Back to home page

OSCL-LXR

 
 

    


0001 /* Agere Systems Inc.
0002  * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
0003  *
0004  * Copyright © 2005 Agere Systems Inc.
0005  * All rights reserved.
0006  *   http://www.agere.com
0007  *
0008  * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
0009  *
0010  *------------------------------------------------------------------------------
0011  *
0012  * SOFTWARE LICENSE
0013  *
0014  * This software is provided subject to the following terms and conditions,
0015  * which you should read carefully before using the software.  Using this
0016  * software indicates your acceptance of these terms and conditions.  If you do
0017  * not agree with these terms and conditions, do not use the software.
0018  *
0019  * Copyright © 2005 Agere Systems Inc.
0020  * All rights reserved.
0021  *
0022  * Redistribution and use in source or binary forms, with or without
0023  * modifications, are permitted provided that the following conditions are met:
0024  *
0025  * . Redistributions of source code must retain the above copyright notice, this
0026  *    list of conditions and the following Disclaimer as comments in the code as
0027  *    well as in the documentation and/or other materials provided with the
0028  *    distribution.
0029  *
0030  * . Redistributions in binary form must reproduce the above copyright notice,
0031  *    this list of conditions and the following Disclaimer in the documentation
0032  *    and/or other materials provided with the distribution.
0033  *
0034  * . Neither the name of Agere Systems Inc. nor the names of the contributors
0035  *    may be used to endorse or promote products derived from this software
0036  *    without specific prior written permission.
0037  *
0038  * Disclaimer
0039  *
0040  * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
0041  * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
0042  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
0043  * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
0044  * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
0045  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
0046  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
0047  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
0048  * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
0049  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
0050  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
0051  * DAMAGE.
0052  */
0053 
0054 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0055 
0056 #include <linux/pci.h>
0057 #include <linux/module.h>
0058 #include <linux/types.h>
0059 #include <linux/kernel.h>
0060 
0061 #include <linux/sched.h>
0062 #include <linux/ptrace.h>
0063 #include <linux/slab.h>
0064 #include <linux/ctype.h>
0065 #include <linux/string.h>
0066 #include <linux/timer.h>
0067 #include <linux/interrupt.h>
0068 #include <linux/in.h>
0069 #include <linux/delay.h>
0070 #include <linux/bitops.h>
0071 #include <linux/io.h>
0072 
0073 #include <linux/netdevice.h>
0074 #include <linux/etherdevice.h>
0075 #include <linux/skbuff.h>
0076 #include <linux/if_arp.h>
0077 #include <linux/ioport.h>
0078 #include <linux/crc32.h>
0079 #include <linux/random.h>
0080 #include <linux/phy.h>
0081 
0082 #include "et131x.h"
0083 
0084 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
0085 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
0086 MODULE_LICENSE("Dual BSD/GPL");
0087 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
0088 
0089 /* EEPROM defines */
0090 #define MAX_NUM_REGISTER_POLLS          1000
0091 #define MAX_NUM_WRITE_RETRIES           2
0092 
0093 /* MAC defines */
0094 #define COUNTER_WRAP_16_BIT 0x10000
0095 #define COUNTER_WRAP_12_BIT 0x1000
0096 
0097 /* PCI defines */
0098 #define INTERNAL_MEM_SIZE       0x400   /* 1024 of internal memory */
0099 #define INTERNAL_MEM_RX_OFFSET  0x1FF   /* 50%   Tx, 50%   Rx */
0100 
0101 /* ISR defines */
0102 /* For interrupts, normal running is:
0103  *       rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
0104  *       watchdog_interrupt & txdma_xfer_done
0105  *
0106  * In both cases, when flow control is enabled for either Tx or bi-direction,
0107  * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
0108  * buffer rings are running low.
0109  */
0110 #define INT_MASK_DISABLE            0xffffffff
0111 
0112 /* NOTE: Masking out MAC_STAT Interrupt for now...
0113  * #define INT_MASK_ENABLE             0xfff6bf17
0114  * #define INT_MASK_ENABLE_NO_FLOW     0xfff6bfd7
0115  */
0116 #define INT_MASK_ENABLE             0xfffebf17
0117 #define INT_MASK_ENABLE_NO_FLOW     0xfffebfd7
0118 
0119 /* General defines */
0120 /* Packet and header sizes */
0121 #define NIC_MIN_PACKET_SIZE 60
0122 
0123 /* Multicast list size */
0124 #define NIC_MAX_MCAST_LIST  128
0125 
0126 /* Supported Filters */
0127 #define ET131X_PACKET_TYPE_DIRECTED     0x0001
0128 #define ET131X_PACKET_TYPE_MULTICAST        0x0002
0129 #define ET131X_PACKET_TYPE_BROADCAST        0x0004
0130 #define ET131X_PACKET_TYPE_PROMISCUOUS      0x0008
0131 #define ET131X_PACKET_TYPE_ALL_MULTICAST    0x0010
0132 
0133 /* Tx Timeout */
0134 #define ET131X_TX_TIMEOUT   (1 * HZ)
0135 #define NIC_SEND_HANG_THRESHOLD 0
0136 
0137 /* MP_ADAPTER flags */
0138 #define FMP_ADAPTER_INTERRUPT_IN_USE    0x00000008
0139 
0140 /* MP_SHARED flags */
0141 #define FMP_ADAPTER_LOWER_POWER     0x00200000
0142 
0143 #define FMP_ADAPTER_NON_RECOVER_ERROR   0x00800000
0144 #define FMP_ADAPTER_HARDWARE_ERROR  0x04000000
0145 
0146 #define FMP_ADAPTER_FAIL_SEND_MASK  0x3ff00000
0147 
0148 /* Some offsets in PCI config space that are actually used. */
0149 #define ET1310_PCI_MAC_ADDRESS      0xA4
0150 #define ET1310_PCI_EEPROM_STATUS    0xB2
0151 #define ET1310_PCI_ACK_NACK     0xC0
0152 #define ET1310_PCI_REPLAY       0xC2
0153 #define ET1310_PCI_L0L1LATENCY      0xCF
0154 
0155 /* PCI Product IDs */
0156 #define ET131X_PCI_DEVICE_ID_GIG    0xED00  /* ET1310 1000 Base-T 8 */
0157 #define ET131X_PCI_DEVICE_ID_FAST   0xED01  /* ET1310 100  Base-T */
0158 
0159 /* Define order of magnitude converter */
0160 #define NANO_IN_A_MICRO 1000
0161 
0162 #define PARM_RX_NUM_BUFS_DEF    4
0163 #define PARM_RX_TIME_INT_DEF    10
0164 #define PARM_RX_MEM_END_DEF     0x2bc
0165 #define PARM_TX_TIME_INT_DEF    40
0166 #define PARM_TX_NUM_BUFS_DEF    4
0167 #define PARM_DMA_CACHE_DEF      0
0168 
0169 /* RX defines */
0170 #define FBR_CHUNKS      32
0171 #define MAX_DESC_PER_RING_RX    1024
0172 
0173 /* number of RFDs - default and min */
0174 #define RFD_LOW_WATER_MARK  40
0175 #define NIC_DEFAULT_NUM_RFD 1024
0176 #define NUM_FBRS        2
0177 
0178 #define MAX_PACKETS_HANDLED 256
0179 #define ET131X_MIN_MTU      64
0180 #define ET131X_MAX_MTU      9216
0181 
0182 #define ALCATEL_MULTICAST_PKT   0x01000000
0183 #define ALCATEL_BROADCAST_PKT   0x02000000
0184 
0185 /* typedefs for Free Buffer Descriptors */
0186 struct fbr_desc {
0187     u32 addr_lo;
0188     u32 addr_hi;
0189     u32 word2;      /* Bits 10-31 reserved, 0-9 descriptor */
0190 };
0191 
0192 /* Packet Status Ring Descriptors
0193  *
0194  * Word 0:
0195  *
0196  * top 16 bits are from the Alcatel Status Word as enumerated in
0197  * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
0198  *
0199  * 0: hp            hash pass
0200  * 1: ipa           IP checksum assist
0201  * 2: ipp           IP checksum pass
0202  * 3: tcpa          TCP checksum assist
0203  * 4: tcpp          TCP checksum pass
0204  * 5: wol           WOL Event
0205  * 6: rxmac_error       RXMAC Error Indicator
0206  * 7: drop          Drop packet
0207  * 8: ft            Frame Truncated
0208  * 9: jp            Jumbo Packet
0209  * 10: vp           VLAN Packet
0210  * 11-15: unused
0211  * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
0212  * 17: asw_RX_DV_event      short receive event detected
0213  * 18: asw_false_carrier_event  bad carrier since last good packet
0214  * 19: asw_code_err     one or more nibbles signalled as errors
0215  * 20: asw_CRC_err      CRC error
0216  * 21: asw_len_chk_err      frame length field incorrect
0217  * 22: asw_too_long     frame length > 1518 bytes
0218  * 23: asw_OK           valid CRC + no code error
0219  * 24: asw_multicast        has a multicast address
0220  * 25: asw_broadcast        has a broadcast address
0221  * 26: asw_dribble_nibble   spurious bits after EOP
0222  * 27: asw_control_frame    is a control frame
0223  * 28: asw_pause_frame      is a pause frame
0224  * 29: asw_unsupported_op   unsupported OP code
0225  * 30: asw_VLAN_tag     VLAN tag detected
0226  * 31: asw_long_evt     Rx long event
0227  *
0228  * Word 1:
0229  * 0-15: length         length in bytes
0230  * 16-25: bi            Buffer Index
0231  * 26-27: ri            Ring Index
0232  * 28-31: reserved
0233  */
0234 struct pkt_stat_desc {
0235     u32 word0;
0236     u32 word1;
0237 };
0238 
0239 /* Typedefs for the RX DMA status word */
0240 
0241 /* rx status word 0 holds part of the status bits of the Rx DMA engine
0242  * that get copied out to memory by the ET-1310.  Word 0 is a 32 bit word
0243  * which contains the Free Buffer ring 0 and 1 available offset.
0244  *
0245  * bit 0-9 FBR1 offset
0246  * bit 10 Wrap flag for FBR1
0247  * bit 16-25 FBR0 offset
0248  * bit 26 Wrap flag for FBR0
0249  */
0250 
0251 /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
0252  * that get copied out to memory by the ET-1310.  Word 3 is a 32 bit word
0253  * which contains the Packet Status Ring available offset.
0254  *
0255  * bit 0-15 reserved
0256  * bit 16-27 PSRoffset
0257  * bit 28 PSRwrap
0258  * bit 29-31 unused
0259  */
0260 
0261 /* struct rx_status_block is a structure representing the status of the Rx
0262  * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
0263  */
0264 struct rx_status_block {
0265     u32 word0;
0266     u32 word1;
0267 };
0268 
0269 /* Structure for look-up table holding free buffer ring pointers, addresses
0270  * and state.
0271  */
0272 struct fbr_lookup {
0273     void        *virt[MAX_DESC_PER_RING_RX];
0274     u32      bus_high[MAX_DESC_PER_RING_RX];
0275     u32      bus_low[MAX_DESC_PER_RING_RX];
0276     void        *ring_virtaddr;
0277     dma_addr_t   ring_physaddr;
0278     void        *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
0279     dma_addr_t   mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
0280     u32      local_full;
0281     u32      num_entries;
0282     dma_addr_t   buffsize;
0283 };
0284 
0285 /* struct rx_ring is the structure representing the adaptor's local
0286  * reference(s) to the rings
0287  */
0288 struct rx_ring {
0289     struct fbr_lookup *fbr[NUM_FBRS];
0290     void *ps_ring_virtaddr;
0291     dma_addr_t ps_ring_physaddr;
0292     u32 local_psr_full;
0293     u32 psr_entries;
0294 
0295     struct rx_status_block *rx_status_block;
0296     dma_addr_t rx_status_bus;
0297 
0298     struct list_head recv_list;
0299     u32 num_ready_recv;
0300 
0301     u32 num_rfd;
0302 
0303     bool unfinished_receives;
0304 };
0305 
0306 /* TX defines */
0307 /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
0308  *
0309  * 0-15: length of packet
0310  * 16-27: VLAN tag
0311  * 28: VLAN CFI
0312  * 29-31: VLAN priority
0313  *
0314  * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
0315  *
0316  * 0: last packet in the sequence
0317  * 1: first packet in the sequence
0318  * 2: interrupt the processor when this pkt sent
0319  * 3: Control word - no packet data
0320  * 4: Issue half-duplex backpressure : XON/XOFF
0321  * 5: send pause frame
0322  * 6: Tx frame has error
0323  * 7: append CRC
0324  * 8: MAC override
0325  * 9: pad packet
0326  * 10: Packet is a Huge packet
0327  * 11: append VLAN tag
0328  * 12: IP checksum assist
0329  * 13: TCP checksum assist
0330  * 14: UDP checksum assist
0331  */
0332 #define TXDESC_FLAG_LASTPKT     0x0001
0333 #define TXDESC_FLAG_FIRSTPKT        0x0002
0334 #define TXDESC_FLAG_INTPROC     0x0004
0335 
0336 /* struct tx_desc represents each descriptor on the ring */
0337 struct tx_desc {
0338     u32 addr_hi;
0339     u32 addr_lo;
0340     u32 len_vlan;   /* control words how to xmit the */
0341     u32 flags;  /* data (detailed above) */
0342 };
0343 
0344 /* The status of the Tx DMA engine it sits in free memory, and is pointed to
0345  * by 0x101c / 0x1020. This is a DMA10 type
0346  */
0347 
0348 /* TCB (Transmit Control Block: Host Side) */
0349 struct tcb {
0350     struct tcb *next;   /* Next entry in ring */
0351     u32 count;      /* Used to spot stuck/lost packets */
0352     u32 stale;      /* Used to spot stuck/lost packets */
0353     struct sk_buff *skb;    /* Network skb we are tied to */
0354     u32 index;      /* Ring indexes */
0355     u32 index_start;
0356 };
0357 
0358 /* Structure representing our local reference(s) to the ring */
0359 struct tx_ring {
0360     /* TCB (Transmit Control Block) memory and lists */
0361     struct tcb *tcb_ring;
0362 
0363     /* List of TCBs that are ready to be used */
0364     struct tcb *tcb_qhead;
0365     struct tcb *tcb_qtail;
0366 
0367     /* list of TCBs that are currently being sent. */
0368     struct tcb *send_head;
0369     struct tcb *send_tail;
0370     int used;
0371 
0372     /* The actual descriptor ring */
0373     struct tx_desc *tx_desc_ring;
0374     dma_addr_t tx_desc_ring_pa;
0375 
0376     /* send_idx indicates where we last wrote to in the descriptor ring. */
0377     u32 send_idx;
0378 
0379     /* The location of the write-back status block */
0380     u32 *tx_status;
0381     dma_addr_t tx_status_pa;
0382 
0383     /* Packets since the last IRQ: used for interrupt coalescing */
0384     int since_irq;
0385 };
0386 
0387 /* Do not change these values: if changed, then change also in respective
0388  * TXdma and Rxdma engines
0389  */
0390 #define NUM_DESC_PER_RING_TX         512    /* TX Do not change these values */
0391 #define NUM_TCB                      64
0392 
0393 /* These values are all superseded by registry entries to facilitate tuning.
0394  * Once the desired performance has been achieved, the optimal registry values
0395  * should be re-populated to these #defines:
0396  */
0397 #define TX_ERROR_PERIOD             1000
0398 
0399 #define LO_MARK_PERCENT_FOR_PSR     15
0400 #define LO_MARK_PERCENT_FOR_RX      15
0401 
0402 /* RFD (Receive Frame Descriptor) */
0403 struct rfd {
0404     struct list_head list_node;
0405     struct sk_buff *skb;
0406     u32 len;    /* total size of receive frame */
0407     u16 bufferindex;
0408     u8 ringindex;
0409 };
0410 
0411 /* Flow Control */
0412 #define FLOW_BOTH   0
0413 #define FLOW_TXONLY 1
0414 #define FLOW_RXONLY 2
0415 #define FLOW_NONE   3
0416 
0417 /* Struct to define some device statistics */
0418 struct ce_stats {
0419     u32     multicast_pkts_rcvd;
0420     u32     rcvd_pkts_dropped;
0421 
0422     u32     tx_underflows;
0423     u32     tx_collisions;
0424     u32     tx_excessive_collisions;
0425     u32     tx_first_collisions;
0426     u32     tx_late_collisions;
0427     u32     tx_max_pkt_errs;
0428     u32     tx_deferred;
0429 
0430     u32     rx_overflows;
0431     u32     rx_length_errs;
0432     u32     rx_align_errs;
0433     u32     rx_crc_errs;
0434     u32     rx_code_violations;
0435     u32     rx_other_errs;
0436 
0437     u32     interrupt_status;
0438 };
0439 
0440 /* The private adapter structure */
0441 struct et131x_adapter {
0442     struct net_device *netdev;
0443     struct pci_dev *pdev;
0444     struct mii_bus *mii_bus;
0445     struct napi_struct napi;
0446 
0447     /* Flags that indicate current state of the adapter */
0448     u32 flags;
0449 
0450     /* local link state, to determine if a state change has occurred */
0451     int link;
0452 
0453     /* Configuration  */
0454     u8 rom_addr[ETH_ALEN];
0455     u8 addr[ETH_ALEN];
0456     bool has_eeprom;
0457     u8 eeprom_data[2];
0458 
0459     spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */
0460     spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */
0461     spinlock_t rcv_lock; /* protects the rx_ring receive list */
0462 
0463     /* Packet Filter and look ahead size */
0464     u32 packet_filter;
0465 
0466     /* multicast list */
0467     u32 multicast_addr_count;
0468     u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
0469 
0470     /* Pointer to the device's PCI register space */
0471     struct address_map __iomem *regs;
0472 
0473     /* Registry parameters */
0474     u8 wanted_flow;     /* Flow we want for 802.3x flow control */
0475     u32 registry_jumbo_packet;  /* Max supported ethernet packet size */
0476 
0477     /* Derived from the registry: */
0478     u8 flow;        /* flow control validated by the far-end */
0479 
0480     /* Minimize init-time */
0481     struct timer_list error_timer;
0482 
0483     /* variable putting the phy into coma mode when boot up with no cable
0484      * plugged in after 5 seconds
0485      */
0486     u8 boot_coma;
0487 
0488     /* Tx Memory Variables */
0489     struct tx_ring tx_ring;
0490 
0491     /* Rx Memory Variables */
0492     struct rx_ring rx_ring;
0493 
0494     struct ce_stats stats;
0495 };
0496 
0497 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
0498 {
0499     u32 reg;
0500     int i;
0501 
0502     /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
0503      *    bits 7,1:0 both equal to 1, at least once after reset.
