0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029 #define DRV_NAME "starfire"
0030
0031 #include <linux/interrupt.h>
0032 #include <linux/module.h>
0033 #include <linux/kernel.h>
0034 #include <linux/pci.h>
0035 #include <linux/netdevice.h>
0036 #include <linux/etherdevice.h>
0037 #include <linux/init.h>
0038 #include <linux/delay.h>
0039 #include <linux/crc32.h>
0040 #include <linux/ethtool.h>
0041 #include <linux/mii.h>
0042 #include <linux/if_vlan.h>
0043 #include <linux/mm.h>
0044 #include <linux/firmware.h>
0045 #include <asm/processor.h> /* Processor type for cache alignment. */
0046 #include <linux/uaccess.h>
0047 #include <asm/io.h>
0048
0049
0050
0051
0052
0053 #define HAS_BROKEN_FIRMWARE
0054
0055
0056
0057
0058 #ifdef HAS_BROKEN_FIRMWARE
0059 #define PADDING_MASK 3
0060 #endif
0061
0062
0063
0064
0065 #define ZEROCOPY
0066
0067 #if IS_ENABLED(CONFIG_VLAN_8021Q)
0068 #define VLAN_SUPPORT
0069 #endif
0070
0071
0072
0073
0074
0075 static int intr_latency;
0076 static int small_frames;
0077
0078 static int debug = 1;
0079 static int max_interrupt_work = 20;
0080 static int mtu;
0081
0082
0083 static const int multicast_filter_limit = 512;
0084
0085 static int enable_hw_cksum = 1;
0086
0087 #define PKT_BUF_SZ 1536
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
0103 static int rx_copybreak = PKT_BUF_SZ;
0104 #else
0105 static int rx_copybreak ;
0106 #endif
0107
0108
0109 #ifdef __sparc__
0110 #define DMA_BURST_SIZE 64
0111 #else
0112 #define DMA_BURST_SIZE 128
0113 #endif
0114
0115
0116
0117
0118
0119
0120 #define RX_RING_SIZE 256
0121 #define TX_RING_SIZE 32
0122
0123 #define DONE_Q_SIZE 1024
0124
0125 #define QUEUE_ALIGN 256
0126
0127 #if RX_RING_SIZE > 256
0128 #define RX_Q_ENTRIES Rx2048QEntries
0129 #else
0130 #define RX_Q_ENTRIES Rx256QEntries
0131 #endif
0132
0133
0134
0135 #define TX_TIMEOUT (2 * HZ)
0136
0137 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
0138
0139 #define ADDR_64BITS
0140 #define netdrv_addr_t __le64
0141 #define cpu_to_dma(x) cpu_to_le64(x)
0142 #define dma_to_cpu(x) le64_to_cpu(x)
0143 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
0144 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
0145 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
0146 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
0147 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
0148 #else
0149 #define netdrv_addr_t __le32
0150 #define cpu_to_dma(x) cpu_to_le32(x)
0151 #define dma_to_cpu(x) le32_to_cpu(x)
0152 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
0153 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
0154 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
0155 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
0156 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
0157 #endif
0158
0159 #define skb_first_frag_len(skb) skb_headlen(skb)
0160 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
0161
0162
0163 #define FIRMWARE_RX "adaptec/starfire_rx.bin"
0164 #define FIRMWARE_TX "adaptec/starfire_tx.bin"
0165
0166 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
0167 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
0168 MODULE_LICENSE("GPL");
0169 MODULE_FIRMWARE(FIRMWARE_RX);
0170 MODULE_FIRMWARE(FIRMWARE_TX);
0171
0172 module_param(max_interrupt_work, int, 0);
0173 module_param(mtu, int, 0);
0174 module_param(debug, int, 0);
0175 module_param(rx_copybreak, int, 0);
0176 module_param(intr_latency, int, 0);
0177 module_param(small_frames, int, 0);
0178 module_param(enable_hw_cksum, int, 0);
0179 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
0180 MODULE_PARM_DESC(mtu, "MTU (all boards)");
0181 MODULE_PARM_DESC(debug, "Debug level (0-6)");
0182 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
0183 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
0184 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
0185 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274 enum chip_capability_flags {CanHaveMII=1, };
0275
0276 enum chipset {
0277 CH_6915 = 0,
0278 };
0279
0280 static const struct pci_device_id starfire_pci_tbl[] = {
0281 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
0282 { 0, }
0283 };
0284 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
0285
0286
0287 static const struct chip_info {
0288 const char *name;
0289 int drv_flags;
0290 } netdrv_tbl[] = {
0291 { "Adaptec Starfire 6915", CanHaveMII },
0292 };
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303 enum register_offsets {
0304 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
0305 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
0306 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
0307 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
0308 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094,
0309 TxRingHiAddr=0x5009C,
0310 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
0311 TxThreshold=0x500B0,
0312 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
0313 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
