof(struct shmem_region, func_mb) +
12026                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12027         /*
12028          * get mf configuration:
12029          * 1. Existence of MF configuration
12030          * 2. MAC address must be legal (check only upper bytes)
12031          *    for  Switch-Independent mode;
12032          *    OVLAN must be legal for Switch-Dependent mode
12033          * 3. SF_MODE configures specific MF mode
12034          */
12035         if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12036             /* get mf configuration */
12037             val = SHMEM_RD(bp,
12038                        dev_info.shared_feature_config.config);
12039             val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12040 
12041             switch (val) {
12042             case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12043                 validate_set_si_mode(bp);
12044                 break;
12045             case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12046                 if ((!CHIP_IS_E1x(bp)) &&
12047                     (MF_CFG_RD(bp, func_mf_config[func].
12048                            mac_upper) != 0xffff) &&
12049                     (SHMEM2_HAS(bp,
12050                         afex_driver_support))) {
12051                     bp->mf_mode = MULTI_FUNCTION_AFEX;
12052                     bp->mf_config[vn] = MF_CFG_RD(bp,
12053                         func_mf_config[func].config);
12054                 } else {
12055                     BNX2X_DEV_INFO("can not configure afex mode\n");
12056                 }
12057                 break;
12058             case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12059                 /* get OV configuration */
12060                 val = MF_CFG_RD(bp,
12061                     func_mf_config[FUNC_0].e1hov_tag);
12062                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12063 
12064                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12065                     bp->mf_mode = MULTI_FUNCTION_SD;
12066                     bp->mf_config[vn] = MF_CFG_RD(bp,
12067                         func_mf_config[func].config);
12068                 } else
12069                     BNX2X_DEV_INFO("illegal OV for SD\n");
12070                 break;
12071             case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12072                 bp->mf_mode = MULTI_FUNCTION_SD;
12073                 bp->mf_sub_mode = SUB_MF_MODE_BD;
12074                 bp->mf_config[vn] =
12075                     MF_CFG_RD(bp,
12076                           func_mf_config[func].config);
12077 
12078                 if (SHMEM2_HAS(bp, mtu_size)) {
12079                     int mtu_idx = BP_FW_MB_IDX(bp);
12080                     u16 mtu_size;
12081                     u32 mtu;
12082 
12083                     mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12084                     mtu_size = (u16)mtu;
12085                     DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12086                        mtu_size, mtu);
12087 
12088                     /* if valid: update device mtu */
12089                     if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12090                         (mtu_size <=
12091                          ETH_MAX_JUMBO_PACKET_SIZE))
12092                         bp->dev->mtu = mtu_size;
12093                 }
12094                 break;
12095             case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12096                 bp->mf_mode = MULTI_FUNCTION_SD;
12097                 bp->mf_sub_mode = SUB_MF_MODE_UFP;
12098                 bp->mf_config[vn] =
12099                     MF_CFG_RD(bp,
12100                           func_mf_config[func].config);
12101                 break;
12102             case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12103                 bp->mf_config[vn] = 0;
12104                 break;
12105             case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12106                 val2 = SHMEM_RD(bp,
12107                     dev_info.shared_hw_config.config_3);
12108                 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12109                 switch (val2) {
12110                 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12111                     validate_set_si_mode(bp);
12112                     bp->mf_sub_mode =
12113                             SUB_MF_MODE_NPAR1_DOT_5;
12114                     break;
12115                 default:
12116                     /* Unknown configuration */
12117                     bp->mf_config[vn] = 0;
12118                     BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12119                                val);
12120                 }
12121                 break;
12122             default:
12123                 /* Unknown configuration: reset mf_config */
12124                 bp->mf_config[vn] = 0;
12125                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12126             }
12127         }
12128 
12129         BNX2X_DEV_INFO("%s function mode\n",
12130                    IS_MF(bp) ? "multi" : "single");
12131 
12132         switch (bp->mf_mode) {
12133         case MULTI_FUNCTION_SD:
12134             val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12135                   FUNC_MF_CFG_E1HOV_TAG_MASK;
12136             if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12137                 bp->mf_ov = val;
12138                 bp->path_has_ovlan = true;
12139 
12140                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12141                            func, bp->mf_ov, bp->mf_ov);
12142             } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12143                    (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12144                 dev_err(&bp->pdev->dev,
12145                     "Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12146                     func);
12147                 bp->path_has_ovlan = true;
12148             } else {
12149                 dev_err(&bp->pdev->dev,
12150                     "No valid MF OV for func %d, aborting\n",
12151                     func);
12152                 return -EPERM;
12153             }
12154             break;
12155         case MULTI_FUNCTION_AFEX:
12156             BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12157             break;
12158         case MULTI_FUNCTION_SI:
12159             BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12160                        func);
12161             break;
12162         default:
12163             if (vn) {
12164                 dev_err(&bp->pdev->dev,
12165                     "VN %d is in a single function mode, aborting\n",
12166                     vn);
12167                 return -EPERM;
12168             }
12169             break;
12170         }
12171 
12172         /* check if other port on the path needs ovlan:
12173          * Since MF configuration is shared between ports
12174          * Possible mixed modes are only
12175          * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12176          */
12177         if (CHIP_MODE_IS_4_PORT(bp) &&
12178             !bp->path_has_ovlan &&
12179             !IS_MF(bp) &&
12180             bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12181             u8 other_port = !BP_PORT(bp);
12182             u8 other_func = BP_PATH(bp) + 2*other_port;
12183             val = MF_CFG_RD(bp,
12184                     func_mf_config[other_func].e1hov_tag);
12185             if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12186                 bp->path_has_ovlan = true;
12187         }
12188     }
12189 
12190     /* adjust igu_sb_cnt to MF for E1H */
12191     if (CHIP_IS_E1H(bp) && IS_MF(bp))
12192         bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12193 
12194     /* port info */
12195     bnx2x_get_port_hwinfo(bp);
12196 
12197     /* Get MAC addresses */
12198     bnx2x_get_mac_hwinfo(bp);
12199 
12200     bnx2x_get_cnic_info(bp);
12201 
12202     return rc;
12203 }
12204 
12205 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12206 {
12207     char str_id[VENDOR_ID_LEN + 1];
12208     unsigned int vpd_len, kw_len;
12209     u8 *vpd_data;
12210     int rodi;
12211 
12212     memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12213 
12214     vpd_data = pci_vpd_alloc(bp->pdev, &vpd_len);
12215     if (IS_ERR(vpd_data))
12216         return;
12217 
12218     rodi = pci_vpd_find_ro_info_keyword(vpd_data, vpd_len,
12219                         PCI_VPD_RO_KEYWORD_MFR_ID, &kw_len);
12220     if (rodi < 0 || kw_len != VENDOR_ID_LEN)
12221         goto out_not_found;
12222 
12223     /* vendor specific info */
12224     snprintf(str_id, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12225     if (!strncasecmp(str_id, &vpd_data[rodi], VENDOR_ID_LEN)) {
12226         rodi = pci_vpd_find_ro_info_keyword(vpd_data, vpd_len,
12227                             PCI_VPD_RO_KEYWORD_VENDOR0,
12228                             &kw_len);
12229         if (rodi >= 0 && kw_len < sizeof(bp->fw_ver)) {
12230             memcpy(bp->fw_ver, &vpd_data[rodi], kw_len);
12231             bp->fw_ver[kw_len] = ' ';
12232         }
12233     }
12234 out_not_found:
12235     kfree(vpd_data);
12236 }
12237 
12238 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12239 {
12240     u32 flags = 0;
12241 
12242     if (CHIP_REV_IS_FPGA(bp))
12243         SET_FLAGS(flags, MODE_FPGA);
12244     else if (CHIP_REV_IS_EMUL(bp))
12245         SET_FLAGS(flags, MODE_EMUL);
12246     else
12247         SET_FLAGS(flags, MODE_ASIC);
12248 
12249     if (CHIP_MODE_IS_4_PORT(bp))
12250         SET_FLAGS(flags, MODE_PORT4);
12251     else
12252         SET_FLAGS(flags, MODE_PORT2);
12253 
12254     if (CHIP_IS_E2(bp))
12255         SET_FLAGS(flags, MODE_E2);
12256     else if (CHIP_IS_E3(bp)) {
12257         SET_FLAGS(flags, MODE_E3);
12258         if (CHIP_REV(bp) == CHIP_REV_Ax)
12259             SET_FLAGS(flags, MODE_E3_A0);
12260         else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12261             SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12262     }
12263 
12264     if (IS_MF(bp)) {
12265         SET_FLAGS(flags, MODE_MF);
12266         switch (bp->mf_mode) {
12267         case MULTI_FUNCTION_SD:
12268             SET_FLAGS(flags, MODE_MF_SD);
12269             break;
12270         case MULTI_FUNCTION_SI:
12271             SET_FLAGS(flags, MODE_MF_SI);
12272             break;
12273         case MULTI_FUNCTION_AFEX:
12274             SET_FLAGS(flags, MODE_MF_AFEX);
12275             break;
12276         }
12277     } else
12278         SET_FLAGS(flags, MODE_SF);
12279 
12280 #if defined(__LITTLE_ENDIAN)
12281     SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12282 #else /*(__BIG_ENDIAN)*/
12283     SET_FLAGS(flags, MODE_BIG_ENDIAN);
12284 #endif
12285     INIT_MODE_FLAGS(bp) = flags;
12286 }
12287 
12288 static int bnx2x_init_bp(struct bnx2x *bp)
12289 {
12290     int func;
12291     int rc;
12292 
12293     mutex_init(&bp->port.phy_mutex);
12294     mutex_init(&bp->fw_mb_mutex);
12295     mutex_init(&bp->drv_info_mutex);
12296     sema_init(&bp->stats_lock, 1);
12297     bp->drv_info_mng_owner = false;
12298     INIT_LIST_HEAD(&bp->vlan_reg);
12299 
12300     INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12301     INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12302     INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12303     INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12304     if (IS_PF(bp)) {
12305         rc = bnx2x_get_hwinfo(bp);
12306         if (rc)
12307             return rc;
12308     } else {
12309         static const u8 zero_addr[ETH_ALEN] = {};
12310 
12311         eth_hw_addr_set(bp->dev, zero_addr);
12312     }
12313 
12314     bnx2x_set_modes_bitmap(bp);
12315 
12316     rc = bnx2x_alloc_mem_bp(bp);
12317     if (rc)
12318         return rc;
12319 
12320     bnx2x_read_fwinfo(bp);
12321 
12322     func = BP_FUNC(bp);
12323 
12324     /* need to reset chip if undi was active */
12325     if (IS_PF(bp) && !BP_NOMCP(bp)) {
12326         /* init fw_seq */
12327         bp->fw_seq =
12328             SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12329                             DRV_MSG_SEQ_NUMBER_MASK;
12330         BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12331 
12332         rc = bnx2x_prev_unload(bp);
12333         if (rc) {
12334             bnx2x_free_mem_bp(bp);
12335             return rc;
12336         }
12337     }
12338 
12339     if (CHIP_REV_IS_FPGA(bp))
12340         dev_err(&bp->pdev->dev, "FPGA detected\n");
12341 
12342     if (BP_NOMCP(bp) && (func == 0))
12343         dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12344 
12345     bp->disable_tpa = disable_tpa;
12346     bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12347     /* Reduce memory usage in kdump environment by disabling TPA */
12348     bp->disable_tpa |= is_kdump_kernel();
12349 
12350     /* Set TPA flags */
12351     if (bp->disable_tpa) {
12352         bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12353         bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12354     }
12355 
12356     if (CHIP_IS_E1(bp))
12357         bp->dropless_fc = false;
12358     else
12359         bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12360 
12361     bp->mrrs = mrrs;
12362 
12363     bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12364     if (IS_VF(bp))
12365         bp->rx_ring_size = MAX_RX_AVAIL;
12366 
12367     /* make sure that the numbers are in the right granularity */
12368     bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12369     bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12370 
12371     bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12372 
12373     timer_setup(&bp->timer, bnx2x_timer, 0);
12374     bp->timer.expires = jiffies + bp->current_interval;
12375 
12376     if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12377         SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12378         SHMEM2_HAS(bp, dcbx_en) &&
12379         SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12380         SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12381         SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12382         bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12383         bnx2x_dcbx_init_params(bp);
12384     } else {
12385         bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12386     }
12387 
12388     if (CHIP_IS_E1x(bp))
12389         bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12390     else
12391         bp->cnic_base_cl_id = FP_SB_MAX_E2;
12392 
12393     /* multiple tx priority */
12394     if (IS_VF(bp))
12395         bp->max_cos = 1;
12396     else if (CHIP_IS_E1x(bp))
12397         bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12398     else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12399         bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12400     else if (CHIP_IS_E3B0(bp))
12401         bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12402     else
12403         BNX2X_ERR("unknown chip %x revision %x\n",
12404               CHIP_NUM(bp), CHIP_REV(bp));
12405     BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12406 
12407     /* We need at least one default status block for slow-path events,
12408      * second status block for the L2 queue, and a third status block for
12409      * CNIC if supported.