0504      *    Subsequent operations need only to check that bits 1:0 are equal
0505      *    to 1 prior to starting a single byte read/write
0506      */
0507     for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
0508         if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
0509             return -EIO;
0510 
0511         /* I2C idle and Phy Queue Avail both true */
0512         if ((reg & 0x3000) == 0x3000) {
0513             if (status)
0514                 *status = reg;
0515             return reg & 0xFF;
0516         }
0517     }
0518     return -ETIMEDOUT;
0519 }
0520 
0521 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
0522 {
0523     struct pci_dev *pdev = adapter->pdev;
0524     int index = 0;
0525     int retries;
0526     int err = 0;
0527     int writeok = 0;
0528     u32 status;
0529     u32 val = 0;
0530 
0531     /* For an EEPROM, an I2C single byte write is defined as a START
0532      * condition followed by the device address, EEPROM address, one byte
0533      * of data and a STOP condition.  The STOP condition will trigger the
0534      * EEPROM's internally timed write cycle to the nonvolatile memory.
0535      * All inputs are disabled during this write cycle and the EEPROM will
0536      * not respond to any access until the internal write is complete.
0537      */
0538     err = eeprom_wait_ready(pdev, NULL);
0539     if (err < 0)
0540         return err;
0541 
0542      /* 2. Write to the LBCIF Control Register:  bit 7=1, bit 6=1, bit 3=0,
0543       *    and bits 1:0 both =0.  Bit 5 should be set according to the
0544       *    type of EEPROM being accessed (1=two byte addressing, 0=one
0545       *    byte addressing).
0546       */
0547     if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
0548                   LBCIF_CONTROL_LBCIF_ENABLE |
0549                     LBCIF_CONTROL_I2C_WRITE))
0550         return -EIO;
0551 
0552     /* Prepare EEPROM address for Step 3 */
0553     for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
0554         if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
0555             break;
0556         /* Write the data to the LBCIF Data Register (the I2C write
0557          * will begin).
0558          */
0559         if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
0560             break;
0561         /* Monitor bit 1:0 of the LBCIF Status Register.  When bits
0562          * 1:0 are both equal to 1, the I2C write has completed and the
0563          * internal write cycle of the EEPROM is about to start.
0564          * (bits 1:0 = 01 is a legal state while waiting from both
0565          * equal to 1, but bits 1:0 = 10 is invalid and implies that
0566          * something is broken).
0567          */
0568         err = eeprom_wait_ready(pdev, &status);
0569         if (err < 0)
0570             return 0;
0571 
0572         /* Check bit 3 of the LBCIF Status Register.  If  equal to 1,
0573          * an error has occurred.Don't break here if we are revision
0574          * 1, this is so we do a blind write for load bug.
0575          */
0576         if ((status & LBCIF_STATUS_GENERAL_ERROR) &&
0577             adapter->pdev->revision == 0)
0578             break;
0579 
0580         /* Check bit 2 of the LBCIF Status Register.  If equal to 1 an
0581          * ACK error has occurred on the address phase of the write.
0582          * This could be due to an actual hardware failure or the
0583          * EEPROM may still be in its internal write cycle from a
0584          * previous write. This write operation was ignored and must be
0585           *repeated later.
0586          */
0587         if (status & LBCIF_STATUS_ACK_ERROR) {
0588             /* This could be due to an actual hardware failure
0589              * or the EEPROM may still be in its internal write
0590              * cycle from a previous write. This write operation
0591              * was ignored and must be repeated later.
0592              */
0593             udelay(10);
0594             continue;
0595         }
0596 
0597         writeok = 1;
0598         break;
0599     }
0600 
0601     udelay(10);
0602 
0603     while (1) {
0604         if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
0605                       LBCIF_CONTROL_LBCIF_ENABLE))
0606             writeok = 0;
0607 
0608         /* Do read until internal ACK_ERROR goes away meaning write
0609          * completed
0610          */
0611         do {
0612             pci_write_config_dword(pdev,
0613                            LBCIF_ADDRESS_REGISTER,
0614                            addr);
0615             do {
0616                 pci_read_config_dword(pdev,
0617                               LBCIF_DATA_REGISTER,
0618                               &val);
0619             } while ((val & 0x00010000) == 0);
0620         } while (val & 0x00040000);
0621 
0622         if ((val & 0xFF00) != 0xC000 || index == 10000)
0623             break;
0624         index++;
0625     }
0626     return writeok ? 0 : -EIO;
0627 }
0628 
0629 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
0630 {
0631     struct pci_dev *pdev = adapter->pdev;
0632     int err;
0633     u32 status;
0634 
0635     /* A single byte read is similar to the single byte write, with the
0636      * exception of the data flow:
0637      */
0638     err = eeprom_wait_ready(pdev, NULL);
0639     if (err < 0)
0640         return err;
0641     /* Write to the LBCIF Control Register:  bit 7=1, bit 6=0, bit 3=0,
0642      * and bits 1:0 both =0.  Bit 5 should be set according to the type
0643      * of EEPROM being accessed (1=two byte addressing, 0=one byte
0644      * addressing).
0645      */
0646     if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
0647                   LBCIF_CONTROL_LBCIF_ENABLE))
0648         return -EIO;
0649     /* Write the address to the LBCIF Address Register (I2C read will
0650      * begin).
0651      */
0652     if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
0653         return -EIO;
0654     /* Monitor bit 0 of the LBCIF Status Register.  When = 1, I2C read
0655      * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
0656      * has occurred).
0657      */
0658     err = eeprom_wait_ready(pdev, &status);
0659     if (err < 0)
0660         return err;
0661     /* Regardless of error status, read data byte from LBCIF Data
0662      * Register.
0663      */
0664     *pdata = err;
0665 
0666     return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
0667 }
0668 
0669 static int et131x_init_eeprom(struct et131x_adapter *adapter)
0670 {
0671     struct pci_dev *pdev = adapter->pdev;
0672     u8 eestatus;
0673 
0674     pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
0675 
0676     /* THIS IS A WORKAROUND:
0677      * I need to call this function twice to get my card in a
0678      * LG M1 Express Dual running. I tried also a msleep before this
0679      * function, because I thought there could be some time conditions
0680      * but it didn't work. Call the whole function twice also work.
0681      */
0682     if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
0683         dev_err(&pdev->dev,
0684             "Could not read PCI config space for EEPROM Status\n");
0685         return -EIO;
0686     }
0687 
0688     /* Determine if the error(s) we care about are present. If they are
0689      * present we need to fail.
0690      */
0691     if (eestatus & 0x4C) {
0692         int write_failed = 0;
0693 
0694         if (pdev->revision == 0x01) {
0695             int i;
0696             static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
0697 
0698             /* Re-write the first 4 bytes if we have an eeprom
0699              * present and the revision id is 1, this fixes the
0700              * corruption seen with 1310 B Silicon
0701              */
0702             for (i = 0; i < 3; i++)
0703                 if (eeprom_write(adapter, i, eedata[i]) < 0)
0704                     write_failed = 1;
0705         }
0706         if (pdev->revision  != 0x01 || write_failed) {
0707             dev_err(&pdev->dev,
0708                 "Fatal EEPROM Status Error - 0x%04x\n",
0709                 eestatus);
0710 
0711             /* This error could mean that there was an error
0712              * reading the eeprom or that the eeprom doesn't exist.
0713              * We will treat each case the same and not try to
0714              * gather additional information that normally would
0715              * come from the eeprom, like MAC Address
0716              */
0717             adapter->has_eeprom = false;
0718             return -EIO;
0719         }
0720     }
0721     adapter->has_eeprom = true;
0722 
0723     /* Read the EEPROM for information regarding LED behavior. Refer to
0724      * et131x_xcvr_init() for its use.
0725      */
0726     eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
0727     eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
0728 
0729     if (adapter->eeprom_data[0] != 0xcd)
0730         /* Disable all optional features */
0731         adapter->eeprom_data[1] = 0x00;
0732 
0733     return 0;
0734 }
0735 
0736 static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
0737 {
0738     /* Setup the receive dma configuration register for normal operation */
0739     u32 csr =  ET_RXDMA_CSR_FBR1_ENABLE;
0740     struct rx_ring *rx_ring = &adapter->rx_ring;
0741 
0742     if (rx_ring->fbr[1]->buffsize == 4096)
0743         csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
0744     else if (rx_ring->fbr[1]->buffsize == 8192)
0745         csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
0746     else if (rx_ring->fbr[1]->buffsize == 16384)
0747         csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
0748 
0749     csr |= ET_RXDMA_CSR_FBR0_ENABLE;
0750     if (rx_ring->fbr[0]->buffsize == 256)
0751         csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
0752     else if (rx_ring->fbr[0]->buffsize == 512)
0753         csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
0754     else if (rx_ring->fbr[0]->buffsize == 1024)
0755         csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
0756     writel(csr, &adapter->regs->rxdma.csr);
0757 
0758     csr = readl(&adapter->regs->rxdma.csr);
0759     if (csr & ET_RXDMA_CSR_HALT_STATUS) {
0760         udelay(5);
0761         csr = readl(&adapter->regs->rxdma.csr);
0762         if (csr & ET_RXDMA_CSR_HALT_STATUS) {
0763             dev_err(&adapter->pdev->dev,
0764                 "RX Dma failed to exit halt state. CSR 0x%08x\n",
0765                 csr);
0766         }
0767     }
0768 }
0769 
0770 static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
0771 {
0772     u32 csr;
0773     /* Setup the receive dma configuration register */
0774     writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
0775            &adapter->regs->rxdma.csr);
0776     csr = readl(&adapter->regs->rxdma.csr);
0777     if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
0778         udelay(5);
0779         csr = readl(&adapter->regs->rxdma.csr);
0780         if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
0781             dev_err(&adapter->pdev->dev,
0782                 "RX Dma failed to enter halt state. CSR 0x%08x\n",
0783                 csr);
0784     }
0785 }
0786 
0787 static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
0788 {
0789     /* Setup the transmit dma configuration register for normal
0790      * operation
0791      */
0792     writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
0793            &adapter->regs->txdma.csr);
0794 }
0795 
0796 static inline void add_10bit(u32 *v, int n)
0797 {
0798     *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
0799 }
0800 
0801 static inline void add_12bit(u32 *v, int n)
0802 {
0803     *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
0804 }
0805 
0806 static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
0807 {
0808     struct mac_regs __iomem *macregs = &adapter->regs->mac;
0809     u32 station1;
0810     u32 station2;
0811     u32 ipg;
0812 
0813     /* First we need to reset everything.  Write to MAC configuration
0814      * register 1 to perform reset.
0815      */
0816     writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET  |
0817            ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
0818            ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
0819            &macregs->cfg1);
0820 
0821     /* Next lets configure the MAC Inter-packet gap register */
0822     ipg = 0x38005860;       /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
0823     ipg |= 0x50 << 8;       /* ifg enforce 0x50 */
0824     writel(ipg, &macregs->ipg);
0825 
0826     /* Next lets configure the MAC Half Duplex register */
0827     /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
0828     writel(0x00A1F037, &macregs->hfdp);
0829 
0830     /* Next lets configure the MAC Interface Control register */
0831     writel(0, &macregs->if_ctrl);
0832 
0833     writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
0834 
0835     /* Next lets configure the MAC Station Address register.  These
0836      * values are read from the EEPROM during initialization and stored
0837      * in the adapter structure.  We write what is stored in the adapter
0838      * structure to the MAC Station Address registers high and low.  This
0839      * station address is used for generating and checking pause control
0840      * packets.
0841      */
0842     station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
0843            (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
0844     station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
0845            (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
0846            (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
0847             adapter->addr[2];
0848     writel(station1, &macregs->station_addr_1);
0849     writel(station2, &macregs->station_addr_2);
0850 
0851     /* Max ethernet packet in bytes that will be passed by the mac without
0852      * being truncated.  Allow the MAC to pass 4 more than our max packet
0853      * size.  This is 4 for the Ethernet CRC.
0854      *
0855      * Packets larger than (registry_jumbo_packet) that do not contain a
0856      * VLAN ID will be dropped by the Rx function.
0857      */
0858     writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
0859 
0860     /* clear out MAC config reset */
0861     writel(0, &macregs->cfg1);
0862 }
0863 
0864 static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
0865 {
0866     int32_t delay = 0;
0867     struct mac_regs __iomem *mac = &adapter->regs->mac;
0868     struct phy_device *phydev = adapter->netdev->phydev;
0869     u32 cfg1;
0870     u32 cfg2;
0871     u32 ifctrl;
0872     u32 ctl;
0873 
0874     ctl = readl(&adapter->regs->txmac.ctl);
0875     cfg1 = readl(&mac->cfg1);
0876     cfg2 = readl(&mac->cfg2);
0877     ifctrl = readl(&mac->if_ctrl);
0878 
0879     /* Set up the if mode bits */
0880     cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
0881     if (phydev->speed == SPEED_1000) {
0882         cfg2 |= ET_MAC_CFG2_IFMODE_1000;
0883         ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
0884     } else {
0885         cfg2 |= ET_MAC_CFG2_IFMODE_100;
0886         ifctrl |= ET_MAC_IFCTRL_PHYMODE;
0887     }
0888 
0889     cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
0890                             ET_MAC_CFG1_TX_FLOW;
0891 
0892     cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
0893     if (adapter->flow == FLOW_RXONLY || adapter->flow == FLOW_BOTH)
0894         cfg1 |= ET_MAC_CFG1_RX_FLOW;
0895     writel(cfg1, &mac->cfg1);
0896 
0897     /* Now we need to initialize the MAC Configuration 2 register */
0898     /* preamble 7, check length, huge frame off, pad crc, crc enable
0899      * full duplex off
0900      */
0901     cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
0902     cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
0903     cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
0904     cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE;
0905     cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
0906     cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
0907 
0908     if (phydev->duplex == DUPLEX_FULL)
0909         cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
0910 
0911     ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
0912     if (phydev->duplex == DUPLEX_HALF)
0913         ifctrl |= ET_MAC_IFCTRL_GHDMODE;
0914 
0915     writel(ifctrl, &mac->if_ctrl);
0916     writel(cfg2, &mac->cfg2);
0917 
0918     do {
0919         udelay(10);
0920         delay++;
0921         cfg1 = readl(&mac->cfg1);
0922     } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
0923 
0924     if (delay == 100) {
0925         dev_warn(&adapter->pdev->dev,
0926              "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
0927              cfg1);
0928     }
0929 
0930     ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
0931     writel(ctl, &adapter->regs->txmac.ctl);
0932 
0933     if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
0934         et131x_rx_dma_enable(adapter);
0935         et131x_tx_dma_enable(adapter);
0936     }
0937 }
0938 
0939 static int et1310_in_phy_coma(struct et131x_adapter *adapter)
0940 {
0941     u32 pmcsr = readl(&adapter->regs->global.pm_csr);
0942 
0943     return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
0944 }
0945 
0946 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
0947 {
0948     struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
0949     u32 hash1 = 0;
0950     u32 hash2 = 0;
0951     u32 hash3 = 0;
0952     u32 hash4 = 0;
0953 
0954     /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
0955      * the multi-cast LIST.  If it is NOT specified, (and "ALL" is not
0956      * specified) then we should pass NO multi-cast addresses to the
0957      * driver.
0958      */
0959     if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
0960         int i;
0961 
0962         /* Loop through our multicast array and set up the device */
0963         for (i = 0; i < adapter->multicast_addr_count; i++) {
0964             u32 result;
0965 
0966             result = ether_crc(6, adapter->multicast_list[i]);
0967 
0968             result = (result & 0x3F800000) >> 23;
0969 
0970             if (result < 32) {
0971                 hash1 |= (1 << result);
0972             } else if ((31 < result) && (result < 64)) {
0973                 result -= 32;
0974                 hash2 |= (1 << result);
0975             } else if ((63 < result) && (result < 96)) {
0976                 result -= 64;
0977                 hash3 |= (1 << result);
0978             } else {
0979                 result -= 96;
0980                 hash4 |= (1 << result);
0981             }
0982         }
0983     }
0984 
0985     /* Write out the new hash to the device */
0986     if (!et1310_in_phy_coma(adapter)) {
0987         writel(hash1, &rxmac->multi_hash1);
0988         writel(hash2, &rxmac->multi_hash2);
0989         writel(hash3, &rxmac->multi_hash3);
0990         writel(hash4, &rxmac->multi_hash4);
0991     }
0992 }
0993 
0994 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
0995 {
0996     struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
0997     u32 uni_pf1;
0998     u32 uni_pf2;
0999     u32 uni_pf3;
1000 
1001     /* Set up unicast packet filter reg 3 to be the first two octets of
1002      * the MAC address for both address
1003      *
1004      * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1005      * MAC address for second address
1006      *
1007      * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1008      * MAC address for first address
1009      */
1010     uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1011           (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1012           (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
1013            adapter->addr[1];
1014 
1015     uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1016           (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1017           (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
1018            adapter->addr[5];
1019 
1020     uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1021           (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1022           (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
1023            adapter->addr[5];
1024 
1025     if (!et1310_in_phy_coma(adapter)) {
1026         writel(uni_pf1, &rxmac->uni_pf_addr1);
1027         writel(uni_pf2, &rxmac->uni_pf_addr2);
1028         writel(uni_pf3, &rxmac->uni_pf_addr3);
1029     }
1030 }
1031 
1032 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1033 {
1034     struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1035     struct phy_device *phydev = adapter->netdev->phydev;
1036     u32 sa_lo;
1037     u32 sa_hi = 0;
1038     u32 pf_ctrl = 0;
1039     u32 __iomem *wolw;
1040 
1041     /* Disable the MAC while it is being configured (also disable WOL) */
1042     writel(0x8, &rxmac->ctrl);
1043 
1044     /* Initialize WOL to disabled. */
1045     writel(0, &rxmac->crc0);
1046     writel(0, &rxmac->crc12);
1047     writel(0, &rxmac->crc34);
1048 
1049     /* We need to set the WOL mask0 - mask4 next.  We initialize it to
1050      * its default Values of 0x00000000 because there are not WOL masks
1051      * as of this time.