0314 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
0315 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
0316 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
0317 TxMode=0x55000, VlanType=0x55064,
0318 PerfFilterTable=0x56000, HashTable=0x56100,
0319 TxGfpMem=0x58000, RxGfpMem=0x5a000,
0320 };
0321
0322
0323
0324
0325
0326
0327 enum intr_status_bits {
0328 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
0329 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
0330 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
0331 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
0332 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
0333 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
0334 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
0335 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
0336 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
0337 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
0338 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
0339 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
0340 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
0341 IntrTxGfp=0x02, IntrPCIPad=0x01,
0342
0343 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
0344 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
0345 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
0346 };
0347
0348
0349 enum rx_mode_bits {
0350 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
0351 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
0352 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
0353 WakeupOnGFP=0x0800,
0354 };
0355
0356
0357 enum tx_mode_bits {
0358 MiiSoftReset=0x8000, MIILoopback=0x4000,
0359 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
0360 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
0361 };
0362
0363
0364 enum tx_ctrl_bits {
0365 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
0366 TxDescSpace128=0x30, TxDescSpace256=0x40,
0367 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
0368 TxDescType3=0x03, TxDescType4=0x04,
0369 TxNoDMACompletion=0x08,
0370 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
0371 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
0372 TxDMABurstSizeShift=8,
0373 };
0374
0375
0376 enum rx_ctrl_bits {
0377 RxBufferLenShift=16, RxMinDescrThreshShift=0,
0378 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
0379 Rx2048QEntries=0x4000, Rx256QEntries=0,
0380 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
0381 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
0382 RxDescSpace4=0x000, RxDescSpace8=0x100,
0383 RxDescSpace16=0x200, RxDescSpace32=0x300,
0384 RxDescSpace64=0x400, RxDescSpace128=0x500,
0385 RxConsumerWrEn=0x80,
0386 };
0387
0388
0389 enum rx_dmactrl_bits {
0390 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
0391 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
0392 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
0393 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
0394 RxChecksumRejectTCPOnly=0x01000000,
0395 RxCompletionQ2Enable=0x800000,
0396 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
0397 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
0398 RxDMAQ2NonIP=0x400000,
0399 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
0400 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
0401 RxBurstSizeShift=0,
0402 };
0403
0404
0405 enum rx_compl_bits {
0406 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
0407 RxComplProducerWrEn=0x40,
0408 RxComplType0=0x00, RxComplType1=0x10,
0409 RxComplType2=0x20, RxComplType3=0x30,
0410 RxComplThreshShift=0,
0411 };
0412
0413
0414 enum tx_compl_bits {
0415 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
0416 TxComplProducerWrEn=0x40,
0417 TxComplIntrStatus=0x20,
0418 CommonQueueMode=0x10,
0419 TxComplThreshShift=0,
0420 };
0421
0422
0423 enum gen_ctrl_bits {
0424 RxEnable=0x05, TxEnable=0x0a,
0425 RxGFPEnable=0x10, TxGFPEnable=0x20,
0426 };
0427
0428
0429 enum intr_ctrl_bits {
0430 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
0431 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
0432 IntrLatencyMask=0x1f,
0433 };
0434
0435
0436 struct starfire_rx_desc {
0437 netdrv_addr_t rxaddr;
0438 };
0439 enum rx_desc_bits {
0440 RxDescValid=1, RxDescEndRing=2,
0441 };
0442
0443
0444 struct short_rx_done_desc {
0445 __le32 status;
0446 };
0447 struct basic_rx_done_desc {
0448 __le32 status;
0449 __le16 vlanid;
0450 __le16 status2;
0451 };
0452 struct csum_rx_done_desc {
0453 __le32 status;
0454 __le16 csum;
0455 __le16 status2;
0456 };
0457 struct full_rx_done_desc {
0458 __le32 status;
0459 __le16 status3;
0460 __le16 status2;
0461 __le16 vlanid;
0462 __le16 csum;
0463 __le32 timestamp;
0464 };
0465
0466 #ifdef VLAN_SUPPORT
0467 typedef struct full_rx_done_desc rx_done_desc;
0468 #define RxComplType RxComplType3
0469 #else
0470 typedef struct csum_rx_done_desc rx_done_desc;
0471 #define RxComplType RxComplType2
0472 #endif
0473
0474 enum rx_done_bits {
0475 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
0476 };
0477
