Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * AMD 10Gb Ethernet driver
0003  *
0004  * This file is available to you under your choice of the following two
0005  * licenses:
0006  *
0007  * License 1: GPLv2
0008  *
0009  * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
0010  *
0011  * This file is free software; you may copy, redistribute and/or modify
0012  * it under the terms of the GNU General Public License as published by
0013  * the Free Software Foundation, either version 2 of the License, or (at
0014  * your option) any later version.
0015  *
0016  * This file is distributed in the hope that it will be useful, but
0017  * WITHOUT ANY WARRANTY; without even the implied warranty of
0018  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
0019  * General Public License for more details.
0020  *
0021  * You should have received a copy of the GNU General Public License
0022  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
0023  *
0024  * This file incorporates work covered by the following copyright and
0025  * permission notice:
0026  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
0027  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
0028  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
0029  *     and you.
0030  *
0031  *     The Software IS NOT an item of Licensed Software or Licensed Product
0032  *     under any End User Software License Agreement or Agreement for Licensed
0033  *     Product with Synopsys or any supplement thereto.  Permission is hereby
0034  *     granted, free of charge, to any person obtaining a copy of this software
0035  *     annotated with this license and the Software, to deal in the Software
0036  *     without restriction, including without limitation the rights to use,
0037  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
0038  *     of the Software, and to permit persons to whom the Software is furnished
0039  *     to do so, subject to the following conditions:
0040  *
0041  *     The above copyright notice and this permission notice shall be included
0042  *     in all copies or substantial portions of the Software.
0043  *
0044  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
0045  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
0046  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
0047  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
0048  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
0049  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
0050  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
0051  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
0052  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
0053  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
0054  *     THE POSSIBILITY OF SUCH DAMAGE.
0055  *
0056  *
0057  * License 2: Modified BSD
0058  *
0059  * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
0060  * All rights reserved.
0061  *
0062  * Redistribution and use in source and binary forms, with or without
0063  * modification, are permitted provided that the following conditions are met:
0064  *     * Redistributions of source code must retain the above copyright
0065  *       notice, this list of conditions and the following disclaimer.
0066  *     * Redistributions in binary form must reproduce the above copyright
0067  *       notice, this list of conditions and the following disclaimer in the
0068  *       documentation and/or other materials provided with the distribution.
0069  *     * Neither the name of Advanced Micro Devices, Inc. nor the
0070  *       names of its contributors may be used to endorse or promote products
0071  *       derived from this software without specific prior written permission.
0072  *
0073  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
0074  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
0075  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
0076  * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
0077  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
0078  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
0079  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
0080  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
0081  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
0082  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
0083  *
0084  * This file incorporates work covered by the following copyright and
0085  * permission notice:
0086  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
0087  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
0088  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
0089  *     and you.
0090  *
0091  *     The Software IS NOT an item of Licensed Software or Licensed Product
0092  *     under any End User Software License Agreement or Agreement for Licensed
0093  *     Product with Synopsys or any supplement thereto.  Permission is hereby
0094  *     granted, free of charge, to any person obtaining a copy of this software
0095  *     annotated with this license and the Software, to deal in the Software
0096  *     without restriction, including without limitation the rights to use,
0097  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
0098  *     of the Software, and to permit persons to whom the Software is furnished
0099  *     to do so, subject to the following conditions:
0100  *
0101  *     The above copyright notice and this permission notice shall be included
0102  *     in all copies or substantial portions of the Software.
0103  *
0104  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
0105  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
0106  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
0107  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
0108  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
0109  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
0110  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
0111  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
0112  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
0113  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
0114  *     THE POSSIBILITY OF SUCH DAMAGE.
0115  */
0116 
0117 #include <linux/phy.h>
0118 #include <linux/mdio.h>
0119 #include <linux/clk.h>
0120 #include <linux/bitrev.h>
0121 #include <linux/crc32.h>
0122 #include <linux/crc32poly.h>
0123 
0124 #include "xgbe.h"
0125 #include "xgbe-common.h"
0126 
0127 static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata)
0128 {
0129     return pdata->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
0130 }
0131 
0132 static unsigned int xgbe_usec_to_riwt(struct xgbe_prv_data *pdata,
0133                       unsigned int usec)
0134 {
0135     unsigned long rate;
0136     unsigned int ret;
0137 
0138     DBGPR("-->xgbe_usec_to_riwt\n");
0139 
0140     rate = pdata->sysclk_rate;
0141 
0142     /*
0143      * Convert the input usec value to the watchdog timer value. Each
0144      * watchdog timer value is equivalent to 256 clock cycles.
0145      * Calculate the required value as:
0146      *   ( usec * ( system_clock_mhz / 10^6 ) / 256
0147      */
0148     ret = (usec * (rate / 1000000)) / 256;
0149 
0150     DBGPR("<--xgbe_usec_to_riwt\n");
0151 
0152     return ret;
0153 }
0154 
0155 static unsigned int xgbe_riwt_to_usec(struct xgbe_prv_data *pdata,
0156                       unsigned int riwt)
0157 {
0158     unsigned long rate;
0159     unsigned int ret;
0160 
0161     DBGPR("-->xgbe_riwt_to_usec\n");
0162 
0163     rate = pdata->sysclk_rate;
0164 
0165     /*
0166      * Convert the input watchdog timer value to the usec value. Each
0167      * watchdog timer value is equivalent to 256 clock cycles.
0168      * Calculate the required value as:
0169      *   ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
0170      */
0171     ret = (riwt * 256) / (rate / 1000000);
0172 
0173     DBGPR("<--xgbe_riwt_to_usec\n");
0174 
0175     return ret;
0176 }
0177 
0178 static int xgbe_config_pbl_val(struct xgbe_prv_data *pdata)
0179 {
0180     unsigned int pblx8, pbl;
0181     unsigned int i;
0182 
0183     pblx8 = DMA_PBL_X8_DISABLE;
0184     pbl = pdata->pbl;
0185 
0186     if (pdata->pbl > 32) {
0187         pblx8 = DMA_PBL_X8_ENABLE;
0188         pbl >>= 3;
0189     }
0190 
0191     for (i = 0; i < pdata->channel_count; i++) {
0192         XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, PBLX8,
0193                        pblx8);
0194 
0195         if (pdata->channel[i]->tx_ring)
0196             XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR,
0197                            PBL, pbl);
0198 
0199         if (pdata->channel[i]->rx_ring)
0200             XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR,
0201                            PBL, pbl);
0202     }
0203 
0204     return 0;
0205 }
0206 
0207 static int xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
0208 {
0209     unsigned int i;
0210 
0211     for (i = 0; i < pdata->channel_count; i++) {
0212         if (!pdata->channel[i]->tx_ring)
0213             break;
0214 
0215         XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, OSP,
0216                        pdata->tx_osp_mode);
0217     }
0218 
0219     return 0;
0220 }
0221 
0222 static int xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
0223 {
0224     unsigned int i;
0225 
0226     for (i = 0; i < pdata->rx_q_count; i++)
0227         XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
0228 
0229     return 0;
0230 }
0231 
0232 static int xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
0233 {
0234     unsigned int i;
0235 
0236     for (i = 0; i < pdata->tx_q_count; i++)
0237         XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
0238 
0239     return 0;
0240 }
0241 
0242 static int xgbe_config_rx_threshold(struct xgbe_prv_data *pdata,
0243                     unsigned int val)
0244 {
0245     unsigned int i;
0246 
0247     for (i = 0; i < pdata->rx_q_count; i++)
0248         XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
0249 
0250     return 0;
0251 }
0252 
0253 static int xgbe_config_tx_threshold(struct xgbe_prv_data *pdata,
0254                     unsigned int val)
0255 {
0256     unsigned int i;
0257 
0258     for (i = 0; i < pdata->tx_q_count; i++)
0259         XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
0260 
0261     return 0;
0262 }
0263 
0264 static int xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
0265 {
0266     unsigned int i;
0267 
0268     for (i = 0; i < pdata->channel_count; i++) {
0269         if (!pdata->channel[i]->rx_ring)
0270             break;
0271 
0272         XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RIWT, RWT,
0273                        pdata->rx_riwt);
0274     }
0275 
0276     return 0;
0277 }
0278 
0279 static int xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
0280 {
0281     return 0;
0282 }
0283 
0284 static void xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
0285 {
0286     unsigned int i;
0287 
0288     for (i = 0; i < pdata->channel_count; i++) {
0289         if (!pdata->channel[i]->rx_ring)
0290             break;
0291 
0292         XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, RBSZ,
0293                        pdata->rx_buf_size);
0294     }
0295 }
0296 
0297 static void xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
0298 {
0299     unsigned int i;
0300 
0301     for (i = 0; i < pdata->channel_count; i++) {
0302         if (!pdata->channel[i]->tx_ring)
0303             break;
0304 
0305         XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, TSE, 1);
0306     }
0307 }
0308 
0309 static void xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
0310 {
0311     unsigned int i;
0312 
0313     for (i = 0; i < pdata->channel_count; i++) {
0314         if (!pdata->channel[i]->rx_ring)
0315             break;
0316 
0317         XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 1);
0318     }
0319 
0320     XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
0321 }
0322 
0323 static int xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
0324                   unsigned int index, unsigned int val)
0325 {
0326     unsigned int wait;
0327     int ret = 0;
0328 
0329     mutex_lock(&pdata->rss_mutex);
0330 
0331     if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
0332         ret = -EBUSY;
0333         goto unlock;
0334     }
0335 
0336     XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
0337 
0338     XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
0339     XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
0340     XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
0341     XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
0342 
0343     wait = 1000;
0344     while (wait--) {
0345         if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
0346             goto unlock;
0347 
0348         usleep_range(1000, 1500);
0349     }
0350 
0351     ret = -EBUSY;
0352 
0353 unlock:
0354     mutex_unlock(&pdata->rss_mutex);
0355 
0356     return ret;
0357 }
0358 
0359 static int xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
0360 {
0361     unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(u32);
0362     unsigned int *key = (unsigned int *)&pdata->rss_key;
0363     int ret;
0364 
0365     while (key_regs--) {
0366         ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
0367                      key_regs, *key++);
0368         if (ret)
0369             return ret;
0370     }
0371 
0372     return 0;
0373 }
0374 
0375 static int xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
0376 {
0377     unsigned int i;
0378     int ret;
0379 
0380     for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
0381         ret = xgbe_write_rss_reg(pdata,
0382                      XGBE_RSS_LOOKUP_TABLE_TYPE, i,
0383                      pdata->rss_table[i]);
0384         if (ret)
0385             return ret;
0386     }
0387 
0388     return 0;
0389 }
0390 
0391 static int xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const u8 *key)
0392 {
0393     memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
0394 
0395     return xgbe_write_rss_hash_key(pdata);
0396 }
0397 
0398 static int xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata,
0399                      const u32 *table)
0400 {
0401     unsigned int i;
0402 
0403     for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
0404         XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
0405 
0406     return xgbe_write_rss_lookup_table(pdata);
0407 }
0408 
0409 static int xgbe_enable_rss(struct xgbe_prv_data *pdata)
0410 {
0411     int ret;
0412 
0413     if (!pdata->hw_feat.rss)
0414         return -EOPNOTSUPP;
0415 
0416     /* Program the hash key */
0417     ret = xgbe_write_rss_hash_key(pdata);
0418     if (ret)
0419         return ret;
0420 
0421     /* Program the lookup table */
0422     ret = xgbe_write_rss_lookup_table(pdata);
0423     if (ret)
0424         return ret;
0425 
0426     /* Set the RSS options */
0427     XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
0428 
0429     /* Enable RSS */
0430     XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