12410      */
12411     if (IS_VF(bp))
12412         bp->min_msix_vec_cnt = 1;
12413     else if (CNIC_SUPPORT(bp))
12414         bp->min_msix_vec_cnt = 3;
12415     else /* PF w/o cnic */
12416         bp->min_msix_vec_cnt = 2;
12417     BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12418 
12419     bp->dump_preset_idx = 1;
12420 
12421     return rc;
12422 }
12423 
12424 /****************************************************************************
12425 * General service functions
12426 ****************************************************************************/
12427 
12428 /*
12429  * net_device service functions
12430  */
12431 
12432 /* called with rtnl_lock */
12433 static int bnx2x_open(struct net_device *dev)
12434 {
12435     struct bnx2x *bp = netdev_priv(dev);
12436     int rc;
12437 
12438     bp->stats_init = true;
12439 
12440     netif_carrier_off(dev);
12441 
12442     bnx2x_set_power_state(bp, PCI_D0);
12443 
12444     /* If parity had happen during the unload, then attentions
12445      * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12446      * want the first function loaded on the current engine to
12447      * complete the recovery.
12448      * Parity recovery is only relevant for PF driver.
12449      */
12450     if (IS_PF(bp)) {
12451         int other_engine = BP_PATH(bp) ? 0 : 1;
12452         bool other_load_status, load_status;
12453         bool global = false;
12454 
12455         other_load_status = bnx2x_get_load_status(bp, other_engine);
12456         load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12457         if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12458             bnx2x_chk_parity_attn(bp, &global, true)) {
12459             do {
12460                 /* If there are attentions and they are in a
12461                  * global blocks, set the GLOBAL_RESET bit
12462                  * regardless whether it will be this function
12463                  * that will complete the recovery or not.
12464                  */
12465                 if (global)
12466                     bnx2x_set_reset_global(bp);
12467 
12468                 /* Only the first function on the current
12469                  * engine should try to recover in open. In case
12470                  * of attentions in global blocks only the first
12471                  * in the chip should try to recover.
12472                  */
12473                 if ((!load_status &&
12474                      (!global || !other_load_status)) &&
12475                       bnx2x_trylock_leader_lock(bp) &&
12476                       !bnx2x_leader_reset(bp)) {
12477                     netdev_info(bp->dev,
12478                             "Recovered in open\n");
12479                     break;
12480                 }
12481 
12482                 /* recovery has failed... */
12483                 bnx2x_set_power_state(bp, PCI_D3hot);
12484                 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12485 
12486                 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12487                       "If you still see this message after a few retries then power cycle is required.\n");
12488 
12489                 return -EAGAIN;
12490             } while (0);
12491         }
12492     }
12493 
12494     bp->recovery_state = BNX2X_RECOVERY_DONE;
12495     rc = bnx2x_nic_load(bp, LOAD_OPEN);
12496     if (rc)
12497         return rc;
12498 
12499     return 0;
12500 }
12501 
12502 /* called with rtnl_lock */
12503 static int bnx2x_close(struct net_device *dev)
12504 {
12505     struct bnx2x *bp = netdev_priv(dev);
12506 
12507     /* Unload the driver, release IRQs */
12508     bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12509 
12510     return 0;
12511 }
12512 
12513 struct bnx2x_mcast_list_elem_group
12514 {
12515     struct list_head mcast_group_link;
12516     struct bnx2x_mcast_list_elem mcast_elems[];
12517 };
12518 
12519 #define MCAST_ELEMS_PER_PG \
12520     ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12521     sizeof(struct bnx2x_mcast_list_elem))
12522 
12523 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12524 {
12525     struct bnx2x_mcast_list_elem_group *current_mcast_group;
12526 
12527     while (!list_empty(mcast_group_list)) {
12528         current_mcast_group = list_first_entry(mcast_group_list,
12529                       struct bnx2x_mcast_list_elem_group,
12530                       mcast_group_link);
12531         list_del(&current_mcast_group->mcast_group_link);
12532         free_page((unsigned long)current_mcast_group);
12533     }
12534 }
12535 
12536 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12537                       struct bnx2x_mcast_ramrod_params *p,
12538                       struct list_head *mcast_group_list)
12539 {
12540     struct bnx2x_mcast_list_elem *mc_mac;
12541     struct netdev_hw_addr *ha;
12542     struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12543     int mc_count = netdev_mc_count(bp->dev);
12544     int offset = 0;
12545 
12546     INIT_LIST_HEAD(&p->mcast_list);
12547     netdev_for_each_mc_addr(ha, bp->dev) {
12548         if (!offset) {
12549             current_mcast_group =
12550                 (struct bnx2x_mcast_list_elem_group *)
12551                 __get_free_page(GFP_ATOMIC);
12552             if (!current_mcast_group) {
12553                 bnx2x_free_mcast_macs_list(mcast_group_list);
12554                 BNX2X_ERR("Failed to allocate mc MAC list\n");
12555                 return -ENOMEM;
12556             }
12557             list_add(&current_mcast_group->mcast_group_link,
12558                  mcast_group_list);
12559         }
12560         mc_mac = &current_mcast_group->mcast_elems[offset];
12561         mc_mac->mac = bnx2x_mc_addr(ha);
12562         list_add_tail(&mc_mac->link, &p->mcast_list);
12563         offset++;
12564         if (offset == MCAST_ELEMS_PER_PG)
12565             offset = 0;
12566     }
12567     p->mcast_list_len = mc_count;
12568     return 0;
12569 }
12570 
12571 /**
12572  * bnx2x_set_uc_list - configure a new unicast MACs list.
12573  *
12574  * @bp: driver handle
12575  *
12576  * We will use zero (0) as a MAC type for these MACs.
12577  */
12578 static int bnx2x_set_uc_list(struct bnx2x *bp)
12579 {
12580     int rc;
12581     struct net_device *dev = bp->dev;
12582     struct netdev_hw_addr *ha;
12583     struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12584     unsigned long ramrod_flags = 0;
12585 
12586     /* First schedule a cleanup up of old configuration */
12587     rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12588     if (rc < 0) {
12589         BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12590         return rc;
12591     }
12592 
12593     netdev_for_each_uc_addr(ha, dev) {
12594         rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12595                        BNX2X_UC_LIST_MAC, &ramrod_flags);
12596         if (rc == -EEXIST) {
12597             DP(BNX2X_MSG_SP,
12598                "Failed to schedule ADD operations: %d\n", rc);
12599             /* do not treat adding same MAC as error */
12600             rc = 0;
12601 
12602         } else if (rc < 0) {
12603 
12604             BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12605                   rc);
12606             return rc;
12607         }
12608     }
12609 
12610     /* Execute the pending commands */
12611     __set_bit(RAMROD_CONT, &ramrod_flags);
12612     return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12613                  BNX2X_UC_LIST_MAC, &ramrod_flags);
12614 }
12615 
12616 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12617 {
12618     LIST_HEAD(mcast_group_list);
12619     struct net_device *dev = bp->dev;
12620     struct bnx2x_mcast_ramrod_params rparam = {NULL};
12621     int rc = 0;
12622 
12623     rparam.mcast_obj = &bp->mcast_obj;
12624 
12625     /* first, clear all configured multicast MACs */
12626     rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12627     if (rc < 0) {
12628         BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12629         return rc;
12630     }
12631 
12632     /* then, configure a new MACs list */
12633     if (netdev_mc_count(dev)) {
12634         rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12635         if (rc)
12636             return rc;
12637 
12638         /* Now add the new MACs */
12639         rc = bnx2x_config_mcast(bp, &rparam,
12640                     BNX2X_MCAST_CMD_ADD);
12641         if (rc < 0)
12642             BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12643                   rc);
12644 
12645         bnx2x_free_mcast_macs_list(&mcast_group_list);
12646     }
12647 
12648     return rc;
12649 }
12650 
12651 static int bnx2x_set_mc_list(struct bnx2x *bp)
12652 {
12653     LIST_HEAD(mcast_group_list);
12654     struct bnx2x_mcast_ramrod_params rparam = {NULL};
12655     struct net_device *dev = bp->dev;
12656     int rc = 0;
12657 
12658     /* On older adapters, we need to flush and re-add filters */
12659     if (CHIP_IS_E1x(bp))
12660         return bnx2x_set_mc_list_e1x(bp);
12661 
12662     rparam.mcast_obj = &bp->mcast_obj;
12663 
12664     if (netdev_mc_count(dev)) {
12665         rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12666         if (rc)
12667             return rc;
12668 
12669         /* Override the curently configured set of mc filters */
12670         rc = bnx2x_config_mcast(bp, &rparam,
12671                     BNX2X_MCAST_CMD_SET);
12672         if (rc < 0)
12673             BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12674                   rc);
12675 
12676         bnx2x_free_mcast_macs_list(&mcast_group_list);
12677     } else {
12678         /* If no mc addresses are required, flush the configuration */
12679         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12680         if (rc < 0)
12681             BNX2X_ERR("Failed to clear multicast configuration %d\n",
12682                   rc);
12683     }
12684 
12685     return rc;
12686 }
12687 
12688 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12689 static void bnx2x_set_rx_mode(struct net_device *dev)
12690 {
12691     struct bnx2x *bp = netdev_priv(dev);
12692 
12693     if (bp->state != BNX2X_STATE_OPEN) {
12694         DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12695         return;
12696     } else {
12697         /* Schedule an SP task to handle rest of change */
12698         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12699                        NETIF_MSG_IFUP);
12700     }
12701 }
12702 
12703 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12704 {
12705     u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12706 
12707     DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12708 
12709     netif_addr_lock_bh(bp->dev);
12710 
12711     if (bp->dev->flags & IFF_PROMISC) {
12712         rx_mode = BNX2X_RX_MODE_PROMISC;
12713     } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12714            ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12715             CHIP_IS_E1(bp))) {
12716         rx_mode = BNX2X_RX_MODE_ALLMULTI;
12717     } else {
12718         if (IS_PF(bp)) {
12719             /* some multicasts */
12720             if (bnx2x_set_mc_list(bp) < 0)
12721                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12722 
12723             /* release bh lock, as bnx2x_set_uc_list might sleep */
12724             netif_addr_unlock_bh(bp->dev);
12725             if (bnx2x_set_uc_list(bp) < 0)
12726                 rx_mode = BNX2X_RX_MODE_PROMISC;
12727             netif_addr_lock_bh(bp->dev);
12728         } else {
12729             /* configuring mcast to a vf involves sleeping (when we
12730              * wait for the pf's response).
12731              */
12732             bnx2x_schedule_sp_rtnl(bp,
12733                            BNX2X_SP_RTNL_VFPF_MCAST, 0);
12734         }
12735     }
12736 
12737     bp->rx_mode = rx_mode;
12738     /* handle ISCSI SD mode */
12739     if (IS_MF_ISCSI_ONLY(bp))
12740         bp->rx_mode = BNX2X_RX_MODE_NONE;
12741 
12742     /* Schedule the rx_mode command */
12743     if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12744         set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12745         netif_addr_unlock_bh(bp->dev);
12746         return;
12747     }
12748 
12749     if (IS_PF(bp)) {
12750         bnx2x_set_storm_rx_mode(bp);
12751         netif_addr_unlock_bh(bp->dev);
12752     } else {
12753         /* VF will need to request the PF to make this change, and so
12754          * the VF needs to release the bottom-half lock prior to the
12755          * request (as it will likely require sleep on the VF side)
12756          */
12757         netif_addr_unlock_bh(bp->dev);
12758         bnx2x_vfpf_storm_rx_mode(bp);
12759     }
12760 }
12761 
12762 /* called with rtnl_lock */
12763 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12764                int devad, u16 addr)
12765 {
12766     struct bnx2x *bp = netdev_priv(netdev);
12767     u16 value;
12768     int rc;
12769 
12770     DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12771        prtad, devad, addr);
12772 
12773     /* The HW expects different devad if CL22 is used */
12774     devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12775 
12776     bnx2x_acquire_phy_lock(bp);
12777     rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12778     bnx2x_release_phy_lock(bp);
12779     DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12780 
12781     if (!rc)
12782         rc = value;
12783     return rc;
12784 }
12785 
12786 /* called with rtnl_lock */
12787 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12788                 u16 addr, u16 value)
12789 {
12790     struct bnx2x *bp = netdev_priv(netdev);
12791     int rc;
12792 
12793     DP(NETIF_MSG_LINK,
12794        "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12795        prtad, devad, addr, value);
12796 
12797     /* The HW expects different devad if CL22 is used */
12798     devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12799 
12800     bnx2x_acquire_phy_lock(bp);
12801     rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12802     bnx2x_release_phy_lock(bp);
12803     return rc;
12804 }
12805 
12806 /* called with rtnl_lock */
12807 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12808 {
12809     struct bnx2x *bp = netdev_priv(dev);
12810     struct mii_ioctl_data *mdio = if_mii(ifr);
12811 
12812     if (!netif_running(dev))
12813         return -EAGAIN;
12814 
12815     switch (cmd) {
12816     case SIOCSHWTSTAMP:
12817         return bnx2x_hwtstamp_ioctl(bp, ifr);
12818     default:
12819         DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12820            mdio->phy_id, mdio->reg_num, mdio->val_in);
12821         return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12822     }
12823 }
12824 
12825 static int bnx2x_validate_addr(struct net_device *dev)
12826 {
12827     struct bnx2x *bp = netdev_priv(dev);
12828 
12829     /* query the bulletin board for mac address configured by the PF */
12830     if (IS_VF(bp))
12831         bnx2x_sample_bulletin(bp);
12832 
12833     if (!is_valid_ether_addr(dev->dev_addr)) {
12834         BNX2X_ERR("Non-valid Ethernet address\n");
12835         return -EADDRNOTAVAIL;
12836     }
12837     return 0;
12838 }
12839 
12840 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12841                   struct netdev_phys_item_id *ppid)
12842 {
12843     struct bnx2x *bp = netdev_priv(netdev);
12844 
12845     if (!(bp->flags & HAS_PHYS_PORT_ID))
12846         return -EOPNOTSUPP;
12847 
12848     ppid->id_len = sizeof(bp->phys_port_id);
12849     memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12850 
12851     return 0;
12852 }
12853 
12854 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12855                           struct net_device *dev,
12856                           netdev_features_t features)
12857 {
12858     /*
12859      * A skb with gso_size + header length > 9700 will cause a
12860      * firmware panic. Drop GSO support.