0478
0479 struct starfire_tx_desc_1 {
0480 __le32 status;
0481 __le32 addr;
0482 };
0483
0484
0485 struct starfire_tx_desc_2 {
0486 __le32 status;
0487 __le32 reserved;
0488 __le64 addr;
0489 };
0490
0491 #ifdef ADDR_64BITS
0492 typedef struct starfire_tx_desc_2 starfire_tx_desc;
0493 #define TX_DESC_TYPE TxDescType2
0494 #else
0495 typedef struct starfire_tx_desc_1 starfire_tx_desc;
0496 #define TX_DESC_TYPE TxDescType1
0497 #endif
0498 #define TX_DESC_SPACING TxDescSpaceUnlim
0499
0500 enum tx_desc_bits {
0501 TxDescID=0xB0000000,
0502 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
0503 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
0504 };
0505 struct tx_done_desc {
0506 __le32 status;
0507 #if 0
0508 __le32 intrstatus;
0509 #endif
0510 };
0511
0512 struct rx_ring_info {
0513 struct sk_buff *skb;
0514 dma_addr_t mapping;
0515 };
0516 struct tx_ring_info {
0517 struct sk_buff *skb;
0518 dma_addr_t mapping;
0519 unsigned int used_slots;
0520 };
0521
0522 #define PHY_CNT 2
0523 struct netdev_private {
0524
0525 struct starfire_rx_desc *rx_ring;
0526 starfire_tx_desc *tx_ring;
0527 dma_addr_t rx_ring_dma;
0528 dma_addr_t tx_ring_dma;
0529
0530 struct rx_ring_info rx_info[RX_RING_SIZE];
0531 struct tx_ring_info tx_info[TX_RING_SIZE];
0532
0533 rx_done_desc *rx_done_q;
0534 dma_addr_t rx_done_q_dma;
0535 unsigned int rx_done;
0536 struct tx_done_desc *tx_done_q;
0537 dma_addr_t tx_done_q_dma;
0538 unsigned int tx_done;
0539 struct napi_struct napi;
0540 struct net_device *dev;
0541 struct pci_dev *pci_dev;
0542 #ifdef VLAN_SUPPORT
0543 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
0544 #endif
0545 void *queue_mem;
0546 dma_addr_t queue_mem_dma;
0547 size_t queue_mem_size;
0548
0549
0550 spinlock_t lock;
0551 unsigned int cur_rx, dirty_rx;
0552 unsigned int cur_tx, dirty_tx, reap_tx;
0553 unsigned int rx_buf_sz;
0554
0555 int speed100;
0556 u32 tx_mode;
0557 u32 intr_timer_ctrl;
0558 u8 tx_threshold;
0559
0560 struct mii_if_info mii_if;
0561 int phy_cnt;
0562 unsigned char phys[PHY_CNT];
0563 void __iomem *base;
0564 };
0565
0566
0567 static int mdio_read(struct net_device *dev, int phy_id, int location);
0568 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
0569 static int netdev_open(struct net_device *dev);
0570 static void check_duplex(struct net_device *dev);
0571 static void tx_timeout(struct net_device *dev, unsigned int txqueue);
0572 static void init_ring(struct net_device *dev);
0573 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
0574 static irqreturn_t intr_handler(int irq, void *dev_instance);
0575 static void netdev_error(struct net_device *dev, int intr_status);
0576 static int __netdev_rx(struct net_device *dev, int *quota);
0577 static int netdev_poll(struct napi_struct *napi, int budget);
0578 static void refill_rx_ring(struct net_device *dev);
0579 static void netdev_error(struct net_device *dev, int intr_status);
0580 static void set_rx_mode(struct net_device *dev);
0581 static struct net_device_stats *get_stats(struct net_device *dev);
0582 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
0583 static int netdev_close(struct net_device *dev);
0584 static void netdev_media_change(struct net_device *dev);
0585 static const struct ethtool_ops ethtool_ops;
0586
0587
0588 #ifdef VLAN_SUPPORT
0589 static int netdev_vlan_rx_add_vid(struct net_device *dev,
0590 __be16 proto, u16 vid)
0591 {
0592 struct netdev_private *np = netdev_priv(dev);
0593
0594 spin_lock(&np->lock);
0595 if (debug > 1)
0596 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
0597 set_bit(vid, np->active_vlans);
0598 set_rx_mode(dev);
0599 spin_unlock(&np->lock);
0600
0601 return 0;
0602 }
0603
0604 static int netdev_vlan_rx_kill_vid(struct net_device *dev,
0605 __be16 proto, u16 vid)
0606 {
0607 struct netdev_private *np = netdev_priv(dev);
0608
0609 spin_lock(&np->lock);
0610 if (debug > 1)
0611 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
0612 clear_bit(vid, np->active_vlans);
0613 set_rx_mode(dev);
0614 spin_unlock(&np->lock);
0615
0616 return 0;
0617 }
0618 #endif
0619
0620
0621 static const struct net_device_ops netdev_ops = {
0622 .ndo_open = netdev_open,
0623 .ndo_stop = netdev_close,
0624 .ndo_start_xmit = start_tx,
0625 .ndo_tx_timeout = tx_timeout,
0626 .ndo_get_stats = get_stats,
0627 .ndo_set_rx_mode = set_rx_mode,
0628 .ndo_eth_ioctl = netdev_ioctl,
0629 .ndo_set_mac_address = eth_mac_addr,
0630 .ndo_validate_addr = eth_validate_addr,
0631 #ifdef VLAN_SUPPORT
0632 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
0633 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
0634 #endif
0635 };
0636
0637 static int starfire_init_one(struct pci_dev *pdev,
0638 const struct pci_device_id *ent)
0639 {
0640 struct device *d = &pdev->dev;
0641 struct netdev_private *np;
0642 int i, irq, chip_idx = ent->driver_data;
0643 struct net_device *dev;
0644 u8 addr[ETH_ALEN];
0645 long ioaddr;
0646 void __iomem *base;
0647 int drv_flags, io_size;
0648 int boguscnt;
0649
0650 if (pci_enable_device (pdev))
0651 return -EIO;