1052      */
1053     for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++)
1054         writel(0, wolw);
1055 
1056     /* Lets setup the WOL Source Address */
1057     sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1058         (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1059         (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
1060          adapter->addr[5];
1061     writel(sa_lo, &rxmac->sa_lo);
1062 
1063     sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
1064                adapter->addr[1];
1065     writel(sa_hi, &rxmac->sa_hi);
1066 
1067     /* Disable all Packet Filtering */
1068     writel(0, &rxmac->pf_ctrl);
1069 
1070     /* Let's initialize the Unicast Packet filtering address */
1071     if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1072         et1310_setup_device_for_unicast(adapter);
1073         pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
1074     } else {
1075         writel(0, &rxmac->uni_pf_addr1);
1076         writel(0, &rxmac->uni_pf_addr2);
1077         writel(0, &rxmac->uni_pf_addr3);
1078     }
1079 
1080     /* Let's initialize the Multicast hash */
1081     if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1082         pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
1083         et1310_setup_device_for_multicast(adapter);
1084     }
1085 
1086     /* Runt packet filtering.  Didn't work in version A silicon. */
1087     pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1088     pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
1089 
1090     if (adapter->registry_jumbo_packet > 8192)
1091         /* In order to transmit jumbo packets greater than 8k, the
1092          * FIFO between RxMAC and RxDMA needs to be reduced in size
1093          * to (16k - Jumbo packet size).  In order to implement this,
1094          * we must use "cut through" mode in the RxMAC, which chops
1095          * packets down into segments which are (max_size * 16).  In
1096          * this case we selected 256 bytes, since this is the size of
1097          * the PCI-Express TLP's that the 1310 uses.
1098          *
1099          * seg_en on, fc_en off, size 0x10
1100          */
1101         writel(0x41, &rxmac->mcif_ctrl_max_seg);
1102     else
1103         writel(0, &rxmac->mcif_ctrl_max_seg);
1104 
1105     writel(0, &rxmac->mcif_water_mark);
1106     writel(0, &rxmac->mif_ctrl);
1107     writel(0, &rxmac->space_avail);
1108 
1109     /* Initialize the mif_ctrl register
1110      * bit 3:  Receive code error. One or more nibbles were signaled as
1111      *     errors  during the reception of the packet.  Clear this
1112      *     bit in Gigabit, set it in 100Mbit.  This was derived
1113      *     experimentally at UNH.
1114      * bit 4:  Receive CRC error. The packet's CRC did not match the
1115      *     internally generated CRC.
1116      * bit 5:  Receive length check error. Indicates that frame length
1117      *     field value in the packet does not match the actual data
1118      *     byte length and is not a type field.
1119      * bit 16: Receive frame truncated.
1120      * bit 17: Drop packet enable
1121      */
1122     if (phydev && phydev->speed == SPEED_100)
1123         writel(0x30038, &rxmac->mif_ctrl);
1124     else
1125         writel(0x30030, &rxmac->mif_ctrl);
1126 
1127     /* Finally we initialize RxMac to be enabled & WOL disabled.  Packet
1128      * filter is always enabled since it is where the runt packets are
1129      * supposed to be dropped.  For version A silicon, runt packet
1130      * dropping doesn't work, so it is disabled in the pf_ctrl register,
1131      * but we still leave the packet filter on.
1132      */
1133     writel(pf_ctrl, &rxmac->pf_ctrl);
1134     writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
1135 }
1136 
1137 static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1138 {
1139     struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1140 
1141     /* We need to update the Control Frame Parameters
1142      * cfpt - control frame pause timer set to 64 (0x40)
1143      * cfep - control frame extended pause timer set to 0x0
1144      */
1145     if (adapter->flow == FLOW_NONE)
1146         writel(0, &txmac->cf_param);
1147     else
1148         writel(0x40, &txmac->cf_param);
1149 }
1150 
1151 static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1152 {
1153     struct macstat_regs __iomem *macstat = &adapter->regs->macstat;
1154     u32 __iomem *reg;
1155 
1156     /* initialize all the macstat registers to zero on the device  */
1157     for (reg = &macstat->txrx_0_64_byte_frames;
1158          reg <= &macstat->carry_reg2; reg++)
1159         writel(0, reg);
1160 
1161     /* Unmask any counters that we want to track the overflow of.
1162      * Initially this will be all counters.  It may become clear later
1163      * that we do not need to track all counters.
1164      */
1165     writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1166     writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1167 }
1168 
1169 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1170                    u8 reg, u16 *value)
1171 {
1172     struct mac_regs __iomem *mac = &adapter->regs->mac;
1173     int status = 0;
1174     u32 delay = 0;
1175     u32 mii_addr;
1176     u32 mii_cmd;
1177     u32 mii_indicator;
1178 
1179     /* Save a local copy of the registers we are dealing with so we can
1180      * set them back
1181      */
1182     mii_addr = readl(&mac->mii_mgmt_addr);
1183     mii_cmd = readl(&mac->mii_mgmt_cmd);
1184 
1185     /* Stop the current operation */
1186     writel(0, &mac->mii_mgmt_cmd);
1187 
1188     /* Set up the register we need to read from on the correct PHY */
1189     writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1190 
1191     writel(0x1, &mac->mii_mgmt_cmd);
1192 
1193     do {
1194         udelay(50);
1195         delay++;
1196         mii_indicator = readl(&mac->mii_mgmt_indicator);
1197     } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
1198 
1199     /* If we hit the max delay, we could not read the register */
1200     if (delay == 50) {
1201         dev_warn(&adapter->pdev->dev,
1202              "reg 0x%08x could not be read\n", reg);
1203         dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1204              mii_indicator);
1205 
1206         status = -EIO;
1207         goto out;
1208     }
1209 
1210     /* If we hit here we were able to read the register and we need to
1211      * return the value to the caller
1212      */
1213     *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
1214 
1215 out:
1216     /* Stop the read operation */
1217     writel(0, &mac->mii_mgmt_cmd);
1218 
1219     /* set the registers we touched back to the state at which we entered
1220      * this function
1221      */
1222     writel(mii_addr, &mac->mii_mgmt_addr);
1223     writel(mii_cmd, &mac->mii_mgmt_cmd);
1224 
1225     return status;
1226 }
1227 
1228 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1229 {
1230     struct phy_device *phydev = adapter->netdev->phydev;
1231 
1232     if (!phydev)
1233         return -EIO;
1234 
1235     return et131x_phy_mii_read(adapter, phydev->mdio.addr, reg, value);
1236 }
1237 
1238 static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg,
1239                 u16 value)
1240 {
1241     struct mac_regs __iomem *mac = &adapter->regs->mac;
1242     int status = 0;
1243     u32 delay = 0;
1244     u32 mii_addr;
1245     u32 mii_cmd;
1246     u32 mii_indicator;
1247 
1248     /* Save a local copy of the registers we are dealing with so we can
1249      * set them back
1250      */
1251     mii_addr = readl(&mac->mii_mgmt_addr);
1252     mii_cmd = readl(&mac->mii_mgmt_cmd);
1253 
1254     /* Stop the current operation */
1255     writel(0, &mac->mii_mgmt_cmd);
1256 
1257     /* Set up the register we need to write to on the correct PHY */
1258     writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1259 
1260     /* Add the value to write to the registers to the mac */
1261     writel(value, &mac->mii_mgmt_ctrl);
1262 
1263     do {
1264         udelay(50);
1265         delay++;
1266         mii_indicator = readl(&mac->mii_mgmt_indicator);
1267     } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
1268 
1269     /* If we hit the max delay, we could not write the register */
1270     if (delay == 100) {
1271         u16 tmp;
1272 
1273         dev_warn(&adapter->pdev->dev,
1274              "reg 0x%08x could not be written", reg);
1275         dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1276              mii_indicator);
1277         dev_warn(&adapter->pdev->dev, "command is  0x%08x\n",
1278              readl(&mac->mii_mgmt_cmd));
1279 
1280         et131x_mii_read(adapter, reg, &tmp);
1281 
1282         status = -EIO;
1283     }
1284     /* Stop the write operation */
1285     writel(0, &mac->mii_mgmt_cmd);
1286 
1287     /* set the registers we touched back to the state at which we entered
1288      * this function
1289      */
1290     writel(mii_addr, &mac->mii_mgmt_addr);
1291     writel(mii_cmd, &mac->mii_mgmt_cmd);
1292 
1293     return status;
1294 }
1295 
1296 static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1297                     u16 regnum,
1298                     u16 bitnum,
1299                     u8 *value)
1300 {
1301     u16 reg;
1302     u16 mask = 1 << bitnum;
1303 
1304     et131x_mii_read(adapter, regnum, &reg);
1305 
1306     *value = (reg & mask) >> bitnum;
1307 }
1308 
1309 static void et1310_config_flow_control(struct et131x_adapter *adapter)
1310 {
1311     struct phy_device *phydev = adapter->netdev->phydev;
1312 
1313     if (phydev->duplex == DUPLEX_HALF) {
1314         adapter->flow = FLOW_NONE;
1315     } else {
1316         char remote_pause, remote_async_pause;
1317 
1318         et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1319         et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
1320 
1321         if (remote_pause && remote_async_pause) {
1322             adapter->flow = adapter->wanted_flow;
1323         } else if (remote_pause && !remote_async_pause) {
1324             if (adapter->wanted_flow == FLOW_BOTH)
1325                 adapter->flow = FLOW_BOTH;
1326             else
1327                 adapter->flow = FLOW_NONE;
1328         } else if (!remote_pause && !remote_async_pause) {
1329             adapter->flow = FLOW_NONE;
1330         } else {
1331             if (adapter->wanted_flow == FLOW_BOTH)
1332                 adapter->flow = FLOW_RXONLY;
1333             else
1334                 adapter->flow = FLOW_NONE;
1335         }
1336     }
1337 }
1338 
1339 /* et1310_update_macstat_host_counters - Update local copy of the statistics */
1340 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1341 {
1342     struct ce_stats *stats = &adapter->stats;
1343     struct macstat_regs __iomem *macstat =
1344         &adapter->regs->macstat;
1345 
1346     stats->tx_collisions           += readl(&macstat->tx_total_collisions);
1347     stats->tx_first_collisions     += readl(&macstat->tx_single_collisions);
1348     stats->tx_deferred         += readl(&macstat->tx_deferred);
1349     stats->tx_excessive_collisions +=
1350                 readl(&macstat->tx_multiple_collisions);
1351     stats->tx_late_collisions      += readl(&macstat->tx_late_collisions);
1352     stats->tx_underflows           += readl(&macstat->tx_undersize_frames);
1353     stats->tx_max_pkt_errs         += readl(&macstat->tx_oversize_frames);
1354 
1355     stats->rx_align_errs        += readl(&macstat->rx_align_errs);
1356     stats->rx_crc_errs          += readl(&macstat->rx_code_errs);
1357     stats->rcvd_pkts_dropped    += readl(&macstat->rx_drops);
1358     stats->rx_overflows         += readl(&macstat->rx_oversize_packets);
1359     stats->rx_code_violations   += readl(&macstat->rx_fcs_errs);
1360     stats->rx_length_errs       += readl(&macstat->rx_frame_len_errs);
1361     stats->rx_other_errs        += readl(&macstat->rx_fragment_packets);
1362 }
1363 
1364 /* et1310_handle_macstat_interrupt
1365  *
1366  * One of the MACSTAT counters has wrapped.  Update the local copy of
1367  * the statistics held in the adapter structure, checking the "wrap"
1368  * bit for each counter.
1369  */
1370 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1371 {
1372     u32 carry_reg1;
1373     u32 carry_reg2;
1374 
1375     /* Read the interrupt bits from the register(s).  These are Clear On
1376      * Write.
1377      */
1378     carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1379     carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1380 
1381     writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1382     writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1383 
1384     /* We need to do update the host copy of all the MAC_STAT counters.
1385      * For each counter, check it's overflow bit.  If the overflow bit is
1386      * set, then increment the host version of the count by one complete
1387      * revolution of the counter.  This routine is called when the counter
1388      * block indicates that one of the counters has wrapped.
1389      */
1390     if (carry_reg1 & (1 << 14))
1391         adapter->stats.rx_code_violations   += COUNTER_WRAP_16_BIT;
1392     if (carry_reg1 & (1 << 8))
1393         adapter->stats.rx_align_errs    += COUNTER_WRAP_12_BIT;
1394     if (carry_reg1 & (1 << 7))
1395         adapter->stats.rx_length_errs   += COUNTER_WRAP_16_BIT;
1396     if (carry_reg1 & (1 << 2))
1397         adapter->stats.rx_other_errs    += COUNTER_WRAP_16_BIT;
1398     if (carry_reg1 & (1 << 6))
1399         adapter->stats.rx_crc_errs  += COUNTER_WRAP_16_BIT;
1400     if (carry_reg1 & (1 << 3))
1401         adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT;
1402     if (carry_reg1 & (1 << 0))
1403         adapter->stats.rcvd_pkts_dropped    += COUNTER_WRAP_16_BIT;
1404     if (carry_reg2 & (1 << 16))
1405         adapter->stats.tx_max_pkt_errs  += COUNTER_WRAP_12_BIT;
1406     if (carry_reg2 & (1 << 15))
1407         adapter->stats.tx_underflows    += COUNTER_WRAP_12_BIT;
1408     if (carry_reg2 & (1 << 6))
1409         adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1410     if (carry_reg2 & (1 << 8))
1411         adapter->stats.tx_deferred  += COUNTER_WRAP_12_BIT;
1412     if (carry_reg2 & (1 << 5))
1413         adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1414     if (carry_reg2 & (1 << 4))
1415         adapter->stats.tx_late_collisions   += COUNTER_WRAP_12_BIT;
1416     if (carry_reg2 & (1 << 2))
1417         adapter->stats.tx_collisions    += COUNTER_WRAP_12_BIT;
1418 }
1419 
1420 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1421 {
1422     struct net_device *netdev = bus->priv;
1423     struct et131x_adapter *adapter = netdev_priv(netdev);
1424     u16 value;
1425     int ret;
1426 
1427     ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1428 
1429     if (ret < 0)
1430         return ret;
1431 
1432     return value;
1433 }
1434 
1435 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1436                  int reg, u16 value)
1437 {
1438     struct net_device *netdev = bus->priv;
1439     struct et131x_adapter *adapter = netdev_priv(netdev);
1440 
1441     return et131x_mii_write(adapter, phy_addr, reg, value);
1442 }
1443 
1444 /*  et1310_phy_power_switch -   PHY power control
1445  *  @adapter: device to control
1446  *  @down: true for off/false for back on
1447  *
1448  *  one hundred, ten, one thousand megs
1449  *  How would you like to have your LAN accessed
1450  *  Can't you see that this code processed
1451  *  Phy power, phy power..
1452  */
1453 static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
1454 {
1455     u16 data;
1456     struct  phy_device *phydev = adapter->netdev->phydev;
1457 
1458     et131x_mii_read(adapter, MII_BMCR, &data);
1459     data &= ~BMCR_PDOWN;
1460     if (down)
1461         data |= BMCR_PDOWN;
1462     et131x_mii_write(adapter, phydev->mdio.addr, MII_BMCR, data);
1463 }
1464 
1465 /* et131x_xcvr_init - Init the phy if we are setting it into force mode */
1466 static void et131x_xcvr_init(struct et131x_adapter *adapter)
1467 {
1468     u16 lcr2;
1469     struct  phy_device *phydev = adapter->netdev->phydev;
1470 
1471     /* Set the LED behavior such that LED 1 indicates speed (off =
1472      * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1473      * link and activity (on for link, blink off for activity).
1474      *
1475      * NOTE: Some customizations have been added here for specific
1476      * vendors; The LED behavior is now determined by vendor data in the
1477      * EEPROM. However, the above description is the default.