12861      *
12862      * Eventually the upper layer should not pass these packets down.
12863      *
12864      * For speed, if the gso_size is <= 9000, assume there will
12865      * not be 700 bytes of headers and pass it through. Only do a
12866      * full (slow) validation if the gso_size is > 9000.
12867      *
12868      * (Due to the way SKB_BY_FRAGS works this will also do a full
12869      * validation in that case.)
12870      */
12871     if (unlikely(skb_is_gso(skb) &&
12872              (skb_shinfo(skb)->gso_size > 9000) &&
12873              !skb_gso_validate_mac_len(skb, 9700)))
12874         features &= ~NETIF_F_GSO_MASK;
12875 
12876     features = vlan_features_check(skb, features);
12877     return vxlan_features_check(skb, features);
12878 }
12879 
12880 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12881 {
12882     int rc;
12883 
12884     if (IS_PF(bp)) {
12885         unsigned long ramrod_flags = 0;
12886 
12887         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12888         rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12889                     add, &ramrod_flags);
12890     } else {
12891         rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12892     }
12893 
12894     return rc;
12895 }
12896 
12897 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12898 {
12899     struct bnx2x_vlan_entry *vlan;
12900     int rc = 0;
12901 
12902     /* Configure all non-configured entries */
12903     list_for_each_entry(vlan, &bp->vlan_reg, link) {
12904         if (vlan->hw)
12905             continue;
12906 
12907         if (bp->vlan_cnt >= bp->vlan_credit)
12908             return -ENOBUFS;
12909 
12910         rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12911         if (rc) {
12912             BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12913             return rc;
12914         }
12915 
12916         DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12917         vlan->hw = true;
12918         bp->vlan_cnt++;
12919     }
12920 
12921     return 0;
12922 }
12923 
12924 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12925 {
12926     bool need_accept_any_vlan;
12927 
12928     need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12929 
12930     if (bp->accept_any_vlan != need_accept_any_vlan) {
12931         bp->accept_any_vlan = need_accept_any_vlan;
12932         DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12933            bp->accept_any_vlan ? "raised" : "cleared");
12934         if (set_rx_mode) {
12935             if (IS_PF(bp))
12936                 bnx2x_set_rx_mode_inner(bp);
12937             else
12938                 bnx2x_vfpf_storm_rx_mode(bp);
12939         }
12940     }
12941 }
12942 
12943 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12944 {
12945     /* Don't set rx mode here. Our caller will do it. */
12946     bnx2x_vlan_configure(bp, false);
12947 
12948     return 0;
12949 }
12950 
12951 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12952 {
12953     struct bnx2x *bp = netdev_priv(dev);
12954     struct bnx2x_vlan_entry *vlan;
12955 
12956     DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
12957 
12958     vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
12959     if (!vlan)
12960         return -ENOMEM;
12961 
12962     vlan->vid = vid;
12963     vlan->hw = false;
12964     list_add_tail(&vlan->link, &bp->vlan_reg);
12965 
12966     if (netif_running(dev))
12967         bnx2x_vlan_configure(bp, true);
12968 
12969     return 0;
12970 }
12971 
12972 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
12973 {
12974     struct bnx2x *bp = netdev_priv(dev);
12975     struct bnx2x_vlan_entry *vlan;
12976     bool found = false;
12977     int rc = 0;
12978 
12979     DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
12980 
12981     list_for_each_entry(vlan, &bp->vlan_reg, link)
12982         if (vlan->vid == vid) {
12983             found = true;
12984             break;
12985         }
12986 
12987     if (!found) {
12988         BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
12989         return -EINVAL;
12990     }
12991 
12992     if (netif_running(dev) && vlan->hw) {
12993         rc = __bnx2x_vlan_configure_vid(bp, vid, false);
12994         DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
12995         bp->vlan_cnt--;
12996     }
12997 
12998     list_del(&vlan->link);
12999     kfree(vlan);
13000 
13001     if (netif_running(dev))
13002         bnx2x_vlan_configure(bp, true);
13003 
13004     DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13005 
13006     return rc;
13007 }
13008 
13009 static const struct net_device_ops bnx2x_netdev_ops = {
13010     .ndo_open       = bnx2x_open,
13011     .ndo_stop       = bnx2x_close,
13012     .ndo_start_xmit     = bnx2x_start_xmit,
13013     .ndo_select_queue   = bnx2x_select_queue,
13014     .ndo_set_rx_mode    = bnx2x_set_rx_mode,
13015     .ndo_set_mac_address    = bnx2x_change_mac_addr,
13016     .ndo_validate_addr  = bnx2x_validate_addr,
13017     .ndo_eth_ioctl      = bnx2x_ioctl,
13018     .ndo_change_mtu     = bnx2x_change_mtu,
13019     .ndo_fix_features   = bnx2x_fix_features,
13020     .ndo_set_features   = bnx2x_set_features,
13021     .ndo_tx_timeout     = bnx2x_tx_timeout,
13022     .ndo_vlan_rx_add_vid    = bnx2x_vlan_rx_add_vid,
13023     .ndo_vlan_rx_kill_vid   = bnx2x_vlan_rx_kill_vid,
13024     .ndo_setup_tc       = __bnx2x_setup_tc,
13025 #ifdef CONFIG_BNX2X_SRIOV
13026     .ndo_set_vf_mac     = bnx2x_set_vf_mac,
13027     .ndo_set_vf_vlan    = bnx2x_set_vf_vlan,
13028     .ndo_get_vf_config  = bnx2x_get_vf_config,
13029     .ndo_set_vf_spoofchk    = bnx2x_set_vf_spoofchk,
13030 #endif
13031 #ifdef NETDEV_FCOE_WWNN
13032     .ndo_fcoe_get_wwn   = bnx2x_fcoe_get_wwn,
13033 #endif
13034 
13035     .ndo_get_phys_port_id   = bnx2x_get_phys_port_id,
13036     .ndo_set_vf_link_state  = bnx2x_set_vf_link_state,
13037     .ndo_features_check = bnx2x_features_check,
13038 };
13039 
13040 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13041 {
13042     if (bp->flags & AER_ENABLED) {
13043         pci_disable_pcie_error_reporting(bp->pdev);
13044         bp->flags &= ~AER_ENABLED;
13045     }
13046 }
13047 
13048 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13049               struct net_device *dev, unsigned long board_type)
13050 {
13051     int rc;
13052     u32 pci_cfg_dword;
13053     bool chip_is_e1x = (board_type == BCM57710 ||
13054                 board_type == BCM57711 ||
13055                 board_type == BCM57711E);
13056 
13057     SET_NETDEV_DEV(dev, &pdev->dev);
13058 
13059     bp->dev = dev;
13060     bp->pdev = pdev;
13061 
13062     rc = pci_enable_device(pdev);
13063     if (rc) {
13064         dev_err(&bp->pdev->dev,
13065             "Cannot enable PCI device, aborting\n");
13066         goto err_out;
13067     }
13068 
13069     if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13070         dev_err(&bp->pdev->dev,
13071             "Cannot find PCI device base address, aborting\n");
13072         rc = -ENODEV;
13073         goto err_out_disable;
13074     }
13075 
13076     if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13077         dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13078         rc = -ENODEV;
13079         goto err_out_disable;
13080     }
13081 
13082     pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13083     if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13084         PCICFG_REVESION_ID_ERROR_VAL) {
13085         pr_err("PCI device error, probably due to fan failure, aborting\n");
13086         rc = -ENODEV;
13087         goto err_out_disable;
13088     }
13089 
13090     if (atomic_read(&pdev->enable_cnt) == 1) {
13091         rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13092         if (rc) {
13093             dev_err(&bp->pdev->dev,
13094                 "Cannot obtain PCI resources, aborting\n");
13095             goto err_out_disable;
13096         }
13097 
13098         pci_set_master(pdev);
13099         pci_save_state(pdev);
13100     }
13101 
13102     if (IS_PF(bp)) {
13103         if (!pdev->pm_cap) {
13104             dev_err(&bp->pdev->dev,
13105                 "Cannot find power management capability, aborting\n");
13106             rc = -EIO;
13107             goto err_out_release;
13108         }
13109     }
13110 
13111     if (!pci_is_pcie(pdev)) {
13112         dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13113         rc = -EIO;
13114         goto err_out_release;
13115     }
13116 
13117     rc = dma_set_mask_and_coherent(&bp->pdev->dev, DMA_BIT_MASK(64));
13118     if (rc) {
13119         dev_err(&bp->pdev->dev, "System does not support DMA, aborting\n");
13120         goto err_out_release;
13121     }
13122 
13123     dev->mem_start = pci_resource_start(pdev, 0);
13124     dev->base_addr = dev->mem_start;
13125     dev->mem_end = pci_resource_end(pdev, 0);
13126 
13127     dev->irq = pdev->irq;
13128 
13129     bp->regview = pci_ioremap_bar(pdev, 0);
13130     if (!bp->regview) {
13131         dev_err(&bp->pdev->dev,
13132             "Cannot map register space, aborting\n");
13133         rc = -ENOMEM;
13134         goto err_out_release;
13135     }
13136 
13137     /* In E1/E1H use pci device function given by kernel.
13138      * In E2/E3 read physical function from ME register since these chips
13139      * support Physical Device Assignment where kernel BDF maybe arbitrary
13140      * (depending on hypervisor).
13141      */
13142     if (chip_is_e1x) {
13143         bp->pf_num = PCI_FUNC(pdev->devfn);
13144     } else {
13145         /* chip is E2/3*/
13146         pci_read_config_dword(bp->pdev,
13147                       PCICFG_ME_REGISTER, &pci_cfg_dword);
13148         bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13149                   ME_REG_ABS_PF_NUM_SHIFT);
13150     }
13151     BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13152 
13153     /* clean indirect addresses */
13154     pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13155                    PCICFG_VENDOR_ID_OFFSET);
13156 
13157     /* Set PCIe reset type to fundamental for EEH recovery */
13158     pdev->needs_freset = 1;
13159 
13160     /* AER (Advanced Error reporting) configuration */
13161     rc = pci_enable_pcie_error_reporting(pdev);
13162     if (!rc)
13163         bp->flags |= AER_ENABLED;
13164     else
13165         BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13166 
13167     /*
13168      * Clean the following indirect addresses for all functions since it
13169      * is not used by the driver.