0652
0653 ioaddr = pci_resource_start(pdev, 0);
0654 io_size = pci_resource_len(pdev, 0);
0655 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
0656 dev_err(d, "no PCI MEM resources, aborting\n");
0657 return -ENODEV;
0658 }
0659
0660 dev = alloc_etherdev(sizeof(*np));
0661 if (!dev)
0662 return -ENOMEM;
0663
0664 SET_NETDEV_DEV(dev, &pdev->dev);
0665
0666 irq = pdev->irq;
0667
0668 if (pci_request_regions (pdev, DRV_NAME)) {
0669 dev_err(d, "cannot reserve PCI resources, aborting\n");
0670 goto err_out_free_netdev;
0671 }
0672
0673 base = ioremap(ioaddr, io_size);
0674 if (!base) {
0675 dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
0676 io_size, ioaddr);
0677 goto err_out_free_res;
0678 }
0679
0680 pci_set_master(pdev);
0681
0682
0683 pci_try_set_mwi(pdev);
0684
0685 #ifdef ZEROCOPY
0686
0687 if (enable_hw_cksum)
0688 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
0689 #endif
0690
0691 #ifdef VLAN_SUPPORT
0692 dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
0693 #endif
0694 #ifdef ADDR_64BITS
0695 dev->features |= NETIF_F_HIGHDMA;
0696 #endif
0697
0698
0699 for (i = 0; i < 6; i++)
0700 addr[i] = readb(base + EEPROMCtrl + 20 - i);
0701 eth_hw_addr_set(dev, addr);
0702
0703 #if ! defined(final_version)
0704 if (debug > 4)
0705 for (i = 0; i < 0x20; i++)
0706 printk("%2.2x%s",
0707 (unsigned int)readb(base + EEPROMCtrl + i),
0708 i % 16 != 15 ? " " : "\n");
0709 #endif
0710
0711
0712 writel(MiiSoftReset, base + TxMode);
0713 udelay(1000);
0714 writel(0, base + TxMode);
0715
0716
0717 writel(1, base + PCIDeviceConfig);
0718 boguscnt = 1000;
0719 while (--boguscnt > 0) {
0720 udelay(10);
0721 if ((readl(base + PCIDeviceConfig) & 1) == 0)
0722 break;
0723 }
0724 if (boguscnt == 0)
0725 printk("%s: chipset reset never completed!\n", dev->name);
0726
0727 udelay(1000);
0728
0729 np = netdev_priv(dev);
0730 np->dev = dev;
0731 np->base = base;
0732 spin_lock_init(&np->lock);
0733 pci_set_drvdata(pdev, dev);
0734
0735 np->pci_dev = pdev;
0736
0737 np->mii_if.dev = dev;
0738 np->mii_if.mdio_read = mdio_read;
0739 np->mii_if.mdio_write = mdio_write;
0740 np->mii_if.phy_id_mask = 0x1f;
0741 np->mii_if.reg_num_mask = 0x1f;
0742
0743 drv_flags = netdrv_tbl[chip_idx].drv_flags;
0744
0745 np->speed100 = 1;
0746
0747
0748 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
0749 Timer10X | EnableIntrMasking;
0750
0751 if (small_frames > 0) {
0752 np->intr_timer_ctrl |= SmallFrameBypass;
0753 switch (small_frames) {
0754 case 1 ... 64:
0755 np->intr_timer_ctrl |= SmallFrame64;
0756 break;
0757 case 65 ... 128:
0758 np->intr_timer_ctrl |= SmallFrame128;
0759 break;
0760 case 129 ... 256:
0761 np->intr_timer_ctrl |= SmallFrame256;
0762 break;
0763 default:
0764 np->intr_timer_ctrl |= SmallFrame512;
0765 if (small_frames > 512)
0766 printk("Adjusting small_frames down to 512\n");
0767 break;
0768 }
0769 }
0770
0771 dev->netdev_ops = &netdev_ops;
0772 dev->watchdog_timeo = TX_TIMEOUT;
0773 dev->ethtool_ops = ðtool_ops;
0774
0775 netif_napi_add_weight(dev, &np->napi, netdev_poll, max_interrupt_work);
0776
0777 if (mtu)
0778 dev->mtu = mtu;
0779
0780 if (register_netdev(dev))
0781 goto err_out_cleardev;
0782
0783 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
0784 dev->name, netdrv_tbl[chip_idx].name, base,
0785 dev->dev_addr, irq);
0786
0787 if (drv_flags & CanHaveMII) {
0788 int phy, phy_idx = 0;
0789 int mii_status;
0790 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
0791 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
0792 msleep(100);
0793 boguscnt = 1000;
0794 while (--boguscnt > 0)
0795 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
0796 break;
0797 if (boguscnt == 0) {
0798 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
0799 continue;
0800 }
0801 mii_status = mdio_read(dev, phy, MII_BMSR);
0802 if (mii_status != 0) {
0803 np->phys[phy_idx++] = phy;
0804 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
0805 printk(KERN_INFO "%s: MII PHY found at address %d, status "
0806 "%#4.4x advertising %#4.4x.\n",
0807 dev->name, phy, mii_status, np->mii_if.advertising);
0808
0809 break;
0810 }
0811 }
0812 np->phy_cnt = phy_idx;
0813 if (np->phy_cnt > 0)
0814 np->mii_if.phy_id = np->phys[0];
0815 else
0816 memset(&np->mii_if, 0, sizeof(np->mii_if));
0817 }
0818
0819 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
0820 dev->name, enable_hw_cksum ? "enabled" : "disabled");
0821 return 0;
0822
0823 err_out_cleardev:
0824 iounmap(base);
0825 err_out_free_res:
0826 pci_release_regions (pdev);
0827 err_out_free_netdev:
0828 free_netdev(dev);
0829 return -ENODEV;
0830 }
0831
0832
0833
0834 static int mdio_read(struct net_device *dev, int phy_id, int location)
0835 {
0836 struct netdev_private *np = netdev_priv(dev);
0837 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
0838 int result, boguscnt=1000;
0839
0840 do {
0841 result = readl(mdio_addr);
0842 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
0843 if (boguscnt == 0)
0844 return 0;
0845 if ((result & 0xffff) == 0xffff)
0846 return 0;