0431 
0432     return 0;
0433 }
0434 
0435 static int xgbe_disable_rss(struct xgbe_prv_data *pdata)
0436 {
0437     if (!pdata->hw_feat.rss)
0438         return -EOPNOTSUPP;
0439 
0440     XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
0441 
0442     return 0;
0443 }
0444 
0445 static void xgbe_config_rss(struct xgbe_prv_data *pdata)
0446 {
0447     int ret;
0448 
0449     if (!pdata->hw_feat.rss)
0450         return;
0451 
0452     if (pdata->netdev->features & NETIF_F_RXHASH)
0453         ret = xgbe_enable_rss(pdata);
0454     else
0455         ret = xgbe_disable_rss(pdata);
0456 
0457     if (ret)
0458         netdev_err(pdata->netdev,
0459                "error configuring RSS, RSS disabled\n");
0460 }
0461 
0462 static bool xgbe_is_pfc_queue(struct xgbe_prv_data *pdata,
0463                   unsigned int queue)
0464 {
0465     unsigned int prio, tc;
0466 
0467     for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
0468         /* Does this queue handle the priority? */
0469         if (pdata->prio2q_map[prio] != queue)
0470             continue;
0471 
0472         /* Get the Traffic Class for this priority */
0473         tc = pdata->ets->prio_tc[prio];
0474 
0475         /* Check if PFC is enabled for this traffic class */
0476         if (pdata->pfc->pfc_en & (1 << tc))
0477             return true;
0478     }
0479 
0480     return false;
0481 }
0482 
0483 static void xgbe_set_vxlan_id(struct xgbe_prv_data *pdata)
0484 {
0485     /* Program the VXLAN port */
0486     XGMAC_IOWRITE_BITS(pdata, MAC_TIR, TNID, pdata->vxlan_port);
0487 
0488     netif_dbg(pdata, drv, pdata->netdev, "VXLAN tunnel id set to %hx\n",
0489           pdata->vxlan_port);
0490 }
0491 
0492 static void xgbe_enable_vxlan(struct xgbe_prv_data *pdata)
0493 {
0494     if (!pdata->hw_feat.vxn)
0495         return;
0496 
0497     /* Program the VXLAN port */
0498     xgbe_set_vxlan_id(pdata);
0499 
0500     /* Allow for IPv6/UDP zero-checksum VXLAN packets */
0501     XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VUCC, 1);
0502 
0503     /* Enable VXLAN tunneling mode */
0504     XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNM, 0);
0505     XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNE, 1);
0506 
0507     netif_dbg(pdata, drv, pdata->netdev, "VXLAN acceleration enabled\n");
0508 }
0509 
0510 static void xgbe_disable_vxlan(struct xgbe_prv_data *pdata)
0511 {
0512     if (!pdata->hw_feat.vxn)
0513         return;
0514 
0515     /* Disable tunneling mode */
0516     XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNE, 0);
0517 
0518     /* Clear IPv6/UDP zero-checksum VXLAN packets setting */
0519     XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VUCC, 0);
0520 
0521     /* Clear the VXLAN port */
0522     XGMAC_IOWRITE_BITS(pdata, MAC_TIR, TNID, 0);
0523 
0524     netif_dbg(pdata, drv, pdata->netdev, "VXLAN acceleration disabled\n");
0525 }
0526 
0527 static int xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
0528 {
0529     unsigned int max_q_count, q_count;
0530     unsigned int reg, reg_val;
0531     unsigned int i;
0532 
0533     /* Clear MTL flow control */
0534     for (i = 0; i < pdata->rx_q_count; i++)
0535         XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
0536 
0537     /* Clear MAC flow control */
0538     max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
0539     q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
0540     reg = MAC_Q0TFCR;
0541     for (i = 0; i < q_count; i++) {
0542         reg_val = XGMAC_IOREAD(pdata, reg);
0543         XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
0544         XGMAC_IOWRITE(pdata, reg, reg_val);
0545 
0546         reg += MAC_QTFCR_INC;
0547     }
0548 
0549     return 0;
0550 }
0551 
0552 static int xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
0553 {
0554     struct ieee_pfc *pfc = pdata->pfc;
0555     struct ieee_ets *ets = pdata->ets;
0556     unsigned int max_q_count, q_count;
0557     unsigned int reg, reg_val;
0558     unsigned int i;
0559 
0560     /* Set MTL flow control */
0561     for (i = 0; i < pdata->rx_q_count; i++) {
0562         unsigned int ehfc = 0;
0563 
0564         if (pdata->rx_rfd[i]) {
0565             /* Flow control thresholds are established */
0566             if (pfc && ets) {
0567                 if (xgbe_is_pfc_queue(pdata, i))
0568                     ehfc = 1;
0569             } else {
0570                 ehfc = 1;
0571             }
0572         }
0573 
0574         XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc);
0575 
0576         netif_dbg(pdata, drv, pdata->netdev,
0577               "flow control %s for RXq%u\n",
0578               ehfc ? "enabled" : "disabled", i);
0579     }
0580 
0581     /* Set MAC flow control */
0582     max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
0583     q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
0584     reg = MAC_Q0TFCR;
0585     for (i = 0; i < q_count; i++) {
0586         reg_val = XGMAC_IOREAD(pdata, reg);
0587 
0588         /* Enable transmit flow control */
0589         XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
0590         /* Set pause time */
0591         XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
0592 
0593         XGMAC_IOWRITE(pdata, reg, reg_val);
0594 
0595         reg += MAC_QTFCR_INC;
0596     }
0597 
0598     return 0;
0599 }
0600 
0601 static int xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
0602 {
0603     XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
0604 
0605     return 0;
0606 }
0607 
0608 static int xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
0609 {
0610     XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
0611 
0612     return 0;
0613 }
0614 
0615 static int xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
0616 {
0617     struct ieee_pfc *pfc = pdata->pfc;
0618 
0619     if (pdata->tx_pause || (pfc && pfc->pfc_en))
0620         xgbe_enable_tx_flow_control(pdata);
0621     else
0622         xgbe_disable_tx_flow_control(pdata);
0623 
0624     return 0;
0625 }
0626 
0627 static int xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
0628 {
0629     struct ieee_pfc *pfc = pdata->pfc;
0630 
0631     if (pdata->rx_pause || (pfc && pfc->pfc_en))
0632         xgbe_enable_rx_flow_control(pdata);
0633     else
0634         xgbe_disable_rx_flow_control(pdata);
0635 
0636     return 0;
0637 }
0638 
0639 static void xgbe_config_flow_control(struct xgbe_prv_data *pdata)
0640 {
0641     struct ieee_pfc *pfc = pdata->pfc;
0642 
0643     xgbe_config_tx_flow_control(pdata);
0644     xgbe_config_rx_flow_control(pdata);
0645 
0646     XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE,
0647                (pfc && pfc->pfc_en) ? 1 : 0);
0648 }
0649 
0650 static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
0651 {
0652     struct xgbe_channel *channel;
0653     unsigned int i, ver;
0654 
0655     /* Set the interrupt mode if supported */
0656     if (pdata->channel_irq_mode)
0657         XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM,
0658                    pdata->channel_irq_mode);
0659 
0660     ver = XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER);
0661 
0662     for (i = 0; i < pdata->channel_count; i++) {
0663         channel = pdata->channel[i];
0664 
0665         /* Clear all the interrupts which are set */
0666         XGMAC_DMA_IOWRITE(channel, DMA_CH_SR,
0667                   XGMAC_DMA_IOREAD(channel, DMA_CH_SR));
0668 
0669         /* Clear all interrupt enable bits */
0670         channel->curr_ier = 0;
0671 
0672         /* Enable following interrupts
0673          *   NIE  - Normal Interrupt Summary Enable
0674          *   AIE  - Abnormal Interrupt Summary Enable
0675          *   FBEE - Fatal Bus Error Enable
0676          */
0677         if (ver < 0x21) {
0678             XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE20, 1);
0679             XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE20, 1);
0680         } else {
0681             XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE, 1);
0682             XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE, 1);
0683         }
0684         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
0685 
0686         if (channel->tx_ring) {
0687             /* Enable the following Tx interrupts
0688              *   TIE  - Transmit Interrupt Enable (unless using
0689              *          per channel interrupts in edge triggered
0690              *          mode)
0691              */
0692             if (!pdata->per_channel_irq || pdata->channel_irq_mode)
0693                 XGMAC_SET_BITS(channel->curr_ier,
0694                            DMA_CH_IER, TIE, 1);
0695         }
0696         if (channel->rx_ring) {
0697             /* Enable following Rx interrupts
0698              *   RBUE - Receive Buffer Unavailable Enable
0699              *   RIE  - Receive Interrupt Enable (unless using
0700              *          per channel interrupts in edge triggered
0701              *          mode)
0702              */
0703             XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
0704             if (!pdata->per_channel_irq || pdata->channel_irq_mode)
0705                 XGMAC_SET_BITS(channel->curr_ier,
0706                            DMA_CH_IER, RIE, 1);
0707         }
0708 
0709         XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
0710     }
0711 }
0712 
0713 static void xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
0714 {
0715     unsigned int mtl_q_isr;
0716     unsigned int q_count, i;
0717 
0718     q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
0719     for (i = 0; i < q_count; i++) {
0720         /* Clear all the interrupts which are set */
0721         mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
0722         XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
0723 
0724         /* No MTL interrupts to be enabled */
0725         XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
0726     }
0727 }
0728 
0729 static void xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
0730 {
0731     unsigned int mac_ier = 0;
0732 
0733     /* Enable Timestamp interrupt */
0734     XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
0735 
0736     XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
0737 
0738     /* Enable all counter interrupts */
0739     XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
0740     XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
0741 
0742     /* Enable MDIO single command completion interrupt */
0743     XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1);
0744 }
0745 
0746 static void xgbe_enable_ecc_interrupts(struct xgbe_prv_data *pdata)
0747 {
0748     unsigned int ecc_isr, ecc_ier = 0;
0749 
0750     if (!pdata->vdata->ecc_support)
0751         return;
0752 
0753     /* Clear all the interrupts which are set */
0754     ecc_isr = XP_IOREAD(pdata, XP_ECC_ISR);
0755     XP_IOWRITE(pdata, XP_ECC_ISR, ecc_isr);
0756 
0757     /* Enable ECC interrupts */
0758     XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 1);
0759     XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 1);
0760     XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 1);
0761     XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 1);
0762     XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 1);
0763     XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 1);
0764 
0765     XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
0766 }
0767 
0768 static void xgbe_disable_ecc_ded(struct xgbe_prv_data *pdata)
0769 {
0770     unsigned int ecc_ier;
0771 
0772     ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
0773 
0774     /* Disable ECC DED interrupts */
0775     XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 0);
0776     XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 0);
0777     XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 0);
0778 
0779     XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
0780 }
0781 
0782 static void xgbe_disable_ecc_sec(struct xgbe_prv_data *pdata,
0783                  enum xgbe_ecc_sec sec)
0784 {
0785     unsigned int ecc_ier;
0786 
0787     ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
0788 
0789     /* Disable ECC SEC interrupt */
0790     switch (sec) {
0791     case XGBE_ECC_SEC_TX:
0792     XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 0);
0793         break;
0794     case XGBE_ECC_SEC_RX:
0795     XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 0);
0796         break;
0797     case XGBE_ECC_SEC_DESC:
0798     XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 0);
0799         break;
0800     }
0801 
0802     XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
0803 }
0804 
0805 static int xgbe_set_speed(struct xgbe_prv_data *pdata, int speed)
0806 {
0807     unsigned int ss;
0808 
0809     switch (speed) {
0810     case SPEED_1000:
0811         ss = 0x03;
0812         break;
0813     case SPEED_2500:
0814         ss = 0x02;
0815         break;
0816     case SPEED_10000:
0817         ss = 0x00;
0818         break;
0819     default:
0820         return -EINVAL;
0821     }
0822 
0823     if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss)
0824         XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss);
0825 
0826     return 0;
0827 }
0828 
0829 static int xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
0830 {
0831     /* Put the VLAN tag in the Rx descriptor */
0832     XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
0833 
0834     /* Don't check the VLAN type */
0835     XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
0836 
0837     /* Check only C-TAG (0x8100) packets */
0838     XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
0839 
0840     /* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
0841     XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
0842 
0843     /* Enable VLAN tag stripping */
0844     XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
0845 
0846     return 0;
0847 }
0848 
0849 static int xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
0850 {
0851     XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
0852 
0853     return 0;
0854 }
0855 
0856 static int xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
0857 {
0858     /* Enable VLAN filtering */
0859     XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
0860 
0861     /* Enable VLAN Hash Table filtering */
0862     XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
0863 
0864     /* Disable VLAN tag inverse matching */
0865     XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
0866 
0867     /* Only filter on the lower 12-bits of the VLAN tag */
0868     XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
0869 
0870     /* In order for the VLAN Hash Table filtering to be effective,
0871      * the VLAN tag identifier in the VLAN Tag Register must not
0872      * be zero.  Set the VLAN tag identifier to "1" to enable the
0873      * VLAN Hash Table filtering.  This implies that a VLAN tag of
0874      * 1 will always pass filtering.