13170      */
13171     if (IS_PF(bp)) {
13172         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13173         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13174         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13175         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13176 
13177         if (chip_is_e1x) {
13178             REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13179             REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13180             REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13181             REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13182         }
13183 
13184         /* Enable internal target-read (in case we are probed after PF
13185          * FLR). Must be done prior to any BAR read access. Only for
13186          * 57712 and up
13187          */
13188         if (!chip_is_e1x)
13189             REG_WR(bp,
13190                    PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13191     }
13192 
13193     dev->watchdog_timeo = TX_TIMEOUT;
13194 
13195     dev->netdev_ops = &bnx2x_netdev_ops;
13196     bnx2x_set_ethtool_ops(bp, dev);
13197 
13198     dev->priv_flags |= IFF_UNICAST_FLT;
13199 
13200     dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13201         NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13202         NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13203         NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13204     if (!chip_is_e1x) {
13205         dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13206                     NETIF_F_GSO_IPXIP4 |
13207                     NETIF_F_GSO_UDP_TUNNEL |
13208                     NETIF_F_GSO_UDP_TUNNEL_CSUM |
13209                     NETIF_F_GSO_PARTIAL;
13210 
13211         dev->hw_enc_features =
13212             NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13213             NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13214             NETIF_F_GSO_IPXIP4 |
13215             NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13216             NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13217             NETIF_F_GSO_PARTIAL;
13218 
13219         dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13220                         NETIF_F_GSO_UDP_TUNNEL_CSUM;
13221 
13222         if (IS_PF(bp))
13223             dev->udp_tunnel_nic_info = &bnx2x_udp_tunnels;
13224     }
13225 
13226     dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13227         NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13228 
13229     if (IS_PF(bp)) {
13230         if (chip_is_e1x)
13231             bp->accept_any_vlan = true;
13232         else
13233             dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13234     }
13235     /* For VF we'll know whether to enable VLAN filtering after
13236      * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13237      */
13238 
13239     dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13240     dev->features |= NETIF_F_HIGHDMA;
13241     if (dev->features & NETIF_F_LRO)
13242         dev->features &= ~NETIF_F_GRO_HW;
13243 
13244     /* Add Loopback capability to the device */
13245     dev->hw_features |= NETIF_F_LOOPBACK;
13246 
13247 #ifdef BCM_DCBNL
13248     dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13249 #endif
13250 
13251     /* MTU range, 46 - 9600 */
13252     dev->min_mtu = ETH_MIN_PACKET_SIZE;
13253     dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13254 
13255     /* get_port_hwinfo() will set prtad and mmds properly */
13256     bp->mdio.prtad = MDIO_PRTAD_NONE;
13257     bp->mdio.mmds = 0;
13258     bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13259     bp->mdio.dev = dev;
13260     bp->mdio.mdio_read = bnx2x_mdio_read;
13261     bp->mdio.mdio_write = bnx2x_mdio_write;
13262 
13263     return 0;
13264 
13265 err_out_release:
13266     if (atomic_read(&pdev->enable_cnt) == 1)
13267         pci_release_regions(pdev);
13268 
13269 err_out_disable:
13270     pci_disable_device(pdev);
13271 
13272 err_out:
13273     return rc;
13274 }
13275 
13276 static int bnx2x_check_firmware(struct bnx2x *bp)
13277 {
13278     const struct firmware *firmware = bp->firmware;
13279     struct bnx2x_fw_file_hdr *fw_hdr;
13280     struct bnx2x_fw_file_section *sections;
13281     u32 offset, len, num_ops;
13282     __be16 *ops_offsets;
13283     int i;
13284     const u8 *fw_ver;
13285 
13286     if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13287         BNX2X_ERR("Wrong FW size\n");
13288         return -EINVAL;
13289     }
13290 
13291     fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13292     sections = (struct bnx2x_fw_file_section *)fw_hdr;
13293 
13294     /* Make sure none of the offsets and sizes make us read beyond
13295      * the end of the firmware data */
13296     for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13297         offset = be32_to_cpu(sections[i].offset);
13298         len = be32_to_cpu(sections[i].len);
13299         if (offset + len > firmware->size) {
13300             BNX2X_ERR("Section %d length is out of bounds\n", i);
13301             return -EINVAL;
13302         }
13303     }
13304 
13305     /* Likewise for the init_ops offsets */
13306     offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13307     ops_offsets = (__force __be16 *)(firmware->data + offset);
13308     num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13309 
13310     for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13311         if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13312             BNX2X_ERR("Section offset %d is out of bounds\n", i);
13313             return -EINVAL;
13314         }
13315     }
13316 
13317     /* Check FW version */
13318     offset = be32_to_cpu(fw_hdr->fw_version.offset);
13319     fw_ver = firmware->data + offset;
13320     if (fw_ver[0] != bp->fw_major || fw_ver[1] != bp->fw_minor ||
13321         fw_ver[2] != bp->fw_rev || fw_ver[3] != bp->fw_eng) {
13322         BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13323               fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13324               bp->fw_major, bp->fw_minor, bp->fw_rev, bp->fw_eng);
13325         return -EINVAL;
13326     }
13327 
13328     return 0;
13329 }
13330 
13331 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13332 {
13333     const __be32 *source = (const __be32 *)_source;
13334     u32 *target = (u32 *)_target;
13335     u32 i;
13336 
13337     for (i = 0; i < n/4; i++)
13338         target[i] = be32_to_cpu(source[i]);
13339 }
13340 
13341 /*
13342    Ops array is stored in the following format:
13343    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13344  */
13345 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13346 {
13347     const __be32 *source = (const __be32 *)_source;
13348     struct raw_op *target = (struct raw_op *)_target;
13349     u32 i, j, tmp;
13350 
13351     for (i = 0, j = 0; i < n/8; i++, j += 2) {
13352         tmp = be32_to_cpu(source[j]);
13353         target[i].op = (tmp >> 24) & 0xff;
13354         target[i].offset = tmp & 0xffffff;
13355         target[i].raw_data = be32_to_cpu(source[j + 1]);
13356     }
13357 }
13358 
13359 /* IRO array is stored in the following format:
13360  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13361  */
13362 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13363 {
13364     const __be32 *source = (const __be32 *)_source;
13365     struct iro *target = (struct iro *)_target;
13366     u32 i, j, tmp;
13367 
13368     for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13369         target[i].base = be32_to_cpu(source[j]);
13370         j++;
13371         tmp = be32_to_cpu(source[j]);
13372         target[i].m1 = (tmp >> 16) & 0xffff;
13373         target[i].m2 = tmp & 0xffff;
13374         j++;
13375         tmp = be32_to_cpu(source[j]);
13376         target[i].m3 = (tmp >> 16) & 0xffff;
13377         target[i].size = tmp & 0xffff;
13378         j++;
13379     }
13380 }
13381 
13382 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13383 {
13384     const __be16 *source = (const __be16 *)_source;
13385     u16 *target = (u16 *)_target;
13386     u32 i;
13387 
13388     for (i = 0; i < n/2; i++)
13389         target[i] = be16_to_cpu(source[i]);
13390 }
13391 
13392 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)             \
13393 do {                                    \
13394     u32 len = be32_to_cpu(fw_hdr->arr.len);             \
13395     bp->arr = kmalloc(len, GFP_KERNEL);             \
13396     if (!bp->arr)                           \
13397         goto lbl;                       \
13398     func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),  \
13399          (u8 *)bp->arr, len);                   \
13400 } while (0)
13401 
13402 static int bnx2x_init_firmware(struct bnx2x *bp)
13403 {
13404     const char *fw_file_name, *fw_file_name_v15;
13405     struct bnx2x_fw_file_hdr *fw_hdr;
13406     int rc;
13407 
13408     if (bp->firmware)
13409         return 0;
13410 
13411     if (CHIP_IS_E1(bp)) {
13412         fw_file_name = FW_FILE_NAME_E1;
13413         fw_file_name_v15 = FW_FILE_NAME_E1_V15;
13414     } else if (CHIP_IS_E1H(bp)) {
13415         fw_file_name = FW_FILE_NAME_E1H;
13416         fw_file_name_v15 = FW_FILE_NAME_E1H_V15;
13417     } else if (!CHIP_IS_E1x(bp)) {
13418         fw_file_name = FW_FILE_NAME_E2;
13419         fw_file_name_v15 = FW_FILE_NAME_E2_V15;
13420     } else {
13421         BNX2X_ERR("Unsupported chip revision\n");
13422         return -EINVAL;
13423     }
13424 
13425     BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13426 
13427     rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13428     if (rc) {
13429         BNX2X_DEV_INFO("Trying to load older fw %s\n", fw_file_name_v15);
13430 
13431         /* try to load prev version */
13432         rc = request_firmware(&bp->firmware, fw_file_name_v15, &bp->pdev->dev);
13433 
13434         if (rc)
13435             goto request_firmware_exit;
13436 
13437         bp->fw_rev = BCM_5710_FW_REVISION_VERSION_V15;
13438     } else {
13439         bp->fw_cap |= FW_CAP_INVALIDATE_VF_FP_HSI;
13440         bp->fw_rev = BCM_5710_FW_REVISION_VERSION;
13441     }
13442 
13443     bp->fw_major = BCM_5710_FW_MAJOR_VERSION;
13444     bp->fw_minor = BCM_5710_FW_MINOR_VERSION;
13445     bp->fw_eng = BCM_5710_FW_ENGINEERING_VERSION;
13446 
13447     rc = bnx2x_check_firmware(bp);
13448     if (rc) {
13449         BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13450         goto request_firmware_exit;
13451     }
13452 
13453     fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13454 
13455     /* Initialize the pointers to the init arrays */
13456     /* Blob */
13457     rc = -ENOMEM;
13458     BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13459 
13460     /* Opcodes */
13461     BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13462 
13463     /* Offsets */
13464     BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13465                 be16_to_cpu_n);
13466 
13467     /* STORMs firmware */
13468     INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13469             be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13470     INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13471             be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13472     INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13473             be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13474     INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13475             be32_to_cpu(fw_hdr->usem_pram_data.offset);
13476     INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13477             be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13478     INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13479             be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13480     INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13481             be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13482     INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13483             be32_to_cpu(fw_hdr->csem_pram_data.offset);
13484     /* IRO */
13485     BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13486 
13487     return 0;
13488 
13489 iro_alloc_err:
13490     kfree(bp->init_ops_offsets);
13491 init_offsets_alloc_err:
13492     kfree(bp->init_ops);
13493 init_ops_alloc_err:
13494     kfree(bp->init_data);
13495 request_firmware_exit:
13496     release_firmware(bp->firmware);
13497     bp->firmware = NULL;
13498 
13499     return rc;
13500 }
13501 
13502 static void bnx2x_release_firmware(struct bnx2x *bp)
13503 {
13504     kfree(bp->init_ops_offsets);
13505     kfree(bp->init_ops);
13506     kfree(bp->init_data);
13507     release_firmware(bp->firmware);
13508     bp->firmware = NULL;
13509 }
13510 
13511 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13512     .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13513     .init_hw_cmn      = bnx2x_init_hw_common,
13514     .init_hw_port     = bnx2x_init_hw_port,
13515     .init_hw_func     = bnx2x_init_hw_func,
13516 
13517     .reset_hw_cmn     = bnx2x_reset_common,
13518     .reset_hw_port    = bnx2x_reset_port,
13519     .reset_hw_func    = bnx2x_reset_func,
13520 
13521     .gunzip_init      = bnx2x_gunzip_init,
13522     .gunzip_end       = bnx2x_gunzip_end,
13523 
13524     .init_fw          = bnx2x_init_firmware,
13525     .release_fw       = bnx2x_release_firmware,
13526 };
13527 
13528 void bnx2x__init_func_obj(struct bnx2x *bp)
13529 {
13530     /* Prepare DMAE related driver resources */
13531     bnx2x_setup_dmae(bp);
13532 
13533     bnx2x_init_func_obj(bp, &bp->func_obj,
13534                 bnx2x_sp(bp, func_rdata),
13535                 bnx2x_sp_mapping(bp, func_rdata),
13536                 bnx2x_sp(bp, func_afex_rdata),
13537                 bnx2x_sp_mapping(bp, func_afex_rdata),
13538                 &bnx2x_func_sp_drv);
13539 }
13540 
13541 /* must be called after sriov-enable */
13542 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13543 {
13544     int cid_count = BNX2X_L2_MAX_CID(bp);
13545 
13546     if (IS_SRIOV(bp))
13547         cid_count += BNX2X_VF_CIDS;
13548 
13549     if (CNIC_SUPPORT(bp))
13550         cid_count += CNIC_CID_MAX;
13551 
13552     return roundup(cid_count, QM_CID_ROUND);
13553 }
13554 
13555 /**
13556  * bnx2x_get_num_non_def_sbs - return the number of none default SBs
13557  * @pdev: pci device
13558  * @cnic_cnt: count
13559  *
13560  */
13561 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13562 {
13563     int index;
13564     u16 control = 0;
13565 
13566     /*
13567      * If MSI-X is not supported - return number of SBs needed to support
13568      * one fast path queue: one FP queue + SB for CNIC
13569      */
13570     if (!pdev->msix_cap) {
13571         dev_info(&pdev->dev, "no msix capability found\n");
13572         return 1 + cnic_cnt;
13573     }
13574     dev_info(&pdev->dev, "msix capability found\n");
13575 
13576     /*
13577      * The value in the PCI configuration space is the index of the last
13578      * entry, namely one less than the actual size of the table, which is
13579      * exactly what we want to return from this function: number of all SBs
13580      * without the default SB.
13581      * For VFs there is no default SB, then we return (index+1).
13582      */
13583     pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13584 
13585     index = control & PCI_MSIX_FLAGS_QSIZE;
13586 
13587     return index;
13588 }
13589 
13590 static int set_max_cos_est(int chip_id)
13591 {
13592     switch (chip_id) {
13593     case BCM57710:
13594     case BCM57711:
13595     case BCM57711E:
13596         return BNX2X_MULTI_TX_COS_E1X;
13597     case BCM57712:
13598     case BCM57712_MF:
13599         return BNX2X_MULTI_TX_COS_E2_E3A0;
13600     case BCM57800:
13601     case BCM57800_MF:
13602     case BCM57810:
13603     case BCM57810_MF:
13604     case BCM57840_4_10:
13605     case BCM57840_2_20:
13606     case BCM57840_O:
13607     case BCM57840_MFO:
13608     case BCM57840_MF:
13609     case BCM57811:
13610     case BCM57811_MF:
13611         return BNX2X_MULTI_TX_COS_E3B0;
13612     case BCM57712_VF:
13613     case BCM57800_VF:
13614     case BCM57810_VF:
13615     case BCM57840_VF:
13616     case BCM57811_VF:
13617         return 1;
13618     default:
13619         pr_err("Unknown board_type (%d), aborting\n", chip_id);
13620         return -ENODEV;
13621     }
13622 }
13623 
13624 static int set_is_vf(int chip_id)
13625 {
13626     switch (chip_id) {
13627     case BCM57712_VF:
13628     case BCM57800_VF:
13629     case BCM57810_VF:
13630     case BCM57840_VF:
13631     case BCM57811_VF:
13632         return true;
13633     default:
13634         return false;
13635     }
13636 }
13637 
13638 /* nig_tsgen registers relative address */
13639 #define tsgen_ctrl 0x0
13640 #define tsgen_freecount 0x10
13641 #define tsgen_synctime_t0 0x20
13642 #define tsgen_offset_t0 0x28
13643 #define tsgen_drift_t0 0x30
13644 #define tsgen_synctime_t1 0x58
13645 #define tsgen_offset_t1 0x60
13646 #define tsgen_drift_t1 0x68
13647 
13648 /* FW workaround for setting drift */
13649 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13650                       int best_val, int best_period)
13651 {
13652     struct bnx2x_func_state_params func_params = {NULL};
13653     struct bnx2x_func_set_timesync_params *set_timesync_params =
13654         &func_params.params.set_timesync;
13655 
13656     /* Prepare parameters for function state transitions */
13657     __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13658     __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13659 
13660     func_params.f_obj = &bp->func_obj;
13661     func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13662 
13663     /* Function parameters */
13664     set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13665     set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13666     set_timesync_params->add_sub_drift_adjust_value =
13667         drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13668     set_timesync_params->drift_adjust_value = best_val;
13669     set_timesync_params->drift_adjust_period = best_period;
13670 
13671     return bnx2x_func_state_change(bp, &func_params);
13672 }
13673 
13674 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13675 {
13676     struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13677     int rc;
13678     int drift_dir = 1;
13679     int val, period, period1, period2, dif, dif1, dif2;
13680     int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13681 
13682     DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13683 
13684     if (!netif_running(bp->dev)) {
13685         DP(BNX2X_MSG_PTP,
13686            "PTP adjfreq called while the interface is down\n");
13687         return -ENETDOWN;
13688     }
13689 
13690     if (ppb < 0) {
13691         ppb = -ppb;
13692         drift_dir = 0;
13693     }
13694 
13695     if (ppb == 0) {
13696         best_val = 1;
13697         best_period = 0x1FFFFFF;
13698     } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13699         best_val = 31;
13700         best_period = 1;
13701     } else {
13702         /* Changed not to allow val = 8, 16, 24 as these values
13703          * are not supported in workaround.