0847 return result & 0xffff;
0848 }
0849
0850
0851 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
0852 {
0853 struct netdev_private *np = netdev_priv(dev);
0854 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
0855 writel(value, mdio_addr);
0856
0857 }
0858
0859
0860 static int netdev_open(struct net_device *dev)
0861 {
0862 const struct firmware *fw_rx, *fw_tx;
0863 const __be32 *fw_rx_data, *fw_tx_data;
0864 struct netdev_private *np = netdev_priv(dev);
0865 void __iomem *ioaddr = np->base;
0866 const int irq = np->pci_dev->irq;
0867 int i, retval;
0868 size_t tx_size, rx_size;
0869 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
0870
0871
0872
0873 retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
0874 if (retval)
0875 return retval;
0876
0877
0878 writel(0, ioaddr + GenCtrl);
0879 writel(1, ioaddr + PCIDeviceConfig);
0880 if (debug > 1)
0881 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
0882 dev->name, irq);
0883
0884
0885 if (!np->queue_mem) {
0886 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
0887 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
0888 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
0889 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
0890 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
0891 np->queue_mem = dma_alloc_coherent(&np->pci_dev->dev,
0892 np->queue_mem_size,
0893 &np->queue_mem_dma, GFP_ATOMIC);
0894 if (np->queue_mem == NULL) {
0895 free_irq(irq, dev);
0896 return -ENOMEM;
0897 }
0898
0899 np->tx_done_q = np->queue_mem;
0900 np->tx_done_q_dma = np->queue_mem_dma;
0901 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
0902 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
0903 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
0904 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
0905 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
0906 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
0907 }
0908
0909
0910 netif_carrier_off(dev);
0911 init_ring(dev);
0912
0913 writel((np->rx_buf_sz << RxBufferLenShift) |
0914 (0 << RxMinDescrThreshShift) |
0915 RxPrefetchMode | RxVariableQ |
0916 RX_Q_ENTRIES |
0917 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
0918 RxDescSpace4,
0919 ioaddr + RxDescQCtrl);
0920
0921
0922 writel(RxChecksumIgnore |
0923 (0 << RxEarlyIntThreshShift) |
0924 (6 << RxHighPrioThreshShift) |
0925 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
0926 ioaddr + RxDMACtrl);
0927
0928
0929 writel((2 << TxHiPriFIFOThreshShift) |
0930 (0 << TxPadLenShift) |
0931 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
0932 TX_DESC_Q_ADDR_SIZE |
0933 TX_DESC_SPACING | TX_DESC_TYPE,
0934 ioaddr + TxDescCtrl);
0935
0936 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
0937 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
0938 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
0939 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
0940 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
0941
0942 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
0943 writel(np->rx_done_q_dma |
0944 RxComplType |
0945 (0 << RxComplThreshShift),
0946 ioaddr + RxCompletionAddr);
0947
0948 if (debug > 1)
0949 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
0950
0951
0952 for (i = 0; i < 6; i++)
0953 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
0954
0955
0956 writew(0, ioaddr + PerfFilterTable);
0957 writew(0, ioaddr + PerfFilterTable + 4);
0958 writew(0, ioaddr + PerfFilterTable + 8);
0959 for (i = 1; i < 16; i++) {
0960 const __be16 *eaddrs = (const __be16 *)dev->dev_addr;
0961 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
0962 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
0963 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
0964 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
0965 }
0966
0967
0968
0969 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable;
0970 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
0971 udelay(1000);
0972 writel(np->tx_mode, ioaddr + TxMode);
0973 np->tx_threshold = 4;
0974 writel(np->tx_threshold, ioaddr + TxThreshold);
0975
0976 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
0977
0978 napi_enable(&np->napi);
0979
0980 netif_start_queue(dev);
0981
0982 if (debug > 1)
0983 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
0984 set_rx_mode(dev);
0985
0986 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
0987 check_duplex(dev);
0988
0989
0990 writel(0x0f00ff00, ioaddr + GPIOCtrl);
0991
0992
0993 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
0994 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
0995 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
0996 ioaddr + IntrEnable);
0997
0998 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
0999 ioaddr + PCIDeviceConfig);
1000
1001 #ifdef VLAN_SUPPORT
1002
1003 writel(ETH_P_8021Q, ioaddr + VlanType);
1004 #endif
1005
1006 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1007 if (retval) {
1008 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1009 FIRMWARE_RX);
