Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  *  Driver for the Macintosh 68K onboard MACE controller with PSC
0004  *  driven DMA. The MACE driver code is derived from mace.c. The
0005  *  Mac68k theory of operation is courtesy of the MacBSD wizards.
0006  *
0007  *  Copyright (C) 1996 Paul Mackerras.
0008  *  Copyright (C) 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
0009  *
0010  *  Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver
0011  *
0012  *  Copyright (C) 2007 Finn Thain
0013  *
0014  *  Converted to DMA API, converted to unified driver model,
0015  *  sync'd some routines with mace.c and fixed various bugs.
0016  */
0017 
0018 
0019 #include <linux/kernel.h>
0020 #include <linux/module.h>
0021 #include <linux/netdevice.h>
0022 #include <linux/etherdevice.h>
0023 #include <linux/delay.h>
0024 #include <linux/string.h>
0025 #include <linux/crc32.h>
0026 #include <linux/bitrev.h>
0027 #include <linux/dma-mapping.h>
0028 #include <linux/platform_device.h>
0029 #include <linux/gfp.h>
0030 #include <linux/interrupt.h>
0031 #include <asm/io.h>
0032 #include <asm/macints.h>
0033 #include <asm/mac_psc.h>
0034 #include <asm/page.h>
0035 #include "mace.h"
0036 
0037 static char mac_mace_string[] = "macmace";
0038 
0039 #define N_TX_BUFF_ORDER 0
0040 #define N_TX_RING   (1 << N_TX_BUFF_ORDER)
0041 #define N_RX_BUFF_ORDER 3
0042 #define N_RX_RING   (1 << N_RX_BUFF_ORDER)
0043 
0044 #define TX_TIMEOUT  HZ
0045 
0046 #define MACE_BUFF_SIZE  0x800
0047 
0048 /* Chip rev needs workaround on HW & multicast addr change */
0049 #define BROKEN_ADDRCHG_REV  0x0941
0050 
0051 /* The MACE is simply wired down on a Mac68K box */
0052 
0053 #define MACE_BASE   (void *)(0x50F1C000)
0054 #define MACE_PROM   (void *)(0x50F08001)
0055 
0056 struct mace_data {
0057     volatile struct mace *mace;
0058     unsigned char *tx_ring;
0059     dma_addr_t tx_ring_phys;
0060     unsigned char *rx_ring;
0061     dma_addr_t rx_ring_phys;
0062     int dma_intr;
0063     int rx_slot, rx_tail;
0064     int tx_slot, tx_sloti, tx_count;
0065     int chipid;
0066     struct device *device;
0067 };
0068 
0069 struct mace_frame {
0070     u8  rcvcnt;
0071     u8  pad1;
0072     u8  rcvsts;
0073     u8  pad2;
0074     u8  rntpc;
0075     u8  pad3;
0076     u8  rcvcc;
0077     u8  pad4;
0078     u32 pad5;
0079     u32 pad6;
0080     u8  data[1];
0081     /* And frame continues.. */
0082 };
0083 
0084 #define PRIV_BYTES  sizeof(struct mace_data)
0085 
0086 static int mace_open(struct net_device *dev);
0087 static int mace_close(struct net_device *dev);
0088 static netdev_tx_t mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
0089 static void mace_set_multicast(struct net_device *dev);
0090 static int mace_set_address(struct net_device *dev, void *addr);
0091 static void mace_reset(struct net_device *dev);
0092 static irqreturn_t mace_interrupt(int irq, void *dev_id);
0093 static irqreturn_t mace_dma_intr(int irq, void *dev_id);
0094 static void mace_tx_timeout(struct net_device *dev, unsigned int txqueue);
0095 static void __mace_set_address(struct net_device *dev, const void *addr);
0096 
0097 /*
0098  * Load a receive DMA channel with a base address and ring length
0099  */
0100 
0101 static void mace_load_rxdma_base(struct net_device *dev, int set)
0102 {
0103     struct mace_data *mp = netdev_priv(dev);
0104 
0105     psc_write_word(PSC_ENETRD_CMD + set, 0x0100);
0106     psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys);
0107     psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING);
0108     psc_write_word(PSC_ENETRD_CMD + set, 0x9800);