13704          */
13705         for (val = 0; val <= 31; val++) {
13706             if ((val & 0x7) == 0)
13707                 continue;
13708             period1 = val * 1000000 / ppb;
13709             period2 = period1 + 1;
13710             if (period1 != 0)
13711                 dif1 = ppb - (val * 1000000 / period1);
13712             else
13713                 dif1 = BNX2X_MAX_PHC_DRIFT;
13714             if (dif1 < 0)
13715                 dif1 = -dif1;
13716             dif2 = ppb - (val * 1000000 / period2);
13717             if (dif2 < 0)
13718                 dif2 = -dif2;
13719             dif = (dif1 < dif2) ? dif1 : dif2;
13720             period = (dif1 < dif2) ? period1 : period2;
13721             if (dif < best_dif) {
13722                 best_dif = dif;
13723                 best_val = val;
13724                 best_period = period;
13725             }
13726         }
13727     }
13728 
13729     rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13730                         best_period);
13731     if (rc) {
13732         BNX2X_ERR("Failed to set drift\n");
13733         return -EFAULT;
13734     }
13735 
13736     DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13737        best_period);
13738 
13739     return 0;
13740 }
13741 
13742 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13743 {
13744     struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13745 
13746     if (!netif_running(bp->dev)) {
13747         DP(BNX2X_MSG_PTP,
13748            "PTP adjtime called while the interface is down\n");
13749         return -ENETDOWN;
13750     }
13751 
13752     DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13753 
13754     timecounter_adjtime(&bp->timecounter, delta);
13755 
13756     return 0;
13757 }
13758 
13759 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13760 {
13761     struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13762     u64 ns;
13763 
13764     if (!netif_running(bp->dev)) {
13765         DP(BNX2X_MSG_PTP,
13766            "PTP gettime called while the interface is down\n");
13767         return -ENETDOWN;
13768     }
13769 
13770     ns = timecounter_read(&bp->timecounter);
13771 
13772     DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13773 
13774     *ts = ns_to_timespec64(ns);
13775 
13776     return 0;
13777 }
13778 
13779 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13780                  const struct timespec64 *ts)
13781 {
13782     struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13783     u64 ns;
13784 
13785     if (!netif_running(bp->dev)) {
13786         DP(BNX2X_MSG_PTP,
13787            "PTP settime called while the interface is down\n");
13788         return -ENETDOWN;
13789     }
13790 
13791     ns = timespec64_to_ns(ts);
13792 
13793     DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13794 
13795     /* Re-init the timecounter */
13796     timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13797 
13798     return 0;
13799 }
13800 
13801 /* Enable (or disable) ancillary features of the phc subsystem */
13802 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13803                 struct ptp_clock_request *rq, int on)
13804 {
13805     struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13806 
13807     BNX2X_ERR("PHC ancillary features are not supported\n");
13808     return -ENOTSUPP;
13809 }
13810 
13811 void bnx2x_register_phc(struct bnx2x *bp)
13812 {
13813     /* Fill the ptp_clock_info struct and register PTP clock*/
13814     bp->ptp_clock_info.owner = THIS_MODULE;
13815     snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13816     bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13817     bp->ptp_clock_info.n_alarm = 0;
13818     bp->ptp_clock_info.n_ext_ts = 0;
13819     bp->ptp_clock_info.n_per_out = 0;
13820     bp->ptp_clock_info.pps = 0;
13821     bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13822     bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13823     bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13824     bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13825     bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13826 
13827     bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13828     if (IS_ERR(bp->ptp_clock)) {
13829         bp->ptp_clock = NULL;
13830         BNX2X_ERR("PTP clock registration failed\n");
13831     }
13832 }
13833 
13834 static int bnx2x_init_one(struct pci_dev *pdev,
13835                     const struct pci_device_id *ent)
13836 {
13837     struct net_device *dev = NULL;
13838     struct bnx2x *bp;
13839     int rc, max_non_def_sbs;
13840     int rx_count, tx_count, rss_count, doorbell_size;
13841     int max_cos_est;
13842     bool is_vf;
13843     int cnic_cnt;
13844 
13845     /* Management FW 'remembers' living interfaces. Allow it some time
13846      * to forget previously living interfaces, allowing a proper re-load.
13847      */
13848     if (is_kdump_kernel()) {
13849         ktime_t now = ktime_get_boottime();
13850         ktime_t fw_ready_time = ktime_set(5, 0);
13851 
13852         if (ktime_before(now, fw_ready_time))
13853             msleep(ktime_ms_delta(fw_ready_time, now));
13854     }
13855 
13856     /* An estimated maximum supported CoS number according to the chip
13857      * version.
13858      * We will try to roughly estimate the maximum number of CoSes this chip
13859      * may support in order to minimize the memory allocated for Tx
13860      * netdev_queue's. This number will be accurately calculated during the
13861      * initialization of bp->max_cos based on the chip versions AND chip
13862      * revision in the bnx2x_init_bp().
13863      */
13864     max_cos_est = set_max_cos_est(ent->driver_data);
13865     if (max_cos_est < 0)
13866         return max_cos_est;
13867     is_vf = set_is_vf(ent->driver_data);
13868     cnic_cnt = is_vf ? 0 : 1;
13869 
13870     max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13871 
13872     /* add another SB for VF as it has no default SB */
13873     max_non_def_sbs += is_vf ? 1 : 0;
13874 
13875     /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13876     rss_count = max_non_def_sbs - cnic_cnt;
13877 
13878     if (rss_count < 1)
13879         return -EINVAL;
13880 
13881     /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13882     rx_count = rss_count + cnic_cnt;
13883 
13884     /* Maximum number of netdev Tx queues:
13885      * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13886      */
13887     tx_count = rss_count * max_cos_est + cnic_cnt;
13888 
13889     /* dev zeroed in init_etherdev */
13890     dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13891     if (!dev)
13892         return -ENOMEM;
13893 
13894     bp = netdev_priv(dev);
13895 
13896     bp->flags = 0;
13897     if (is_vf)
13898         bp->flags |= IS_VF_FLAG;
13899 
13900     bp->igu_sb_cnt = max_non_def_sbs;
13901     bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13902     bp->msg_enable = debug;
13903     bp->cnic_support = cnic_cnt;
13904     bp->cnic_probe = bnx2x_cnic_probe;
13905 
13906     pci_set_drvdata(pdev, dev);
13907 
13908     rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13909     if (rc < 0) {
13910         free_netdev(dev);
13911         return rc;
13912     }
13913 
13914     BNX2X_DEV_INFO("This is a %s function\n",
13915                IS_PF(bp) ? "physical" : "virtual");
13916     BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13917     BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13918     BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13919                tx_count, rx_count);
13920 
13921     rc = bnx2x_init_bp(bp);
13922     if (rc)
13923         goto init_one_exit;
13924 
13925     /* Map doorbells here as we need the real value of bp->max_cos which
13926      * is initialized in bnx2x_init_bp() to determine the number of
13927      * l2 connections.
13928      */
13929     if (IS_VF(bp)) {
13930         bp->doorbells = bnx2x_vf_doorbells(bp);
13931         rc = bnx2x_vf_pci_alloc(bp);
13932         if (rc)
13933             goto init_one_freemem;
13934     } else {
13935         doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13936         if (doorbell_size > pci_resource_len(pdev, 2)) {
13937             dev_err(&bp->pdev->dev,
13938                 "Cannot map doorbells, bar size too small, aborting\n");
13939             rc = -ENOMEM;
13940             goto init_one_freemem;
13941         }
13942         bp->doorbells = ioremap(pci_resource_start(pdev, 2),
13943                         doorbell_size);
13944     }
13945     if (!bp->doorbells) {
13946         dev_err(&bp->pdev->dev,
13947             "Cannot map doorbell space, aborting\n");
13948         rc = -ENOMEM;
13949         goto init_one_freemem;
13950     }
13951 
13952     if (IS_VF(bp)) {
13953         rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13954         if (rc)
13955             goto init_one_freemem;
13956 
13957 #ifdef CONFIG_BNX2X_SRIOV
13958         /* VF with OLD Hypervisor or old PF do not support filtering */
13959         if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
13960             dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13961             dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13962         }
13963 #endif
13964     }
13965 
13966     /* Enable SRIOV if capability found in configuration space */
13967     rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13968     if (rc)
13969         goto init_one_freemem;
13970 
13971     /* calc qm_cid_count */
13972     bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13973     BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13974 
13975     /* disable FCOE L2 queue for E1x*/
13976     if (CHIP_IS_E1x(bp))
13977         bp->flags |= NO_FCOE_FLAG;
13978 
13979     /* Set bp->num_queues for MSI-X mode*/
13980     bnx2x_set_num_queues(bp);
13981 
13982     /* Configure interrupt mode: try to enable MSI-X/MSI if
13983      * needed.
13984      */
13985     rc = bnx2x_set_int_mode(bp);
13986     if (rc) {
13987         dev_err(&pdev->dev, "Cannot set interrupts\n");
13988         goto init_one_freemem;
13989     }
13990     BNX2X_DEV_INFO("set interrupts successfully\n");
13991 
13992     /* register the net device */
13993     rc = register_netdev(dev);
13994     if (rc) {
13995         dev_err(&pdev->dev, "Cannot register net device\n");
13996         goto init_one_freemem;
13997     }
13998     BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13999 
14000     if (!NO_FCOE(bp)) {
14001         /* Add storage MAC address */
14002         rtnl_lock();
14003         dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14004         rtnl_unlock();
14005     }
14006     BNX2X_DEV_INFO(
14007            "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
14008            board_info[ent->driver_data].name,
14009            (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14010            dev->base_addr, bp->pdev->irq, dev->dev_addr);
14011     pcie_print_link_status(bp->pdev);
14012 
14013     if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14014         bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14015 
14016     return 0;
14017 
14018 init_one_freemem:
14019     bnx2x_free_mem_bp(bp);
14020 
14021 init_one_exit:
14022     bnx2x_disable_pcie_error_reporting(bp);
14023 
14024     if (bp->regview)
14025         iounmap(bp->regview);
14026 
14027     if (IS_PF(bp) && bp->doorbells)
14028         iounmap(bp->doorbells);
14029 
14030     free_netdev(dev);
14031 
14032     if (atomic_read(&pdev->enable_cnt) == 1)
14033         pci_release_regions(pdev);
14034 
14035     pci_disable_device(pdev);
14036 
14037     return rc;
14038 }
14039 
14040 static void __bnx2x_remove(struct pci_dev *pdev,
14041                struct net_device *dev,
14042                struct bnx2x *bp,
14043                bool remove_netdev)
14044 {
14045     /* Delete storage MAC address */
14046     if (!NO_FCOE(bp)) {
14047         rtnl_lock();
14048         dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14049         rtnl_unlock();
14050     }
14051 
14052 #ifdef BCM_DCBNL
14053     /* Delete app tlvs from dcbnl */
14054     bnx2x_dcbnl_update_applist(bp, true);
14055 #endif
14056 
14057     if (IS_PF(bp) &&
14058         !BP_NOMCP(bp) &&
14059         (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14060         bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14061 
14062     /* Close the interface - either directly or implicitly */
14063     if (remove_netdev) {
14064         unregister_netdev(dev);
14065     } else {
14066         rtnl_lock();
14067         dev_close(dev);
14068         rtnl_unlock();
14069     }
14070 
14071     bnx2x_iov_remove_one(bp);
14072 
14073     /* Power on: we can't let PCI layer write to us while we are in D3 */
14074     if (IS_PF(bp)) {
14075         bnx2x_set_power_state(bp, PCI_D0);
14076         bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14077 
14078         /* Set endianity registers to reset values in case next driver
14079          * boots in different endianty environment.
14080          */
14081         bnx2x_reset_endianity(bp);
14082     }
14083 
14084     /* Disable MSI/MSI-X */
14085     bnx2x_disable_msi(bp);
14086 
14087     /* Power off */
14088     if (IS_PF(bp))
14089         bnx2x_set_power_state(bp, PCI_D3hot);
14090 
14091     /* Make sure RESET task is not scheduled before continuing */
14092     cancel_delayed_work_sync(&bp->sp_rtnl_task);
14093 
14094     /* send message via vfpf channel to release the resources of this vf */
14095     if (IS_VF(bp))
14096         bnx2x_vfpf_release(bp);
14097 
14098     /* Assumes no further PCIe PM changes will occur */
14099     if (system_state == SYSTEM_POWER_OFF) {
14100         pci_wake_from_d3(pdev, bp->wol);
14101         pci_set_power_state(pdev, PCI_D3hot);
14102     }
14103 
14104     bnx2x_disable_pcie_error_reporting(bp);
14105     if (remove_netdev) {
14106         if (bp->regview)
14107             iounmap(bp->regview);
14108 
14109         /* For vfs, doorbells are part of the regview and were unmapped
14110          * along with it. FW is only loaded by PF.