1010 goto out_init;
1011 }
1012 if (fw_rx->size % 4) {
1013 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1014 fw_rx->size, FIRMWARE_RX);
1015 retval = -EINVAL;
1016 goto out_rx;
1017 }
1018 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1019 if (retval) {
1020 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1021 FIRMWARE_TX);
1022 goto out_rx;
1023 }
1024 if (fw_tx->size % 4) {
1025 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1026 fw_tx->size, FIRMWARE_TX);
1027 retval = -EINVAL;
1028 goto out_tx;
1029 }
1030 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1031 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1032 rx_size = fw_rx->size / 4;
1033 tx_size = fw_tx->size / 4;
1034
1035
1036 for (i = 0; i < rx_size; i++)
1037 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1038 for (i = 0; i < tx_size; i++)
1039 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1040 if (enable_hw_cksum)
1041
1042 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1043 else
1044
1045 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1046
1047 if (debug > 1)
1048 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1049 dev->name);
1050
1051 out_tx:
1052 release_firmware(fw_tx);
1053 out_rx:
1054 release_firmware(fw_rx);
1055 out_init:
1056 if (retval)
1057 netdev_close(dev);
1058 return retval;
1059 }
1060
1061
1062 static void check_duplex(struct net_device *dev)
1063 {
1064 struct netdev_private *np = netdev_priv(dev);
1065 u16 reg0;
1066 int silly_count = 1000;
1067
1068 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1069 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1070 udelay(500);
1071 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1072 ;
1073 if (!silly_count) {
1074 printk("%s: MII reset failed!\n", dev->name);
1075 return;
1076 }
1077
1078 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1079
1080 if (!np->mii_if.force_media) {
1081 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1082 } else {
1083 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1084 if (np->speed100)
1085 reg0 |= BMCR_SPEED100;
1086 if (np->mii_if.full_duplex)
1087 reg0 |= BMCR_FULLDPLX;
1088 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1089 dev->name,
1090 np->speed100 ? "100" : "10",
1091 np->mii_if.full_duplex ? "full" : "half");
1092 }
1093 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1094 }
1095
1096
1097 static void tx_timeout(struct net_device *dev, unsigned int txqueue)
1098 {
1099 struct netdev_private *np = netdev_priv(dev);
1100 void __iomem *ioaddr = np->base;
1101 int old_debug;
1102
1103 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1104 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1105
1106
1107
1108
1109
1110
1111
1112 old_debug = debug;
1113 debug = 2;
1114 netdev_close(dev);
1115 netdev_open(dev);
1116 debug = old_debug;
1117
1118
1119
1120 netif_trans_update(dev);
1121 dev->stats.tx_errors++;
1122 netif_wake_queue(dev);
1123 }
1124
1125
1126
1127 static void init_ring(struct net_device *dev)
1128 {
1129 struct netdev_private *np = netdev_priv(dev);
1130 int i;
1131
1132 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1133 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1134
1135 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1136
1137
1138 for (i = 0; i < RX_RING_SIZE; i++) {
1139 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1140 np->rx_info[i].skb = skb;
1141 if (skb == NULL)
1142 break;
1143 np->rx_info[i].mapping = dma_map_single(&np->pci_dev->dev,
1144 skb->data,
1145 np->rx_buf_sz,
1146 DMA_FROM_DEVICE);
1147 if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[i].mapping)) {
1148 dev_kfree_skb(skb);
1149 np->rx_info[i].skb = NULL;
1150 break;
1151 }
1152
1153 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1154 }
1155 writew(i - 1, np->base + RxDescQIdx);
1156 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1157
1158
1159 for ( ; i < RX_RING_SIZE; i++) {
1160 np->rx_ring[i].rxaddr = 0;
1161 np->rx_info[i].skb = NULL;
1162 np->rx_info[i].mapping = 0;
1163 }
1164
1165 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1166
1167
1168 for (i = 0; i < DONE_Q_SIZE; i++) {
1169 np->rx_done_q[i].status = 0;
1170 np->tx_done_q[i].status = 0;
1171 }
1172
1173 for (i = 0; i < TX_RING_SIZE; i++)
1174 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1175 }
1176
1177
1178 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1179 {
1180 struct netdev_private *np = netdev_priv(dev);
1181 unsigned int entry;
1182 unsigned int prev_tx;
1183 u32 status;
1184 int i, j;
1185
1186
1187
1188
1189
1190 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1191 netif_stop_queue(dev);
1192 return NETDEV_TX_BUSY;
1193 }
1194
1195 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1196 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1197 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1198 return NETDEV_TX_OK;
1199 }
1200 #endif
1201
1202 prev_tx = np->cur_tx;
1203 entry = np->cur_tx % TX_RING_SIZE;
1204 for (i = 0; i < skb_num_frags(skb); i++) {