1478      */
1479     if ((adapter->eeprom_data[1] & 0x4) == 0) {
1480         et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1481 
1482         lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1483         lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1484 
1485         if ((adapter->eeprom_data[1] & 0x8) == 0)
1486             lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1487         else
1488             lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1489 
1490         et131x_mii_write(adapter, phydev->mdio.addr, PHY_LED_2, lcr2);
1491     }
1492 }
1493 
1494 /* et131x_configure_global_regs - configure JAGCore global regs */
1495 static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1496 {
1497     struct global_regs __iomem *regs = &adapter->regs->global;
1498 
1499     writel(0, &regs->rxq_start_addr);
1500     writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1501 
1502     if (adapter->registry_jumbo_packet < 2048) {
1503         /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1504          * block of RAM that the driver can split between Tx
1505          * and Rx as it desires.  Our default is to split it
1506          * 50/50:
1507          */
1508         writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1509         writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1510     } else if (adapter->registry_jumbo_packet < 8192) {
1511         /* For jumbo packets > 2k but < 8k, split 50-50. */
1512         writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1513         writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1514     } else {
1515         /* 9216 is the only packet size greater than 8k that
1516          * is available. The Tx buffer has to be big enough
1517          * for one whole packet on the Tx side. We'll make
1518          * the Tx 9408, and give the rest to Rx
1519          */
1520         writel(0x01b3, &regs->rxq_end_addr);
1521         writel(0x01b4, &regs->txq_start_addr);
1522     }
1523 
1524     /* Initialize the loopback register. Disable all loopbacks. */
1525     writel(0, &regs->loopback);
1526 
1527     writel(0, &regs->msi_config);
1528 
1529     /* By default, disable the watchdog timer.  It will be enabled when
1530      * a packet is queued.
1531      */
1532     writel(0, &regs->watchdog_timer);
1533 }
1534 
1535 /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
1536 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1537 {
1538     struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1539     struct rx_ring *rx_local = &adapter->rx_ring;
1540     struct fbr_desc *fbr_entry;
1541     u32 entry;
1542     u32 psr_num_des;
1543     unsigned long flags;
1544     u8 id;
1545 
1546     et131x_rx_dma_disable(adapter);
1547 
1548     /* Load the completion writeback physical address */
1549     writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1550     writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1551 
1552     memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1553 
1554     /* Set the address and parameters of the packet status ring */
1555     writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1556     writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1557     writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des);
1558     writel(0, &rx_dma->psr_full_offset);
1559 
1560     psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
1561     writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1562            &rx_dma->psr_min_des);
1563 
1564     spin_lock_irqsave(&adapter->rcv_lock, flags);
1565 
1566     /* These local variables track the PSR in the adapter structure */
1567     rx_local->local_psr_full = 0;
1568 
1569     for (id = 0; id < NUM_FBRS; id++) {
1570         u32 __iomem *num_des;
1571         u32 __iomem *full_offset;
1572         u32 __iomem *min_des;
1573         u32 __iomem *base_hi;
1574         u32 __iomem *base_lo;
1575         struct fbr_lookup *fbr = rx_local->fbr[id];
1576 
1577         if (id == 0) {
1578             num_des = &rx_dma->fbr0_num_des;
1579             full_offset = &rx_dma->fbr0_full_offset;
1580             min_des = &rx_dma->fbr0_min_des;
1581             base_hi = &rx_dma->fbr0_base_hi;
1582             base_lo = &rx_dma->fbr0_base_lo;
1583         } else {
1584             num_des = &rx_dma->fbr1_num_des;
1585             full_offset = &rx_dma->fbr1_full_offset;
1586             min_des = &rx_dma->fbr1_min_des;
1587             base_hi = &rx_dma->fbr1_base_hi;
1588             base_lo = &rx_dma->fbr1_base_lo;
1589         }
1590 
1591         /* Now's the best time to initialize FBR contents */
1592         fbr_entry = fbr->ring_virtaddr;
1593         for (entry = 0; entry < fbr->num_entries; entry++) {
1594             fbr_entry->addr_hi = fbr->bus_high[entry];
1595             fbr_entry->addr_lo = fbr->bus_low[entry];
1596             fbr_entry->word2 = entry;
1597             fbr_entry++;
1598         }
1599 
1600         /* Set the address and parameters of Free buffer ring 1 and 0 */
1601         writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1602         writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1603         writel(fbr->num_entries - 1, num_des);
1604         writel(ET_DMA10_WRAP, full_offset);
1605 
1606         /* This variable tracks the free buffer ring 1 full position,
1607          * so it has to match the above.
1608          */
1609         fbr->local_full = ET_DMA10_WRAP;
1610         writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1611                min_des);
1612     }
1613 
1614     /* Program the number of packets we will receive before generating an
1615      * interrupt.
1616      * For version B silicon, this value gets updated once autoneg is
1617      *complete.
1618      */
1619     writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1620 
1621     /* The "time_done" is not working correctly to coalesce interrupts
1622      * after a given time period, but rather is giving us an interrupt
1623      * regardless of whether we have received packets.
1624      * This value gets updated once autoneg is complete.
1625      */
1626     writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1627 
1628     spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1629 }
1630 
1631 /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1632  *
1633  * Configure the transmit engine with the ring buffers we have created
1634  * and prepare it for use.
1635  */
1636 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1637 {
1638     struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1639     struct tx_ring *tx_ring = &adapter->tx_ring;
1640 
1641     /* Load the hardware with the start of the transmit descriptor ring. */
1642     writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1643     writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
1644 
1645     /* Initialise the transmit DMA engine */
1646     writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1647 
1648     /* Load the completion writeback physical address */
1649     writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1650     writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
1651 
1652     *tx_ring->tx_status = 0;
1653 
1654     writel(0, &txdma->service_request);
1655     tx_ring->send_idx = 0;
1656 }
1657 
1658 /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
1659 static void et131x_adapter_setup(struct et131x_adapter *adapter)
1660 {
1661     et131x_configure_global_regs(adapter);
1662     et1310_config_mac_regs1(adapter);
1663 
1664     /* Configure the MMC registers */
1665     /* All we need to do is initialize the Memory Control Register */
1666     writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1667 
1668     et1310_config_rxmac_regs(adapter);
1669     et1310_config_txmac_regs(adapter);
1670 
1671     et131x_config_rx_dma_regs(adapter);
1672     et131x_config_tx_dma_regs(adapter);
1673 
1674     et1310_config_macstat_regs(adapter);
1675 
1676     et1310_phy_power_switch(adapter, 0);
1677     et131x_xcvr_init(adapter);
1678 }
1679 
1680 /* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
1681 static void et131x_soft_reset(struct et131x_adapter *adapter)
1682 {
1683     u32 reg;
1684 
1685     /* Disable MAC Core */
1686     reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1687           ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1688           ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1689     writel(reg, &adapter->regs->mac.cfg1);
1690 
1691     reg = ET_RESET_ALL;
1692     writel(reg, &adapter->regs->global.sw_reset);
1693 
1694     reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1695           ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1696     writel(reg, &adapter->regs->mac.cfg1);
1697     writel(0, &adapter->regs->mac.cfg1);
1698 }
1699 
1700 static void et131x_enable_interrupts(struct et131x_adapter *adapter)
1701 {
1702     u32 mask;
1703 
1704     if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
1705         mask = INT_MASK_ENABLE;
1706     else
1707         mask = INT_MASK_ENABLE_NO_FLOW;
1708 
1709     writel(mask, &adapter->regs->global.int_mask);
1710 }
1711 
1712 static void et131x_disable_interrupts(struct et131x_adapter *adapter)
1713 {
1714     writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1715 }
1716 
1717 static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
1718 {
1719     /* Setup the transmit dma configuration register */
1720     writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
1721            &adapter->regs->txdma.csr);
1722 }
1723 
1724 static void et131x_enable_txrx(struct net_device *netdev)
1725 {
1726     struct et131x_adapter *adapter = netdev_priv(netdev);
1727 
1728     et131x_rx_dma_enable(adapter);
1729     et131x_tx_dma_enable(adapter);
1730 
1731     if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
1732         et131x_enable_interrupts(adapter);
1733 
1734     netif_start_queue(netdev);
1735 }
1736 
1737 static void et131x_disable_txrx(struct net_device *netdev)
1738 {
1739     struct et131x_adapter *adapter = netdev_priv(netdev);
1740 
1741     netif_stop_queue(netdev);
1742 
1743     et131x_rx_dma_disable(adapter);
1744     et131x_tx_dma_disable(adapter);
1745 
1746     et131x_disable_interrupts(adapter);
1747 }
1748 
1749 static void et131x_init_send(struct et131x_adapter *adapter)
1750 {
1751     int i;
1752     struct tx_ring *tx_ring = &adapter->tx_ring;
1753     struct tcb *tcb = tx_ring->tcb_ring;
1754 
1755     tx_ring->tcb_qhead = tcb;
1756 
1757     memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1758 
1759     for (i = 0; i < NUM_TCB; i++) {
1760         tcb->next = tcb + 1;
1761         tcb++;
1762     }
1763 
1764     tcb--;
1765     tx_ring->tcb_qtail = tcb;
1766     tcb->next = NULL;
1767     /* Curr send queue should now be empty */
1768     tx_ring->send_head = NULL;
1769     tx_ring->send_tail = NULL;
1770 }
1771 
1772 /* et1310_enable_phy_coma
1773  *
1774  * driver receive an phy status change interrupt while in D0 and check that
1775  * phy_status is down.
1776  *
1777  *          -- gate off JAGCore;
1778  *          -- set gigE PHY in Coma mode
1779  *          -- wake on phy_interrupt; Perform software reset JAGCore,
1780  *             re-initialize jagcore and gigE PHY
1781  */
1782 static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
1783 {
1784     u32 pmcsr = readl(&adapter->regs->global.pm_csr);
1785 
1786     /* Stop sending packets. */
1787     adapter->flags |= FMP_ADAPTER_LOWER_POWER;
1788 
1789     /* Wait for outstanding Receive packets */
1790     et131x_disable_txrx(adapter->netdev);
1791 
1792     /* Gate off JAGCore 3 clock domains */
1793     pmcsr &= ~ET_PMCSR_INIT;
1794     writel(pmcsr, &adapter->regs->global.pm_csr);
1795 
1796     /* Program gigE PHY in to Coma mode */
1797     pmcsr |= ET_PM_PHY_SW_COMA;
1798     writel(pmcsr, &adapter->regs->global.pm_csr);
1799 }
1800 
1801 static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
1802 {
1803     u32 pmcsr;
1804 
1805     pmcsr = readl(&adapter->regs->global.pm_csr);
1806 
1807     /* Disable phy_sw_coma register and re-enable JAGCore clocks */
1808     pmcsr |= ET_PMCSR_INIT;
1809     pmcsr &= ~ET_PM_PHY_SW_COMA;
1810     writel(pmcsr, &adapter->regs->global.pm_csr);
1811 
1812     /* Restore the GbE PHY speed and duplex modes;
1813      * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
1814      */
1815 
1816     /* Re-initialize the send structures */
1817     et131x_init_send(adapter);
1818 
1819     /* Bring the device back to the state it was during init prior to
1820      * autonegotiation being complete.  This way, when we get the auto-neg
1821      * complete interrupt, we can complete init by calling ConfigMacREGS2.
1822      */
1823     et131x_soft_reset(adapter);
1824 
1825     et131x_adapter_setup(adapter);
1826 
1827     /* Allow Tx to restart */
1828     adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
1829 
1830     et131x_enable_txrx(adapter->netdev);
1831 }
1832 
1833 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
1834 {
1835     u32 tmp_free_buff_ring = *free_buff_ring;
1836 
1837     tmp_free_buff_ring++;
1838     /* This works for all cases where limit < 1024. The 1023 case
1839      * works because 1023++ is 1024 which means the if condition is not
1840      * taken but the carry of the bit into the wrap bit toggles the wrap
1841      * value correctly
1842      */
1843     if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
1844         tmp_free_buff_ring &= ~ET_DMA10_MASK;
1845         tmp_free_buff_ring ^= ET_DMA10_WRAP;
1846     }
1847     /* For the 1023 case */
1848     tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
1849     *free_buff_ring = tmp_free_buff_ring;
1850     return tmp_free_buff_ring;
1851 }
1852 
1853 /* et131x_rx_dma_memory_alloc
1854  *
1855  * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
1856  * and the Packet Status Ring.
1857  */
1858 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
1859 {
1860     u8 id;
1861     u32 i, j;
1862     u32 bufsize;
1863     u32 psr_size;
1864     u32 fbr_chunksize;
1865     struct rx_ring *rx_ring = &adapter->rx_ring;
1866     struct fbr_lookup *fbr;
1867 
1868     /* Alloc memory for the lookup table */
1869     rx_ring->fbr[0] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1870     if (rx_ring->fbr[0] == NULL)
1871         return -ENOMEM;
1872     rx_ring->fbr[1] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1873     if (rx_ring->fbr[1] == NULL)
1874         return -ENOMEM;
1875 
1876     /* The first thing we will do is configure the sizes of the buffer
1877      * rings. These will change based on jumbo packet support.  Larger
1878      * jumbo packets increases the size of each entry in FBR0, and the
1879      * number of entries in FBR0, while at the same time decreasing the
1880      * number of entries in FBR1.
1881      *
1882      * FBR1 holds "large" frames, FBR0 holds "small" frames.  If FBR1
1883      * entries are huge in order to accommodate a "jumbo" frame, then it
1884      * will have less entries.  Conversely, FBR1 will now be relied upon
1885      * to carry more "normal" frames, thus it's entry size also increases
1886      * and the number of entries goes up too (since it now carries
1887      * "small" + "regular" packets.
1888      *
1889      * In this scheme, we try to maintain 512 entries between the two
1890      * rings. Also, FBR1 remains a constant size - when it's size doubles
1891      * the number of entries halves.  FBR0 increases in size, however.
1892      */
1893     if (adapter->registry_jumbo_packet < 2048) {
1894         rx_ring->fbr[0]->buffsize = 256;
1895         rx_ring->fbr[0]->num_entries = 512;
1896         rx_ring->fbr[1]->buffsize = 2048;
1897         rx_ring->fbr[1]->num_entries = 512;
1898     } else if (adapter->registry_jumbo_packet < 4096) {
1899         rx_ring->fbr[0]->buffsize = 512;
1900         rx_ring->fbr[0]->num_entries = 1024;
1901         rx_ring->fbr[1]->buffsize = 4096;
1902         rx_ring->fbr[1]->num_entries = 512;
1903     } else {
1904         rx_ring->fbr[0]->buffsize = 1024;
1905         rx_ring->fbr[0]->num_entries = 768;
1906         rx_ring->fbr[1]->buffsize = 16384;
1907         rx_ring->fbr[1]->num_entries = 128;
1908     }
1909 
1910     rx_ring->psr_entries = rx_ring->fbr[0]->num_entries +
1911                    rx_ring->fbr[1]->num_entries;
1912 
1913     for (id = 0; id < NUM_FBRS; id++) {
1914         fbr = rx_ring->fbr[id];
1915         /* Allocate an area of memory for Free Buffer Ring */
1916         bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
1917         fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1918                             bufsize,
1919                             &fbr->ring_physaddr,
1920                             GFP_KERNEL);
1921         if (!fbr->ring_virtaddr) {
1922             dev_err(&adapter->pdev->dev,
1923                 "Cannot alloc memory for Free Buffer Ring %d\n",
1924                 id);
1925             return -ENOMEM;
1926         }
1927     }
1928 
1929     for (id = 0; id < NUM_FBRS; id++) {
1930         fbr = rx_ring->fbr[id];
1931         fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
1932 
1933         for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
1934             dma_addr_t fbr_physaddr;
1935 
1936             fbr->mem_virtaddrs[i] = dma_alloc_coherent(
1937                     &adapter->pdev->dev, fbr_chunksize,
1938                     &fbr->mem_physaddrs[i],
1939                     GFP_KERNEL);
1940 
1941             if (!fbr->mem_virtaddrs[i]) {
1942                 dev_err(&adapter->pdev->dev,
1943                     "Could not alloc memory\n");
1944                 return -ENOMEM;
1945             }
1946 
1947             /* See NOTE in "Save Physical Address" comment above */
1948             fbr_physaddr = fbr->mem_physaddrs[i];
1949 
1950             for (j = 0; j < FBR_CHUNKS; j++) {
1951                 u32 k = (i * FBR_CHUNKS) + j;
1952 
1953                 /* Save the Virtual address of this index for
1954                  * quick access later
1955                  */
1956                 fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] +
1957                            (j * fbr->buffsize);
1958 
1959                 /* now store the physical address in the
1960                  * descriptor so the device can access it
1961                  */
1962                 fbr->bus_high[k] = upper_32_bits(fbr_physaddr);
1963                 fbr->bus_low[k] = lower_32_bits(fbr_physaddr);
1964                 fbr_physaddr += fbr->buffsize;
1965             }
1966         }
1967     }
1968 
1969     /* Allocate an area of memory for FIFO of Packet Status ring entries */
1970     psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
1971 
1972     rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1973                           psr_size,
1974                           &rx_ring->ps_ring_physaddr,
1975                           GFP_KERNEL);
1976 
1977     if (!rx_ring->ps_ring_virtaddr) {
1978         dev_err(&adapter->pdev->dev,
1979             "Cannot alloc memory for Packet Status Ring\n");
1980         return -ENOMEM;
1981     }
1982 
1983     /* Allocate an area of memory for writeback of status information */
1984     rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
1985                         sizeof(struct rx_status_block),
1986                         &rx_ring->rx_status_bus,
1987                         GFP_KERNEL);
1988     if (!rx_ring->rx_status_block) {
1989         dev_err(&adapter->pdev->dev,
1990             "Cannot alloc memory for Status Block\n");
1991         return -ENOMEM;
1992     }
1993     rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
1994 
1995     /* The RFDs are going to be put on lists later on, so initialize the
1996      * lists now.