0109     mp->rx_tail = 0;
0110 }
0111 
0112 /*
0113  * Reset the receive DMA subsystem
0114  */
0115 
0116 static void mace_rxdma_reset(struct net_device *dev)
0117 {
0118     struct mace_data *mp = netdev_priv(dev);
0119     volatile struct mace *mace = mp->mace;
0120     u8 maccc = mace->maccc;
0121 
0122     mace->maccc = maccc & ~ENRCV;
0123 
0124     psc_write_word(PSC_ENETRD_CTL, 0x8800);
0125     mace_load_rxdma_base(dev, 0x00);
0126     psc_write_word(PSC_ENETRD_CTL, 0x0400);
0127 
0128     psc_write_word(PSC_ENETRD_CTL, 0x8800);
0129     mace_load_rxdma_base(dev, 0x10);
0130     psc_write_word(PSC_ENETRD_CTL, 0x0400);
0131 
0132     mace->maccc = maccc;
0133     mp->rx_slot = 0;
0134 
0135     psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800);
0136     psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800);
0137 }
0138 
0139 /*
0140  * Reset the transmit DMA subsystem
0141  */
0142 
0143 static void mace_txdma_reset(struct net_device *dev)
0144 {
0145     struct mace_data *mp = netdev_priv(dev);
0146     volatile struct mace *mace = mp->mace;
0147     u8 maccc;
0148 
0149     psc_write_word(PSC_ENETWR_CTL, 0x8800);
0150 
0151     maccc = mace->maccc;
0152     mace->maccc = maccc & ~ENXMT;
0153 
0154     mp->tx_slot = mp->tx_sloti = 0;
0155     mp->tx_count = N_TX_RING;
0156 
0157     psc_write_word(PSC_ENETWR_CTL, 0x0400);
0158     mace->maccc = maccc;
0159 }
0160 
0161 /*
0162  * Disable DMA
0163  */
0164 
0165 static void mace_dma_off(struct net_device *dev)
0166 {
0167     psc_write_word(PSC_ENETRD_CTL, 0x8800);
0168     psc_write_word(PSC_ENETRD_CTL, 0x1000);
0169     psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100);
0170     psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100);
0171 
0172     psc_write_word(PSC_ENETWR_CTL, 0x8800);
0173     psc_write_word(PSC_ENETWR_CTL, 0x1000);
0174     psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100);
0175     psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100);
0176 }
0177 
0178 static const struct net_device_ops mace_netdev_ops = {
0179     .ndo_open       = mace_open,
0180     .ndo_stop       = mace_close,
0181     .ndo_start_xmit     = mace_xmit_start,
0182     .ndo_tx_timeout     = mace_tx_timeout,
0183     .ndo_set_rx_mode    = mace_set_multicast,
0184     .ndo_set_mac_address    = mace_set_address,
0185     .ndo_validate_addr  = eth_validate_addr,
0186 };
0187 
0188 /*
0189  * Not really much of a probe. The hardware table tells us if this
0190  * model of Macintrash has a MACE (AV macintoshes)
0191  */
0192 
0193 static int mace_probe(struct platform_device *pdev)
0194 {
0195     int j;
0196     struct mace_data *mp;
0197     unsigned char *addr;
0198     struct net_device *dev;
0199     unsigned char checksum = 0;
0200     u8 macaddr[ETH_ALEN];
0201     int err;
0202 
0203     dev = alloc_etherdev(PRIV_BYTES);
0204     if (!dev)
0205         return -ENOMEM;
0206 
0207     mp = netdev_priv(dev);
0208 
0209     mp->device = &pdev->dev;
0210     platform_set_drvdata(pdev, dev);
0211     SET_NETDEV_DEV(dev, &pdev->dev);
0212 
0213     dev->base_addr = (u32)MACE_BASE;
0214     mp->mace = MACE_BASE;
0215 
0216     dev->irq = IRQ_MAC_MACE;
0217     mp->dma_intr = IRQ_MAC_MACE_DMA;
0218 
0219     mp->chipid = mp->mace->chipid_hi << 8 | mp->mace->chipid_lo;
0220 
0221     /*
0222      * The PROM contains 8 bytes which total 0xFF when XOR'd
0223      * together. Due to the usual peculiar apple brain damage
0224      * the bytes are spaced out in a strange boundary and the
0225      * bits are reversed.