1205 int wrap_ring = 0;
1206 status = TxDescID;
1207
1208 if (i == 0) {
1209 np->tx_info[entry].skb = skb;
1210 status |= TxCRCEn;
1211 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1212 status |= TxRingWrap;
1213 wrap_ring = 1;
1214 }
1215 if (np->reap_tx) {
1216 status |= TxDescIntr;
1217 np->reap_tx = 0;
1218 }
1219 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1220 status |= TxCalTCP;
1221 dev->stats.tx_compressed++;
1222 }
1223 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1224
1225 np->tx_info[entry].mapping =
1226 dma_map_single(&np->pci_dev->dev, skb->data,
1227 skb_first_frag_len(skb),
1228 DMA_TO_DEVICE);
1229 } else {
1230 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1231 status |= skb_frag_size(this_frag);
1232 np->tx_info[entry].mapping =
1233 dma_map_single(&np->pci_dev->dev,
1234 skb_frag_address(this_frag),
1235 skb_frag_size(this_frag),
1236 DMA_TO_DEVICE);
1237 }
1238 if (dma_mapping_error(&np->pci_dev->dev, np->tx_info[entry].mapping)) {
1239 dev->stats.tx_dropped++;
1240 goto err_out;
1241 }
1242
1243 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1244 np->tx_ring[entry].status = cpu_to_le32(status);
1245 if (debug > 3)
1246 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1247 dev->name, np->cur_tx, np->dirty_tx,
1248 entry, status);
1249 if (wrap_ring) {
1250 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1251 np->cur_tx += np->tx_info[entry].used_slots;
1252 entry = 0;
1253 } else {
1254 np->tx_info[entry].used_slots = 1;
1255 np->cur_tx += np->tx_info[entry].used_slots;
1256 entry++;
1257 }
1258
1259 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1260 np->reap_tx = 1;
1261 }
1262
1263
1264
1265
1266 wmb();
1267
1268
1269 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1270
1271
1272 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1273 netif_stop_queue(dev);
1274
1275 return NETDEV_TX_OK;
1276
1277 err_out:
1278 entry = prev_tx % TX_RING_SIZE;
1279 np->tx_info[entry].skb = NULL;
1280 if (i > 0) {
1281 dma_unmap_single(&np->pci_dev->dev,
1282 np->tx_info[entry].mapping,
1283 skb_first_frag_len(skb), DMA_TO_DEVICE);
1284 np->tx_info[entry].mapping = 0;
1285 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1286 for (j = 1; j < i; j++) {
1287 dma_unmap_single(&np->pci_dev->dev,
1288 np->tx_info[entry].mapping,
1289 skb_frag_size(&skb_shinfo(skb)->frags[j - 1]),
1290 DMA_TO_DEVICE);
1291 entry++;
1292 }
1293 }
1294 dev_kfree_skb_any(skb);
1295 np->cur_tx = prev_tx;
1296 return NETDEV_TX_OK;
1297 }
1298
1299
1300
1301 static irqreturn_t intr_handler(int irq, void *dev_instance)
1302 {
1303 struct net_device *dev = dev_instance;
1304 struct netdev_private *np = netdev_priv(dev);
1305 void __iomem *ioaddr = np->base;
1306 int boguscnt = max_interrupt_work;
1307 int consumer;
1308 int tx_status;
1309 int handled = 0;
1310
1311 do {
1312 u32 intr_status = readl(ioaddr + IntrClear);
1313
1314 if (debug > 4)
1315 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1316 dev->name, intr_status);
1317
1318 if (intr_status == 0 || intr_status == (u32) -1)
1319 break;
1320
1321 handled = 1;
1322
1323 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1324 u32 enable;
1325
1326 if (likely(napi_schedule_prep(&np->napi))) {
1327 __napi_schedule(&np->napi);
1328 enable = readl(ioaddr + IntrEnable);
1329 enable &= ~(IntrRxDone | IntrRxEmpty);
1330 writel(enable, ioaddr + IntrEnable);
1331
1332 readl(ioaddr + IntrEnable);
1333 } else {
1334
1335 enable = readl(ioaddr + IntrEnable);
1336 if (enable & (IntrRxDone | IntrRxEmpty)) {
1337 printk(KERN_INFO
1338 "%s: interrupt while in poll!\n",
1339 dev->name);
1340 enable &= ~(IntrRxDone | IntrRxEmpty);
1341 writel(enable, ioaddr + IntrEnable);
1342 }
1343 }
1344 }
1345
1346
1347
1348
1349 consumer = readl(ioaddr + TxConsumerIdx);
1350 if (debug > 3)
1351 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1352 dev->name, consumer);
1353
1354 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1355 if (debug > 3)
1356 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1357 dev->name, np->dirty_tx, np->tx_done, tx_status);
1358 if ((tx_status & 0xe0000000) == 0xa0000000) {
1359 dev->stats.tx_packets++;
1360 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1361 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1362 struct sk_buff *skb = np->tx_info[entry].skb;
1363 np->tx_info[entry].skb = NULL;
1364 dma_unmap_single(&np->pci_dev->dev,
1365 np->tx_info[entry].mapping,
1366 skb_first_frag_len(skb),
1367 DMA_TO_DEVICE);
1368 np->tx_info[entry].mapping = 0;
1369 np->dirty_tx += np->tx_info[entry].used_slots;
1370 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1371 {
1372 int i;
1373 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1374 dma_unmap_single(&np->pci_dev->dev,
1375 np->tx_info[entry].mapping,
1376 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1377 DMA_TO_DEVICE);
1378 np->dirty_tx++;
1379 entry++;
1380 }
1381 }
1382
1383 dev_consume_skb_irq(skb);
1384 }
1385 np->tx_done_q[np->tx_done].status = 0;