1997      */
1998     INIT_LIST_HEAD(&rx_ring->recv_list);
1999     return 0;
2000 }
2001 
2002 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2003 {
2004     u8 id;
2005     u32 ii;
2006     u32 bufsize;
2007     u32 psr_size;
2008     struct rfd *rfd;
2009     struct rx_ring *rx_ring = &adapter->rx_ring;
2010     struct fbr_lookup *fbr;
2011 
2012     /* Free RFDs and associated packet descriptors */
2013     WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2014 
2015     while (!list_empty(&rx_ring->recv_list)) {
2016         rfd = list_entry(rx_ring->recv_list.next,
2017                  struct rfd, list_node);
2018 
2019         list_del(&rfd->list_node);
2020         rfd->skb = NULL;
2021         kfree(rfd);
2022     }
2023 
2024     /* Free Free Buffer Rings */
2025     for (id = 0; id < NUM_FBRS; id++) {
2026         fbr = rx_ring->fbr[id];
2027 
2028         if (!fbr || !fbr->ring_virtaddr)
2029             continue;
2030 
2031         /* First the packet memory */
2032         for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) {
2033             if (fbr->mem_virtaddrs[ii]) {
2034                 bufsize = fbr->buffsize * FBR_CHUNKS;
2035 
2036                 dma_free_coherent(&adapter->pdev->dev,
2037                           bufsize,
2038                           fbr->mem_virtaddrs[ii],
2039                           fbr->mem_physaddrs[ii]);
2040 
2041                 fbr->mem_virtaddrs[ii] = NULL;
2042             }
2043         }
2044 
2045         bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2046 
2047         dma_free_coherent(&adapter->pdev->dev,
2048                   bufsize,
2049                   fbr->ring_virtaddr,
2050                   fbr->ring_physaddr);
2051 
2052         fbr->ring_virtaddr = NULL;
2053     }
2054 
2055     /* Free Packet Status Ring */
2056     if (rx_ring->ps_ring_virtaddr) {
2057         psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
2058 
2059         dma_free_coherent(&adapter->pdev->dev, psr_size,
2060                   rx_ring->ps_ring_virtaddr,
2061                   rx_ring->ps_ring_physaddr);
2062 
2063         rx_ring->ps_ring_virtaddr = NULL;
2064     }
2065 
2066     /* Free area of memory for the writeback of status information */
2067     if (rx_ring->rx_status_block) {
2068         dma_free_coherent(&adapter->pdev->dev,
2069                   sizeof(struct rx_status_block),
2070                   rx_ring->rx_status_block,
2071                   rx_ring->rx_status_bus);
2072         rx_ring->rx_status_block = NULL;
2073     }
2074 
2075     /* Free the FBR Lookup Table */
2076     kfree(rx_ring->fbr[0]);
2077     kfree(rx_ring->fbr[1]);
2078 
2079     /* Reset Counters */
2080     rx_ring->num_ready_recv = 0;
2081 }
2082 
2083 /* et131x_init_recv - Initialize receive data structures */
2084 static int et131x_init_recv(struct et131x_adapter *adapter)
2085 {
2086     struct rfd *rfd;
2087     u32 rfdct;
2088     struct rx_ring *rx_ring = &adapter->rx_ring;
2089 
2090     /* Setup each RFD */
2091     for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2092         rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA);
2093         if (!rfd)
2094             return -ENOMEM;
2095 
2096         rfd->skb = NULL;
2097 
2098         /* Add this RFD to the recv_list */
2099         list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2100 
2101         /* Increment the available RFD's */
2102         rx_ring->num_ready_recv++;
2103     }
2104 
2105     return 0;
2106 }
2107 
2108 /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
2109 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2110 {
2111     struct phy_device *phydev = adapter->netdev->phydev;
2112 
2113     /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2114      * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2115      */
2116     if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2117         writel(0, &adapter->regs->rxdma.max_pkt_time);
2118         writel(1, &adapter->regs->rxdma.num_pkt_done);
2119     }
2120 }
2121 
2122 /* nic_return_rfd - Recycle a RFD and put it back onto the receive list */
2123 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2124 {
2125     struct rx_ring *rx_local = &adapter->rx_ring;
2126     struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2127     u16 buff_index = rfd->bufferindex;
2128     u8 ring_index = rfd->ringindex;
2129     unsigned long flags;
2130     struct fbr_lookup *fbr = rx_local->fbr[ring_index];
2131 
2132     /* We don't use any of the OOB data besides status. Otherwise, we
2133      * need to clean up OOB data
2134      */
2135     if (buff_index < fbr->num_entries) {
2136         u32 free_buff_ring;
2137         u32 __iomem *offset;
2138         struct fbr_desc *next;
2139 
2140         if (ring_index == 0)
2141             offset = &rx_dma->fbr0_full_offset;
2142         else
2143             offset = &rx_dma->fbr1_full_offset;
2144 
2145         next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2146                INDEX10(fbr->local_full);
2147 
2148         /* Handle the Free Buffer Ring advancement here. Write
2149          * the PA / Buffer Index for the returned buffer into
2150          * the oldest (next to be freed)FBR entry
2151          */
2152         next->addr_hi = fbr->bus_high[buff_index];
2153         next->addr_lo = fbr->bus_low[buff_index];
2154         next->word2 = buff_index;
2155 
2156         free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2157                              fbr->num_entries - 1);
2158         writel(free_buff_ring, offset);
2159     } else {
2160         dev_err(&adapter->pdev->dev,
2161             "%s illegal Buffer Index returned\n", __func__);
2162     }
2163 
2164     /* The processing on this RFD is done, so put it back on the tail of
2165      * our list
2166      */
2167     spin_lock_irqsave(&adapter->rcv_lock, flags);
2168     list_add_tail(&rfd->list_node, &rx_local->recv_list);
2169     rx_local->num_ready_recv++;
2170     spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2171 
2172     WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2173 }
2174 
2175 /* nic_rx_pkts - Checks the hardware for available packets
2176  *
2177  * Checks the hardware for available packets, using completion ring
2178  * If packets are available, it gets an RFD from the recv_list, attaches
2179  * the packet to it, puts the RFD in the RecvPendList, and also returns
2180  * the pointer to the RFD.
2181  */
2182 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2183 {
2184     struct rx_ring *rx_local = &adapter->rx_ring;
2185     struct rx_status_block *status;
2186     struct pkt_stat_desc *psr;
2187     struct rfd *rfd;
2188     unsigned long flags;
2189     struct list_head *element;
2190     u8 ring_index;
2191     u16 buff_index;
2192     u32 len;
2193     u32 word0;
2194     u32 word1;
2195     struct sk_buff *skb;
2196     struct fbr_lookup *fbr;
2197 
2198     /* RX Status block is written by the DMA engine prior to every
2199      * interrupt. It contains the next to be used entry in the Packet
2200      * Status Ring, and also the two Free Buffer rings.
2201      */
2202     status = rx_local->rx_status_block;
2203     word1 = status->word1 >> 16;
2204 
2205     /* Check the PSR and wrap bits do not match */
2206     if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2207         return NULL; /* Looks like this ring is not updated yet */
2208 
2209     /* The packet status ring indicates that data is available. */
2210     psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) +
2211             (rx_local->local_psr_full & 0xFFF);
2212 
2213     /* Grab any information that is required once the PSR is advanced,
2214      * since we can no longer rely on the memory being accurate
2215      */
2216     len = psr->word1 & 0xFFFF;
2217     ring_index = (psr->word1 >> 26) & 0x03;
2218     fbr = rx_local->fbr[ring_index];
2219     buff_index = (psr->word1 >> 16) & 0x3FF;
2220     word0 = psr->word0;
2221 
2222     /* Indicate that we have used this PSR entry. */
2223     /* FIXME wrap 12 */
2224     add_12bit(&rx_local->local_psr_full, 1);
2225     if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) {
2226         /* Clear psr full and toggle the wrap bit */
2227         rx_local->local_psr_full &=  ~0xFFF;
2228         rx_local->local_psr_full ^= 0x1000;
2229     }
2230 
2231     writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
2232 
2233     if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
2234         /* Illegal buffer or ring index cannot be used by S/W*/
2235         dev_err(&adapter->pdev->dev,
2236             "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2237             rx_local->local_psr_full & 0xFFF, len, buff_index);
2238         return NULL;
2239     }
2240 
2241     /* Get and fill the RFD. */
2242     spin_lock_irqsave(&adapter->rcv_lock, flags);
2243 
2244     element = rx_local->recv_list.next;
2245     rfd = list_entry(element, struct rfd, list_node);
2246 
2247     if (!rfd) {
2248         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2249         return NULL;
2250     }
2251 
2252     list_del(&rfd->list_node);
2253     rx_local->num_ready_recv--;
2254 
2255     spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2256 
2257     rfd->bufferindex = buff_index;
2258     rfd->ringindex = ring_index;
2259 
2260     /* In V1 silicon, there is a bug which screws up filtering of runt
2261      * packets. Therefore runt packet filtering is disabled in the MAC and
2262      * the packets are dropped here. They are also counted here.
2263      */
2264     if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2265         adapter->stats.rx_other_errs++;
2266         rfd->len = 0;
2267         goto out;
2268     }
2269 
2270     if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT))
2271         adapter->stats.multicast_pkts_rcvd++;
2272 
2273     rfd->len = len;
2274 
2275     skb = dev_alloc_skb(rfd->len + 2);
2276     if (!skb)
2277         return NULL;
2278 
2279     adapter->netdev->stats.rx_bytes += rfd->len;
2280 
2281     skb_put_data(skb, fbr->virt[buff_index], rfd->len);
2282 
2283     skb->protocol = eth_type_trans(skb, adapter->netdev);
2284     skb->ip_summed = CHECKSUM_NONE;
2285     netif_receive_skb(skb);
2286 
2287 out:
2288     nic_return_rfd(adapter, rfd);
2289     return rfd;
2290 }
2291 
2292 static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget)
2293 {
2294     struct rfd *rfd = NULL;
2295     int count = 0;
2296     int limit = budget;
2297     bool done = true;
2298     struct rx_ring *rx_ring = &adapter->rx_ring;
2299 
2300     if (budget > MAX_PACKETS_HANDLED)
2301         limit = MAX_PACKETS_HANDLED;
2302 
2303     /* Process up to available RFD's */
2304     while (count < limit) {
2305         if (list_empty(&rx_ring->recv_list)) {
2306             WARN_ON(rx_ring->num_ready_recv != 0);
2307             done = false;
2308             break;
2309         }
2310 
2311         rfd = nic_rx_pkts(adapter);
2312 
2313         if (rfd == NULL)
2314             break;
2315 
2316         /* Do not receive any packets until a filter has been set.
2317          * Do not receive any packets until we have link.
2318          * If length is zero, return the RFD in order to advance the
2319          * Free buffer ring.
2320          */
2321         if (!adapter->packet_filter ||
2322             !netif_carrier_ok(adapter->netdev) ||
2323             rfd->len == 0)
2324             continue;
2325 
2326         adapter->netdev->stats.rx_packets++;
2327 
2328         if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
2329             dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2330 
2331         count++;
2332     }
2333 
2334     if (count == limit || !done) {
2335         rx_ring->unfinished_receives = true;
2336         writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2337                &adapter->regs->global.watchdog_timer);
2338     } else {
2339         /* Watchdog timer will disable itself if appropriate. */
2340         rx_ring->unfinished_receives = false;
2341     }
2342 
2343     return count;
2344 }
2345 
2346 /* et131x_tx_dma_memory_alloc
2347  *
2348  * Allocates memory that will be visible both to the device and to the CPU.
2349  * The OS will pass us packets, pointers to which we will insert in the Tx
2350  * Descriptor queue. The device will read this queue to find the packets in
2351  * memory. The device will update the "status" in memory each time it xmits a
2352  * packet.
2353  */
2354 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2355 {
2356     int desc_size = 0;
2357     struct tx_ring *tx_ring = &adapter->tx_ring;
2358 
2359     /* Allocate memory for the TCB's (Transmit Control Block) */
2360     tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2361                     GFP_KERNEL | GFP_DMA);
2362     if (!tx_ring->tcb_ring)
2363         return -ENOMEM;
2364 
2365     desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2366     tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2367                            desc_size,
2368                            &tx_ring->tx_desc_ring_pa,
2369                            GFP_KERNEL);
2370     if (!tx_ring->tx_desc_ring) {
2371         dev_err(&adapter->pdev->dev,
2372             "Cannot alloc memory for Tx Ring\n");
2373         return -ENOMEM;
2374     }
2375 
2376     tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
2377                             sizeof(u32),
2378                             &tx_ring->tx_status_pa,
2379                             GFP_KERNEL);
2380     if (!tx_ring->tx_status) {
2381         dev_err(&adapter->pdev->dev,
2382             "Cannot alloc memory for Tx status block\n");
2383         return -ENOMEM;
2384     }
2385     return 0;
2386 }
2387 
2388 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
2389 {
2390     int desc_size = 0;
2391     struct tx_ring *tx_ring = &adapter->tx_ring;
2392 
2393     if (tx_ring->tx_desc_ring) {
2394         /* Free memory relating to Tx rings here */
2395         desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2396         dma_free_coherent(&adapter->pdev->dev,
2397                   desc_size,
2398                   tx_ring->tx_desc_ring,
2399                   tx_ring->tx_desc_ring_pa);
2400         tx_ring->tx_desc_ring = NULL;
2401     }
2402 
2403     /* Free memory for the Tx status block */
2404     if (tx_ring->tx_status) {
2405         dma_free_coherent(&adapter->pdev->dev,
2406                   sizeof(u32),
2407                   tx_ring->tx_status,
2408                   tx_ring->tx_status_pa);
2409 
2410         tx_ring->tx_status = NULL;
2411     }
2412     /* Free the memory for the tcb structures */
2413     kfree(tx_ring->tcb_ring);
2414 }
2415 
2416 #define MAX_TX_DESC_PER_PKT 24
2417 
2418 /* nic_send_packet - NIC specific send handler for version B silicon. */
2419 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2420 {
2421     u32 i;
2422     struct tx_desc desc[MAX_TX_DESC_PER_PKT];
2423     u32 frag = 0;
2424     u32 thiscopy, remainder;
2425     struct sk_buff *skb = tcb->skb;
2426     u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2427     skb_frag_t *frags = &skb_shinfo(skb)->frags[0];
2428     struct phy_device *phydev = adapter->netdev->phydev;
2429     dma_addr_t dma_addr;
2430     struct tx_ring *tx_ring = &adapter->tx_ring;
2431 
2432     /* Part of the optimizations of this send routine restrict us to
2433      * sending 24 fragments at a pass.  In practice we should never see
2434      * more than 5 fragments.
2435      */
2436 
2437     memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2438 
2439     for (i = 0; i < nr_frags; i++) {
2440         /* If there is something in this element, lets get a
2441          * descriptor from the ring and get the necessary data
2442          */
2443         if (i == 0) {
2444             /* If the fragments are smaller than a standard MTU,
2445              * then map them to a single descriptor in the Tx
2446              * Desc ring. However, if they're larger, as is
2447              * possible with support for jumbo packets, then
2448              * split them each across 2 descriptors.
2449              *
2450              * This will work until we determine why the hardware
2451              * doesn't seem to like large fragments.
2452              */
2453             if (skb_headlen(skb) <= 1514) {
2454                 /* Low 16bits are length, high is vlan and
2455                  * unused currently so zero
2456                  */
2457                 desc[frag].len_vlan = skb_headlen(skb);
2458                 dma_addr = dma_map_single(&adapter->pdev->dev,
2459                               skb->data,
2460                               skb_headlen(skb),
2461                               DMA_TO_DEVICE);
2462                 desc[frag].addr_lo = lower_32_bits(dma_addr);
2463                 desc[frag].addr_hi = upper_32_bits(dma_addr);
2464                 frag++;
2465             } else {
2466                 desc[frag].len_vlan = skb_headlen(skb) / 2;
2467                 dma_addr = dma_map_single(&adapter->pdev->dev,
2468                               skb->data,
2469                               skb_headlen(skb) / 2,
2470                               DMA_TO_DEVICE);
2471                 desc[frag].addr_lo = lower_32_bits(dma_addr);
2472                 desc[frag].addr_hi = upper_32_bits(dma_addr);
2473                 frag++;
2474 
2475                 desc[frag].len_vlan = skb_headlen(skb) / 2;
2476                 dma_addr = dma_map_single(&adapter->pdev->dev,
2477                               skb->data +
2478                               skb_headlen(skb) / 2,
2479                               skb_headlen(skb) / 2,
2480                               DMA_TO_DEVICE);
2481                 desc[frag].addr_lo = lower_32_bits(dma_addr);
2482                 desc[frag].addr_hi = upper_32_bits(dma_addr);
2483                 frag++;
2484             }
2485         } else {
2486             desc[frag].len_vlan = skb_frag_size(&frags[i - 1]);
2487             dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2488                             &frags[i - 1],
2489                             0,
2490                             desc[frag].len_vlan,
2491                             DMA_TO_DEVICE);
2492             desc[frag].addr_lo = lower_32_bits(dma_addr);
2493             desc[frag].addr_hi = upper_32_bits(dma_addr);
2494             frag++;
2495         }
2496     }
2497 
2498     if (phydev && phydev->speed == SPEED_1000) {
2499         if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
2500             /* Last element & Interrupt flag */
2501             desc[frag - 1].flags =
2502                     TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2503             tx_ring->since_irq = 0;
2504         } else { /* Last element */
2505             desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
2506         }
2507     } else {
2508         desc[frag - 1].flags =
2509                     TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2510     }
2511 
2512     desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
2513 
2514     tcb->index_start = tx_ring->send_idx;
2515     tcb->stale = 0;
2516 
2517     thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
2518 
2519     if (thiscopy >= frag) {
2520         remainder = 0;
2521         thiscopy = frag;
2522     } else {
2523         remainder = frag - thiscopy;
2524     }
2525 
2526     memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2527            desc,
2528            sizeof(struct tx_desc) * thiscopy);
2529 
2530     add_10bit(&tx_ring->send_idx, thiscopy);
2531 
2532     if (INDEX10(tx_ring->send_idx) == 0 ||
2533         INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2534         tx_ring->send_idx &= ~ET_DMA10_MASK;
2535         tx_ring->send_idx ^= ET_DMA10_WRAP;
2536     }
2537 
2538     if (remainder) {
2539         memcpy(tx_ring->tx_desc_ring,
2540                desc + thiscopy,
2541                sizeof(struct tx_desc) * remainder);
2542 
2543         add_10bit(&tx_ring->send_idx, remainder);
2544     }
2545 
2546     if (INDEX10(tx_ring->send_idx) == 0) {
2547         if (tx_ring->send_idx)
2548             tcb->index = NUM_DESC_PER_RING_TX - 1;
2549         else
2550             tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2551     } else {
2552         tcb->index = tx_ring->send_idx - 1;
2553     }
2554 
2555     spin_lock(&adapter->tcb_send_qlock);
2556 
2557     if (tx_ring->send_tail)
2558         tx_ring->send_tail->next = tcb;
2559     else
2560         tx_ring->send_head = tcb;
2561 
2562     tx_ring->send_tail = tcb;
2563 
2564     WARN_ON(tcb->next != NULL);
2565 
2566     tx_ring->used++;
2567 
2568     spin_unlock(&adapter->tcb_send_qlock);
2569 
2570     /* Write the new write pointer back to the device. */
2571     writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
2572 
2573     /* For Gig only, we use Tx Interrupt coalescing.  Enable the software
2574      * timer to wake us up if this packet isn't followed by N more.