0226      */
0227 
0228     addr = MACE_PROM;
0229 
0230     for (j = 0; j < 6; ++j) {
0231         u8 v = bitrev8(addr[j<<4]);
0232         checksum ^= v;
0233         macaddr[j] = v;
0234     }
0235     eth_hw_addr_set(dev, macaddr);
0236     for (; j < 8; ++j) {
0237         checksum ^= bitrev8(addr[j<<4]);
0238     }
0239 
0240     if (checksum != 0xFF) {
0241         free_netdev(dev);
0242         return -ENODEV;
0243     }
0244 
0245     dev->netdev_ops     = &mace_netdev_ops;
0246     dev->watchdog_timeo = TX_TIMEOUT;
0247 
0248     pr_info("Onboard MACE, hardware address %pM, chip revision 0x%04X\n",
0249         dev->dev_addr, mp->chipid);
0250 
0251     err = register_netdev(dev);
0252     if (!err)
0253         return 0;
0254 
0255     free_netdev(dev);
0256     return err;
0257 }
0258 
0259 /*
0260  * Reset the chip.
0261  */
0262 
0263 static void mace_reset(struct net_device *dev)
0264 {
0265     struct mace_data *mp = netdev_priv(dev);
0266     volatile struct mace *mb = mp->mace;
0267     int i;
0268 
0269     /* soft-reset the chip */
0270     i = 200;
0271     while (--i) {
0272         mb->biucc = SWRST;
0273         if (mb->biucc & SWRST) {
0274             udelay(10);
0275             continue;
0276         }
0277         break;
0278     }
0279     if (!i) {
0280         printk(KERN_ERR "macmace: cannot reset chip!\n");
0281         return;
0282     }
0283 
0284     mb->maccc = 0;  /* turn off tx, rx */
0285     mb->imr = 0xFF; /* disable all intrs for now */
0286     i = mb->ir;
0287 
0288     mb->biucc = XMTSP_64;
0289     mb->utr = RTRD;
0290     mb->fifocc = XMTFW_8 | RCVFW_64 | XMTFWU | RCVFWU;
0291 
0292     mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */
0293     mb->rcvfc = 0;
0294 
0295     /* load up the hardware address */
0296     __mace_set_address(dev, dev->dev_addr);
0297 
0298     /* clear the multicast filter */
0299     if (mp->chipid == BROKEN_ADDRCHG_REV)
0300         mb->iac = LOGADDR;
0301     else {
0302         mb->iac = ADDRCHG | LOGADDR;
0303         while ((mb->iac & ADDRCHG) != 0)
0304             ;
0305     }
0306     for (i = 0; i < 8; ++i)
0307         mb->ladrf = 0;
0308 
0309     /* done changing address */
0310     if (mp->chipid != BROKEN_ADDRCHG_REV)
0311         mb->iac = 0;
0312 
0313     mb->plscc = PORTSEL_AUI;
0314 }
0315 
0316 /*
0317  * Load the address on a mace controller.