14111          */
14112         if (IS_PF(bp)) {
14113             if (bp->doorbells)
14114                 iounmap(bp->doorbells);
14115 
14116             bnx2x_release_firmware(bp);
14117         } else {
14118             bnx2x_vf_pci_dealloc(bp);
14119         }
14120         bnx2x_free_mem_bp(bp);
14121 
14122         free_netdev(dev);
14123 
14124         if (atomic_read(&pdev->enable_cnt) == 1)
14125             pci_release_regions(pdev);
14126 
14127         pci_disable_device(pdev);
14128     }
14129 }
14130 
14131 static void bnx2x_remove_one(struct pci_dev *pdev)
14132 {
14133     struct net_device *dev = pci_get_drvdata(pdev);
14134     struct bnx2x *bp;
14135 
14136     if (!dev) {
14137         dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14138         return;
14139     }
14140     bp = netdev_priv(dev);
14141 
14142     __bnx2x_remove(pdev, dev, bp, true);
14143 }
14144 
14145 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14146 {
14147     bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14148 
14149     bp->rx_mode = BNX2X_RX_MODE_NONE;
14150 
14151     if (CNIC_LOADED(bp))
14152         bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14153 
14154     /* Stop Tx */
14155     bnx2x_tx_disable(bp);
14156     netdev_reset_tc(bp->dev);
14157 
14158     del_timer_sync(&bp->timer);
14159     cancel_delayed_work_sync(&bp->sp_task);
14160     cancel_delayed_work_sync(&bp->period_task);
14161 
14162     if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14163         bp->stats_state = STATS_STATE_DISABLED;
14164         up(&bp->stats_lock);
14165     }
14166 
14167     bnx2x_save_statistics(bp);
14168 
14169     netif_carrier_off(bp->dev);
14170 
14171     return 0;
14172 }
14173 
14174 /**
14175  * bnx2x_io_error_detected - called when PCI error is detected
14176  * @pdev: Pointer to PCI device
14177  * @state: The current pci connection state
14178  *
14179  * This function is called after a PCI bus error affecting
14180  * this device has been detected.
14181  */
14182 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14183                         pci_channel_state_t state)
14184 {
14185     struct net_device *dev = pci_get_drvdata(pdev);
14186     struct bnx2x *bp = netdev_priv(dev);
14187 
14188     rtnl_lock();
14189 
14190     BNX2X_ERR("IO error detected\n");
14191 
14192     netif_device_detach(dev);
14193 
14194     if (state == pci_channel_io_perm_failure) {
14195         rtnl_unlock();
14196         return PCI_ERS_RESULT_DISCONNECT;
14197     }
14198 
14199     if (netif_running(dev))
14200         bnx2x_eeh_nic_unload(bp);
14201 
14202     bnx2x_prev_path_mark_eeh(bp);
14203 
14204     pci_disable_device(pdev);
14205 
14206     rtnl_unlock();
14207 
14208     /* Request a slot reset */
14209     return PCI_ERS_RESULT_NEED_RESET;
14210 }
14211 
14212 /**
14213  * bnx2x_io_slot_reset - called after the PCI bus has been reset
14214  * @pdev: Pointer to PCI device
14215  *
14216  * Restart the card from scratch, as if from a cold-boot.
14217  */
14218 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14219 {
14220     struct net_device *dev = pci_get_drvdata(pdev);
14221     struct bnx2x *bp = netdev_priv(dev);
14222     int i;
14223 
14224     rtnl_lock();
14225     BNX2X_ERR("IO slot reset initializing...\n");
14226     if (pci_enable_device(pdev)) {
14227         dev_err(&pdev->dev,
14228             "Cannot re-enable PCI device after reset\n");
14229         rtnl_unlock();
14230         return PCI_ERS_RESULT_DISCONNECT;
14231     }
14232 
14233     pci_set_master(pdev);
14234     pci_restore_state(pdev);
14235     pci_save_state(pdev);
14236 
14237     if (netif_running(dev))
14238         bnx2x_set_power_state(bp, PCI_D0);
14239 
14240     if (netif_running(dev)) {
14241         BNX2X_ERR("IO slot reset --> driver unload\n");
14242 
14243         /* MCP should have been reset; Need to wait for validity */
14244         if (bnx2x_init_shmem(bp)) {
14245             rtnl_unlock();
14246             return PCI_ERS_RESULT_DISCONNECT;
14247         }
14248 
14249         if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14250             u32 v;
14251 
14252             v = SHMEM2_RD(bp,
14253                       drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14254             SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14255                   v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14256         }
14257         bnx2x_drain_tx_queues(bp);
14258         bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14259         bnx2x_netif_stop(bp, 1);
14260         bnx2x_del_all_napi(bp);
14261 
14262         if (CNIC_LOADED(bp))
14263             bnx2x_del_all_napi_cnic(bp);
14264 
14265         bnx2x_free_irq(bp);
14266 
14267         /* Report UNLOAD_DONE to MCP */
14268         bnx2x_send_unload_done(bp, true);
14269 
14270         bp->sp_state = 0;
14271         bp->port.pmf = 0;
14272 
14273         bnx2x_prev_unload(bp);
14274 
14275         /* We should have reseted the engine, so It's fair to
14276          * assume the FW will no longer write to the bnx2x driver.
14277          */
14278         bnx2x_squeeze_objects(bp);
14279         bnx2x_free_skbs(bp);
14280         for_each_rx_queue(bp, i)
14281             bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14282         bnx2x_free_fp_mem(bp);
14283         bnx2x_free_mem(bp);
14284 
14285         bp->state = BNX2X_STATE_CLOSED;
14286     }
14287 
14288     rtnl_unlock();
14289 
14290     return PCI_ERS_RESULT_RECOVERED;
14291 }
14292 
14293 /**
14294  * bnx2x_io_resume - called when traffic can start flowing again
14295  * @pdev: Pointer to PCI device
14296  *
14297  * This callback is called when the error recovery driver tells us that
14298  * its OK to resume normal operation.
14299  */
14300 static void bnx2x_io_resume(struct pci_dev *pdev)
14301 {
14302     struct net_device *dev = pci_get_drvdata(pdev);
14303     struct bnx2x *bp = netdev_priv(dev);
14304 
14305     if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14306         netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14307         return;
14308     }
14309 
14310     rtnl_lock();
14311 
14312     bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14313                             DRV_MSG_SEQ_NUMBER_MASK;
14314 
14315     if (netif_running(dev))
14316         bnx2x_nic_load(bp, LOAD_NORMAL);
14317 
14318     netif_device_attach(dev);
14319 
14320     rtnl_unlock();
14321 }
14322 
14323 static const struct pci_error_handlers bnx2x_err_handler = {
14324     .error_detected = bnx2x_io_error_detected,
14325     .slot_reset     = bnx2x_io_slot_reset,
14326     .resume         = bnx2x_io_resume,
14327 };
14328 
14329 static void bnx2x_shutdown(struct pci_dev *pdev)
14330 {
14331     struct net_device *dev = pci_get_drvdata(pdev);
14332     struct bnx2x *bp;
14333 
14334     if (!dev)
14335         return;
14336 
14337     bp = netdev_priv(dev);
14338     if (!bp)
14339         return;
14340 
14341     rtnl_lock();
14342     netif_device_detach(dev);
14343     rtnl_unlock();
14344 
14345     /* Don't remove the netdevice, as there are scenarios which will cause
14346      * the kernel to hang, e.g., when trying to remove bnx2i while the
14347      * rootfs is mounted from SAN.
14348      */
14349     __bnx2x_remove(pdev, dev, bp, false);
14350 }
14351 
14352 static struct pci_driver bnx2x_pci_driver = {
14353     .name        = DRV_MODULE_NAME,
14354     .id_table    = bnx2x_pci_tbl,
14355     .probe       = bnx2x_init_one,
14356     .remove      = bnx2x_remove_one,
14357     .driver.pm   = &bnx2x_pm_ops,
14358     .err_handler = &bnx2x_err_handler,
14359 #ifdef CONFIG_BNX2X_SRIOV
14360     .sriov_configure = bnx2x_sriov_configure,
14361 #endif
14362     .shutdown    = bnx2x_shutdown,
14363 };
14364 
14365 static int __init bnx2x_init(void)
14366 {
14367     int ret;
14368 
14369     bnx2x_wq = create_singlethread_workqueue("bnx2x");
14370     if (bnx2x_wq == NULL) {
14371         pr_err("Cannot create workqueue\n");
14372         return -ENOMEM;
14373     }
14374     bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14375     if (!bnx2x_iov_wq) {
14376         pr_err("Cannot create iov workqueue\n");
14377         destroy_workqueue(bnx2x_wq);
14378         return -ENOMEM;
14379     }
14380 
14381     ret = pci_register_driver(&bnx2x_pci_driver);
14382     if (ret) {
14383         pr_err("Cannot register driver\n");
14384         destroy_workqueue(bnx2x_wq);
14385         destroy_workqueue(bnx2x_iov_wq);
14386     }
14387     return ret;
14388 }
14389 
14390 static void __exit bnx2x_cleanup(void)
14391 {
14392     struct list_head *pos, *q;
14393 
14394     pci_unregister_driver(&bnx2x_pci_driver);
14395 
14396     destroy_workqueue(bnx2x_wq);
14397     destroy_workqueue(bnx2x_iov_wq);
14398 
14399     /* Free globally allocated resources */
14400     list_for_each_safe(pos, q, &bnx2x_prev_list) {
14401         struct bnx2x_prev_path_list *tmp =
14402             list_entry(pos, struct bnx2x_prev_path_list, list);
14403         list_del(pos);
14404         kfree(tmp);
14405     }
14406 }
14407 
14408 void bnx2x_notify_link_changed(struct bnx2x *bp)
14409 {
14410     REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14411 }
14412 
14413 module_init(bnx2x_init);
14414 module_exit(bnx2x_cleanup);
14415 
14416 /**
14417  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14418  * @bp:     driver handle
14419  *
14420  * This function will wait until the ramrod completion returns.
14421  * Return 0 if success, -ENODEV if ramrod doesn't return.
14422  */
14423 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14424 {
14425     unsigned long ramrod_flags = 0;
14426 
14427     __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14428     return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14429                  &bp->iscsi_l2_mac_obj, true,
14430                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14431 }
14432 
14433 /* count denotes the number of new completions we have seen */
14434 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14435 {
14436     struct eth_spe *spe;
14437     int cxt_index, cxt_offset;
14438 
14439 #ifdef BNX2X_STOP_ON_ERROR
14440     if (unlikely(bp->panic))
14441         return;
14442 #endif
14443 
14444     spin_lock_bh(&bp->spq_lock);
14445     BUG_ON(bp->cnic_spq_pending < count);
14446     bp->cnic_spq_pending -= count;
14447 
14448     for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14449         u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14450                 & SPE_HDR_CONN_TYPE) >>
14451                 SPE_HDR_CONN_TYPE_SHIFT;
14452         u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14453                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14454 
14455         /* Set validation for iSCSI L2 client before sending SETUP
14456          *  ramrod
14457          */
14458         if (type == ETH_CONNECTION_TYPE) {
14459             if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14460                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14461                     ILT_PAGE_CIDS;
14462                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14463                     (cxt_index * ILT_PAGE_CIDS);
14464                 bnx2x_set_ctx_validation(bp,
14465                     &bp->context[cxt_index].
14466                              vcxt[cxt_offset].eth,
14467                     BNX2X_ISCSI_ETH_CID(bp));
14468             }
14469         }
14470 
14471         /*
14472          * There may be not more than 8 L2, not more than 8 L5 SPEs
14473          * and in the air. We also check that number of outstanding
14474          * COMMON ramrods is not more than the EQ and SPQ can
14475          * accommodate.