2575      */
2576     if (phydev && phydev->speed == SPEED_1000) {
2577         writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2578                &adapter->regs->global.watchdog_timer);
2579     }
2580     return 0;
2581 }
2582 
2583 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2584 {
2585     int status;
2586     struct tcb *tcb;
2587     unsigned long flags;
2588     struct tx_ring *tx_ring = &adapter->tx_ring;
2589 
2590     /* All packets must have at least a MAC address and a protocol type */
2591     if (skb->len < ETH_HLEN)
2592         return -EIO;
2593 
2594     spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2595 
2596     tcb = tx_ring->tcb_qhead;
2597 
2598     if (tcb == NULL) {
2599         spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2600         return -ENOMEM;
2601     }
2602 
2603     tx_ring->tcb_qhead = tcb->next;
2604 
2605     if (tx_ring->tcb_qhead == NULL)
2606         tx_ring->tcb_qtail = NULL;
2607 
2608     spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2609 
2610     tcb->skb = skb;
2611     tcb->next = NULL;
2612 
2613     status = nic_send_packet(adapter, tcb);
2614 
2615     if (status != 0) {
2616         spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2617 
2618         if (tx_ring->tcb_qtail)
2619             tx_ring->tcb_qtail->next = tcb;
2620         else
2621             /* Apparently ready Q is empty. */
2622             tx_ring->tcb_qhead = tcb;
2623 
2624         tx_ring->tcb_qtail = tcb;
2625         spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2626         return status;
2627     }
2628     WARN_ON(tx_ring->used > NUM_TCB);
2629     return 0;
2630 }
2631 
2632 /* free_send_packet - Recycle a struct tcb */
2633 static inline void free_send_packet(struct et131x_adapter *adapter,
2634                     struct tcb *tcb)
2635 {
2636     unsigned long flags;
2637     struct tx_desc *desc = NULL;
2638     struct net_device_stats *stats = &adapter->netdev->stats;
2639     struct tx_ring *tx_ring = &adapter->tx_ring;
2640     u64  dma_addr;
2641 
2642     if (tcb->skb) {
2643         stats->tx_bytes += tcb->skb->len;
2644 
2645         /* Iterate through the TX descriptors on the ring
2646          * corresponding to this packet and umap the fragments
2647          * they point to
2648          */
2649         do {
2650             desc = tx_ring->tx_desc_ring +
2651                    INDEX10(tcb->index_start);
2652 
2653             dma_addr = desc->addr_lo;
2654             dma_addr |= (u64)desc->addr_hi << 32;
2655 
2656             dma_unmap_single(&adapter->pdev->dev,
2657                      dma_addr,
2658                      desc->len_vlan, DMA_TO_DEVICE);
2659 
2660             add_10bit(&tcb->index_start, 1);
2661             if (INDEX10(tcb->index_start) >=
2662                             NUM_DESC_PER_RING_TX) {
2663                 tcb->index_start &= ~ET_DMA10_MASK;
2664                 tcb->index_start ^= ET_DMA10_WRAP;
2665             }
2666         } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
2667 
2668         dev_kfree_skb_any(tcb->skb);
2669     }
2670 
2671     memset(tcb, 0, sizeof(struct tcb));
2672 
2673     /* Add the TCB to the Ready Q */
2674     spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2675 
2676     stats->tx_packets++;
2677 
2678     if (tx_ring->tcb_qtail)
2679         tx_ring->tcb_qtail->next = tcb;
2680     else /* Apparently ready Q is empty. */
2681         tx_ring->tcb_qhead = tcb;
2682 
2683     tx_ring->tcb_qtail = tcb;
2684 
2685     spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2686     WARN_ON(tx_ring->used < 0);
2687 }
2688 
2689 /* et131x_free_busy_send_packets - Free and complete the stopped active sends */
2690 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
2691 {
2692     struct tcb *tcb;
2693     unsigned long flags;
2694     u32 freed = 0;
2695     struct tx_ring *tx_ring = &adapter->tx_ring;
2696 
2697     /* Any packets being sent? Check the first TCB on the send list */
2698     spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2699 
2700     tcb = tx_ring->send_head;
2701 
2702     while (tcb != NULL && freed < NUM_TCB) {
2703         struct tcb *next = tcb->next;
2704 
2705         tx_ring->send_head = next;
2706 
2707         if (next == NULL)
2708             tx_ring->send_tail = NULL;
2709 
2710         tx_ring->used--;
2711 
2712         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2713 
2714         freed++;
2715         free_send_packet(adapter, tcb);
2716 
2717         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2718 
2719         tcb = tx_ring->send_head;
2720     }
2721 
2722     WARN_ON(freed == NUM_TCB);
2723 
2724     spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2725 
2726     tx_ring->used = 0;
2727 }
2728 
2729 /* et131x_handle_send_pkts
2730  *
2731  * Re-claim the send resources, complete sends and get more to send from
2732  * the send wait queue.
2733  */
2734 static void et131x_handle_send_pkts(struct et131x_adapter *adapter)
2735 {
2736     unsigned long flags;
2737     u32 serviced;
2738     struct tcb *tcb;
2739     u32 index;
2740     struct tx_ring *tx_ring = &adapter->tx_ring;
2741 
2742     serviced = readl(&adapter->regs->txdma.new_service_complete);
2743     index = INDEX10(serviced);
2744 
2745     /* Has the ring wrapped?  Process any descriptors that do not have
2746      * the same "wrap" indicator as the current completion indicator
2747      */
2748     spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2749 
2750     tcb = tx_ring->send_head;
2751 
2752     while (tcb &&
2753            ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2754            index < INDEX10(tcb->index)) {
2755         tx_ring->used--;
2756         tx_ring->send_head = tcb->next;
2757         if (tcb->next == NULL)
2758             tx_ring->send_tail = NULL;
2759 
2760         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2761         free_send_packet(adapter, tcb);
2762         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2763 
2764         /* Goto the next packet */
2765         tcb = tx_ring->send_head;
2766     }
2767     while (tcb &&
2768            !((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2769            index > (tcb->index & ET_DMA10_MASK)) {
2770         tx_ring->used--;
2771         tx_ring->send_head = tcb->next;
2772         if (tcb->next == NULL)
2773             tx_ring->send_tail = NULL;
2774 
2775         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2776         free_send_packet(adapter, tcb);
2777         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2778 
2779         /* Goto the next packet */
2780         tcb = tx_ring->send_head;
2781     }
2782 
2783     /* Wake up the queue when we hit a low-water mark */
2784     if (tx_ring->used <= NUM_TCB / 3)
2785         netif_wake_queue(adapter->netdev);
2786 
2787     spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2788 }
2789 
2790 static int et131x_get_regs_len(struct net_device *netdev)
2791 {
2792 #define ET131X_REGS_LEN 256
2793     return ET131X_REGS_LEN * sizeof(u32);
2794 }
2795 
2796 static void et131x_get_regs(struct net_device *netdev,
2797                 struct ethtool_regs *regs, void *regs_data)
2798 {
2799     struct et131x_adapter *adapter = netdev_priv(netdev);
2800     struct address_map __iomem *aregs = adapter->regs;
2801     u32 *regs_buff = regs_data;
2802     u32 num = 0;
2803     u16 tmp;
2804 
2805     memset(regs_data, 0, et131x_get_regs_len(netdev));
2806 
2807     regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
2808             adapter->pdev->device;
2809 
2810     /* PHY regs */
2811     et131x_mii_read(adapter, MII_BMCR, &tmp);
2812     regs_buff[num++] = tmp;
2813     et131x_mii_read(adapter, MII_BMSR, &tmp);
2814     regs_buff[num++] = tmp;
2815     et131x_mii_read(adapter, MII_PHYSID1, &tmp);
2816     regs_buff[num++] = tmp;
2817     et131x_mii_read(adapter, MII_PHYSID2, &tmp);
2818     regs_buff[num++] = tmp;
2819     et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
2820     regs_buff[num++] = tmp;
2821     et131x_mii_read(adapter, MII_LPA, &tmp);
2822     regs_buff[num++] = tmp;
2823     et131x_mii_read(adapter, MII_EXPANSION, &tmp);
2824     regs_buff[num++] = tmp;
2825     /* Autoneg next page transmit reg */
2826     et131x_mii_read(adapter, 0x07, &tmp);
2827     regs_buff[num++] = tmp;
2828     /* Link partner next page reg */
2829     et131x_mii_read(adapter, 0x08, &tmp);
2830     regs_buff[num++] = tmp;
2831     et131x_mii_read(adapter, MII_CTRL1000, &tmp);
2832     regs_buff[num++] = tmp;
2833     et131x_mii_read(adapter, MII_STAT1000, &tmp);
2834     regs_buff[num++] = tmp;
2835     et131x_mii_read(adapter, 0x0b, &tmp);
2836     regs_buff[num++] = tmp;
2837     et131x_mii_read(adapter, 0x0c, &tmp);
2838     regs_buff[num++] = tmp;
2839     et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
2840     regs_buff[num++] = tmp;
2841     et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
2842     regs_buff[num++] = tmp;
2843     et131x_mii_read(adapter, MII_ESTATUS, &tmp);
2844     regs_buff[num++] = tmp;
2845 
2846     et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
2847     regs_buff[num++] = tmp;
2848     et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
2849     regs_buff[num++] = tmp;
2850     et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
2851     regs_buff[num++] = tmp;
2852     et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
2853     regs_buff[num++] = tmp;
2854     et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
2855     regs_buff[num++] = tmp;
2856 
2857     et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
2858     regs_buff[num++] = tmp;
2859     et131x_mii_read(adapter, PHY_CONFIG, &tmp);
2860     regs_buff[num++] = tmp;
2861     et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
2862     regs_buff[num++] = tmp;
2863     et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
2864     regs_buff[num++] = tmp;
2865     et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
2866     regs_buff[num++] = tmp;
2867     et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
2868     regs_buff[num++] = tmp;
2869     et131x_mii_read(adapter, PHY_LED_1, &tmp);
2870     regs_buff[num++] = tmp;
2871     et131x_mii_read(adapter, PHY_LED_2, &tmp);
2872     regs_buff[num++] = tmp;
2873 
2874     /* Global regs */
2875     regs_buff[num++] = readl(&aregs->global.txq_start_addr);
2876     regs_buff[num++] = readl(&aregs->global.txq_end_addr);
2877     regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
2878     regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
2879     regs_buff[num++] = readl(&aregs->global.pm_csr);
2880     regs_buff[num++] = adapter->stats.interrupt_status;
2881     regs_buff[num++] = readl(&aregs->global.int_mask);
2882     regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
2883     regs_buff[num++] = readl(&aregs->global.int_status_alias);
2884     regs_buff[num++] = readl(&aregs->global.sw_reset);
2885     regs_buff[num++] = readl(&aregs->global.slv_timer);
2886     regs_buff[num++] = readl(&aregs->global.msi_config);
2887     regs_buff[num++] = readl(&aregs->global.loopback);
2888     regs_buff[num++] = readl(&aregs->global.watchdog_timer);
2889 
2890     /* TXDMA regs */
2891     regs_buff[num++] = readl(&aregs->txdma.csr);
2892     regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
2893     regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
2894     regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
2895     regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
2896     regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
2897     regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
2898     regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
2899     regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
2900     regs_buff[num++] = readl(&aregs->txdma.service_request);
2901     regs_buff[num++] = readl(&aregs->txdma.service_complete);
2902     regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
2903     regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
2904     regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
2905     regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
2906     regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
2907     regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
2908     regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
2909     regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
2910     regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
2911     regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
2912     regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
2913     regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
2914     regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
2915     regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
2916     regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
2917 
2918     /* RXDMA regs */
2919     regs_buff[num++] = readl(&aregs->rxdma.csr);
2920     regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
2921     regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
2922     regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
2923     regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
2924     regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
2925     regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
2926     regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
2927     regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
2928     regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
2929     regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
2930     regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
2931     regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
2932     regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
2933     regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
2934     regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
2935     regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
2936     regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
2937     regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
2938     regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
2939     regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
2940     regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
2941     regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
2942     regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
2943     regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
2944     regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
2945     regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
2946     regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
2947     regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
2948 }
2949 
2950 static void et131x_get_drvinfo(struct net_device *netdev,
2951                    struct ethtool_drvinfo *info)
2952 {
2953     struct et131x_adapter *adapter = netdev_priv(netdev);
2954 
2955     strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
2956     strlcpy(info->bus_info, pci_name(adapter->pdev),
2957         sizeof(info->bus_info));
2958 }
2959 
2960 static const struct ethtool_ops et131x_ethtool_ops = {
2961     .get_drvinfo    = et131x_get_drvinfo,
2962     .get_regs_len   = et131x_get_regs_len,
2963     .get_regs   = et131x_get_regs,
2964     .get_link   = ethtool_op_get_link,
2965     .get_link_ksettings = phy_ethtool_get_link_ksettings,
2966     .set_link_ksettings = phy_ethtool_set_link_ksettings,
2967 };
2968 
2969 /* et131x_hwaddr_init - set up the MAC Address */
2970 static void et131x_hwaddr_init(struct et131x_adapter *adapter)
2971 {
2972     /* If have our default mac from init and no mac address from
2973      * EEPROM then we need to generate the last octet and set it on the
2974      * device
2975      */
2976     if (is_zero_ether_addr(adapter->rom_addr)) {
2977         /* We need to randomly generate the last octet so we
2978          * decrease our chances of setting the mac address to
2979          * same as another one of our cards in the system
2980          */
2981         get_random_bytes(&adapter->addr[5], 1);
2982         /* We have the default value in the register we are
2983          * working with so we need to copy the current
2984          * address into the permanent address
2985          */
2986         ether_addr_copy(adapter->rom_addr, adapter->addr);
2987     } else {
2988         /* We do not have an override address, so set the
2989          * current address to the permanent address and add
2990          * it to the device
2991          */
2992         ether_addr_copy(adapter->addr, adapter->rom_addr);
2993     }
2994 }
2995 
2996 static int et131x_pci_init(struct et131x_adapter *adapter,
2997                struct pci_dev *pdev)
2998 {
2999     u16 max_payload;
3000     int i, rc;
3001 
3002     rc = et131x_init_eeprom(adapter);
3003     if (rc < 0)
3004         goto out;
3005 
3006     if (!pci_is_pcie(pdev)) {
3007         dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3008         goto err_out;
3009     }
3010 
3011     /* Program the Ack/Nak latency and replay timers */
3012     max_payload = pdev->pcie_mpss;
3013 
3014     if (max_payload < 2) {
3015         static const u16 acknak[2] = { 0x76, 0xD0 };
3016         static const u16 replay[2] = { 0x1E0, 0x2ED };
3017 
3018         if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3019                       acknak[max_payload])) {
3020             dev_err(&pdev->dev,
3021                 "Could not write PCI config space for ACK/NAK\n");
3022             goto err_out;
3023         }
3024         if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3025                       replay[max_payload])) {
3026             dev_err(&pdev->dev,
3027                 "Could not write PCI config space for Replay Timer\n");
3028             goto err_out;
3029         }
3030     }
3031 
3032     /* l0s and l1 latency timers.  We are using default values.
3033      * Representing 001 for L0s and 010 for L1
3034      */
3035     if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3036         dev_err(&pdev->dev,
3037             "Could not write PCI config space for Latency Timers\n");
3038         goto err_out;
3039     }
3040 
3041     /* Change the max read size to 2k */
3042     if (pcie_set_readrq(pdev, 2048)) {
3043         dev_err(&pdev->dev,
3044             "Couldn't change PCI config space for Max read size\n");
3045         goto err_out;
3046     }
3047 
3048     /* Get MAC address from config space if an eeprom exists, otherwise
3049      * the MAC address there will not be valid
3050      */
3051     if (!adapter->has_eeprom) {
3052         et131x_hwaddr_init(adapter);
3053         return 0;
3054     }
3055 
3056     for (i = 0; i < ETH_ALEN; i++) {
3057         if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3058                      adapter->rom_addr + i)) {
3059             dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3060             goto err_out;
3061         }
3062     }
3063     ether_addr_copy(adapter->addr, adapter->rom_addr);
3064 out:
3065     return rc;
3066 err_out:
3067     rc = -EIO;
3068     goto out;
3069 }
3070 
3071 /* et131x_error_timer_handler
3072  * @data: timer-specific variable; here a pointer to our adapter structure
3073  *
3074  * The routine called when the error timer expires, to track the number of
3075  * recurring errors.