0875      */
0876     XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
0877 
0878     return 0;
0879 }
0880 
0881 static int xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
0882 {
0883     /* Disable VLAN filtering */
0884     XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
0885 
0886     return 0;
0887 }
0888 
0889 static u32 xgbe_vid_crc32_le(__le16 vid_le)
0890 {
0891     u32 crc = ~0;
0892     u32 temp = 0;
0893     unsigned char *data = (unsigned char *)&vid_le;
0894     unsigned char data_byte = 0;
0895     int i, bits;
0896 
0897     bits = get_bitmask_order(VLAN_VID_MASK);
0898     for (i = 0; i < bits; i++) {
0899         if ((i % 8) == 0)
0900             data_byte = data[i / 8];
0901 
0902         temp = ((crc & 1) ^ data_byte) & 1;
0903         crc >>= 1;
0904         data_byte >>= 1;
0905 
0906         if (temp)
0907             crc ^= CRC32_POLY_LE;
0908     }
0909 
0910     return crc;
0911 }
0912 
0913 static int xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
0914 {
0915     u32 crc;
0916     u16 vid;
0917     __le16 vid_le;
0918     u16 vlan_hash_table = 0;
0919 
0920     /* Generate the VLAN Hash Table value */
0921     for_each_set_bit(vid, pdata->active_vlans, VLAN_N_VID) {
0922         /* Get the CRC32 value of the VLAN ID */
0923         vid_le = cpu_to_le16(vid);
0924         crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
0925 
0926         vlan_hash_table |= (1 << crc);
0927     }
0928 
0929     /* Set the VLAN Hash Table filtering register */
0930     XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
0931 
0932     return 0;
0933 }
0934 
0935 static int xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata,
0936                      unsigned int enable)
0937 {
0938     unsigned int val = enable ? 1 : 0;
0939 
0940     if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
0941         return 0;
0942 
0943     netif_dbg(pdata, drv, pdata->netdev, "%s promiscuous mode\n",
0944           enable ? "entering" : "leaving");
0945     XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
0946 
0947     /* Hardware will still perform VLAN filtering in promiscuous mode */
0948     if (enable) {
0949         xgbe_disable_rx_vlan_filtering(pdata);
0950     } else {
0951         if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
0952             xgbe_enable_rx_vlan_filtering(pdata);
0953     }
0954 
0955     return 0;
0956 }
0957 
0958 static int xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata,
0959                        unsigned int enable)
0960 {
0961     unsigned int val = enable ? 1 : 0;
0962 
0963     if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
0964         return 0;
0965 
0966     netif_dbg(pdata, drv, pdata->netdev, "%s allmulti mode\n",
0967           enable ? "entering" : "leaving");
0968     XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
0969 
0970     return 0;
0971 }
0972 
0973 static void xgbe_set_mac_reg(struct xgbe_prv_data *pdata,
0974                  struct netdev_hw_addr *ha, unsigned int *mac_reg)
0975 {
0976     unsigned int mac_addr_hi, mac_addr_lo;
0977     u8 *mac_addr;
0978 
0979     mac_addr_lo = 0;
0980     mac_addr_hi = 0;
0981 
0982     if (ha) {
0983         mac_addr = (u8 *)&mac_addr_lo;
0984         mac_addr[0] = ha->addr[0];
0985         mac_addr[1] = ha->addr[1];
0986         mac_addr[2] = ha->addr[2];
0987         mac_addr[3] = ha->addr[3];
0988         mac_addr = (u8 *)&mac_addr_hi;
0989         mac_addr[0] = ha->addr[4];
0990         mac_addr[1] = ha->addr[5];
0991 
0992         netif_dbg(pdata, drv, pdata->netdev,
0993               "adding mac address %pM at %#x\n",
0994               ha->addr, *mac_reg);
0995 
0996         XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
0997     }
0998 
0999     XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
1000     *mac_reg += MAC_MACA_INC;
1001     XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
1002     *mac_reg += MAC_MACA_INC;
1003 }
1004 
1005 static void xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
1006 {
1007     struct net_device *netdev = pdata->netdev;
1008     struct netdev_hw_addr *ha;
1009     unsigned int mac_reg;
1010     unsigned int addn_macs;
1011 
1012     mac_reg = MAC_MACA1HR;
1013     addn_macs = pdata->hw_feat.addn_mac;
1014 
1015     if (netdev_uc_count(netdev) > addn_macs) {
1016         xgbe_set_promiscuous_mode(pdata, 1);
1017     } else {
1018         netdev_for_each_uc_addr(ha, netdev) {
1019             xgbe_set_mac_reg(pdata, ha, &mac_reg);
1020             addn_macs--;
1021         }
1022 
1023         if (netdev_mc_count(netdev) > addn_macs) {
1024             xgbe_set_all_multicast_mode(pdata, 1);
1025         } else {
1026             netdev_for_each_mc_addr(ha, netdev) {
1027                 xgbe_set_mac_reg(pdata, ha, &mac_reg);
1028                 addn_macs--;
1029             }
1030         }
1031     }
1032 
1033     /* Clear remaining additional MAC address entries */
1034     while (addn_macs--)
1035         xgbe_set_mac_reg(pdata, NULL, &mac_reg);
1036 }
1037 
1038 static void xgbe_set_mac_hash_table(struct xgbe_prv_data *pdata)
1039 {
1040     struct net_device *netdev = pdata->netdev;
1041     struct netdev_hw_addr *ha;
1042     unsigned int hash_reg;
1043     unsigned int hash_table_shift, hash_table_count;
1044     u32 hash_table[XGBE_MAC_HASH_TABLE_SIZE];
1045     u32 crc;
1046     unsigned int i;
1047 
1048     hash_table_shift = 26 - (pdata->hw_feat.hash_table_size >> 7);
1049     hash_table_count = pdata->hw_feat.hash_table_size / 32;
1050     memset(hash_table, 0, sizeof(hash_table));
1051 
1052     /* Build the MAC Hash Table register values */
1053     netdev_for_each_uc_addr(ha, netdev) {
1054         crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
1055         crc >>= hash_table_shift;
1056         hash_table[crc >> 5] |= (1 << (crc & 0x1f));
1057     }
1058 
1059     netdev_for_each_mc_addr(ha, netdev) {
1060         crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
1061         crc >>= hash_table_shift;
1062         hash_table[crc >> 5] |= (1 << (crc & 0x1f));
1063     }
1064 
1065     /* Set the MAC Hash Table registers */
1066     hash_reg = MAC_HTR0;
1067     for (i = 0; i < hash_table_count; i++) {
1068         XGMAC_IOWRITE(pdata, hash_reg, hash_table[i]);
1069         hash_reg += MAC_HTR_INC;
1070     }
1071 }
1072 
1073 static int xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
1074 {
1075     if (pdata->hw_feat.hash_table_size)
1076         xgbe_set_mac_hash_table(pdata);
1077     else
1078         xgbe_set_mac_addn_addrs(pdata);
1079 
1080     return 0;
1081 }
1082 
1083 static int xgbe_set_mac_address(struct xgbe_prv_data *pdata, const u8 *addr)
1084 {
1085     unsigned int mac_addr_hi, mac_addr_lo;
1086 
1087     mac_addr_hi = (addr[5] <<  8) | (addr[4] <<  0);
1088     mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
1089               (addr[1] <<  8) | (addr[0] <<  0);
1090 
1091     XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
1092     XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
1093 
1094     return 0;
1095 }
1096 
1097 static int xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
1098 {
1099     struct net_device *netdev = pdata->netdev;
1100     unsigned int pr_mode, am_mode;
1101 
1102     pr_mode = ((netdev->flags & IFF_PROMISC) != 0);
1103     am_mode = ((netdev->flags & IFF_ALLMULTI) != 0);
1104 
1105     xgbe_set_promiscuous_mode(pdata, pr_mode);
1106     xgbe_set_all_multicast_mode(pdata, am_mode);
1107 
1108     xgbe_add_mac_addresses(pdata);
1109 
1110     return 0;
1111 }
1112 
1113 static int xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1114 {
1115     unsigned int reg;
1116 
1117     if (gpio > 15)
1118         return -EINVAL;
1119 
1120     reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1121 
1122     reg &= ~(1 << (gpio + 16));
1123     XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1124 
1125     return 0;
1126 }
1127 
1128 static int xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1129 {
1130     unsigned int reg;
1131 
1132     if (gpio > 15)
1133         return -EINVAL;
1134 
1135     reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1136 
1137     reg |= (1 << (gpio + 16));
1138     XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1139 
1140     return 0;
1141 }
1142 
1143 static int xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
1144                  int mmd_reg)
1145 {
1146     unsigned long flags;
1147     unsigned int mmd_address, index, offset;
1148     int mmd_data;
1149 
1150     if (mmd_reg & MII_ADDR_C45)
1151         mmd_address = mmd_reg & ~MII_ADDR_C45;
1152     else
1153         mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1154 
1155     /* The PCS registers are accessed using mmio. The underlying
1156      * management interface uses indirect addressing to access the MMD
1157      * register sets. This requires accessing of the PCS register in two
1158      * phases, an address phase and a data phase.
1159      *
1160      * The mmio interface is based on 16-bit offsets and values. All
1161      * register offsets must therefore be adjusted by left shifting the
1162      * offset 1 bit and reading 16 bits of data.
1163      */
1164     mmd_address <<= 1;
1165     index = mmd_address & ~pdata->xpcs_window_mask;
1166     offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1167 
1168     spin_lock_irqsave(&pdata->xpcs_lock, flags);
1169     XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1170     mmd_data = XPCS16_IOREAD(pdata, offset);
1171     spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1172 
1173     return mmd_data;
1174 }
1175 
1176 static void xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
1177                    int mmd_reg, int mmd_data)
1178 {
1179     unsigned long flags;
1180     unsigned int mmd_address, index, offset;
1181 
1182     if (mmd_reg & MII_ADDR_C45)
1183         mmd_address = mmd_reg & ~MII_ADDR_C45;
1184     else
1185         mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1186 
1187     /* The PCS registers are accessed using mmio. The underlying
1188      * management interface uses indirect addressing to access the MMD
1189      * register sets. This requires accessing of the PCS register in two
1190      * phases, an address phase and a data phase.
1191      *
1192      * The mmio interface is based on 16-bit offsets and values. All
1193      * register offsets must therefore be adjusted by left shifting the
1194      * offset 1 bit and writing 16 bits of data.
1195      */
1196     mmd_address <<= 1;
1197     index = mmd_address & ~pdata->xpcs_window_mask;
1198     offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1199 
1200     spin_lock_irqsave(&pdata->xpcs_lock, flags);
1201     XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1202     XPCS16_IOWRITE(pdata, offset, mmd_data);
1203     spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1204 }
1205 
1206 static int xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad,
1207                  int mmd_reg)
1208 {
1209     unsigned long flags;
1210     unsigned int mmd_address;
1211     int mmd_data;
1212 
1213     if (mmd_reg & MII_ADDR_C45)
1214         mmd_address = mmd_reg & ~MII_ADDR_C45;
1215     else
1216         mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1217 
1218     /* The PCS registers are accessed using mmio. The underlying APB3
1219      * management interface uses indirect addressing to access the MMD
1220      * register sets. This requires accessing of the PCS register in two
1221      * phases, an address phase and a data phase.
1222      *
1223      * The mmio interface is based on 32-bit offsets and values. All
1224      * register offsets must therefore be adjusted by left shifting the
1225      * offset 2 bits and reading 32 bits of data.
1226      */
1227     spin_lock_irqsave(&pdata->xpcs_lock, flags);
1228     XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1229     mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2);
1230     spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1231 
1232     return mmd_data;
1233 }
1234 
1235 static void xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad,
1236                    int mmd_reg, int mmd_data)
1237 {
1238     unsigned int mmd_address;
1239     unsigned long flags;
1240 
1241     if (mmd_reg & MII_ADDR_C45)
1242         mmd_address = mmd_reg & ~MII_ADDR_C45;
1243     else
1244         mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1245 
1246     /* The PCS registers are accessed using mmio. The underlying APB3
1247      * management interface uses indirect addressing to access the MMD
1248      * register sets. This requires accessing of the PCS register in two
1249      * phases, an address phase and a data phase.
1250      *
1251      * The mmio interface is based on 32-bit offsets and values. All
1252      * register offsets must therefore be adjusted by left shifting the
1253      * offset 2 bits and writing 32 bits of data.
1254      */
1255     spin_lock_irqsave(&pdata->xpcs_lock, flags);
1256     XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1257     XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
1258     spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1259 }
1260 
1261 static int xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1262                   int mmd_reg)
1263 {
1264     switch (pdata->vdata->xpcs_access) {
1265     case XGBE_XPCS_ACCESS_V1:
1266         return xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg);
1267 
1268     case XGBE_XPCS_ACCESS_V2:
1269     default:
1270         return xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg);
1271     }
1272 }
1273 
1274 static void xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1275                 int mmd_reg, int mmd_data)
1276 {
1277     switch (pdata->vdata->xpcs_access) {
1278     case XGBE_XPCS_ACCESS_V1:
1279         return xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data);
1280 
1281     case XGBE_XPCS_ACCESS_V2:
1282     default:
1283         return xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data);
1284     }
1285 }
1286 
1287 static unsigned int xgbe_create_mdio_sca(int port, int reg)
1288 {
1289     unsigned int mdio_sca, da;
1290 
1291     da = (reg & MII_ADDR_C45) ? reg >> 16 : 0;
1292 
1293     mdio_sca = 0;
1294     XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg);
1295     XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port);
1296     XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, da);
1297 
1298     return mdio_sca;
1299 }
1300 
1301 static int xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata, int addr,
1302                    int reg, u16 val)
1303 {
1304     unsigned int mdio_sca, mdio_sccd;
1305 
1306     reinit_completion(&pdata->mdio_complete);
1307 
1308     mdio_sca = xgbe_create_mdio_sca(addr, reg);
1309     XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1310 
1311     mdio_sccd = 0;
1312     XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val);
1313     XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1);
1314     XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1315     XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1316 
1317     if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
1318         netdev_err(pdata->netdev, "mdio write operation timed out\n");
1319         return -ETIMEDOUT;
1320     }
1321 
1322     return 0;
1323 }
1324 
1325 static int xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata, int addr,
1326                   int reg)
1327 {
1328     unsigned int mdio_sca, mdio_sccd;
1329 
1330     reinit_completion(&pdata->mdio_complete);
1331 
1332     mdio_sca = xgbe_create_mdio_sca(addr, reg);
1333     XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1334 
1335     mdio_sccd = 0;
1336     XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3);
1337     XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1338     XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1339 
1340     if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
1341         netdev_err(pdata->netdev, "mdio read operation timed out\n");
1342         return -ETIMEDOUT;
1343     }
1344 
1345     return XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA);
1346 }
1347 
1348 static int xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port,
1349                  enum xgbe_mdio_mode mode)
1350 {
1351     unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R);
1352 
1353     switch (mode) {
1354     case XGBE_MDIO_MODE_CL22:
1355         if (port > XGMAC_MAX_C22_PORT)
1356             return -EINVAL;
1357         reg_val |= (1 << port);
1358         break;
1359     case XGBE_MDIO_MODE_CL45:
1360         break;
1361     default:
1362         return -EINVAL;
1363     }
1364 
1365     XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val);
1366 
1367     return 0;
1368 }
1369 
1370 static int xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
1371 {
1372     return !XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN);
1373 }
1374 
1375 static int xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