0318  */
0319 
0320 static void __mace_set_address(struct net_device *dev, const void *addr)
0321 {
0322     struct mace_data *mp = netdev_priv(dev);
0323     volatile struct mace *mb = mp->mace;
0324     const unsigned char *p = addr;
0325     u8 macaddr[ETH_ALEN];
0326     int i;
0327 
0328     /* load up the hardware address */
0329     if (mp->chipid == BROKEN_ADDRCHG_REV)
0330         mb->iac = PHYADDR;
0331     else {
0332         mb->iac = ADDRCHG | PHYADDR;
0333         while ((mb->iac & ADDRCHG) != 0)
0334             ;
0335     }
0336     for (i = 0; i < 6; ++i)
0337         mb->padr = macaddr[i] = p[i];
0338     eth_hw_addr_set(dev, macaddr);
0339     if (mp->chipid != BROKEN_ADDRCHG_REV)
0340         mb->iac = 0;
0341 }
0342 
0343 static int mace_set_address(struct net_device *dev, void *addr)
0344 {
0345     struct mace_data *mp = netdev_priv(dev);
0346     volatile struct mace *mb = mp->mace;
0347     unsigned long flags;
0348     u8 maccc;
0349 
0350     local_irq_save(flags);
0351 
0352     maccc = mb->maccc;
0353 
0354     __mace_set_address(dev, addr);
0355 
0356     mb->maccc = maccc;
0357 
0358     local_irq_restore(flags);
0359 
0360     return 0;
0361 }
0362 
0363 /*
0364  * Open the Macintosh MACE. Most of this is playing with the DMA
0365  * engine. The ethernet chip is quite friendly.
0366  */
0367 
0368 static int mace_open(struct net_device *dev)
0369 {
0370     struct mace_data *mp = netdev_priv(dev);
0371     volatile struct mace *mb = mp->mace;
0372 
0373     /* reset the chip */
0374     mace_reset(dev);
0375 
0376     if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) {
0377         printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq);
0378         return -EAGAIN;
0379     }
0380     if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) {
0381         printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr);
0382         free_irq(dev->irq, dev);
0383         return -EAGAIN;
0384     }
0385 
0386     /* Allocate the DMA ring buffers */
0387 
0388     mp->tx_ring = dma_alloc_coherent(mp->device,
0389                      N_TX_RING * MACE_BUFF_SIZE,
0390                      &mp->tx_ring_phys, GFP_KERNEL);
0391     if (mp->tx_ring == NULL)
0392         goto out1;
0393 
0394     mp->rx_ring = dma_alloc_coherent(mp->device,
0395                      N_RX_RING * MACE_BUFF_SIZE,
0396                      &mp->rx_ring_phys, GFP_KERNEL);
0397     if (mp->rx_ring == NULL)
0398         goto out2;
0399 
0400     mace_dma_off(dev);
0401 
0402     /* Not sure what these do */
0403 
0404     psc_write_word(PSC_ENETWR_CTL, 0x9000);
0405     psc_write_word(PSC_ENETRD_CTL, 0x9000);
0406     psc_write_word(PSC_ENETWR_CTL, 0x0400);
0407     psc_write_word(PSC_ENETRD_CTL, 0x0400);
0408 
0409     mace_rxdma_reset(dev);
0410     mace_txdma_reset(dev);
0411 
0412     /* turn it on! */
0413     mb->maccc = ENXMT | ENRCV;
0414     /* enable all interrupts except receive interrupts */
0415     mb->imr = RCVINT;
0416     return 0;
0417 
0418 out2:
0419     dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
0420                       mp->tx_ring, mp->tx_ring_phys);
0421 out1:
0422     free_irq(dev->irq, dev);
0423     free_irq(mp->dma_intr, dev);
0424     return -ENOMEM;
0425 }
0426 
0427 /*
0428  * Shut down the mace and its interrupt channel
0429  */
0430 
0431 static int mace_close(struct net_device *dev)
0432 {
0433     struct mace_data *mp = netdev_priv(dev);
0434     volatile struct mace *mb = mp->mace;
0435 
0436     mb->maccc = 0;      /* disable rx and tx     */
0437     mb->imr = 0xFF;     /* disable all irqs  */
0438     mace_dma_off(dev);  /* disable rx and tx dma */
0439 
0440     return 0;
0441 }
0442 
0443 /*
0444  * Transmit a frame
0445  */
0446 
0447 static netdev_tx_t mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
0448 {
0449     struct mace_data *mp = netdev_priv(dev);
0450     unsigned long flags;
0451 
0452     /* Stop the queue since there's only the one buffer */
0453 
0454     local_irq_save(flags);
0455     netif_stop_queue(dev);
0456     if (!mp->tx_count) {