3076  */
3077 static void et131x_error_timer_handler(struct timer_list *t)
3078 {
3079     struct et131x_adapter *adapter = from_timer(adapter, t, error_timer);
3080     struct phy_device *phydev = adapter->netdev->phydev;
3081 
3082     if (et1310_in_phy_coma(adapter)) {
3083         /* Bring the device immediately out of coma, to
3084          * prevent it from sleeping indefinitely, this
3085          * mechanism could be improved!
3086          */
3087         et1310_disable_phy_coma(adapter);
3088         adapter->boot_coma = 20;
3089     } else {
3090         et1310_update_macstat_host_counters(adapter);
3091     }
3092 
3093     if (!phydev->link && adapter->boot_coma < 11)
3094         adapter->boot_coma++;
3095 
3096     if (adapter->boot_coma == 10) {
3097         if (!phydev->link) {
3098             if (!et1310_in_phy_coma(adapter)) {
3099                 /* NOTE - This was originally a 'sync with
3100                  *  interrupt'. How to do that under Linux?
3101                  */
3102                 et131x_enable_interrupts(adapter);
3103                 et1310_enable_phy_coma(adapter);
3104             }
3105         }
3106     }
3107 
3108     /* This is a periodic timer, so reschedule */
3109     mod_timer(&adapter->error_timer, jiffies +
3110           msecs_to_jiffies(TX_ERROR_PERIOD));
3111 }
3112 
3113 static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3114 {
3115     et131x_tx_dma_memory_free(adapter);
3116     et131x_rx_dma_memory_free(adapter);
3117 }
3118 
3119 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
3120 {
3121     int status;
3122 
3123     status = et131x_tx_dma_memory_alloc(adapter);
3124     if (status) {
3125         dev_err(&adapter->pdev->dev,
3126             "et131x_tx_dma_memory_alloc FAILED\n");
3127         et131x_tx_dma_memory_free(adapter);
3128         return status;
3129     }
3130 
3131     status = et131x_rx_dma_memory_alloc(adapter);
3132     if (status) {
3133         dev_err(&adapter->pdev->dev,
3134             "et131x_rx_dma_memory_alloc FAILED\n");
3135         et131x_adapter_memory_free(adapter);
3136         return status;
3137     }
3138 
3139     status = et131x_init_recv(adapter);
3140     if (status) {
3141         dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
3142         et131x_adapter_memory_free(adapter);
3143     }
3144     return status;
3145 }
3146 
3147 static void et131x_adjust_link(struct net_device *netdev)
3148 {
3149     struct et131x_adapter *adapter = netdev_priv(netdev);
3150     struct  phy_device *phydev = netdev->phydev;
3151 
3152     if (!phydev)
3153         return;
3154     if (phydev->link == adapter->link)
3155         return;
3156 
3157     /* Check to see if we are in coma mode and if
3158      * so, disable it because we will not be able
3159      * to read PHY values until we are out.
3160      */
3161     if (et1310_in_phy_coma(adapter))
3162         et1310_disable_phy_coma(adapter);
3163 
3164     adapter->link = phydev->link;
3165     phy_print_status(phydev);
3166 
3167     if (phydev->link) {
3168         adapter->boot_coma = 20;
3169         if (phydev->speed == SPEED_10) {
3170             u16 register18;
3171 
3172             et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3173                     &register18);
3174             et131x_mii_write(adapter, phydev->mdio.addr,
3175                      PHY_MPHY_CONTROL_REG,
3176                      register18 | 0x4);
3177             et131x_mii_write(adapter, phydev->mdio.addr,
3178                      PHY_INDEX_REG, register18 | 0x8402);
3179             et131x_mii_write(adapter, phydev->mdio.addr,
3180                      PHY_DATA_REG, register18 | 511);
3181             et131x_mii_write(adapter, phydev->mdio.addr,
3182                      PHY_MPHY_CONTROL_REG, register18);
3183         }
3184 
3185         et1310_config_flow_control(adapter);
3186 
3187         if (phydev->speed == SPEED_1000 &&
3188             adapter->registry_jumbo_packet > 2048) {
3189             u16 reg;
3190 
3191             et131x_mii_read(adapter, PHY_CONFIG, &reg);
3192             reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3193             reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3194             et131x_mii_write(adapter, phydev->mdio.addr,
3195                      PHY_CONFIG, reg);
3196         }
3197 
3198         et131x_set_rx_dma_timer(adapter);
3199         et1310_config_mac_regs2(adapter);
3200     } else {
3201         adapter->boot_coma = 0;
3202 
3203         if (phydev->speed == SPEED_10) {
3204             u16 register18;
3205 
3206             et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3207                     &register18);
3208             et131x_mii_write(adapter, phydev->mdio.addr,
3209                      PHY_MPHY_CONTROL_REG,
3210                      register18 | 0x4);
3211             et131x_mii_write(adapter, phydev->mdio.addr,
3212                      PHY_INDEX_REG, register18 | 0x8402);
3213             et131x_mii_write(adapter, phydev->mdio.addr,
3214                      PHY_DATA_REG, register18 | 511);
3215             et131x_mii_write(adapter, phydev->mdio.addr,
3216                      PHY_MPHY_CONTROL_REG, register18);
3217         }
3218 
3219         et131x_free_busy_send_packets(adapter);
3220         et131x_init_send(adapter);
3221 
3222         /* Bring the device back to the state it was during
3223          * init prior to autonegotiation being complete. This
3224          * way, when we get the auto-neg complete interrupt,
3225          * we can complete init by calling config_mac_regs2.
3226          */
3227         et131x_soft_reset(adapter);
3228 
3229         et131x_adapter_setup(adapter);
3230 
3231         et131x_disable_txrx(netdev);
3232         et131x_enable_txrx(netdev);
3233     }
3234 }
3235 
3236 static int et131x_mii_probe(struct net_device *netdev)
3237 {
3238     struct et131x_adapter *adapter = netdev_priv(netdev);
3239     struct  phy_device *phydev = NULL;
3240 
3241     phydev = phy_find_first(adapter->mii_bus);
3242     if (!phydev) {
3243         dev_err(&adapter->pdev->dev, "no PHY found\n");
3244         return -ENODEV;
3245     }
3246 
3247     phydev = phy_connect(netdev, phydev_name(phydev),
3248                  &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
3249 
3250     if (IS_ERR(phydev)) {
3251         dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3252         return PTR_ERR(phydev);
3253     }
3254 
3255     phy_set_max_speed(phydev, SPEED_100);
3256 
3257     if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3258         phy_set_max_speed(phydev, SPEED_1000);
3259 
3260     phydev->autoneg = AUTONEG_ENABLE;
3261 
3262     phy_attached_info(phydev);
3263 
3264     return 0;
3265 }
3266 
3267 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3268                           struct pci_dev *pdev)
3269 {
3270     static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3271 
3272     struct et131x_adapter *adapter;
3273 
3274     adapter = netdev_priv(netdev);
3275     adapter->pdev = pci_dev_get(pdev);
3276     adapter->netdev = netdev;
3277 
3278     spin_lock_init(&adapter->tcb_send_qlock);
3279     spin_lock_init(&adapter->tcb_ready_qlock);
3280     spin_lock_init(&adapter->rcv_lock);
3281 
3282     adapter->registry_jumbo_packet = 1514;  /* 1514-9216 */
3283 
3284     ether_addr_copy(adapter->addr, default_mac);
3285 
3286     return adapter;
3287 }
3288 
3289 static void et131x_pci_remove(struct pci_dev *pdev)
3290 {
3291     struct net_device *netdev = pci_get_drvdata(pdev);
3292     struct et131x_adapter *adapter = netdev_priv(netdev);
3293 
3294     unregister_netdev(netdev);
3295     netif_napi_del(&adapter->napi);
3296     phy_disconnect(netdev->phydev);
3297     mdiobus_unregister(adapter->mii_bus);
3298     mdiobus_free(adapter->mii_bus);
3299 
3300     et131x_adapter_memory_free(adapter);
3301     iounmap(adapter->regs);
3302     pci_dev_put(pdev);
3303 
3304     free_netdev(netdev);
3305     pci_release_regions(pdev);
3306     pci_disable_device(pdev);
3307 }
3308 
3309 static void et131x_up(struct net_device *netdev)
3310 {
3311     et131x_enable_txrx(netdev);
3312     phy_start(netdev->phydev);
3313 }
3314 
3315 static void et131x_down(struct net_device *netdev)
3316 {
3317     /* Save the timestamp for the TX watchdog, prevent a timeout */
3318     netif_trans_update(netdev);
3319 
3320     phy_stop(netdev->phydev);
3321     et131x_disable_txrx(netdev);
3322 }
3323 
3324 #ifdef CONFIG_PM_SLEEP
3325 static int et131x_suspend(struct device *dev)
3326 {
3327     struct pci_dev *pdev = to_pci_dev(dev);
3328     struct net_device *netdev = pci_get_drvdata(pdev);
3329 
3330     if (netif_running(netdev)) {
3331         netif_device_detach(netdev);
3332         et131x_down(netdev);
3333         pci_save_state(pdev);
3334     }
3335 
3336     return 0;
3337 }
3338 
3339 static int et131x_resume(struct device *dev)
3340 {
3341     struct pci_dev *pdev = to_pci_dev(dev);
3342     struct net_device *netdev = pci_get_drvdata(pdev);
3343 
3344     if (netif_running(netdev)) {
3345         pci_restore_state(pdev);
3346         et131x_up(netdev);
3347         netif_device_attach(netdev);
3348     }
3349 
3350     return 0;
3351 }
3352 #endif
3353 
3354 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3355 
3356 static irqreturn_t et131x_isr(int irq, void *dev_id)
3357 {
3358     bool handled = true;
3359     bool enable_interrupts = true;
3360     struct net_device *netdev = dev_id;
3361     struct et131x_adapter *adapter = netdev_priv(netdev);
3362     struct address_map __iomem *iomem = adapter->regs;
3363     struct rx_ring *rx_ring = &adapter->rx_ring;
3364     struct tx_ring *tx_ring = &adapter->tx_ring;
3365     u32 status;
3366 
3367     if (!netif_device_present(netdev)) {
3368         handled = false;
3369         enable_interrupts = false;
3370         goto out;
3371     }
3372 
3373     et131x_disable_interrupts(adapter);
3374 
3375     status = readl(&adapter->regs->global.int_status);
3376 
3377     if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
3378         status &= ~INT_MASK_ENABLE;
3379     else
3380         status &= ~INT_MASK_ENABLE_NO_FLOW;
3381 
3382     /* Make sure this is our interrupt */
3383     if (!status) {
3384         handled = false;
3385         et131x_enable_interrupts(adapter);
3386         goto out;
3387     }
3388 
3389     /* This is our interrupt, so process accordingly */
3390     if (status & ET_INTR_WATCHDOG) {
3391         struct tcb *tcb = tx_ring->send_head;
3392 
3393         if (tcb)
3394             if (++tcb->stale > 1)
3395                 status |= ET_INTR_TXDMA_ISR;
3396 
3397         if (rx_ring->unfinished_receives)
3398             status |= ET_INTR_RXDMA_XFR_DONE;
3399         else if (tcb == NULL)
3400             writel(0, &adapter->regs->global.watchdog_timer);
3401 
3402         status &= ~ET_INTR_WATCHDOG;
3403     }
3404 
3405     if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) {
3406         enable_interrupts = false;
3407         napi_schedule(&adapter->napi);
3408     }
3409 
3410     status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE);
3411 
3412     if (!status)
3413         goto out;
3414 
3415     if (status & ET_INTR_TXDMA_ERR) {
3416         /* Following read also clears the register (COR) */
3417         u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
3418 
3419         dev_warn(&adapter->pdev->dev,
3420              "TXDMA_ERR interrupt, error = %d\n",
3421              txdma_err);
3422     }
3423 
3424     if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
3425         /* This indicates the number of unused buffers in RXDMA free
3426          * buffer ring 0 is <= the limit you programmed. Free buffer
3427          * resources need to be returned.  Free buffers are consumed as
3428          * packets are passed from the network to the host. The host
3429          * becomes aware of the packets from the contents of the packet
3430          * status ring. This ring is queried when the packet done
3431          * interrupt occurs. Packets are then passed to the OS. When
3432          * the OS is done with the packets the resources can be
3433          * returned to the ET1310 for re-use. This interrupt is one
3434          * method of returning resources.
3435          */
3436 
3437         /*  If the user has flow control on, then we will
3438          * send a pause packet, otherwise just exit
3439          */
3440         if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) {
3441             /* Tell the device to send a pause packet via the back
3442              * pressure register (bp req and bp xon/xoff)
3443              */
3444             if (!et1310_in_phy_coma(adapter))
3445                 writel(3, &iomem->txmac.bp_ctrl);
3446         }
3447     }
3448 
3449     /* Handle Packet Status Ring Low Interrupt */
3450     if (status & ET_INTR_RXDMA_STAT_LOW) {
3451         /* Same idea as with the two Free Buffer Rings. Packets going
3452          * from the network to the host each consume a free buffer
3453          * resource and a packet status resource. These resources are
3454          * passed to the OS. When the OS is done with the resources,
3455          * they need to be returned to the ET1310. This is one method
3456          * of returning the resources.
3457          */
3458     }
3459 
3460     if (status & ET_INTR_RXDMA_ERR) {
3461         /* The rxdma_error interrupt is sent when a time-out on a
3462          * request issued by the JAGCore has occurred or a completion is
3463          * returned with an un-successful status. In both cases the
3464          * request is considered complete. The JAGCore will
3465          * automatically re-try the request in question. Normally
3466          * information on events like these are sent to the host using
3467          * the "Advanced Error Reporting" capability. This interrupt is
3468          * another way of getting similar information. The only thing
3469          * required is to clear the interrupt by reading the ISR in the
3470          * global resources. The JAGCore will do a re-try on the
3471          * request. Normally you should never see this interrupt. If
3472          * you start to see this interrupt occurring frequently then
3473          * something bad has occurred. A reset might be the thing to do.
3474          */
3475         /* TRAP();*/
3476 
3477         dev_warn(&adapter->pdev->dev, "RxDMA_ERR interrupt, error %x\n",
3478              readl(&iomem->txmac.tx_test));
3479     }
3480 
3481     /* Handle the Wake on LAN Event */
3482     if (status & ET_INTR_WOL) {
3483         /* This is a secondary interrupt for wake on LAN. The driver
3484          * should never see this, if it does, something serious is
3485          * wrong.
3486          */
3487         dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
3488     }
3489 
3490     if (status & ET_INTR_TXMAC) {
3491         u32 err = readl(&iomem->txmac.err);
3492 
3493         /* When any of the errors occur and TXMAC generates an
3494          * interrupt to report these errors, it usually means that
3495          * TXMAC has detected an error in the data stream retrieved
3496          * from the on-chip Tx Q. All of these errors are catastrophic
3497          * and TXMAC won't be able to recover data when these errors
3498          * occur. In a nutshell, the whole Tx path will have to be reset
3499          * and re-configured afterwards.
3500          */
3501         dev_warn(&adapter->pdev->dev, "TXMAC interrupt, error 0x%08x\n",
3502              err);
3503 
3504         /* If we are debugging, we want to see this error, otherwise we
3505          * just want the device to be reset and continue
3506          */
3507     }
3508 
3509     if (status & ET_INTR_RXMAC) {
3510         /* These interrupts are catastrophic to the device, what we need
3511          * to do is disable the interrupts and set the flag to cause us
3512          * to reset so we can solve this issue.
3513          */
3514         dev_warn(&adapter->pdev->dev,
3515              "RXMAC interrupt, error 0x%08x.  Requesting reset\n",
3516              readl(&iomem->rxmac.err_reg));
3517 
3518         dev_warn(&adapter->pdev->dev,
3519              "Enable 0x%08x, Diag 0x%08x\n",
3520              readl(&iomem->rxmac.ctrl),
3521              readl(&iomem->rxmac.rxq_diag));
3522 
3523         /* If we are debugging, we want to see this error, otherwise we
3524          * just want the device to be reset and continue
3525          */
3526     }
3527 
3528     if (status & ET_INTR_MAC_STAT) {
3529         /* This means at least one of the un-masked counters in the
3530          * MAC_STAT block has rolled over. Use this to maintain the top,
3531          * software managed bits of the counter(s).
3532          */
3533         et1310_handle_macstat_interrupt(adapter);
3534     }
3535 
3536     if (status & ET_INTR_SLV_TIMEOUT) {
3537         /* This means a timeout has occurred on a read or write request
3538          * to one of the JAGCore registers. The Global Resources block
3539          * has terminated the request and on a read request, returned a
3540          * "fake" value. The most likely reasons are: Bad Address or the
3541          * addressed module is in a power-down state and can't respond.