1376 {
1377     XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
1378 
1379     return 0;
1380 }
1381 
1382 static int xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
1383 {
1384     XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
1385 
1386     return 0;
1387 }
1388 
1389 static void xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
1390 {
1391     struct xgbe_ring_desc *rdesc = rdata->rdesc;
1392 
1393     /* Reset the Tx descriptor
1394      *   Set buffer 1 (lo) address to zero
1395      *   Set buffer 1 (hi) address to zero
1396      *   Reset all other control bits (IC, TTSE, B2L & B1L)
1397      *   Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
1398      */
1399     rdesc->desc0 = 0;
1400     rdesc->desc1 = 0;
1401     rdesc->desc2 = 0;
1402     rdesc->desc3 = 0;
1403 
1404     /* Make sure ownership is written to the descriptor */
1405     dma_wmb();
1406 }
1407 
1408 static void xgbe_tx_desc_init(struct xgbe_channel *channel)
1409 {
1410     struct xgbe_ring *ring = channel->tx_ring;
1411     struct xgbe_ring_data *rdata;
1412     int i;
1413     int start_index = ring->cur;
1414 
1415     DBGPR("-->tx_desc_init\n");
1416 
1417     /* Initialze all descriptors */
1418     for (i = 0; i < ring->rdesc_count; i++) {
1419         rdata = XGBE_GET_DESC_DATA(ring, i);
1420 
1421         /* Initialize Tx descriptor */
1422         xgbe_tx_desc_reset(rdata);
1423     }
1424 
1425     /* Update the total number of Tx descriptors */
1426     XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
1427 
1428     /* Update the starting address of descriptor ring */
1429     rdata = XGBE_GET_DESC_DATA(ring, start_index);
1430     XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
1431               upper_32_bits(rdata->rdesc_dma));
1432     XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
1433               lower_32_bits(rdata->rdesc_dma));
1434 
1435     DBGPR("<--tx_desc_init\n");
1436 }
1437 
1438 static void xgbe_rx_desc_reset(struct xgbe_prv_data *pdata,
1439                    struct xgbe_ring_data *rdata, unsigned int index)
1440 {
1441     struct xgbe_ring_desc *rdesc = rdata->rdesc;
1442     unsigned int rx_usecs = pdata->rx_usecs;
1443     unsigned int rx_frames = pdata->rx_frames;
1444     unsigned int inte;
1445     dma_addr_t hdr_dma, buf_dma;
1446 
1447     if (!rx_usecs && !rx_frames) {
1448         /* No coalescing, interrupt for every descriptor */
1449         inte = 1;
1450     } else {
1451         /* Set interrupt based on Rx frame coalescing setting */
1452         if (rx_frames && !((index + 1) % rx_frames))
1453             inte = 1;
1454         else
1455             inte = 0;
1456     }
1457 
1458     /* Reset the Rx descriptor
1459      *   Set buffer 1 (lo) address to header dma address (lo)
1460      *   Set buffer 1 (hi) address to header dma address (hi)
1461      *   Set buffer 2 (lo) address to buffer dma address (lo)
1462      *   Set buffer 2 (hi) address to buffer dma address (hi) and
1463      *     set control bits OWN and INTE
1464      */
1465     hdr_dma = rdata->rx.hdr.dma_base + rdata->rx.hdr.dma_off;
1466     buf_dma = rdata->rx.buf.dma_base + rdata->rx.buf.dma_off;
1467     rdesc->desc0 = cpu_to_le32(lower_32_bits(hdr_dma));
1468     rdesc->desc1 = cpu_to_le32(upper_32_bits(hdr_dma));
1469     rdesc->desc2 = cpu_to_le32(lower_32_bits(buf_dma));
1470     rdesc->desc3 = cpu_to_le32(upper_32_bits(buf_dma));
1471 
1472     XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, INTE, inte);
1473 
1474     /* Since the Rx DMA engine is likely running, make sure everything
1475      * is written to the descriptor(s) before setting the OWN bit
1476      * for the descriptor
1477      */
1478     dma_wmb();
1479 
1480     XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN, 1);
1481 
1482     /* Make sure ownership is written to the descriptor */
1483     dma_wmb();
1484 }
1485 
1486 static void xgbe_rx_desc_init(struct xgbe_channel *channel)
1487 {
1488     struct xgbe_prv_data *pdata = channel->pdata;
1489     struct xgbe_ring *ring = channel->rx_ring;
1490     struct xgbe_ring_data *rdata;
1491     unsigned int start_index = ring->cur;
1492     unsigned int i;
1493 
1494     DBGPR("-->rx_desc_init\n");
1495 
1496     /* Initialize all descriptors */
1497     for (i = 0; i < ring->rdesc_count; i++) {
1498         rdata = XGBE_GET_DESC_DATA(ring, i);
1499 
1500         /* Initialize Rx descriptor */
1501         xgbe_rx_desc_reset(pdata, rdata, i);
1502     }
1503 
1504     /* Update the total number of Rx descriptors */
1505     XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
1506 
1507     /* Update the starting address of descriptor ring */
1508     rdata = XGBE_GET_DESC_DATA(ring, start_index);
1509     XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
1510               upper_32_bits(rdata->rdesc_dma));
1511     XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
1512               lower_32_bits(rdata->rdesc_dma));
1513 
1514     /* Update the Rx Descriptor Tail Pointer */
1515     rdata = XGBE_GET_DESC_DATA(ring, start_index + ring->rdesc_count - 1);
1516     XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO,
1517               lower_32_bits(rdata->rdesc_dma));
1518 
1519     DBGPR("<--rx_desc_init\n");
1520 }
1521 
1522 static void xgbe_update_tstamp_addend(struct xgbe_prv_data *pdata,
1523                       unsigned int addend)
1524 {
1525     unsigned int count = 10000;
1526 
1527     /* Set the addend register value and tell the device */
1528     XGMAC_IOWRITE(pdata, MAC_TSAR, addend);
1529     XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSADDREG, 1);
1530 
1531     /* Wait for addend update to complete */
1532     while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSADDREG))
1533         udelay(5);
1534 
1535     if (!count)
1536         netdev_err(pdata->netdev,
1537                "timed out updating timestamp addend register\n");
1538 }
1539 
1540 static void xgbe_set_tstamp_time(struct xgbe_prv_data *pdata, unsigned int sec,
1541                  unsigned int nsec)
1542 {
1543     unsigned int count = 10000;
1544 
1545     /* Set the time values and tell the device */
1546     XGMAC_IOWRITE(pdata, MAC_STSUR, sec);
1547     XGMAC_IOWRITE(pdata, MAC_STNUR, nsec);
1548     XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSINIT, 1);
1549 
1550     /* Wait for time update to complete */
1551     while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSINIT))
1552         udelay(5);
1553 
1554     if (!count)
1555         netdev_err(pdata->netdev, "timed out initializing timestamp\n");
1556 }
1557 
1558 static u64 xgbe_get_tstamp_time(struct xgbe_prv_data *pdata)
1559 {
1560     u64 nsec;
1561 
1562     nsec = XGMAC_IOREAD(pdata, MAC_STSR);
1563     nsec *= NSEC_PER_SEC;
1564     nsec += XGMAC_IOREAD(pdata, MAC_STNR);
1565 
1566     return nsec;
1567 }
1568 
1569 static u64 xgbe_get_tx_tstamp(struct xgbe_prv_data *pdata)
1570 {
1571     unsigned int tx_snr, tx_ssr;
1572     u64 nsec;
1573 
1574     if (pdata->vdata->tx_tstamp_workaround) {
1575         tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1576         tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
1577     } else {
1578         tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
1579         tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1580     }
1581 
1582     if (XGMAC_GET_BITS(tx_snr, MAC_TXSNR, TXTSSTSMIS))
1583         return 0;
1584 
1585     nsec = tx_ssr;
1586     nsec *= NSEC_PER_SEC;
1587     nsec += tx_snr;
1588 
1589     return nsec;
1590 }
1591 
1592 static void xgbe_get_rx_tstamp(struct xgbe_packet_data *packet,
1593                    struct xgbe_ring_desc *rdesc)
1594 {
1595     u64 nsec;
1596 
1597     if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSA) &&
1598         !XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSD)) {
1599         nsec = le32_to_cpu(rdesc->desc1);
1600         nsec <<= 32;
1601         nsec |= le32_to_cpu(rdesc->desc0);
1602         if (nsec != 0xffffffffffffffffULL) {
1603             packet->rx_tstamp = nsec;
1604             XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1605                        RX_TSTAMP, 1);
1606         }
1607     }
1608 }
1609 
1610 static int xgbe_config_tstamp(struct xgbe_prv_data *pdata,
1611                   unsigned int mac_tscr)
1612 {
1613     /* Set one nano-second accuracy */
1614     XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCTRLSSR, 1);
1615 
1616     /* Set fine timestamp update */
1617     XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCFUPDT, 1);
1618 
1619     /* Overwrite earlier timestamps */
1620     XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TXTSSTSM, 1);
1621 
1622     XGMAC_IOWRITE(pdata, MAC_TSCR, mac_tscr);
1623 
1624     /* Exit if timestamping is not enabled */
1625     if (!XGMAC_GET_BITS(mac_tscr, MAC_TSCR, TSENA))
1626         return 0;
1627 
1628     /* Initialize time registers */
1629     XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SSINC, XGBE_TSTAMP_SSINC);
1630     XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SNSINC, XGBE_TSTAMP_SNSINC);
1631     xgbe_update_tstamp_addend(pdata, pdata->tstamp_addend);
1632     xgbe_set_tstamp_time(pdata, 0, 0);
1633 
1634     /* Initialize the timecounter */
1635     timecounter_init(&pdata->tstamp_tc, &pdata->tstamp_cc,
1636              ktime_to_ns(ktime_get_real()));
1637 
1638     return 0;
1639 }
1640 
1641 static void xgbe_tx_start_xmit(struct xgbe_channel *channel,
1642                    struct xgbe_ring *ring)
1643 {
1644     struct xgbe_prv_data *pdata = channel->pdata;
1645     struct xgbe_ring_data *rdata;
1646 
1647     /* Make sure everything is written before the register write */
1648     wmb();
1649 
1650     /* Issue a poll command to Tx DMA by writing address
1651      * of next immediate free descriptor */
1652     rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1653     XGMAC_DMA_IOWRITE(channel, DMA_CH_TDTR_LO,
1654               lower_32_bits(rdata->rdesc_dma));
1655 
1656     /* Start the Tx timer */
1657     if (pdata->tx_usecs && !channel->tx_timer_active) {
1658         channel->tx_timer_active = 1;
1659         mod_timer(&channel->tx_timer,
1660               jiffies + usecs_to_jiffies(pdata->tx_usecs));
1661     }
1662 
1663     ring->tx.xmit_more = 0;
1664 }
1665 
1666 static void xgbe_dev_xmit(struct xgbe_channel *channel)
1667 {
1668     struct xgbe_prv_data *pdata = channel->pdata;
1669     struct xgbe_ring *ring = channel->tx_ring;
1670     struct xgbe_ring_data *rdata;
1671     struct xgbe_ring_desc *rdesc;
1672     struct xgbe_packet_data *packet = &ring->packet_data;
1673     unsigned int tx_packets, tx_bytes;
1674     unsigned int csum, tso, vlan, vxlan;
1675     unsigned int tso_context, vlan_context;
1676     unsigned int tx_set_ic;
1677     int start_index = ring->cur;
1678     int cur_index = ring->cur;
1679     int i;
1680 
1681     DBGPR("-->xgbe_dev_xmit\n");
1682 
1683     tx_packets = packet->tx_packets;
1684     tx_bytes = packet->tx_bytes;
1685 
1686     csum = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1687                   CSUM_ENABLE);
1688     tso = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1689                  TSO_ENABLE);
1690     vlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1691                   VLAN_CTAG);
1692     vxlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1693                    VXLAN);
1694 
1695     if (tso && (packet->mss != ring->tx.cur_mss))
1696         tso_context = 1;
1697     else
1698         tso_context = 0;
1699 
1700     if (vlan && (packet->vlan_ctag != ring->tx.cur_vlan_ctag))
1701         vlan_context = 1;
1702     else
1703         vlan_context = 0;
1704 
1705     /* Determine if an interrupt should be generated for this Tx:
1706      *   Interrupt:
1707      *     - Tx frame count exceeds the frame count setting
1708      *     - Addition of Tx frame count to the frame count since the
1709      *       last interrupt was set exceeds the frame count setting
1710      *   No interrupt:
1711      *     - No frame count setting specified (ethtool -C ethX tx-frames 0)
1712      *     - Addition of Tx frame count to the frame count since the
1713      *       last interrupt was set does not exceed the frame count setting
1714      */
1715     ring->coalesce_count += tx_packets;
1716     if (!pdata->tx_frames)
1717         tx_set_ic = 0;
1718     else if (tx_packets > pdata->tx_frames)
1719         tx_set_ic = 1;
1720     else if ((ring->coalesce_count % pdata->tx_frames) < tx_packets)
1721         tx_set_ic = 1;
1722     else
1723         tx_set_ic = 0;
1724 
1725     rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1726     rdesc = rdata->rdesc;
1727 
1728     /* Create a context descriptor if this is a TSO packet */
1729     if (tso_context || vlan_context) {
1730         if (tso_context) {
1731             netif_dbg(pdata, tx_queued, pdata->netdev,
1732                   "TSO context descriptor, mss=%u\n",
1733                   packet->mss);
1734 
1735             /* Set the MSS size */
1736             XGMAC_SET_BITS_LE(rdesc->desc2, TX_CONTEXT_DESC2,
1737                       MSS, packet->mss);
1738 
1739             /* Mark it as a CONTEXT descriptor */
1740             XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1741                       CTXT, 1);
1742 
1743             /* Indicate this descriptor contains the MSS */
1744             XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1745                       TCMSSV, 1);
1746 
1747             ring->tx.cur_mss = packet->mss;
1748         }
1749 
1750         if (vlan_context) {
1751             netif_dbg(pdata, tx_queued, pdata->netdev,
1752                   "VLAN context descriptor, ctag=%u\n",
1753                   packet->vlan_ctag);
1754 
1755             /* Mark it as a CONTEXT descriptor */
1756             XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1757                       CTXT, 1);
1758 
1759             /* Set the VLAN tag */
1760             XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1761                       VT, packet->vlan_ctag);
1762 
1763             /* Indicate this descriptor contains the VLAN tag */
1764             XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1765                       VLTV, 1);
1766 
1767             ring->tx.cur_vlan_ctag = packet->vlan_ctag;
1768         }
1769 
1770         cur_index++;
1771         rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1772         rdesc = rdata->rdesc;
1773     }
1774 
1775     /* Update buffer address (for TSO this is the header) */
1776     rdesc->desc0 =  cpu_to_le32(lower_32_bits(rdata->skb_dma));
1777     rdesc->desc1 =  cpu_to_le32(upper_32_bits(rdata->skb_dma));
1778 
1779     /* Update the buffer length */
1780     XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1781               rdata->skb_dma_len);
1782 
1783     /* VLAN tag insertion check */
1784     if (vlan)
1785         XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, VTIR,
1786                   TX_NORMAL_DESC2_VLAN_INSERT);
1787 
1788     /* Timestamp enablement check */
1789     if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP))
1790         XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, TTSE, 1);
1791 
1792     /* Mark it as First Descriptor */
1793     XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FD, 1);
1794 
1795     /* Mark it as a NORMAL descriptor */
1796     XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1797 
1798     /* Set OWN bit if not the first descriptor */
1799     if (cur_index != start_index)
1800         XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1801 
1802     if (tso) {
1803         /* Enable TSO */
1804         XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TSE, 1);
1805         XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPPL,
1806                   packet->tcp_payload_len);
1807         XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPHDRLEN,
1808                   packet->tcp_header_len / 4);
1809 
1810         pdata->ext_stats.tx_tso_packets += tx_packets;
1811     } else {
1812         /* Enable CRC and Pad Insertion */
1813         XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CPC, 0);
1814 
1815         /* Enable HW CSUM */
1816         if (csum)
1817             XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1818                       CIC, 0x3);
1819 
1820         /* Set the total length to be transmitted */
1821         XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FL,
1822                   packet->length);
1823     }
1824 
1825     if (vxlan) {
1826         XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, VNP,
1827                   TX_NORMAL_DESC3_VXLAN_PACKET);
1828 
1829         pdata->ext_stats.tx_vxlan_packets += packet->tx_packets;
1830     }
1831 
1832     for (i = cur_index - start_index + 1; i < packet->rdesc_count; i++) {
1833         cur_index++;
1834         rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1835         rdesc = rdata->rdesc;
1836 
1837         /* Update buffer address */