0457         printk(KERN_ERR "macmace: tx queue running but no free buffers.\n");
0458         local_irq_restore(flags);
0459         return NETDEV_TX_BUSY;
0460     }
0461     mp->tx_count--;
0462     local_irq_restore(flags);
0463 
0464     dev->stats.tx_packets++;
0465     dev->stats.tx_bytes += skb->len;
0466 
0467     /* We need to copy into our xmit buffer to take care of alignment and caching issues */
0468     skb_copy_from_linear_data(skb, mp->tx_ring, skb->len);
0469 
0470     /* load the Tx DMA and fire it off */
0471 
0472     psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32)  mp->tx_ring_phys);
0473     psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len);
0474     psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800);
0475 
0476     mp->tx_slot ^= 0x10;
0477 
0478     dev_kfree_skb(skb);
0479 
0480     return NETDEV_TX_OK;
0481 }
0482 
0483 static void mace_set_multicast(struct net_device *dev)
0484 {
0485     struct mace_data *mp = netdev_priv(dev);
0486     volatile struct mace *mb = mp->mace;
0487     int i;
0488     u32 crc;
0489     u8 maccc;
0490     unsigned long flags;
0491 
0492     local_irq_save(flags);
0493     maccc = mb->maccc;
0494     mb->maccc &= ~PROM;
0495 
0496     if (dev->flags & IFF_PROMISC) {
0497         mb->maccc |= PROM;
0498     } else {
0499         unsigned char multicast_filter[8];
0500         struct netdev_hw_addr *ha;
0501 
0502         if (dev->flags & IFF_ALLMULTI) {
0503             for (i = 0; i < 8; i++) {
0504                 multicast_filter[i] = 0xFF;
0505             }
0506         } else {
0507             for (i = 0; i < 8; i++)
0508                 multicast_filter[i] = 0;
0509             netdev_for_each_mc_addr(ha, dev) {
0510                 crc = ether_crc_le(6, ha->addr);
0511                 /* bit number in multicast_filter */
0512                 i = crc >> 26;
0513                 multicast_filter[i >> 3] |= 1 << (i & 7);
0514             }
0515         }
0516 
0517         if (mp->chipid == BROKEN_ADDRCHG_REV)
0518             mb->iac = LOGADDR;
0519         else {
0520             mb->iac = ADDRCHG | LOGADDR;
0521             while ((mb->iac & ADDRCHG) != 0)
0522                 ;
0523         }
0524         for (i = 0; i < 8; ++i)
0525             mb->ladrf = multicast_filter[i];
0526         if (mp->chipid != BROKEN_ADDRCHG_REV)
0527             mb->iac = 0;
0528     }
0529 
0530     mb->maccc = maccc;
0531     local_irq_restore(flags);
0532 }
0533 
0534 static void mace_handle_misc_intrs(struct net_device *dev, int intr)
0535 {
0536     struct mace_data *mp = netdev_priv(dev);
0537     volatile struct mace *mb = mp->mace;
0538     static int mace_babbles, mace_jabbers;
0539 
0540     if (intr & MPCO)
0541         dev->stats.rx_missed_errors += 256;
0542     dev->stats.rx_missed_errors += mb->mpc;   /* reading clears it */
0543     if (intr & RNTPCO)
0544         dev->stats.rx_length_errors += 256;
0545     dev->stats.rx_length_errors += mb->rntpc; /* reading clears it */
0546     if (intr & CERR)
0547         ++dev->stats.tx_heartbeat_errors;
0548     if (intr & BABBLE)
0549         if (mace_babbles++ < 4)
0550             printk(KERN_DEBUG "macmace: babbling transmitter\n");
0551     if (intr & JABBER)
0552         if (mace_jabbers++ < 4)
0553             printk(KERN_DEBUG "macmace: jabbering transceiver\n");
0554 }
0555 
0556 static irqreturn_t mace_interrupt(int irq, void *dev_id)
0557 {
0558     struct net_device *dev = (struct net_device *) dev_id;
0559     struct mace_data *mp = netdev_priv(dev);
0560     volatile struct mace *mb = mp->mace;
0561     int intr, fs;
0562     unsigned long flags;
0563 
0564     /* don't want the dma interrupt handler to fire */
0565     local_irq_save(flags);
0566 
0567     intr = mb->ir; /* read interrupt register */
0568     mace_handle_misc_intrs(dev, intr);
0569 
0570     if (intr & XMTINT) {
0571         fs = mb->xmtfs;
0572         if ((fs & XMTSV) == 0) {
0573             printk(KERN_ERR "macmace: xmtfs not valid! (fs=%x)\n", fs);
0574             mace_reset(dev);
0575             /*
0576              * XXX mace likes to hang the machine after a xmtfs error.