3542          */
3543     }
3544 
3545 out:
3546     if (enable_interrupts)
3547         et131x_enable_interrupts(adapter);
3548 
3549     return IRQ_RETVAL(handled);
3550 }
3551 
3552 static int et131x_poll(struct napi_struct *napi, int budget)
3553 {
3554     struct et131x_adapter *adapter =
3555         container_of(napi, struct et131x_adapter, napi);
3556     int work_done = et131x_handle_recv_pkts(adapter, budget);
3557 
3558     et131x_handle_send_pkts(adapter);
3559 
3560     if (work_done < budget) {
3561         napi_complete_done(&adapter->napi, work_done);
3562         et131x_enable_interrupts(adapter);
3563     }
3564 
3565     return work_done;
3566 }
3567 
3568 /* et131x_stats - Return the current device statistics  */
3569 static struct net_device_stats *et131x_stats(struct net_device *netdev)
3570 {
3571     struct et131x_adapter *adapter = netdev_priv(netdev);
3572     struct net_device_stats *stats = &adapter->netdev->stats;
3573     struct ce_stats *devstat = &adapter->stats;
3574 
3575     stats->rx_errors = devstat->rx_length_errs +
3576                devstat->rx_align_errs +
3577                devstat->rx_crc_errs +
3578                devstat->rx_code_violations +
3579                devstat->rx_other_errs;
3580     stats->tx_errors = devstat->tx_max_pkt_errs;
3581     stats->multicast = devstat->multicast_pkts_rcvd;
3582     stats->collisions = devstat->tx_collisions;
3583 
3584     stats->rx_length_errors = devstat->rx_length_errs;
3585     stats->rx_over_errors = devstat->rx_overflows;
3586     stats->rx_crc_errors = devstat->rx_crc_errs;
3587     stats->rx_dropped = devstat->rcvd_pkts_dropped;
3588 
3589     /* NOTE: Not used, can't find analogous statistics */
3590     /* stats->rx_frame_errors     = devstat->; */
3591     /* stats->rx_fifo_errors      = devstat->; */
3592     /* stats->rx_missed_errors    = devstat->; */
3593 
3594     /* stats->tx_aborted_errors   = devstat->; */
3595     /* stats->tx_carrier_errors   = devstat->; */
3596     /* stats->tx_fifo_errors      = devstat->; */
3597     /* stats->tx_heartbeat_errors = devstat->; */
3598     /* stats->tx_window_errors    = devstat->; */
3599     return stats;
3600 }
3601 
3602 static int et131x_open(struct net_device *netdev)
3603 {
3604     struct et131x_adapter *adapter = netdev_priv(netdev);
3605     struct pci_dev *pdev = adapter->pdev;
3606     unsigned int irq = pdev->irq;
3607     int result;
3608 
3609     /* Start the timer to track NIC errors */
3610     timer_setup(&adapter->error_timer, et131x_error_timer_handler, 0);
3611     adapter->error_timer.expires = jiffies +
3612         msecs_to_jiffies(TX_ERROR_PERIOD);
3613     add_timer(&adapter->error_timer);
3614 
3615     result = request_irq(irq, et131x_isr,
3616                  IRQF_SHARED, netdev->name, netdev);
3617     if (result) {
3618         dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
3619         return result;
3620     }
3621 
3622     adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
3623 
3624     napi_enable(&adapter->napi);
3625 
3626     et131x_up(netdev);
3627 
3628     return result;
3629 }
3630 
3631 static int et131x_close(struct net_device *netdev)
3632 {
3633     struct et131x_adapter *adapter = netdev_priv(netdev);
3634 
3635     et131x_down(netdev);
3636     napi_disable(&adapter->napi);
3637 
3638     adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
3639     free_irq(adapter->pdev->irq, netdev);
3640 
3641     /* Stop the error timer */
3642     return del_timer_sync(&adapter->error_timer);
3643 }
3644 
3645 /* et131x_set_packet_filter - Configures the Rx Packet filtering */
3646 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
3647 {
3648     int filter = adapter->packet_filter;
3649     u32 ctrl;
3650     u32 pf_ctrl;
3651 
3652     ctrl = readl(&adapter->regs->rxmac.ctrl);
3653     pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
3654 
3655     /* Default to disabled packet filtering */
3656     ctrl |= 0x04;
3657 
3658     /* Set us to be in promiscuous mode so we receive everything, this
3659      * is also true when we get a packet filter of 0
3660      */
3661     if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
3662         pf_ctrl &= ~7;  /* Clear filter bits */
3663     else {
3664         /* Set us up with Multicast packet filtering.  Three cases are
3665          * possible - (1) we have a multi-cast list, (2) we receive ALL
3666          * multicast entries or (3) we receive none.
3667          */
3668         if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
3669             pf_ctrl &= ~2;  /* Multicast filter bit */
3670         else {
3671             et1310_setup_device_for_multicast(adapter);
3672             pf_ctrl |= 2;
3673             ctrl &= ~0x04;
3674         }
3675 
3676         /* Set us up with Unicast packet filtering */
3677         if (filter & ET131X_PACKET_TYPE_DIRECTED) {
3678             et1310_setup_device_for_unicast(adapter);
3679             pf_ctrl |= 4;
3680             ctrl &= ~0x04;
3681         }
3682 
3683         /* Set us up with Broadcast packet filtering */
3684         if (filter & ET131X_PACKET_TYPE_BROADCAST) {
3685             pf_ctrl |= 1;   /* Broadcast filter bit */
3686             ctrl &= ~0x04;
3687         } else {
3688             pf_ctrl &= ~1;
3689         }
3690 
3691         /* Setup the receive mac configuration registers - Packet
3692          * Filter control + the enable / disable for packet filter
3693          * in the control reg.
3694          */
3695         writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
3696         writel(ctrl, &adapter->regs->rxmac.ctrl);
3697     }
3698     return 0;
3699 }
3700 
3701 static void et131x_multicast(struct net_device *netdev)
3702 {
3703     struct et131x_adapter *adapter = netdev_priv(netdev);
3704     int packet_filter;
3705     struct netdev_hw_addr *ha;
3706     int i;
3707 
3708     /* Before we modify the platform-independent filter flags, store them
3709      * locally. This allows us to determine if anything's changed and if
3710      * we even need to bother the hardware
3711      */
3712     packet_filter = adapter->packet_filter;
3713 
3714     /* Clear the 'multicast' flag locally; because we only have a single
3715      * flag to check multicast, and multiple multicast addresses can be
3716      * set, this is the easiest way to determine if more than one
3717      * multicast address is being set.
3718      */
3719     packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3720 
3721     /* Check the net_device flags and set the device independent flags
3722      * accordingly
3723      */
3724     if (netdev->flags & IFF_PROMISC)
3725         adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
3726     else
3727         adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
3728 
3729     if ((netdev->flags & IFF_ALLMULTI) ||
3730         (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST))
3731         adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
3732 
3733     if (netdev_mc_count(netdev) < 1) {
3734         adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
3735         adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3736     } else {
3737         adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
3738     }
3739 
3740     /* Set values in the private adapter struct */
3741     i = 0;
3742     netdev_for_each_mc_addr(ha, netdev) {
3743         if (i == NIC_MAX_MCAST_LIST)
3744             break;
3745         ether_addr_copy(adapter->multicast_list[i++], ha->addr);
3746     }
3747     adapter->multicast_addr_count = i;
3748 
3749     /* Are the new flags different from the previous ones? If not, then no
3750      * action is required
3751      *
3752      * NOTE - This block will always update the multicast_list with the
3753      *        hardware, even if the addresses aren't the same.
3754      */
3755     if (packet_filter != adapter->packet_filter)
3756         et131x_set_packet_filter(adapter);
3757 }
3758 
3759 static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev)
3760 {
3761     struct et131x_adapter *adapter = netdev_priv(netdev);
3762     struct tx_ring *tx_ring = &adapter->tx_ring;
3763 
3764     /* This driver does not support TSO, it is very unlikely
3765      * this condition is true.
3766      */
3767     if (unlikely(skb_shinfo(skb)->nr_frags > MAX_TX_DESC_PER_PKT - 2)) {
3768         if (skb_linearize(skb))
3769             goto drop_err;
3770     }
3771     /* stop the queue if it's getting full */
3772     if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
3773         netif_stop_queue(netdev);
3774 
3775     /* Save the timestamp for the TX timeout watchdog */
3776     netif_trans_update(netdev);
3777 
3778     /* TCB is not available */
3779     if (tx_ring->used >= NUM_TCB)
3780         goto drop_err;
3781 
3782     if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
3783         !netif_carrier_ok(netdev))
3784         goto drop_err;
3785 
3786     if (send_packet(skb, adapter))
3787         goto drop_err;
3788 
3789     return NETDEV_TX_OK;
3790 
3791 drop_err:
3792     dev_kfree_skb_any(skb);
3793     adapter->netdev->stats.tx_dropped++;
3794     return NETDEV_TX_OK;
3795 }
3796 
3797 /* et131x_tx_timeout - Timeout handler
3798  *
3799  * The handler called when a Tx request times out. The timeout period is
3800  * specified by the 'tx_timeo" element in the net_device structure (see
3801  * et131x_alloc_device() to see how this value is set).
3802  */
3803 static void et131x_tx_timeout(struct net_device *netdev, unsigned int txqueue)
3804 {
3805     struct et131x_adapter *adapter = netdev_priv(netdev);
3806     struct tx_ring *tx_ring = &adapter->tx_ring;
3807     struct tcb *tcb;
3808     unsigned long flags;
3809 
3810     /* If the device is closed, ignore the timeout */
3811     if (!(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
3812         return;
3813 
3814     /* Any nonrecoverable hardware error?
3815      * Checks adapter->flags for any failure in phy reading
3816      */
3817     if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
3818         return;
3819 
3820     /* Hardware failure? */
3821     if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
3822         dev_err(&adapter->pdev->dev, "hardware error - reset\n");
3823         return;
3824     }
3825 
3826     /* Is send stuck? */
3827     spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3828     tcb = tx_ring->send_head;
3829     spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3830 
3831     if (tcb) {
3832         tcb->count++;
3833 
3834         if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
3835             dev_warn(&adapter->pdev->dev,
3836                  "Send stuck - reset. tcb->WrIndex %x\n",
3837                  tcb->index);
3838 
3839             adapter->netdev->stats.tx_errors++;
3840 
3841             /* perform reset of tx/rx */
3842             et131x_disable_txrx(netdev);
3843             et131x_enable_txrx(netdev);
3844         }
3845     }
3846 }
3847 
3848 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
3849 {
3850     int result = 0;
3851     struct et131x_adapter *adapter = netdev_priv(netdev);
3852 
3853     et131x_disable_txrx(netdev);
3854 
3855     netdev->mtu = new_mtu;
3856 
3857     et131x_adapter_memory_free(adapter);
3858 
3859     /* Set the config parameter for Jumbo Packet support */
3860     adapter->registry_jumbo_packet = new_mtu + 14;
3861     et131x_soft_reset(adapter);
3862 
3863     result = et131x_adapter_memory_alloc(adapter);
3864     if (result != 0) {
3865         dev_warn(&adapter->pdev->dev,
3866              "Change MTU failed; couldn't re-alloc DMA memory\n");
3867         return result;
3868     }
3869 
3870     et131x_init_send(adapter);
3871     et131x_hwaddr_init(adapter);
3872     eth_hw_addr_set(netdev, adapter->addr);
3873 
3874     /* Init the device with the new settings */
3875     et131x_adapter_setup(adapter);
3876     et131x_enable_txrx(netdev);
3877 
3878     return result;
3879 }
3880 
3881 static const struct net_device_ops et131x_netdev_ops = {
3882     .ndo_open       = et131x_open,
3883     .ndo_stop       = et131x_close,
3884     .ndo_start_xmit     = et131x_tx,
3885     .ndo_set_rx_mode    = et131x_multicast,
3886     .ndo_tx_timeout     = et131x_tx_timeout,
3887     .ndo_change_mtu     = et131x_change_mtu,
3888     .ndo_set_mac_address    = eth_mac_addr,
3889     .ndo_validate_addr  = eth_validate_addr,
3890     .ndo_get_stats      = et131x_stats,
3891     .ndo_eth_ioctl      = phy_do_ioctl,
3892 };
3893 
3894 static int et131x_pci_setup(struct pci_dev *pdev,
3895                 const struct pci_device_id *ent)
3896 {
3897     struct net_device *netdev;
3898     struct et131x_adapter *adapter;
3899     int rc;
3900 
3901     rc = pci_enable_device(pdev);
3902     if (rc < 0) {
3903         dev_err(&pdev->dev, "pci_enable_device() failed\n");
3904         goto out;
3905     }
3906 
3907     /* Perform some basic PCI checks */
3908     if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
3909         dev_err(&pdev->dev, "Can't find PCI device's base address\n");
3910         rc = -ENODEV;
3911         goto err_disable;
3912     }
3913 
3914     rc = pci_request_regions(pdev, DRIVER_NAME);
3915     if (rc < 0) {
3916         dev_err(&pdev->dev, "Can't get PCI resources\n");
3917         goto err_disable;
3918     }
3919 
3920     pci_set_master(pdev);
3921 
3922     /* Check the DMA addressing support of this device */
3923     rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3924     if (rc) {
3925         dev_err(&pdev->dev, "No usable DMA addressing method\n");
3926         goto err_release_res;
3927     }
3928 
3929     netdev = alloc_etherdev(sizeof(struct et131x_adapter));
3930     if (!netdev) {
3931         dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
3932         rc = -ENOMEM;
3933         goto err_release_res;
3934     }
3935 
3936     netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
3937     netdev->netdev_ops     = &et131x_netdev_ops;
3938     netdev->min_mtu        = ET131X_MIN_MTU;
3939     netdev->max_mtu        = ET131X_MAX_MTU;
3940 
3941     SET_NETDEV_DEV(netdev, &pdev->dev);
3942     netdev->ethtool_ops = &et131x_ethtool_ops;
3943 
3944     adapter = et131x_adapter_init(netdev, pdev);
3945 
3946     rc = et131x_pci_init(adapter, pdev);
3947     if (rc < 0)
3948         goto err_free_dev;
3949 
3950     /* Map the bus-relative registers to system virtual memory */
3951     adapter->regs = pci_ioremap_bar(pdev, 0);
3952     if (!adapter->regs) {
3953         dev_err(&pdev->dev, "Cannot map device registers\n");
3954         rc = -ENOMEM;
3955         goto err_free_dev;
3956     }
3957 
3958     /* If Phy COMA mode was enabled when we went down, disable it here. */
3959     writel(ET_PMCSR_INIT,  &adapter->regs->global.pm_csr);
3960 
3961     et131x_soft_reset(adapter);
3962     et131x_disable_interrupts(adapter);
3963 
3964     rc = et131x_adapter_memory_alloc(adapter);
3965     if (rc < 0) {
3966         dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n");
3967         goto err_iounmap;
3968     }
3969 
3970     et131x_init_send(adapter);
3971 
3972     netif_napi_add(netdev, &adapter->napi, et131x_poll, 64);
3973 
3974     eth_hw_addr_set(netdev, adapter->addr);
3975 
3976     rc = -ENOMEM;
3977 
3978     adapter->mii_bus = mdiobus_alloc();
3979     if (!adapter->mii_bus) {
3980         dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
3981         goto err_mem_free;
3982     }
3983 
3984     adapter->mii_bus->name = "et131x_eth_mii";
3985     snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
3986          (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
3987     adapter->mii_bus->priv = netdev;
3988     adapter->mii_bus->read = et131x_mdio_read;
3989     adapter->mii_bus->write = et131x_mdio_write;
3990 
3991     rc = mdiobus_register(adapter->mii_bus);
3992     if (rc < 0) {
3993         dev_err(&pdev->dev, "failed to register MII bus\n");
3994         goto err_mdio_free;
3995     }
3996 
3997     rc = et131x_mii_probe(netdev);
3998     if (rc < 0) {
3999         dev_err(&pdev->dev, "failed to probe MII bus\n");
4000         goto err_mdio_unregister;
4001     }
4002 
4003     et131x_adapter_setup(adapter);
4004 
4005     /* Init variable for counting how long we do not have link status */
4006     adapter->boot_coma = 0;
4007     et1310_disable_phy_coma(adapter);
4008 
4009     /* We can enable interrupts now
4010      *
4011      *  NOTE - Because registration of interrupt handler is done in the
4012      *         device's open(), defer enabling device interrupts to that
4013      *         point
4014      */
4015 
4016     rc = register_netdev(netdev);
4017     if (rc < 0) {
4018         dev_err(&pdev->dev, "register_netdev() failed\n");
4019         goto err_phy_disconnect;
4020     }
4021 
4022     /* Register the net_device struct with the PCI subsystem. Save a copy
4023      * of the PCI config space for this device now that the device has
4024      * been initialized, just in case it needs to be quickly restored.
4025      */
4026     pci_set_drvdata(pdev, netdev);
4027 out:
4028     return rc;
4029 
4030 err_phy_disconnect:
4031     phy_disconnect(netdev->phydev);
4032 err_mdio_unregister:
4033     mdiobus_unregister(adapter->mii_bus);
4034 err_mdio_free:
4035     mdiobus_free(adapter->mii_bus);
4036 err_mem_free:
4037     et131x_adapter_memory_free(adapter);
4038 err_iounmap:
4039     iounmap(adapter->regs);
4040 err_free_dev:
4041     pci_dev_put(pdev);
4042     free_netdev(netdev);
4043 err_release_res:
4044     pci_release_regions(pdev);
4045 err_disable:
4046     pci_disable_device(pdev);
4047     goto out;
4048 }
4049 
4050 static const struct pci_device_id et131x_pci_table[] = {
4051     { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4052     { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4053     { 0,}
4054 };
4055 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4056 
4057 static struct pci_driver et131x_driver = {
4058     .name       = DRIVER_NAME,
4059     .id_table   = et131x_pci_table,
4060     .probe      = et131x_pci_setup,
4061     .remove     = et131x_pci_remove,
4062     .driver.pm  = &et131x_pm_ops,
4063 };
4064 
4065 module_pci_driver(et131x_driver);