14476          */
14477         if (type == ETH_CONNECTION_TYPE) {
14478             if (!atomic_read(&bp->cq_spq_left))
14479                 break;
14480             else
14481                 atomic_dec(&bp->cq_spq_left);
14482         } else if (type == NONE_CONNECTION_TYPE) {
14483             if (!atomic_read(&bp->eq_spq_left))
14484                 break;
14485             else
14486                 atomic_dec(&bp->eq_spq_left);
14487         } else if ((type == ISCSI_CONNECTION_TYPE) ||
14488                (type == FCOE_CONNECTION_TYPE)) {
14489             if (bp->cnic_spq_pending >=
14490                 bp->cnic_eth_dev.max_kwqe_pending)
14491                 break;
14492             else
14493                 bp->cnic_spq_pending++;
14494         } else {
14495             BNX2X_ERR("Unknown SPE type: %d\n", type);
14496             bnx2x_panic();
14497             break;
14498         }
14499 
14500         spe = bnx2x_sp_get_next(bp);
14501         *spe = *bp->cnic_kwq_cons;
14502 
14503         DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14504            bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14505 
14506         if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14507             bp->cnic_kwq_cons = bp->cnic_kwq;
14508         else
14509             bp->cnic_kwq_cons++;
14510     }
14511     bnx2x_sp_prod_update(bp);
14512     spin_unlock_bh(&bp->spq_lock);
14513 }
14514 
14515 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14516                    struct kwqe_16 *kwqes[], u32 count)
14517 {
14518     struct bnx2x *bp = netdev_priv(dev);
14519     int i;
14520 
14521 #ifdef BNX2X_STOP_ON_ERROR
14522     if (unlikely(bp->panic)) {
14523         BNX2X_ERR("Can't post to SP queue while panic\n");
14524         return -EIO;
14525     }
14526 #endif
14527 
14528     if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14529         (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14530         BNX2X_ERR("Handling parity error recovery. Try again later\n");
14531         return -EAGAIN;
14532     }
14533 
14534     spin_lock_bh(&bp->spq_lock);
14535 
14536     for (i = 0; i < count; i++) {
14537         struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14538 
14539         if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14540             break;
14541 
14542         *bp->cnic_kwq_prod = *spe;
14543 
14544         bp->cnic_kwq_pending++;
14545 
14546         DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14547            spe->hdr.conn_and_cmd_data, spe->hdr.type,
14548            spe->data.update_data_addr.hi,
14549            spe->data.update_data_addr.lo,
14550            bp->cnic_kwq_pending);
14551 
14552         if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14553             bp->cnic_kwq_prod = bp->cnic_kwq;
14554         else
14555             bp->cnic_kwq_prod++;
14556     }
14557 
14558     spin_unlock_bh(&bp->spq_lock);
14559 
14560     if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14561         bnx2x_cnic_sp_post(bp, 0);
14562 
14563     return i;
14564 }
14565 
14566 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14567 {
14568     struct cnic_ops *c_ops;
14569     int rc = 0;
14570 
14571     mutex_lock(&bp->cnic_mutex);
14572     c_ops = rcu_dereference_protected(bp->cnic_ops,
14573                       lockdep_is_held(&bp->cnic_mutex));
14574     if (c_ops)
14575         rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14576     mutex_unlock(&bp->cnic_mutex);
14577 
14578     return rc;
14579 }
14580 
14581 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14582 {
14583     struct cnic_ops *c_ops;
14584     int rc = 0;
14585 
14586     rcu_read_lock();
14587     c_ops = rcu_dereference(bp->cnic_ops);
14588     if (c_ops)
14589         rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14590     rcu_read_unlock();
14591 
14592     return rc;
14593 }
14594 
14595 /*
14596  * for commands that have no data
14597  */
14598 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14599 {
14600     struct cnic_ctl_info ctl = {0};
14601 
14602     ctl.cmd = cmd;
14603 
14604     return bnx2x_cnic_ctl_send(bp, &ctl);
14605 }
14606 
14607 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14608 {
14609     struct cnic_ctl_info ctl = {0};
14610 
14611     /* first we tell CNIC and only then we count this as a completion */
14612     ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14613     ctl.data.comp.cid = cid;
14614     ctl.data.comp.error = err;
14615 
14616     bnx2x_cnic_ctl_send_bh(bp, &ctl);
14617     bnx2x_cnic_sp_post(bp, 0);
14618 }
14619 
14620 /* Called with netif_addr_lock_bh() taken.
14621  * Sets an rx_mode config for an iSCSI ETH client.
14622  * Doesn't block.
14623  * Completion should be checked outside.
14624  */
14625 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14626 {
14627     unsigned long accept_flags = 0, ramrod_flags = 0;
14628     u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14629     int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14630 
14631     if (start) {
14632         /* Start accepting on iSCSI L2 ring. Accept all multicasts
14633          * because it's the only way for UIO Queue to accept
14634          * multicasts (in non-promiscuous mode only one Queue per
14635          * function will receive multicast packets (leading in our
14636          * case).
14637          */
14638         __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14639         __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14640         __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14641         __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14642 
14643         /* Clear STOP_PENDING bit if START is requested */
14644         clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14645 
14646         sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14647     } else
14648         /* Clear START_PENDING bit if STOP is requested */
14649         clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14650 
14651     if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14652         set_bit(sched_state, &bp->sp_state);
14653     else {
14654         __set_bit(RAMROD_RX, &ramrod_flags);
14655         bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14656                     ramrod_flags);
14657     }
14658 }
14659 
14660 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14661 {
14662     struct bnx2x *bp = netdev_priv(dev);
14663     int rc = 0;
14664 
14665     switch (ctl->cmd) {
14666     case DRV_CTL_CTXTBL_WR_CMD: {
14667         u32 index = ctl->data.io.offset;
14668         dma_addr_t addr = ctl->data.io.dma_addr;
14669 
14670         bnx2x_ilt_wr(bp, index, addr);
14671         break;
14672     }
14673 
14674     case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14675         int count = ctl->data.credit.credit_count;
14676 
14677         bnx2x_cnic_sp_post(bp, count);
14678         break;
14679     }
14680 
14681     /* rtnl_lock is held.  */
14682     case DRV_CTL_START_L2_CMD: {
14683         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14684         unsigned long sp_bits = 0;
14685 
14686         /* Configure the iSCSI classification object */
14687         bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14688                    cp->iscsi_l2_client_id,
14689                    cp->iscsi_l2_cid, BP_FUNC(bp),
14690                    bnx2x_sp(bp, mac_rdata),
14691                    bnx2x_sp_mapping(bp, mac_rdata),
14692                    BNX2X_FILTER_MAC_PENDING,
14693                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14694                    &bp->macs_pool);
14695 
14696         /* Set iSCSI MAC address */
14697         rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14698         if (rc)
14699             break;
14700 
14701         barrier();
14702 
14703         /* Start accepting on iSCSI L2 ring */
14704 
14705         netif_addr_lock_bh(dev);
14706         bnx2x_set_iscsi_eth_rx_mode(bp, true);
14707         netif_addr_unlock_bh(dev);
14708 
14709         /* bits to wait on */
14710         __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14711         __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14712 
14713         if (!bnx2x_wait_sp_comp(bp, sp_bits))
14714             BNX2X_ERR("rx_mode completion timed out!\n");
14715 
14716         break;
14717     }
14718 
14719     /* rtnl_lock is held.  */
14720     case DRV_CTL_STOP_L2_CMD: {
14721         unsigned long sp_bits = 0;
14722 
14723         /* Stop accepting on iSCSI L2 ring */
14724         netif_addr_lock_bh(dev);
14725         bnx2x_set_iscsi_eth_rx_mode(bp, false);
14726         netif_addr_unlock_bh(dev);
14727 
14728         /* bits to wait on */
14729         __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14730         __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14731 
14732         if (!bnx2x_wait_sp_comp(bp, sp_bits))
14733             BNX2X_ERR("rx_mode completion timed out!\n");
14734 
14735         barrier();
14736 
14737         /* Unset iSCSI L2 MAC */
14738         rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14739                     BNX2X_ISCSI_ETH_MAC, true);
14740         break;
14741     }
14742     case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14743         int count = ctl->data.credit.credit_count;
14744 
14745         smp_mb__before_atomic();
14746         atomic_add(count, &bp->cq_spq_left);
14747         smp_mb__after_atomic();
14748         break;
14749     }
14750     case DRV_CTL_ULP_REGISTER_CMD: {
14751         int ulp_type = ctl->data.register_data.ulp_type;
14752 
14753         if (CHIP_IS_E3(bp)) {
14754             int idx = BP_FW_MB_IDX(bp);
14755             u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14756             int path = BP_PATH(bp);
14757             int port = BP_PORT(bp);
14758             int i;
14759             u32 scratch_offset;
14760             u32 *host_addr;
14761 
14762             /* first write capability to shmem2 */
14763             if (ulp_type == CNIC_ULP_ISCSI)
14764                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14765             else if (ulp_type == CNIC_ULP_FCOE)
14766                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14767             SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14768 
14769             if ((ulp_type != CNIC_ULP_FCOE) ||
14770                 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14771                 (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14772                 break;
14773 
14774             /* if reached here - should write fcoe capabilities */
14775             scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14776             if (!scratch_offset)
14777                 break;
14778             scratch_offset += offsetof(struct glob_ncsi_oem_data,
14779                            fcoe_features[path][port]);
14780             host_addr = (u32 *) &(ctl->data.register_data.
14781                           fcoe_features);
14782             for (i = 0; i < sizeof(struct fcoe_capabilities);
14783                  i += 4)
14784                 REG_WR(bp, scratch_offset + i,
14785                        *(host_addr + i/4));
14786         }
14787         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14788         break;
14789     }
14790 
14791     case DRV_CTL_ULP_UNREGISTER_CMD: {
14792         int ulp_type = ctl->data.ulp_type;
14793 
14794         if (CHIP_IS_E3(bp)) {
14795             int idx = BP_FW_MB_IDX(bp);
14796             u32 cap;
14797 
14798             cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14799             if (ulp_type == CNIC_ULP_ISCSI)
14800                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14801             else if (ulp_type == CNIC_ULP_FCOE)
14802                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14803             SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14804         }
14805         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14806         break;
14807     }
14808 
14809     default:
14810         BNX2X_ERR("unknown command %x\n", ctl->cmd);
14811         rc = -EINVAL;
14812     }
14813 
14814     /* For storage-only interfaces, change driver state */
14815     if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14816         switch (ctl->drv_state) {
14817         case DRV_NOP:
14818             break;
14819         case DRV_ACTIVE:
14820             bnx2x_set_os_driver_state(bp,
14821                           OS_DRIVER_STATE_ACTIVE);
14822             break;
14823         case DRV_INACTIVE:
14824             bnx2x_set_os_driver_state(bp,
14825                           OS_DRIVER_STATE_DISABLED);
14826             break;
14827         case DRV_UNLOADED:
14828             bnx2x_set_os_driver_state(bp,
14829                           OS_DRIVER_STATE_NOT_LOADED);
14830             break;
14831         default:
14832         BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14833         }
14834     }
14835 
14836     return rc;
14837 }
14838 
14839 static int bnx2x_get_fc_npiv(struct net_device *dev,
14840                  struct cnic_fc_npiv_tbl *cnic_tbl)
14841 {
14842     struct bnx2x *bp = netdev_priv(dev);
14843     struct bdn_fc_npiv_tbl *tbl = NULL;
14844     u32 offset, entries;
14845     int rc = -EINVAL;
14846     int i;
14847 
14848     if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14849         goto out;
14850 
14851     DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14852 
14853     tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14854     if (!tbl) {
14855         BNX2X_ERR("Failed to allocate fc_npiv table\n");
14856         goto out;
14857     }
14858 
14859     offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14860     if (!offset) {
14861         DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14862         goto out;
14863     }
14864     DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14865 
14866     /* Read the table contents from nvram */
14867     if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14868         BNX2X_ERR("Failed to read FC-NPIV table\n");
14869         goto out;
14870     }
14871 
14872     /* Since bnx2x_nvram_read() returns data in be32, we need to convert
14873      * the number of entries back to cpu endianness.
14874      */
14875     entries = tbl->fc_npiv_cfg.num_of_npiv;
14876     entries = (__force u32)be32_to_cpu((__force __be32)entries);
14877     tbl->fc_npiv_cfg.num_of_npiv = entries;
14878 
14879     if (!tbl->fc_npiv_cfg.num_of_npiv) {
14880         DP(BNX2X_MSG_MCP,
14881            "No FC-NPIV table [valid, simply not present]\n");
14882         goto out;
14883     } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14884         BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14885               tbl->fc_npiv_cfg.num_of_npiv);
14886         goto out;
14887     } else {
14888         DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14889            tbl->fc_npiv_cfg.num_of_npiv);
14890     }
14891 
14892     /* Copy the data into cnic-provided struct */
14893     cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14894     for (i = 0; i < cnic_tbl->count; i++) {
14895         memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14896         memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14897     }
14898 
14899     rc = 0;
14900 out:
14901     kfree(tbl);
14902     return rc;
14903 }
14904 
14905 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14906 {
14907     struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14908 
14909     if (bp->flags & USING_MSIX_FLAG) {
14910         cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14911         cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14912         cp->irq_arr[0].vector = bp->msix_table[1].vector;
14913     } else {
14914         cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14915         cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14916     }
14917     if (!CHIP_IS_E1x(bp))
14918         cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14919     else
14920         cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14921 
14922     cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14923     cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14924     cp->irq_arr[1].status_blk = bp->def_status_blk;
14925     cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14926     cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14927 
14928     cp->num_irq = 2;
14929 }
14930 
14931 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14932 {
14933     struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14934 
14935     cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14936                  bnx2x_cid_ilt_lines(bp);
14937     cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14938     cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14939     cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14940 
14941     DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14942        BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14943        cp->iscsi_l2_cid);
14944 
14945     if (NO_ISCSI_OOO(bp))
14946         cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14947 }
14948 
14949 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14950                    void *data)
14951 {
14952     struct bnx2x *bp = netdev_priv(dev);
14953     struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14954     int rc;
14955 
14956     DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14957 
14958     if (ops == NULL) {
14959         BNX2X_ERR("NULL ops received\n");
14960         return -EINVAL;
14961     }
14962 
14963     if (!CNIC_SUPPORT(bp)) {
14964         BNX2X_ERR("Can't register CNIC when not supported\n");
14965         return -EOPNOTSUPP;
14966     }
14967 
14968     if (!CNIC_LOADED(bp)) {
14969         rc = bnx2x_load_cnic(bp);
14970         if (rc) {
14971             BNX2X_ERR("CNIC-related load failed\n");
14972             return rc;
14973         }
14974     }
14975 
14976     bp->cnic_enabled = true;
14977 
14978     bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14979     if (!bp->cnic_kwq)
14980         return -ENOMEM;
14981 
14982     bp->cnic_kwq_cons = bp->cnic_kwq;
14983     bp->cnic_kwq_prod = bp->cnic_kwq;
14984     bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14985 
14986     bp->cnic_spq_pending = 0;
14987     bp->cnic_kwq_pending = 0;
14988 
14989     bp->cnic_data = data;
14990 
14991     cp->num_irq = 0;
14992     cp->drv_state |= CNIC_DRV_STATE_REGD;
14993     cp->iro_arr = bp->iro_arr;
14994 
14995     bnx2x_setup_cnic_irq_info(bp);
14996 
14997     rcu_assign_pointer(bp->cnic_ops, ops);
14998 
14999     /* Schedule driver to read CNIC driver versions */
15000     bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15001 
15002     return 0;
15003 }
15004 
15005 static int bnx2x_unregister_cnic(struct net_device *dev)
15006 {
15007     struct bnx2x *bp = netdev_priv(dev);
15008     struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15009 
15010     mutex_lock(&bp->cnic_mutex);
15011     cp->drv_state = 0;
15012     RCU_INIT_POINTER(bp->cnic_ops, NULL);
15013     mutex_unlock(&bp->cnic_mutex);
15014     synchronize_rcu();
15015     bp->cnic_enabled = false;
15016     kfree(bp->cnic_kwq);
15017     bp->cnic_kwq = NULL;
15018 
15019     return 0;
15020 }
15021 
15022 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15023 {
15024     struct bnx2x *bp = netdev_priv(dev);
15025     struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15026 
15027     /* If both iSCSI and FCoE are disabled - return NULL in
15028      * order to indicate CNIC that it should not try to work
15029      * with this device.