0577              * This is hard to reproduce, resetting *may* help
0578              */
0579         }
0580         /* dma should have finished */
0581         if (!mp->tx_count) {
0582             printk(KERN_DEBUG "macmace: tx ring ran out? (fs=%x)\n", fs);
0583         }
0584         /* Update stats */
0585         if (fs & (UFLO|LCOL|LCAR|RTRY)) {
0586             ++dev->stats.tx_errors;
0587             if (fs & LCAR)
0588                 ++dev->stats.tx_carrier_errors;
0589             else if (fs & (UFLO|LCOL|RTRY)) {
0590                 ++dev->stats.tx_aborted_errors;
0591                 if (mb->xmtfs & UFLO) {
0592                     dev->stats.tx_fifo_errors++;
0593                     mace_txdma_reset(dev);
0594                 }
0595             }
0596         }
0597     }
0598 
0599     if (mp->tx_count)
0600         netif_wake_queue(dev);
0601 
0602     local_irq_restore(flags);
0603 
0604     return IRQ_HANDLED;
0605 }
0606 
0607 static void mace_tx_timeout(struct net_device *dev, unsigned int txqueue)
0608 {
0609     struct mace_data *mp = netdev_priv(dev);
0610     volatile struct mace *mb = mp->mace;
0611     unsigned long flags;
0612 
0613     local_irq_save(flags);
0614 
0615     /* turn off both tx and rx and reset the chip */
0616     mb->maccc = 0;
0617     printk(KERN_ERR "macmace: transmit timeout - resetting\n");
0618     mace_txdma_reset(dev);
0619     mace_reset(dev);
0620 
0621     /* restart rx dma */
0622     mace_rxdma_reset(dev);
0623 
0624     mp->tx_count = N_TX_RING;
0625     netif_wake_queue(dev);
0626 
0627     /* turn it on! */
0628     mb->maccc = ENXMT | ENRCV;
0629     /* enable all interrupts except receive interrupts */
0630     mb->imr = RCVINT;
0631 
0632     local_irq_restore(flags);
0633 }
0634 
0635 /*
0636  * Handle a newly arrived frame
0637  */
0638 
0639 static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf)
0640 {
0641     struct sk_buff *skb;
0642     unsigned int frame_status = mf->rcvsts;
0643 
0644     if (frame_status & (RS_OFLO | RS_CLSN | RS_FRAMERR | RS_FCSERR)) {
0645         dev->stats.rx_errors++;
0646         if (frame_status & RS_OFLO)
0647             dev->stats.rx_fifo_errors++;
0648         if (frame_status & RS_CLSN)
0649             dev->stats.collisions++;
0650         if (frame_status & RS_FRAMERR)
0651             dev->stats.rx_frame_errors++;
0652         if (frame_status & RS_FCSERR)
0653             dev->stats.rx_crc_errors++;
0654     } else {
0655         unsigned int frame_length = mf->rcvcnt + ((frame_status & 0x0F) << 8 );
0656 
0657         skb = netdev_alloc_skb(dev, frame_length + 2);
0658         if (!skb) {
0659             dev->stats.rx_dropped++;
0660             return;
0661         }
0662         skb_reserve(skb, 2);
0663         skb_put_data(skb, mf->data, frame_length);
0664 
0665         skb->protocol = eth_type_trans(skb, dev);
0666         netif_rx(skb);
0667         dev->stats.rx_packets++;
0668         dev->stats.rx_bytes += frame_length;
0669     }
0670 }
0671 
0672 /*
0673  * The PSC has passed us a DMA interrupt event.