1838         rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma));
1839         rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma));
1840 
1841         /* Update the buffer length */
1842         XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1843                   rdata->skb_dma_len);
1844 
1845         /* Set OWN bit */
1846         XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1847 
1848         /* Mark it as NORMAL descriptor */
1849         XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1850 
1851         /* Enable HW CSUM */
1852         if (csum)
1853             XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1854                       CIC, 0x3);
1855     }
1856 
1857     /* Set LAST bit for the last descriptor */
1858     XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD, 1);
1859 
1860     /* Set IC bit based on Tx coalescing settings */
1861     if (tx_set_ic)
1862         XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, IC, 1);
1863 
1864     /* Save the Tx info to report back during cleanup */
1865     rdata->tx.packets = tx_packets;
1866     rdata->tx.bytes = tx_bytes;
1867 
1868     pdata->ext_stats.txq_packets[channel->queue_index] += tx_packets;
1869     pdata->ext_stats.txq_bytes[channel->queue_index] += tx_bytes;
1870 
1871     /* In case the Tx DMA engine is running, make sure everything
1872      * is written to the descriptor(s) before setting the OWN bit
1873      * for the first descriptor
1874      */
1875     dma_wmb();
1876 
1877     /* Set OWN bit for the first descriptor */
1878     rdata = XGBE_GET_DESC_DATA(ring, start_index);
1879     rdesc = rdata->rdesc;
1880     XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1881 
1882     if (netif_msg_tx_queued(pdata))
1883         xgbe_dump_tx_desc(pdata, ring, start_index,
1884                   packet->rdesc_count, 1);
1885 
1886     /* Make sure ownership is written to the descriptor */
1887     smp_wmb();
1888 
1889     ring->cur = cur_index + 1;
1890     if (!netdev_xmit_more() ||
1891         netif_xmit_stopped(netdev_get_tx_queue(pdata->netdev,
1892                            channel->queue_index)))
1893         xgbe_tx_start_xmit(channel, ring);
1894     else
1895         ring->tx.xmit_more = 1;
1896 
1897     DBGPR("  %s: descriptors %u to %u written\n",
1898           channel->name, start_index & (ring->rdesc_count - 1),
1899           (ring->cur - 1) & (ring->rdesc_count - 1));
1900 
1901     DBGPR("<--xgbe_dev_xmit\n");
1902 }
1903 
1904 static int xgbe_dev_read(struct xgbe_channel *channel)
1905 {
1906     struct xgbe_prv_data *pdata = channel->pdata;
1907     struct xgbe_ring *ring = channel->rx_ring;
1908     struct xgbe_ring_data *rdata;
1909     struct xgbe_ring_desc *rdesc;
1910     struct xgbe_packet_data *packet = &ring->packet_data;
1911     struct net_device *netdev = pdata->netdev;
1912     unsigned int err, etlt, l34t;
1913 
1914     DBGPR("-->xgbe_dev_read: cur = %d\n", ring->cur);
1915 
1916     rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1917     rdesc = rdata->rdesc;
1918 
1919     /* Check for data availability */
1920     if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
1921         return 1;
1922 
1923     /* Make sure descriptor fields are read after reading the OWN bit */
1924     dma_rmb();
1925 
1926     if (netif_msg_rx_status(pdata))
1927         xgbe_dump_rx_desc(pdata, ring, ring->cur);
1928 
1929     if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
1930         /* Timestamp Context Descriptor */
1931         xgbe_get_rx_tstamp(packet, rdesc);
1932 
1933         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1934                    CONTEXT, 1);
1935         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1936                    CONTEXT_NEXT, 0);
1937         return 0;
1938     }
1939 
1940     /* Normal Descriptor, be sure Context Descriptor bit is off */
1941     XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
1942 
1943     /* Indicate if a Context Descriptor is next */
1944     if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
1945         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1946                    CONTEXT_NEXT, 1);
1947 
1948     /* Get the header length */
1949     if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
1950         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1951                    FIRST, 1);
1952         rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
1953                               RX_NORMAL_DESC2, HL);
1954         if (rdata->rx.hdr_len)
1955             pdata->ext_stats.rx_split_header_packets++;
1956     } else {
1957         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1958                    FIRST, 0);
1959     }
1960 
1961     /* Get the RSS hash */
1962     if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
1963         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1964                    RSS_HASH, 1);
1965 
1966         packet->rss_hash = le32_to_cpu(rdesc->desc1);
1967 
1968         l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
1969         switch (l34t) {
1970         case RX_DESC3_L34T_IPV4_TCP:
1971         case RX_DESC3_L34T_IPV4_UDP:
1972         case RX_DESC3_L34T_IPV6_TCP:
1973         case RX_DESC3_L34T_IPV6_UDP:
1974             packet->rss_hash_type = PKT_HASH_TYPE_L4;
1975             break;
1976         default:
1977             packet->rss_hash_type = PKT_HASH_TYPE_L3;
1978         }
1979     }
1980 
1981     /* Not all the data has been transferred for this packet */
1982     if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD))
1983         return 0;
1984 
1985     /* This is the last of the data for this packet */
1986     XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1987                LAST, 1);
1988 
1989     /* Get the packet length */
1990     rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
1991 
1992     /* Set checksum done indicator as appropriate */
1993     if (netdev->features & NETIF_F_RXCSUM) {
1994         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1995                    CSUM_DONE, 1);
1996         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1997                    TNPCSUM_DONE, 1);
1998     }
1999 
2000     /* Set the tunneled packet indicator */
2001     if (XGMAC_GET_BITS_LE(rdesc->desc2, RX_NORMAL_DESC2, TNP)) {
2002         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2003                    TNP, 1);
2004         pdata->ext_stats.rx_vxlan_packets++;
2005 
2006         l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
2007         switch (l34t) {
2008         case RX_DESC3_L34T_IPV4_UNKNOWN:
2009         case RX_DESC3_L34T_IPV6_UNKNOWN:
2010             XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2011                        TNPCSUM_DONE, 0);
2012             break;
2013         }
2014     }
2015 
2016     /* Check for errors (only valid in last descriptor) */
2017     err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
2018     etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
2019     netif_dbg(pdata, rx_status, netdev, "err=%u, etlt=%#x\n", err, etlt);
2020 
2021     if (!err || !etlt) {
2022         /* No error if err is 0 or etlt is 0 */
2023         if ((etlt == 0x09) &&
2024             (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
2025             XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2026                        VLAN_CTAG, 1);
2027             packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
2028                                   RX_NORMAL_DESC0,
2029                                   OVT);
2030             netif_dbg(pdata, rx_status, netdev, "vlan-ctag=%#06x\n",
2031                   packet->vlan_ctag);
2032         }
2033     } else {
2034         unsigned int tnp = XGMAC_GET_BITS(packet->attributes,
2035                           RX_PACKET_ATTRIBUTES, TNP);
2036 
2037         if ((etlt == 0x05) || (etlt == 0x06)) {
2038             XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2039                        CSUM_DONE, 0);
2040             XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2041                        TNPCSUM_DONE, 0);
2042             pdata->ext_stats.rx_csum_errors++;
2043         } else if (tnp && ((etlt == 0x09) || (etlt == 0x0a))) {
2044             XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2045                        CSUM_DONE, 0);
2046             XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2047                        TNPCSUM_DONE, 0);
2048             pdata->ext_stats.rx_vxlan_csum_errors++;
2049         } else {
2050             XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
2051                        FRAME, 1);
2052         }
2053     }
2054 
2055     pdata->ext_stats.rxq_packets[channel->queue_index]++;
2056     pdata->ext_stats.rxq_bytes[channel->queue_index] += rdata->rx.len;
2057 
2058     DBGPR("<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n", channel->name,
2059           ring->cur & (ring->rdesc_count - 1), ring->cur);
2060 
2061     return 0;
2062 }
2063 
2064 static int xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
2065 {
2066     /* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
2067     return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT);
2068 }
2069 
2070 static int xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
2071 {
2072     /* Rx and Tx share LD bit, so check TDES3.LD bit */
2073     return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD);
2074 }
2075 
2076 static int xgbe_enable_int(struct xgbe_channel *channel,
2077                enum xgbe_int int_id)
2078 {
2079     switch (int_id) {
2080     case XGMAC_INT_DMA_CH_SR_TI:
2081         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
2082         break;
2083     case XGMAC_INT_DMA_CH_SR_TPS:
2084         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 1);
2085         break;
2086     case XGMAC_INT_DMA_CH_SR_TBU:
2087         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 1);
2088         break;
2089     case XGMAC_INT_DMA_CH_SR_RI:
2090         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
2091         break;
2092     case XGMAC_INT_DMA_CH_SR_RBU:
2093         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
2094         break;
2095     case XGMAC_INT_DMA_CH_SR_RPS:
2096         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 1);
2097         break;
2098     case XGMAC_INT_DMA_CH_SR_TI_RI:
2099         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
2100         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
2101         break;
2102     case XGMAC_INT_DMA_CH_SR_FBE:
2103         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
2104         break;
2105     case XGMAC_INT_DMA_ALL:
2106         channel->curr_ier |= channel->saved_ier;
2107         break;
2108     default:
2109         return -1;
2110     }
2111 
2112     XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
2113 
2114     return 0;
2115 }
2116 
2117 static int xgbe_disable_int(struct xgbe_channel *channel,
2118                 enum xgbe_int int_id)
2119 {
2120     switch (int_id) {
2121     case XGMAC_INT_DMA_CH_SR_TI:
2122         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
2123         break;
2124     case XGMAC_INT_DMA_CH_SR_TPS:
2125         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 0);
2126         break;
2127     case XGMAC_INT_DMA_CH_SR_TBU:
2128         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 0);
2129         break;
2130     case XGMAC_INT_DMA_CH_SR_RI:
2131         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
2132         break;
2133     case XGMAC_INT_DMA_CH_SR_RBU:
2134         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 0);
2135         break;
2136     case XGMAC_INT_DMA_CH_SR_RPS:
2137         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 0);
2138         break;
2139     case XGMAC_INT_DMA_CH_SR_TI_RI:
2140         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
2141         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
2142         break;
2143     case XGMAC_INT_DMA_CH_SR_FBE:
2144         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 0);
2145         break;
2146     case XGMAC_INT_DMA_ALL:
2147         channel->saved_ier = channel->curr_ier;
2148         channel->curr_ier = 0;
2149         break;
2150     default:
2151         return -1;
2152     }
2153 
2154     XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
2155 
2156     return 0;
2157 }
2158 
2159 static int __xgbe_exit(struct xgbe_prv_data *pdata)
2160 {
2161     unsigned int count = 2000;
2162 
2163     DBGPR("-->xgbe_exit\n");
2164 
2165     /* Issue a software reset */
2166     XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
2167     usleep_range(10, 15);
2168 
2169     /* Poll Until Poll Condition */
2170     while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
2171         usleep_range(500, 600);
2172 
2173     if (!count)
2174         return -EBUSY;
2175 
2176     DBGPR("<--xgbe_exit\n");
2177 
2178     return 0;
2179 }
2180 
2181 static int xgbe_exit(struct xgbe_prv_data *pdata)
2182 {
2183     int ret;
2184 
2185     /* To guard against possible incorrectly generated interrupts,
2186      * issue the software reset twice.
2187      */
2188     ret = __xgbe_exit(pdata);
2189     if (ret)
2190         return ret;
2191 
2192     return __xgbe_exit(pdata);
2193 }
2194 
2195 static int xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
2196 {
2197     unsigned int i, count;
2198 
2199     if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
2200         return 0;
2201 
2202     for (i = 0; i < pdata->tx_q_count; i++)
2203         XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
2204 
2205     /* Poll Until Poll Condition */
2206     for (i = 0; i < pdata->tx_q_count; i++) {
2207         count = 2000;
2208         while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i,
2209                             MTL_Q_TQOMR, FTQ))
2210             usleep_range(500, 600);
2211 
2212         if (!count)
2213             return -EBUSY;
2214     }
2215 
2216     return 0;
2217 }
2218 
2219 static void xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
2220 {
2221     unsigned int sbmr;
2222 
2223     sbmr = XGMAC_IOREAD(pdata, DMA_SBMR);
2224 
2225     /* Set enhanced addressing mode */
2226     XGMAC_SET_BITS(sbmr, DMA_SBMR, EAME, 1);
2227 
2228     /* Set the System Bus mode */
2229     XGMAC_SET_BITS(sbmr, DMA_SBMR, UNDEF, 1);
2230     XGMAC_SET_BITS(sbmr, DMA_SBMR, BLEN, pdata->blen >> 2);
2231     XGMAC_SET_BITS(sbmr, DMA_SBMR, AAL, pdata->aal);
2232     XGMAC_SET_BITS(sbmr, DMA_SBMR, RD_OSR_LMT, pdata->rd_osr_limit - 1);
2233     XGMAC_SET_BITS(sbmr, DMA_SBMR, WR_OSR_LMT, pdata->wr_osr_limit - 1);
2234 
2235     XGMAC_IOWRITE(pdata, DMA_SBMR, sbmr);
2236 
2237     /* Set descriptor fetching threshold */
2238     if (pdata->vdata->tx_desc_prefetch)
2239         XGMAC_IOWRITE_BITS(pdata, DMA_TXEDMACR, TDPS,
2240                    pdata->vdata->tx_desc_prefetch);
2241 
2242     if (pdata->vdata->rx_desc_prefetch)
2243         XGMAC_IOWRITE_BITS(pdata, DMA_RXEDMACR, RDPS,
2244                    pdata->vdata->rx_desc_prefetch);
2245 }
2246 
2247 static void xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
2248 {
2249     XGMAC_IOWRITE(pdata, DMA_AXIARCR, pdata->arcr);
2250     XGMAC_IOWRITE(pdata, DMA_AXIAWCR, pdata->awcr);
2251     if (pdata->awarcr)
2252         XGMAC_IOWRITE(pdata, DMA_AXIAWARCR, pdata->awarcr);
2253 }
2254 
2255 static void xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
2256 {
2257     unsigned int i;
2258 
2259     /* Set Tx to weighted round robin scheduling algorithm */
2260     XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
2261 
2262     /* Set Tx traffic classes to use WRR algorithm with equal weights */
2263     for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
2264         XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2265                        MTL_TSA_ETS);
2266         XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
2267     }
2268 
2269     /* Set Rx to strict priority algorithm */
2270     XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
2271 }
2272 
2273 static void xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata,
2274                           unsigned int queue,
2275                           unsigned int q_fifo_size)
2276 {
2277     unsigned int frame_fifo_size;
2278     unsigned int rfa, rfd;
2279 
2280     frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata));
2281 
2282     if (pdata->pfcq[queue] && (q_fifo_size > pdata->pfc_rfa)) {
2283         /* PFC is active for this queue */
2284         rfa = pdata->pfc_rfa;
2285         rfd = rfa + frame_fifo_size;
2286         if (rfd > XGMAC_FLOW_CONTROL_MAX)
2287             rfd = XGMAC_FLOW_CONTROL_MAX;
2288         if (rfa >= XGMAC_FLOW_CONTROL_MAX)
2289             rfa = XGMAC_FLOW_CONTROL_MAX - XGMAC_FLOW_CONTROL_UNIT;
2290     } else {
2291         /* This path deals with just maximum frame sizes which are
2292          * limited to a jumbo frame of 9,000 (plus headers, etc.)