15030      */
15031     if (NO_ISCSI(bp) && NO_FCOE(bp))
15032         return NULL;
15033 
15034     cp->drv_owner = THIS_MODULE;
15035     cp->chip_id = CHIP_ID(bp);
15036     cp->pdev = bp->pdev;
15037     cp->io_base = bp->regview;
15038     cp->io_base2 = bp->doorbells;
15039     cp->max_kwqe_pending = 8;
15040     cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15041     cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15042                  bnx2x_cid_ilt_lines(bp);
15043     cp->ctx_tbl_len = CNIC_ILT_LINES;
15044     cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15045     cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15046     cp->drv_ctl = bnx2x_drv_ctl;
15047     cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15048     cp->drv_register_cnic = bnx2x_register_cnic;
15049     cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15050     cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15051     cp->iscsi_l2_client_id =
15052         bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15053     cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15054 
15055     if (NO_ISCSI_OOO(bp))
15056         cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15057 
15058     if (NO_ISCSI(bp))
15059         cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15060 
15061     if (NO_FCOE(bp))
15062         cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15063 
15064     BNX2X_DEV_INFO(
15065         "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15066        cp->ctx_blk_size,
15067        cp->ctx_tbl_offset,
15068        cp->ctx_tbl_len,
15069        cp->starting_cid);
15070     return cp;
15071 }
15072 
15073 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15074 {
15075     struct bnx2x *bp = fp->bp;
15076     u32 offset = BAR_USTRORM_INTMEM;
15077 
15078     if (IS_VF(bp))
15079         return bnx2x_vf_ustorm_prods_offset(bp, fp);
15080     else if (!CHIP_IS_E1x(bp))
15081         offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15082     else
15083         offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15084 
15085     return offset;
15086 }
15087 
15088 /* called only on E1H or E2.
15089  * When pretending to be PF, the pretend value is the function number 0...7
15090  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15091  * combination
15092  */
15093 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15094 {
15095     u32 pretend_reg;
15096 
15097     if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15098         return -1;
15099 
15100     /* get my own pretend register */
15101     pretend_reg = bnx2x_get_pretend_reg(bp);
15102     REG_WR(bp, pretend_reg, pretend_func_val);
15103     REG_RD(bp, pretend_reg);
15104     return 0;
15105 }
15106 
15107 static void bnx2x_ptp_task(struct work_struct *work)
15108 {
15109     struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15110     int port = BP_PORT(bp);
15111     u32 val_seq;
15112     u64 timestamp, ns;
15113     struct skb_shared_hwtstamps shhwtstamps;
15114     bool bail = true;
15115     int i;
15116 
15117     /* FW may take a while to complete timestamping; try a bit and if it's
15118      * still not complete, may indicate an error state - bail out then.
15119      */
15120     for (i = 0; i < 10; i++) {
15121         /* Read Tx timestamp registers */
15122         val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15123                  NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15124         if (val_seq & 0x10000) {
15125             bail = false;
15126             break;
15127         }
15128         msleep(1 << i);
15129     }
15130 
15131     if (!bail) {
15132         /* There is a valid timestamp value */
15133         timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15134                    NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15135         timestamp <<= 32;
15136         timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15137                     NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15138         /* Reset timestamp register to allow new timestamp */
15139         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15140                NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15141         ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15142 
15143         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15144         shhwtstamps.hwtstamp = ns_to_ktime(ns);
15145         skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15146 
15147         DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15148            timestamp, ns);
15149     } else {
15150         DP(BNX2X_MSG_PTP,
15151            "Tx timestamp is not recorded (register read=%u)\n",
15152            val_seq);
15153         bp->eth_stats.ptp_skip_tx_ts++;
15154     }
15155 
15156     dev_kfree_skb_any(bp->ptp_tx_skb);
15157     bp->ptp_tx_skb = NULL;
15158 }
15159 
15160 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15161 {
15162     int port = BP_PORT(bp);
15163     u64 timestamp, ns;
15164 
15165     timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15166                 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15167     timestamp <<= 32;
15168     timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15169                 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15170 
15171     /* Reset timestamp register to allow new timestamp */
15172     REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15173            NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15174 
15175     ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15176 
15177     skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15178 
15179     DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15180        timestamp, ns);
15181 }
15182 
15183 /* Read the PHC */
15184 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15185 {
15186     struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15187     int port = BP_PORT(bp);
15188     u32 wb_data[2];
15189     u64 phc_cycles;
15190 
15191     REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15192             NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15193     phc_cycles = wb_data[1];
15194     phc_cycles = (phc_cycles << 32) + wb_data[0];
15195 
15196     DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15197 
15198     return phc_cycles;
15199 }
15200 
15201 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15202 {
15203     memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15204     bp->cyclecounter.read = bnx2x_cyclecounter_read;
15205     bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15206     bp->cyclecounter.shift = 0;
15207     bp->cyclecounter.mult = 1;
15208 }
15209 
15210 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15211 {
15212     struct bnx2x_func_state_params func_params = {NULL};
15213     struct bnx2x_func_set_timesync_params *set_timesync_params =
15214         &func_params.params.set_timesync;
15215 
15216     /* Prepare parameters for function state transitions */
15217     __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15218     __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15219 
15220     func_params.f_obj = &bp->func_obj;
15221     func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15222 
15223     /* Function parameters */
15224     set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15225     set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15226 
15227     return bnx2x_func_state_change(bp, &func_params);
15228 }
15229 
15230 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15231 {
15232     struct bnx2x_queue_state_params q_params;
15233     int rc, i;
15234 
15235     /* send queue update ramrod to enable PTP packets */
15236     memset(&q_params, 0, sizeof(q_params));
15237     __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15238     q_params.cmd = BNX2X_Q_CMD_UPDATE;
15239     __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15240           &q_params.params.update.update_flags);
15241     __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15242           &q_params.params.update.update_flags);
15243 
15244     /* send the ramrod on all the queues of the PF */
15245     for_each_eth_queue(bp, i) {
15246         struct bnx2x_fastpath *fp = &bp->fp[i];
15247 
15248         /* Set the appropriate Queue object */
15249         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15250 
15251         /* Update the Queue state */
15252         rc = bnx2x_queue_state_change(bp, &q_params);
15253         if (rc) {
15254             BNX2X_ERR("Failed to enable PTP packets\n");
15255             return rc;
15256         }
15257     }
15258 
15259     return 0;
15260 }
15261 
15262 #define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5
15263 #define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB
15264 #define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15265 #define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15266 #define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE)
15267 #define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE)
15268 #define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA)
15269 #define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE)
15270 #define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF)
15271 #define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF)
15272 #define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15273 #define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15274 
15275 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15276 {
15277     int port = BP_PORT(bp);
15278     u32 param, rule;
15279     int rc;
15280 
15281     if (!bp->hwtstamp_ioctl_called)
15282         return 0;
15283 
15284     param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15285         NIG_REG_P0_TLLH_PTP_PARAM_MASK;
15286     rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15287         NIG_REG_P0_TLLH_PTP_RULE_MASK;
15288     switch (bp->tx_type) {
15289     case HWTSTAMP_TX_ON:
15290         bp->flags |= TX_TIMESTAMPING_EN;
15291         REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK);
15292         REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK);
15293         break;
15294     case HWTSTAMP_TX_ONESTEP_SYNC:
15295     case HWTSTAMP_TX_ONESTEP_P2P:
15296         BNX2X_ERR("One-step timestamping is not supported\n");
15297         return -ERANGE;
15298     }
15299 
15300     param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15301         NIG_REG_P0_LLH_PTP_PARAM_MASK;
15302     rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15303         NIG_REG_P0_LLH_PTP_RULE_MASK;
15304     switch (bp->rx_filter) {
15305     case HWTSTAMP_FILTER_NONE:
15306         break;
15307     case HWTSTAMP_FILTER_ALL:
15308     case HWTSTAMP_FILTER_SOME:
15309     case HWTSTAMP_FILTER_NTP_ALL:
15310         bp->rx_filter = HWTSTAMP_FILTER_NONE;
15311         break;
15312     case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15313     case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15314     case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15315         bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15316         /* Initialize PTP detection for UDP/IPv4 events */
15317         REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK);
15318         REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK);
15319         break;
15320     case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15321     case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15322     case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15323         bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15324         /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15325         REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK);
15326         REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK);
15327         break;
15328     case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15329     case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15330     case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15331         bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15332         /* Initialize PTP detection L2 events */
15333         REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK);
15334         REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK);
15335 
15336         break;
15337     case HWTSTAMP_FILTER_PTP_V2_EVENT:
15338     case HWTSTAMP_FILTER_PTP_V2_SYNC:
15339     case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15340         bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15341         /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15342         REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK);
15343         REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK);
15344         break;
15345     }
15346 
15347     /* Indicate to FW that this PF expects recorded PTP packets */
15348     rc = bnx2x_enable_ptp_packets(bp);
15349     if (rc)
15350         return rc;
15351 
15352     /* Enable sending PTP packets to host */
15353     REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15354            NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15355 
15356     return 0;
15357 }
15358 
15359 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15360 {
15361     struct hwtstamp_config config;
15362     int rc;
15363 
15364     DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15365 
15366     if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15367         return -EFAULT;
15368 
15369     DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15370        config.tx_type, config.rx_filter);
15371 
15372     bp->hwtstamp_ioctl_called = true;
15373     bp->tx_type = config.tx_type;
15374     bp->rx_filter = config.rx_filter;
15375 
15376     rc = bnx2x_configure_ptp_filters(bp);
15377     if (rc)
15378         return rc;
15379 
15380     config.rx_filter = bp->rx_filter;
15381 
15382     return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15383         -EFAULT : 0;
15384 }
15385 
15386 /* Configures HW for PTP */
15387 static int bnx2x_configure_ptp(struct bnx2x *bp)
15388 {
15389     int rc, port = BP_PORT(bp);
15390     u32 wb_data[2];
15391 
15392     /* Reset PTP event detection rules - will be configured in the IOCTL */
15393     REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15394            NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15395     REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15396            NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15397     REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15398            NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15399     REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15400            NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15401 
15402     /* Disable PTP packets to host - will be configured in the IOCTL*/
15403     REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15404            NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15405 
15406     /* Enable the PTP feature */
15407     REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15408            NIG_REG_P0_PTP_EN, 0x3F);
15409 
15410     /* Enable the free-running counter */
15411     wb_data[0] = 0;
15412     wb_data[1] = 0;
15413     REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15414 
15415     /* Reset drift register (offset register is not reset) */
15416     rc = bnx2x_send_reset_timesync_ramrod(bp);
15417     if (rc) {
15418         BNX2X_ERR("Failed to reset PHC drift register\n");
15419         return -EFAULT;
15420     }
15421 
15422     /* Reset possibly old timestamps */
15423     REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15424            NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15425     REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15426            NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15427 
15428     return 0;
15429 }
15430 
15431 /* Called during load, to initialize PTP-related stuff */
15432 void bnx2x_init_ptp(struct bnx2x *bp)
15433 {
15434     int rc;
15435 
15436     /* Configure PTP in HW */
15437     rc = bnx2x_configure_ptp(bp);
15438     if (rc) {
15439         BNX2X_ERR("Stopping PTP initialization\n");
15440         return;
15441     }
15442 
15443     /* Init work queue for Tx timestamping */
15444     INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15445 
15446     /* Init cyclecounter and timecounter. This is done only in the first
15447      * load. If done in every load, PTP application will fail when doing
15448      * unload / load (e.g. MTU change) while it is running.
15449      */
15450     if (!bp->timecounter_init_done) {
15451         bnx2x_init_cyclecounter(bp);
15452         timecounter_init(&bp->timecounter, &bp->cyclecounter,
15453                  ktime_to_ns(ktime_get_real()));
15454         bp->timecounter_init_done = true;
15455     }
15456 
15457     DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15458 }