0674  */
0675 
0676 static irqreturn_t mace_dma_intr(int irq, void *dev_id)
0677 {
0678     struct net_device *dev = (struct net_device *) dev_id;
0679     struct mace_data *mp = netdev_priv(dev);
0680     int left, head;
0681     u16 status;
0682     u32 baka;
0683 
0684     /* Not sure what this does */
0685 
0686     while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY));
0687     if (!(baka & 0x60000000)) return IRQ_NONE;
0688 
0689     /*
0690      * Process the read queue
0691      */
0692 
0693     status = psc_read_word(PSC_ENETRD_CTL);
0694 
0695     if (status & 0x2000) {
0696         mace_rxdma_reset(dev);
0697     } else if (status & 0x0100) {
0698         psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100);
0699 
0700         left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot);
0701         head = N_RX_RING - left;
0702 
0703         /* Loop through the ring buffer and process new packages */
0704 
0705         while (mp->rx_tail < head) {
0706             mace_dma_rx_frame(dev, (struct mace_frame*) (mp->rx_ring
0707                 + (mp->rx_tail * MACE_BUFF_SIZE)));
0708             mp->rx_tail++;
0709         }
0710 
0711         /* If we're out of buffers in this ring then switch to */
0712         /* the other set, otherwise just reactivate this one.  */
0713 
0714         if (!left) {
0715             mace_load_rxdma_base(dev, mp->rx_slot);
0716             mp->rx_slot ^= 0x10;
0717         } else {
0718             psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800);
0719         }
0720     }
0721 
0722     /*
0723      * Process the write queue
0724      */
0725 
0726     status = psc_read_word(PSC_ENETWR_CTL);
0727 
0728     if (status & 0x2000) {
0729         mace_txdma_reset(dev);
0730     } else if (status & 0x0100) {
0731         psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100);
0732         mp->tx_sloti ^= 0x10;
0733         mp->tx_count++;
0734     }
0735     return IRQ_HANDLED;
0736 }
0737 
0738 MODULE_LICENSE("GPL");
0739 MODULE_DESCRIPTION("Macintosh MACE ethernet driver");
0740 MODULE_ALIAS("platform:macmace");
0741 
0742 static int mac_mace_device_remove(struct platform_device *pdev)
0743 {
0744     struct net_device *dev = platform_get_drvdata(pdev);
0745     struct mace_data *mp = netdev_priv(dev);
0746 
0747     unregister_netdev(dev);
0748 
0749     free_irq(dev->irq, dev);
0750     free_irq(IRQ_MAC_MACE_DMA, dev);
0751 
0752     dma_free_coherent(mp->device, N_RX_RING * MACE_BUFF_SIZE,
0753                       mp->rx_ring, mp->rx_ring_phys);
0754     dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
0755                       mp->tx_ring, mp->tx_ring_phys);
0756 
0757     free_netdev(dev);
0758 
0759     return 0;
0760 }
0761 
0762 static struct platform_driver mac_mace_driver = {
0763     .probe  = mace_probe,
0764     .remove = mac_mace_device_remove,
0765     .driver = {
0766         .name   = mac_mace_string,
0767     },
0768 };
0769 
0770 module_platform_driver(mac_mace_driver);