2293          * so we can never exceed the maximum allowable RFA/RFD
2294          * values.
2295          */
2296         if (q_fifo_size <= 2048) {
2297             /* rx_rfd to zero to signal no flow control */
2298             pdata->rx_rfa[queue] = 0;
2299             pdata->rx_rfd[queue] = 0;
2300             return;
2301         }
2302 
2303         if (q_fifo_size <= 4096) {
2304             /* Between 2048 and 4096 */
2305             pdata->rx_rfa[queue] = 0;   /* Full - 1024 bytes */
2306             pdata->rx_rfd[queue] = 1;   /* Full - 1536 bytes */
2307             return;
2308         }
2309 
2310         if (q_fifo_size <= frame_fifo_size) {
2311             /* Between 4096 and max-frame */
2312             pdata->rx_rfa[queue] = 2;   /* Full - 2048 bytes */
2313             pdata->rx_rfd[queue] = 5;   /* Full - 3584 bytes */
2314             return;
2315         }
2316 
2317         if (q_fifo_size <= (frame_fifo_size * 3)) {
2318             /* Between max-frame and 3 max-frames,
2319              * trigger if we get just over a frame of data and
2320              * resume when we have just under half a frame left.
2321              */
2322             rfa = q_fifo_size - frame_fifo_size;
2323             rfd = rfa + (frame_fifo_size / 2);
2324         } else {
2325             /* Above 3 max-frames - trigger when just over
2326              * 2 frames of space available
2327              */
2328             rfa = frame_fifo_size * 2;
2329             rfa += XGMAC_FLOW_CONTROL_UNIT;
2330             rfd = rfa + frame_fifo_size;
2331         }
2332     }
2333 
2334     pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa);
2335     pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd);
2336 }
2337 
2338 static void xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata,
2339                           unsigned int *fifo)
2340 {
2341     unsigned int q_fifo_size;
2342     unsigned int i;
2343 
2344     for (i = 0; i < pdata->rx_q_count; i++) {
2345         q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT;
2346 
2347         xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size);
2348     }
2349 }
2350 
2351 static void xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
2352 {
2353     unsigned int i;
2354 
2355     for (i = 0; i < pdata->rx_q_count; i++) {
2356         XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA,
2357                        pdata->rx_rfa[i]);
2358         XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD,
2359                        pdata->rx_rfd[i]);
2360     }
2361 }
2362 
2363 static unsigned int xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata)
2364 {
2365     /* The configured value may not be the actual amount of fifo RAM */
2366     return min_t(unsigned int, pdata->tx_max_fifo_size,
2367              pdata->hw_feat.tx_fifo_size);
2368 }
2369 
2370 static unsigned int xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata)
2371 {
2372     /* The configured value may not be the actual amount of fifo RAM */
2373     return min_t(unsigned int, pdata->rx_max_fifo_size,
2374              pdata->hw_feat.rx_fifo_size);
2375 }
2376 
2377 static void xgbe_calculate_equal_fifo(unsigned int fifo_size,
2378                       unsigned int queue_count,
2379                       unsigned int *fifo)
2380 {
2381     unsigned int q_fifo_size;
2382     unsigned int p_fifo;
2383     unsigned int i;
2384 
2385     q_fifo_size = fifo_size / queue_count;
2386 
2387     /* Calculate the fifo setting by dividing the queue's fifo size
2388      * by the fifo allocation increment (with 0 representing the
2389      * base allocation increment so decrement the result by 1).
2390      */
2391     p_fifo = q_fifo_size / XGMAC_FIFO_UNIT;
2392     if (p_fifo)
2393         p_fifo--;
2394 
2395     /* Distribute the fifo equally amongst the queues */
2396     for (i = 0; i < queue_count; i++)
2397         fifo[i] = p_fifo;
2398 }
2399 
2400 static unsigned int xgbe_set_nonprio_fifos(unsigned int fifo_size,
2401                        unsigned int queue_count,
2402                        unsigned int *fifo)
2403 {
2404     unsigned int i;
2405 
2406     BUILD_BUG_ON_NOT_POWER_OF_2(XGMAC_FIFO_MIN_ALLOC);
2407 
2408     if (queue_count <= IEEE_8021QAZ_MAX_TCS)
2409         return fifo_size;
2410 
2411     /* Rx queues 9 and up are for specialized packets,
2412      * such as PTP or DCB control packets, etc. and
2413      * don't require a large fifo
2414      */
2415     for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) {
2416         fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1;
2417         fifo_size -= XGMAC_FIFO_MIN_ALLOC;
2418     }
2419 
2420     return fifo_size;
2421 }
2422 
2423 static unsigned int xgbe_get_pfc_delay(struct xgbe_prv_data *pdata)
2424 {
2425     unsigned int delay;
2426 
2427     /* If a delay has been provided, use that */
2428     if (pdata->pfc->delay)
2429         return pdata->pfc->delay / 8;
2430 
2431     /* Allow for two maximum size frames */
2432     delay = xgbe_get_max_frame(pdata);
2433     delay += XGMAC_ETH_PREAMBLE;
2434     delay *= 2;
2435 
2436     /* Allow for PFC frame */
2437     delay += XGMAC_PFC_DATA_LEN;
2438     delay += ETH_HLEN + ETH_FCS_LEN;
2439     delay += XGMAC_ETH_PREAMBLE;
2440 
2441     /* Allow for miscellaneous delays (LPI exit, cable, etc.) */
2442     delay += XGMAC_PFC_DELAYS;
2443 
2444     return delay;
2445 }
2446 
2447 static unsigned int xgbe_get_pfc_queues(struct xgbe_prv_data *pdata)
2448 {
2449     unsigned int count, prio_queues;
2450     unsigned int i;
2451 
2452     if (!pdata->pfc->pfc_en)
2453         return 0;
2454 
2455     count = 0;
2456     prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2457     for (i = 0; i < prio_queues; i++) {
2458         if (!xgbe_is_pfc_queue(pdata, i))
2459             continue;
2460 
2461         pdata->pfcq[i] = 1;
2462         count++;
2463     }
2464 
2465     return count;
2466 }
2467 
2468 static void xgbe_calculate_dcb_fifo(struct xgbe_prv_data *pdata,
2469                     unsigned int fifo_size,
2470                     unsigned int *fifo)
2471 {
2472     unsigned int q_fifo_size, rem_fifo, addn_fifo;
2473     unsigned int prio_queues;
2474     unsigned int pfc_count;
2475     unsigned int i;
2476 
2477     q_fifo_size = XGMAC_FIFO_ALIGN(xgbe_get_max_frame(pdata));
2478     prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2479     pfc_count = xgbe_get_pfc_queues(pdata);
2480 
2481     if (!pfc_count || ((q_fifo_size * prio_queues) > fifo_size)) {
2482         /* No traffic classes with PFC enabled or can't do lossless */
2483         xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
2484         return;
2485     }
2486 
2487     /* Calculate how much fifo we have to play with */
2488     rem_fifo = fifo_size - (q_fifo_size * prio_queues);
2489 
2490     /* Calculate how much more than base fifo PFC needs, which also
2491      * becomes the threshold activation point (RFA)
2492      */
2493     pdata->pfc_rfa = xgbe_get_pfc_delay(pdata);
2494     pdata->pfc_rfa = XGMAC_FLOW_CONTROL_ALIGN(pdata->pfc_rfa);
2495 
2496     if (pdata->pfc_rfa > q_fifo_size) {
2497         addn_fifo = pdata->pfc_rfa - q_fifo_size;
2498         addn_fifo = XGMAC_FIFO_ALIGN(addn_fifo);
2499     } else {
2500         addn_fifo = 0;
2501     }
2502 
2503     /* Calculate DCB fifo settings:
2504      *   - distribute remaining fifo between the VLAN priority
2505      *     queues based on traffic class PFC enablement and overall
2506      *     priority (0 is lowest priority, so start at highest)
2507      */
2508     i = prio_queues;
2509     while (i > 0) {
2510         i--;
2511 
2512         fifo[i] = (q_fifo_size / XGMAC_FIFO_UNIT) - 1;
2513 
2514         if (!pdata->pfcq[i] || !addn_fifo)
2515             continue;
2516 
2517         if (addn_fifo > rem_fifo) {
2518             netdev_warn(pdata->netdev,
2519                     "RXq%u cannot set needed fifo size\n", i);
2520             if (!rem_fifo)
2521                 continue;
2522 
2523             addn_fifo = rem_fifo;
2524         }
2525 
2526         fifo[i] += (addn_fifo / XGMAC_FIFO_UNIT);
2527         rem_fifo -= addn_fifo;
2528     }
2529 
2530     if (rem_fifo) {
2531         unsigned int inc_fifo = rem_fifo / prio_queues;
2532 
2533         /* Distribute remaining fifo across queues */
2534         for (i = 0; i < prio_queues; i++)
2535             fifo[i] += (inc_fifo / XGMAC_FIFO_UNIT);
2536     }
2537 }
2538 
2539 static void xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
2540 {
2541     unsigned int fifo_size;
2542     unsigned int fifo[XGBE_MAX_QUEUES];
2543     unsigned int i;
2544 
2545     fifo_size = xgbe_get_tx_fifo_size(pdata);
2546 
2547     xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo);
2548 
2549     for (i = 0; i < pdata->tx_q_count; i++)
2550         XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]);
2551 
2552     netif_info(pdata, drv, pdata->netdev,
2553            "%d Tx hardware queues, %d byte fifo per queue\n",
2554            pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
2555 }
2556 
2557 static void xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
2558 {
2559     unsigned int fifo_size;
2560     unsigned int fifo[XGBE_MAX_QUEUES];
2561     unsigned int prio_queues;
2562     unsigned int i;
2563 
2564     /* Clear any DCB related fifo/queue information */
2565     memset(pdata->pfcq, 0, sizeof(pdata->pfcq));
2566     pdata->pfc_rfa = 0;
2567 
2568     fifo_size = xgbe_get_rx_fifo_size(pdata);
2569     prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2570 
2571     /* Assign a minimum fifo to the non-VLAN priority queues */
2572     fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo);
2573 
2574     if (pdata->pfc && pdata->ets)
2575         xgbe_calculate_dcb_fifo(pdata, fifo_size, fifo);
2576     else
2577         xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
2578 
2579     for (i = 0; i < pdata->rx_q_count; i++)
2580         XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]);
2581 
2582     xgbe_calculate_flow_control_threshold(pdata, fifo);
2583     xgbe_config_flow_control_threshold(pdata);
2584 
2585     if (pdata->pfc && pdata->ets && pdata->pfc->pfc_en) {
2586         netif_info(pdata, drv, pdata->netdev,
2587                "%u Rx hardware queues\n", pdata->rx_q_count);
2588         for (i = 0; i < pdata->rx_q_count; i++)
2589             netif_info(pdata, drv, pdata->netdev,
2590                    "RxQ%u, %u byte fifo queue\n", i,
2591                    ((fifo[i] + 1) * XGMAC_FIFO_UNIT));
2592     } else {
2593         netif_info(pdata, drv, pdata->netdev,
2594                "%u Rx hardware queues, %u byte fifo per queue\n",
2595                pdata->rx_q_count,
2596                ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
2597     }
2598 }
2599 
2600 static void xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
2601 {
2602     unsigned int qptc, qptc_extra, queue;
2603     unsigned int prio_queues;
2604     unsigned int ppq, ppq_extra, prio;
2605     unsigned int mask;
2606     unsigned int i, j, reg, reg_val;
2607 
2608     /* Map the MTL Tx Queues to Traffic Classes
2609      *   Note: Tx Queues >= Traffic Classes
2610      */
2611     qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
2612     qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
2613 
2614     for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
2615         for (j = 0; j < qptc; j++) {
2616             netif_dbg(pdata, drv, pdata->netdev,
2617                   "TXq%u mapped to TC%u\n", queue, i);
2618             XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2619                            Q2TCMAP, i);
2620             pdata->q2tc_map[queue++] = i;
2621         }
2622 
2623         if (i < qptc_extra) {
2624             netif_dbg(pdata, drv, pdata->netdev,
2625                   "TXq%u mapped to TC%u\n", queue, i);
2626             XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2627                            Q2TCMAP, i);
2628             pdata->q2tc_map[queue++] = i;
2629         }
2630     }
2631 
2632     /* Map the 8 VLAN priority values to available MTL Rx queues */
2633     prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2634     ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
2635     ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
2636 
2637     reg = MAC_RQC2R;
2638     reg_val = 0;
2639     for (i = 0, prio = 0; i < prio_queues;) {
2640         mask = 0;
2641         for (j = 0; j < ppq; j++) {
2642             netif_dbg(pdata, drv, pdata->netdev,
2643                   "PRIO%u mapped to RXq%u\n", prio, i);
2644             mask |= (1 << prio);
2645             pdata->prio2q_map[prio++] = i;
2646         }
2647 
2648         if (i < ppq_extra) {
2649             netif_dbg(pdata, drv, pdata->netdev,
2650                   "PRIO%u mapped to RXq%u\n", prio, i);
2651             mask |= (1 << prio);
2652             pdata->prio2q_map[prio++] = i;
2653         }
2654 
2655         reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
2656 
2657         if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
2658             continue;
2659 
2660         XGMAC_IOWRITE(pdata, reg, reg_val);
2661         reg += MAC_RQC2_INC;
2662         reg_val = 0;
2663     }
2664 
2665     /* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
2666     reg = MTL_RQDCM0R;
2667     reg_val = 0;
2668     for (i = 0; i < pdata->rx_q_count;) {
2669         reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
2670 
2671         if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
2672             continue;
2673 
2674         XGMAC_IOWRITE(pdata, reg, reg_val);
2675 
2676         reg += MTL_RQDCM_INC;
2677         reg_val = 0;
2678     }
2679 }
2680 
2681 static void xgbe_config_tc(struct xgbe_prv_data *pdata)
2682 {
2683     unsigned int offset, queue, prio;
2684     u8 i;
2685 
2686     netdev_reset_tc(pdata->netdev);
2687     if (!pdata->num_tcs)
2688         return;
2689 
2690     netdev_set_num_tc(pdata->netdev, pdata->num_tcs);
2691 
2692     for (i = 0, queue = 0, offset = 0; i < pdata->num_tcs; i++) {
2693         while ((queue < pdata->tx_q_count) &&
2694                (pdata->q2tc_map[queue] == i))
2695             queue++;
2696 
2697         netif_dbg(pdata, drv, pdata->netdev, "TC%u using TXq%u-%u\n",
2698               i, offset, queue - 1);
2699         netdev_set_tc_queue(pdata->netdev, i, queue - offset, offset);
2700         offset = queue;
2701     }
2702 
2703     if (!pdata->ets)
2704         return;
2705 
2706     for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++)
2707         netdev_set_prio_tc_map(pdata->netdev, prio,
2708                        pdata->ets->prio_tc[prio]);
2709 }
2710 
2711 static void xgbe_config_dcb_tc(struct xgbe_prv_data *pdata)
2712 {
2713     struct ieee_ets *ets = pdata->ets;
2714     unsigned int total_weight, min_weight, weight;
2715     unsigned int mask, reg, reg_val;
2716     unsigned int i, prio;
2717 
2718     if (!ets)
2719         return;
2720 
2721     /* Set Tx to deficit weighted round robin scheduling algorithm (when
2722      * traffic class is using ETS algorithm)
2723      */
2724     XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_DWRR);
2725 
2726     /* Set Traffic Class algorithms */
2727     total_weight = pdata->netdev->mtu * pdata->hw_feat.tc_cnt;
2728     min_weight = total_weight / 100;
2729     if (!min_weight)
2730         min_weight = 1;
2731 
2732     for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
2733         /* Map the priorities to the traffic class */
2734         mask = 0;
2735         for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
2736             if (ets->prio_tc[prio] == i)
2737                 mask |= (1 << prio);
2738         }
2739         mask &= 0xff;
2740 
2741         netif_dbg(pdata, drv, pdata->netdev, "TC%u PRIO mask=%#x\n",
2742               i, mask);
2743         reg = MTL_TCPM0R + (MTL_TCPM_INC * (i / MTL_TCPM_TC_PER_REG));
2744         reg_val = XGMAC_IOREAD(pdata, reg);
2745 
2746         reg_val &= ~(0xff << ((i % MTL_TCPM_TC_PER_REG) << 3));
2747         reg_val |= (mask << ((i % MTL_TCPM_TC_PER_REG) << 3));
2748 
2749         XGMAC_IOWRITE(pdata, reg, reg_val);
2750 
2751         /* Set the traffic class algorithm */
2752         switch (ets->tc_tsa[i]) {
2753         case IEEE_8021QAZ_TSA_STRICT:
2754             netif_dbg(pdata, drv, pdata->netdev,
2755                   "TC%u using SP\n", i);
2756             XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2757                            MTL_TSA_SP);
2758             break;
2759         case IEEE_8021QAZ_TSA_ETS:
2760             weight = total_weight * ets->tc_tx_bw[i] / 100;
2761             weight = clamp(weight, min_weight, total_weight);
2762 
2763             netif_dbg(pdata, drv, pdata->netdev,
2764                   "TC%u using DWRR (weight %u)\n", i, weight);
2765             XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2766                            MTL_TSA_ETS);
2767             XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW,
2768                            weight);
2769             break;
2770         }
2771     }
2772 
2773     xgbe_config_tc(pdata);
2774 }
2775 
2776 static void xgbe_config_dcb_pfc(struct xgbe_prv_data *pdata)
2777 {
2778     if (!test_bit(XGBE_DOWN, &pdata->dev_state)) {
2779         /* Just stop the Tx queues while Rx fifo is changed */
2780         netif_tx_stop_all_queues(pdata->netdev);
2781 
2782         /* Suspend Rx so that fifo's can be adjusted */
2783         pdata->hw_if.disable_rx(pdata);
2784     }
2785 
2786     xgbe_config_rx_fifo_size(pdata);
2787     xgbe_config_flow_control(pdata);
2788 
2789     if (!test_bit(XGBE_DOWN, &pdata->dev_state)) {
2790         /* Resume Rx */
2791         pdata->hw_if.enable_rx(pdata);
2792 
2793         /* Resume Tx queues */
2794         netif_tx_start_all_queues(pdata->netdev);
2795     }
2796 }
2797 
2798 static void xgbe_config_mac_address(struct xgbe_prv_data *pdata)
2799 {
2800     xgbe_set_mac_address(pdata, pdata->netdev->dev_addr);
2801 
2802     /* Filtering is done using perfect filtering and hash filtering */
2803     if (pdata->hw_feat.hash_table_size) {
2804         XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
2805         XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
2806         XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
2807     }
2808 }
2809 
2810 static void xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
2811 {
2812     unsigned int val;
2813 
2814     val = (pdata->netdev->mtu > XGMAC_STD_PACKET_MTU) ? 1 : 0;
2815 
2816     XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
2817 }
2818 
2819 static void xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
2820 {
2821     xgbe_set_speed(pdata, pdata->phy_speed);
2822 }
2823 
2824 static void xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
2825 {
2826     if (pdata->netdev->features & NETIF_F_RXCSUM)
2827         xgbe_enable_rx_csum(pdata);
2828     else
2829         xgbe_disable_rx_csum(pdata);
2830 }
2831 
2832 static void xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
2833 {
2834     /* Indicate that VLAN Tx CTAGs come from context descriptors */
2835     XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
2836     XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
2837 
2838     /* Set the current VLAN Hash Table register value */
2839     xgbe_update_vlan_hash_table(pdata);
2840 
2841     if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
2842         xgbe_enable_rx_vlan_filtering(pdata);
2843     else
2844         xgbe_disable_rx_vlan_filtering(pdata);
2845 
2846     if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
2847         xgbe_enable_rx_vlan_stripping(pdata);
2848     else
2849         xgbe_disable_rx_vlan_stripping(pdata);
2850 }
2851 
2852 static u64 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
2853 {
2854     bool read_hi;
2855     u64 val;
2856 
2857     if (pdata->vdata->mmc_64bit) {
2858         switch (reg_lo) {
2859         /* These registers are always 32 bit */
2860         case MMC_RXRUNTERROR:
2861         case MMC_RXJABBERERROR:
2862         case MMC_RXUNDERSIZE_G:
2863         case MMC_RXOVERSIZE_G:
2864         case MMC_RXWATCHDOGERROR:
2865             read_hi = false;
2866             break;
2867 
2868         default:
2869             read_hi = true;
2870         }
2871     } else {
2872         switch (reg_lo) {
2873         /* These registers are always 64 bit */
2874         case MMC_TXOCTETCOUNT_GB_LO:
2875         case MMC_TXOCTETCOUNT_G_LO:
2876         case MMC_RXOCTETCOUNT_GB_LO:
2877         case MMC_RXOCTETCOUNT_G_LO:
2878             read_hi = true;
2879             break;
2880 
2881         default:
2882             read_hi = false;
2883         }
2884     }
2885 
2886     val = XGMAC_IOREAD(pdata, reg_lo);
2887 
2888     if (read_hi)
2889         val |= ((u64)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
2890 
2891     return val;
2892 }
2893 
2894 static void xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
2895 {
2896     struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2897     unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
2898 
2899     if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
2900         stats->txoctetcount_gb +=
2901             xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2902 
2903     if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
2904         stats->txframecount_gb +=
2905             xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2906 
2907     if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
2908         stats->txbroadcastframes_g +=
2909             xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2910 
2911     if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
2912         stats->txmulticastframes_g +=
2913             xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2914 
2915     if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
2916         stats->tx64octets_gb +=
2917             xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2918 
2919     if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
2920         stats->tx65to127octets_gb +=
2921             xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2922 
2923     if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
2924         stats->tx128to255octets_gb +=
2925             xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2926 
2927     if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
2928         stats->tx256to511octets_gb +=
2929             xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2930 
2931     if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
2932         stats->tx512to1023octets_gb +=
2933             xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2934 
2935     if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
2936         stats->tx1024tomaxoctets_gb +=
2937             xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2938 
2939     if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
2940         stats->txunicastframes_gb +=
2941             xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2942 
2943     if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
2944         stats->txmulticastframes_gb +=
2945             xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2946 
2947     if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
2948         stats->txbroadcastframes_g +=
2949             xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2950 
2951     if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
2952         stats->txunderflowerror +=
2953             xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2954 
2955     if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
2956         stats->txoctetcount_g +=
2957             xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2958 
2959     if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
2960         stats->txframecount_g +=
2961             xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2962 
2963     if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
2964         stats->txpauseframes +=
2965             xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2966 
2967     if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
2968         stats->txvlanframes_g +=
2969             xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2970 }
2971 
2972 static void xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
2973 {
2974     struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2975     unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
2976 
2977     if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
2978         stats->rxframecount_gb +=
2979             xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2980 
2981     if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
2982         stats->rxoctetcount_gb +=
2983             xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2984 
2985     if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
2986         stats->rxoctetcount_g +=
2987             xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2988 
2989     if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
2990         stats->rxbroadcastframes_g +=
2991             xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2992 
2993     if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
2994         stats->rxmulticastframes_g +=
2995             xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2996 
2997     if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
2998         stats->rxcrcerror +=
2999             xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
3000 
3001     if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
3002         stats->rxrunterror +=
3003             xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
3004 
3005     if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
3006         stats->rxjabbererror +=
3007             xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
3008 
3009     if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
3010         stats->rxundersize_g +=
3011             xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
3012 
3013     if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
3014         stats->rxoversize_g +=
3015             xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
3016 
3017     if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
3018         stats->rx64octets_gb +=
3019             xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
3020 
3021     if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
3022         stats->rx65to127octets_gb +=
3023             xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
3024 
3025     if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
3026         stats->rx128to255octets_gb +=
3027             xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
3028 
3029     if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
3030         stats->rx256to511octets_gb +=
3031             xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
3032 
3033     if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
3034         stats->rx512to1023octets_gb +=
3035             xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
3036 
3037     if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
3038         stats->rx1024tomaxoctets_gb +=
3039             xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
3040 
3041     if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
3042         stats->rxunicastframes_g +=
3043             xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
3044 
3045     if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
3046         stats->rxlengtherror +=
3047             xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
3048 
3049     if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
3050         stats->rxoutofrangetype +=
3051             xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
3052 
3053     if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
3054         stats->rxpauseframes +=
3055             xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
3056 
3057     if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
3058         stats->rxfifooverflow +=
3059             xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
3060 
3061     if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
3062         stats->rxvlanframes_gb +=
3063             xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
3064 
3065     if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
3066         stats->rxwatchdogerror +=
3067             xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
3068 }
3069 
3070 static void xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
3071 {
3072     struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
3073 
3074     /* Freeze counters */
3075     XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
3076 
3077     stats->txoctetcount_gb +=
3078         xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
3079 
3080     stats->txframecount_gb +=
3081         xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
3082 
3083     stats->txbroadcastframes_g +=
3084         xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
3085 
3086     stats->txmulticastframes_g +=
3087         xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
3088 
3089     stats->tx64octets_gb +=
3090         xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
3091 
3092     stats->tx65to127octets_gb +=
3093         xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
3094 
3095     stats->tx128to255octets_gb +=
3096         xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
3097 
3098     stats->tx256to511octets_gb +=
3099         xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
3100 
3101     stats->tx512to1023octets_gb +=
3102         xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
3103 
3104     stats->tx1024tomaxoctets_gb +=
3105         xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
3106 
3107     stats->txunicastframes_gb +=
3108         xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
3109 
3110     stats->txmulticastframes_gb +=
3111         xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
3112 
3113     stats->txbroadcastframes_g +=
3114         xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
3115 
3116     stats->txunderflowerror +=
3117         xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
3118 
3119     stats->txoctetcount_g +=
3120         xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
3121 
3122     stats->txframecount_g +=
3123         xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
3124 
3125     stats->txpauseframes +=
3126         xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
3127 
3128     stats->txvlanframes_g +=
3129         xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
3130 
3131     stats->rxframecount_gb +=
3132         xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
3133 
3134     stats->rxoctetcount_gb +=
3135         xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
3136 
3137     stats->rxoctetcount_g +=
3138         xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
3139 
3140     stats->rxbroadcastframes_g +=
3141         xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
3142 
3143     stats->rxmulticastframes_g +=
3144         xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
3145 
3146     stats->rxcrcerror +=
3147         xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
3148 
3149     stats->rxrunterror +=
3150         xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
3151 
3152     stats->rxjabbererror +=
3153         xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
3154 
3155     stats->rxundersize_g +=
3156         xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
3157 
3158     stats->rxoversize_g +=
3159         xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
3160 
3161     stats->rx64octets_gb +=
3162         xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
3163 
3164     stats->rx65to127octets_gb +=
3165         xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
3166 
3167     stats->rx128to255octets_gb +=
3168         xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
3169 
3170     stats->rx256to511octets_gb +=
3171         xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
3172 
3173     stats->rx512to1023octets_gb +=
3174         xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
3175 
3176     stats->rx1024tomaxoctets_gb +=
3177         xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
3178 
3179     stats->rxunicastframes_g +=
3180         xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
3181 
3182     stats->rxlengtherror +=
3183         xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
3184 
3185     stats->rxoutofrangetype +=
3186         xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
3187 
3188     stats->rxpauseframes +=
3189         xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
3190 
3191     stats->rxfifooverflow +=
3192         xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
3193 
3194     stats->rxvlanframes_gb +=
3195         xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
3196 
3197     stats->rxwatchdogerror +=
3198         xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
3199 
3200     /* Un-freeze counters */
3201     XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
3202 }
3203 
3204 static void xgbe_config_mmc(struct xgbe_prv_data *pdata)
3205 {
3206     /* Set counters to reset on read */
3207     XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
3208 
3209     /* Reset the counters */
3210     XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
3211 }
3212 
3213 static void xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata,
3214                      unsigned int queue)
3215 {
3216     unsigned int tx_status;
3217     unsigned long tx_timeout;
3218 
3219     /* The Tx engine cannot be stopped if it is actively processing
3220      * packets. Wait for the Tx queue to empty the Tx fifo.  Don't
3221      * wait forever though...
3222      */
3223     tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3224     while (time_before(jiffies, tx_timeout)) {
3225         tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR);
3226         if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) &&
3227             (XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0))
3228             break;
3229 
3230         usleep_range(500, 1000);
3231     }
3232 
3233     if (!time_before(jiffies, tx_timeout))
3234         netdev_info(pdata->netdev,
3235                 "timed out waiting for Tx queue %u to empty\n",
3236                 queue);
3237 }
3238 
3239 static void xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata,
3240                  unsigned int queue)
3241 {
3242     unsigned int tx_dsr, tx_pos, tx_qidx;
3243     unsigned int tx_status;
3244     unsigned long tx_timeout;
3245 
3246     if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20)
3247         return xgbe_txq_prepare_tx_stop(pdata, queue);
3248 
3249     /* Calculate the status register to read and the position within */
3250     if (queue < DMA_DSRX_FIRST_QUEUE) {
3251         tx_dsr = DMA_DSR0;
3252         tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START;
3253     } else {
3254         tx_qidx = queue - DMA_DSRX_FIRST_QUEUE;
3255 
3256         tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
3257         tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
3258              DMA_DSRX_TPS_START;
3259     }
3260 
3261     /* The Tx engine cannot be stopped if it is actively processing
3262      * descriptors. Wait for the Tx engine to enter the stopped or
3263      * suspended state.  Don't wait forever though...
3264      */
3265     tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3266     while (time_before(jiffies, tx_timeout)) {
3267         tx_status = XGMAC_IOREAD(pdata, tx_dsr);
3268         tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
3269         if ((tx_status == DMA_TPS_STOPPED) ||
3270             (tx_status == DMA_TPS_SUSPENDED))
3271             break;
3272 
3273         usleep_range(500, 1000);
3274     }
3275 
3276     if (!time_before(jiffies, tx_timeout))
3277         netdev_info(pdata->netdev,
3278                 "timed out waiting for Tx DMA channel %u to stop\n",
3279                 queue);
3280 }
3281 
3282 static void xgbe_enable_tx(struct xgbe_prv_data *pdata)
3283 {
3284     unsigned int i;
3285 
3286     /* Enable each Tx DMA channel */
3287     for (i = 0; i < pdata->channel_count; i++) {
3288         if (!pdata->channel[i]->tx_ring)
3289             break;
3290 
3291         XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
3292     }
3293 
3294     /* Enable each Tx queue */
3295     for (i = 0; i < pdata->tx_q_count; i++)
3296         XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
3297                        MTL_Q_ENABLED);
3298 
3299     /* Enable MAC Tx */
3300     XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
3301 }
3302 
3303 static void xgbe_disable_tx(struct xgbe_prv_data *pdata)
3304 {
3305     unsigned int i;
3306 
3307     /* Prepare for Tx DMA channel stop */
3308     for (i = 0; i < pdata->tx_q_count; i++)
3309         xgbe_prepare_tx_stop(pdata, i);
3310 
3311     /* Disable MAC Tx */
3312     XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
3313 
3314     /* Disable each Tx queue */
3315     for (i = 0; i < pdata->tx_q_count; i++)
3316         XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
3317 
3318     /* Disable each Tx DMA channel */
3319     for (i = 0; i < pdata->channel_count; i++) {
3320         if (!pdata->channel[i]->tx_ring)
3321             break;
3322 
3323         XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
3324     }
3325 }
3326 
3327 static void xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata,
3328                  unsigned int queue)
3329 {
3330     unsigned int rx_status;
3331     unsigned long rx_timeout;
3332 
3333     /* The Rx engine cannot be stopped if it is actively processing
3334      * packets. Wait for the Rx queue to empty the Rx fifo.  Don't
3335      * wait forever though...
3336      */
3337     rx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3338     while (time_before(jiffies, rx_timeout)) {
3339         rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR);
3340         if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) &&
3341             (XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0))
3342             break;
3343 
3344         usleep_range(500, 1000);
3345     }
3346 
3347     if (!time_before(jiffies, rx_timeout))
3348         netdev_info(pdata->netdev,
3349                 "timed out waiting for Rx queue %u to empty\n",
3350                 queue);
3351 }
3352 
3353 static void xgbe_enable_rx(struct xgbe_prv_data *pdata)
3354 {
3355     unsigned int reg_val, i;
3356 
3357     /* Enable each Rx DMA channel */
3358     for (i = 0; i < pdata->channel_count; i++) {
3359         if (!pdata->channel[i]->rx_ring)
3360             break;
3361 
3362         XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
3363     }
3364 
3365     /* Enable each Rx queue */
3366     reg_val = 0;
3367     for (i = 0; i < pdata->rx_q_count; i++)
3368         reg_val |= (0x02 << (i << 1));
3369     XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
3370 
3371     /* Enable MAC Rx */
3372     XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
3373     XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
3374     XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
3375     XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
3376 }
3377 
3378 static void xgbe_disable_rx(struct xgbe_prv_data *pdata)
3379 {
3380     unsigned int i;
3381 
3382     /* Disable MAC Rx */
3383     XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
3384     XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
3385     XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
3386     XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
3387 
3388     /* Prepare for Rx DMA channel stop */
3389     for (i = 0; i < pdata->rx_q_count; i++)
3390         xgbe_prepare_rx_stop(pdata, i);
3391 
3392     /* Disable each Rx queue */
3393     XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
3394 
3395     /* Disable each Rx DMA channel */
3396     for (i = 0; i < pdata->channel_count; i++) {
3397         if (!pdata->channel[i]->rx_ring)
3398             break;
3399 
3400         XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
3401     }
3402 }
3403 
3404 static void xgbe_powerup_tx(struct xgbe_prv_data *pdata)
3405 {
3406     unsigned int i;
3407 
3408     /* Enable each Tx DMA channel */
3409     for (i = 0; i < pdata->channel_count; i++) {
3410         if (!pdata->channel[i]->tx_ring)
3411             break;
3412 
3413         XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
3414     }
3415 
3416     /* Enable MAC Tx */
3417     XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
3418 }
3419 
3420 static void xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
3421 {
3422     unsigned int i;
3423 
3424     /* Prepare for Tx DMA channel stop */
3425     for (i = 0; i < pdata->tx_q_count; i++)
3426         xgbe_prepare_tx_stop(pdata, i);
3427 
3428     /* Disable MAC Tx */
3429     XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
3430 
3431     /* Disable each Tx DMA channel */
3432     for (i = 0; i < pdata->channel_count; i++) {
3433         if (!pdata->channel[i]->tx_ring)
3434             break;
3435 
3436         XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
3437     }
3438 }
3439 
3440 static void xgbe_powerup_rx(struct xgbe_prv_data *pdata)
3441 {
3442     unsigned int i;
3443 
3444     /* Enable each Rx DMA channel */
3445     for (i = 0; i < pdata->channel_count; i++) {
3446         if (!pdata->channel[i]->rx_ring)
3447             break;
3448 
3449         XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
3450     }
3451 }
3452 
3453 static void xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
3454 {
3455     unsigned int i;
3456 
3457     /* Disable each Rx DMA channel */
3458     for (i = 0; i < pdata->channel_count; i++) {
3459         if (!pdata->channel[i]->rx_ring)
3460             break;
3461 
3462         XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
3463     }
3464 }
3465 
3466 static int xgbe_init(struct xgbe_prv_data *pdata)
3467 {
3468     struct xgbe_desc_if *desc_if = &pdata->desc_if;
3469     int ret;
3470 
3471     DBGPR("-->xgbe_init\n");
3472 
3473     /* Flush Tx queues */
3474     ret = xgbe_flush_tx_queues(pdata);
3475     if (ret) {
3476         netdev_err(pdata->netdev, "error flushing TX queues\n");
3477         return ret;
3478     }
3479 
3480     /*
3481      * Initialize DMA related features
3482      */
3483     xgbe_config_dma_bus(pdata);
3484     xgbe_config_dma_cache(pdata);
3485     xgbe_config_osp_mode(pdata);
3486     xgbe_config_pbl_val(pdata);
3487     xgbe_config_rx_coalesce(pdata);
3488     xgbe_config_tx_coalesce(pdata);
3489     xgbe_config_rx_buffer_size(pdata);
3490     xgbe_config_tso_mode(pdata);
3491     xgbe_config_sph_mode(pdata);
3492     xgbe_config_rss(pdata);
3493     desc_if->wrapper_tx_desc_init(pdata);
3494     desc_if->wrapper_rx_desc_init(pdata);
3495     xgbe_enable_dma_interrupts(pdata);
3496 
3497     /*
3498      * Initialize MTL related features
3499      */
3500     xgbe_config_mtl_mode(pdata);
3501     xgbe_config_queue_mapping(pdata);
3502     xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
3503     xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
3504     xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
3505     xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
3506     xgbe_config_tx_fifo_size(pdata);
3507     xgbe_config_rx_fifo_size(pdata);
3508     /*TODO: Error Packet and undersized good Packet forwarding enable
3509         (FEP and FUP)
3510      */
3511     xgbe_config_dcb_tc(pdata);
3512     xgbe_enable_mtl_interrupts(pdata);
3513 
3514     /*
3515      * Initialize MAC related features
3516      */
3517     xgbe_config_mac_address(pdata);
3518     xgbe_config_rx_mode(pdata);
3519     xgbe_config_jumbo_enable(pdata);
3520     xgbe_config_flow_control(pdata);
3521     xgbe_config_mac_speed(pdata);
3522     xgbe_config_checksum_offload(pdata);
3523     xgbe_config_vlan_support(pdata);
3524     xgbe_config_mmc(pdata);
3525     xgbe_enable_mac_interrupts(pdata);
3526 
3527     /*
3528      * Initialize ECC related features
3529      */
3530     xgbe_enable_ecc_interrupts(pdata);
3531 
3532     DBGPR("<--xgbe_init\n");
3533 
3534     return 0;
3535 }
3536 
3537 void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
3538 {
3539     DBGPR("-->xgbe_init_function_ptrs\n");
3540 
3541     hw_if->tx_complete = xgbe_tx_complete;
3542 
3543     hw_if->set_mac_address = xgbe_set_mac_address;
3544     hw_if->config_rx_mode = xgbe_config_rx_mode;
3545 
3546     hw_if->enable_rx_csum = xgbe_enable_rx_csum;
3547     hw_if->disable_rx_csum = xgbe_disable_rx_csum;
3548 
3549     hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
3550     hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
3551     hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
3552     hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
3553     hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
3554 
3555     hw_if->read_mmd_regs = xgbe_read_mmd_regs;
3556     hw_if->write_mmd_regs = xgbe_write_mmd_regs;
3557 
3558     hw_if->set_speed = xgbe_set_speed;
3559 
3560     hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode;
3561     hw_if->read_ext_mii_regs = xgbe_read_ext_mii_regs;
3562     hw_if->write_ext_mii_regs = xgbe_write_ext_mii_regs;
3563 
3564     hw_if->set_gpio = xgbe_set_gpio;
3565     hw_if->clr_gpio = xgbe_clr_gpio;
3566 
3567     hw_if->enable_tx = xgbe_enable_tx;
3568     hw_if->disable_tx = xgbe_disable_tx;
3569     hw_if->enable_rx = xgbe_enable_rx;
3570     hw_if->disable_rx = xgbe_disable_rx;
3571 
3572     hw_if->powerup_tx = xgbe_powerup_tx;
3573     hw_if->powerdown_tx = xgbe_powerdown_tx;
3574     hw_if->powerup_rx = xgbe_powerup_rx;
3575     hw_if->powerdown_rx = xgbe_powerdown_rx;
3576 
3577     hw_if->dev_xmit = xgbe_dev_xmit;
3578     hw_if->dev_read = xgbe_dev_read;
3579     hw_if->enable_int = xgbe_enable_int;
3580     hw_if->disable_int = xgbe_disable_int;
3581     hw_if->init = xgbe_init;
3582     hw_if->exit = xgbe_exit;
3583 
3584     /* Descriptor related Sequences have to be initialized here */
3585     hw_if->tx_desc_init = xgbe_tx_desc_init;
3586     hw_if->rx_desc_init = xgbe_rx_desc_init;
3587     hw_if->tx_desc_reset = xgbe_tx_desc_reset;
3588     hw_if->rx_desc_reset = xgbe_rx_desc_reset;
3589     hw_if->is_last_desc = xgbe_is_last_desc;
3590     hw_if->is_context_desc = xgbe_is_context_desc;
3591     hw_if->tx_start_xmit = xgbe_tx_start_xmit;
3592 
3593     /* For FLOW ctrl */
3594     hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
3595     hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
3596 
3597     /* For RX coalescing */
3598     hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
3599     hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
3600     hw_if->usec_to_riwt = xgbe_usec_to_riwt;
3601     hw_if->riwt_to_usec = xgbe_riwt_to_usec;
3602 
3603     /* For RX and TX threshold config */
3604     hw_if->config_rx_threshold = xgbe_config_rx_threshold;
3605     hw_if->config_tx_threshold = xgbe_config_tx_threshold;
3606 
3607     /* For RX and TX Store and Forward Mode config */
3608     hw_if->config_rsf_mode = xgbe_config_rsf_mode;
3609     hw_if->config_tsf_mode = xgbe_config_tsf_mode;
3610 
3611     /* For TX DMA Operating on Second Frame config */
3612     hw_if->config_osp_mode = xgbe_config_osp_mode;
3613 
3614     /* For MMC statistics support */
3615     hw_if->tx_mmc_int = xgbe_tx_mmc_int;
3616     hw_if->rx_mmc_int = xgbe_rx_mmc_int;
3617     hw_if->read_mmc_stats = xgbe_read_mmc_stats;
3618 
3619     /* For PTP config */
3620     hw_if->config_tstamp = xgbe_config_tstamp;
3621     hw_if->update_tstamp_addend = xgbe_update_tstamp_addend;
3622     hw_if->set_tstamp_time = xgbe_set_tstamp_time;
3623     hw_if->get_tstamp_time = xgbe_get_tstamp_time;
3624     hw_if->get_tx_tstamp = xgbe_get_tx_tstamp;
3625 
3626     /* For Data Center Bridging config */
3627     hw_if->config_tc = xgbe_config_tc;
3628     hw_if->config_dcb_tc = xgbe_config_dcb_tc;
3629     hw_if->config_dcb_pfc = xgbe_config_dcb_pfc;
3630 
3631     /* For Receive Side Scaling */
3632     hw_if->enable_rss = xgbe_enable_rss;
3633     hw_if->disable_rss = xgbe_disable_rss;
3634     hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
3635     hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
3636 
3637     /* For ECC */
3638     hw_if->disable_ecc_ded = xgbe_disable_ecc_ded;
3639     hw_if->disable_ecc_sec = xgbe_disable_ecc_sec;
3640 
3641     /* For VXLAN */
3642     hw_if->enable_vxlan = xgbe_enable_vxlan;
3643     hw_if->disable_vxlan = xgbe_disable_vxlan;
3644     hw_if->set_vxlan_id = xgbe_set_vxlan_id;
3645 
3646     DBGPR("<--xgbe_init_function_ptrs\n");
3647 }