1386 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1387 }
1388 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1389
1390 if (netif_queue_stopped(dev) &&
1391 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1392
1393 netif_wake_queue(dev);
1394 }
1395
1396
1397 if (intr_status & IntrStatsMax)
1398 get_stats(dev);
1399
1400
1401 if (intr_status & IntrLinkChange)
1402 netdev_media_change(dev);
1403
1404
1405 if (intr_status & IntrAbnormalSummary)
1406 netdev_error(dev, intr_status);
1407
1408 if (--boguscnt < 0) {
1409 if (debug > 1)
1410 printk(KERN_WARNING "%s: Too much work at interrupt, "
1411 "status=%#8.8x.\n",
1412 dev->name, intr_status);
1413 break;
1414 }
1415 } while (1);
1416
1417 if (debug > 4)
1418 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1419 dev->name, (int) readl(ioaddr + IntrStatus));
1420 return IRQ_RETVAL(handled);
1421 }
1422
1423
1424
1425
1426
1427
1428 static int __netdev_rx(struct net_device *dev, int *quota)
1429 {
1430 struct netdev_private *np = netdev_priv(dev);
1431 u32 desc_status;
1432 int retcode = 0;
1433
1434
1435 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1436 struct sk_buff *skb;
1437 u16 pkt_len;
1438 int entry;
1439 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1440
1441 if (debug > 4)
1442 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1443 if (!(desc_status & RxOK)) {
1444
1445 if (debug > 2)
1446 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1447 dev->stats.rx_errors++;
1448 if (desc_status & RxFIFOErr)
1449 dev->stats.rx_fifo_errors++;
1450 goto next_rx;
1451 }
1452
1453 if (*quota <= 0) {
1454 retcode = 1;
1455 goto out;
1456 }
1457 (*quota)--;
1458
1459 pkt_len = desc_status;
1460 entry = (desc_status >> 16) & 0x7ff;
1461
1462 if (debug > 4)
1463 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1464
1465
1466 if (pkt_len < rx_copybreak &&
1467 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1468 skb_reserve(skb, 2);
1469 dma_sync_single_for_cpu(&np->pci_dev->dev,
1470 np->rx_info[entry].mapping,
1471 pkt_len, DMA_FROM_DEVICE);
1472 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1473 dma_sync_single_for_device(&np->pci_dev->dev,
1474 np->rx_info[entry].mapping,
1475 pkt_len, DMA_FROM_DEVICE);
1476 skb_put(skb, pkt_len);
1477 } else {
1478 dma_unmap_single(&np->pci_dev->dev,
1479 np->rx_info[entry].mapping,
1480 np->rx_buf_sz, DMA_FROM_DEVICE);
1481 skb = np->rx_info[entry].skb;
1482 skb_put(skb, pkt_len);
1483 np->rx_info[entry].skb = NULL;
1484 np->rx_info[entry].mapping = 0;
1485 }
1486 #ifndef final_version
1487
1488 if (debug > 5) {
1489 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1490 skb->data, skb->data + 6,
1491 skb->data[12], skb->data[13]);
1492 }
1493 #endif
1494
1495 skb->protocol = eth_type_trans(skb, dev);
1496 #ifdef VLAN_SUPPORT
1497 if (debug > 4)
1498 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1499 #endif
1500 if (le16_to_cpu(desc->status2) & 0x0100) {
1501 skb->ip_summed = CHECKSUM_UNNECESSARY;
1502 dev->stats.rx_compressed++;
1503 }
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513 else if (le16_to_cpu(desc->status2) & 0x0040) {
1514 skb->ip_summed = CHECKSUM_COMPLETE;
1515 skb->csum = le16_to_cpu(desc->csum);
1516 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1517 }
1518 #ifdef VLAN_SUPPORT
1519 if (le16_to_cpu(desc->status2) & 0x0200) {
1520 u16 vlid = le16_to_cpu(desc->vlanid);
1521
1522 if (debug > 4) {
1523 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1524 vlid);
1525 }
1526 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
1527 }
1528 #endif
1529 netif_receive_skb(skb);
1530 dev->stats.rx_packets++;
1531
1532 next_rx:
1533 np->cur_rx++;
1534 desc->status = 0;
1535 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1536 }
1537
1538 if (*quota == 0) {
1539 retcode = 1;
1540 goto out;
1541 }
1542 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1543
1544 out:
1545 refill_rx_ring(dev);
1546 if (debug > 5)
1547 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1548 retcode, np->rx_done, desc_status);
1549 return retcode;
1550 }
1551
1552 static int netdev_poll(struct napi_struct *napi, int budget)
1553 {
1554 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1555 struct net_device *dev = np->dev;
1556 u32 intr_status;
1557 void __iomem *ioaddr = np->base;
1558 int quota = budget;
1559
1560 do {
1561 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1562
1563 if (__netdev_rx(dev, "a))
1564 goto out;
1565
1566 intr_status = readl(ioaddr + IntrStatus);
1567 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1568
1569 napi_complete(napi);
1570 intr_status = readl(ioaddr + IntrEnable);
1571 intr_status |= IntrRxDone | IntrRxEmpty;
1572 writel(intr_status, ioaddr + IntrEnable);
1573
1574 out:
1575 if (debug > 5)
1576 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1577 budget - quota);
1578
1579
1580 return budget - quota;
1581 }
1582
1583 static void refill_rx_ring(struct net_device *dev)
1584 {
1585 struct netdev_private *np = netdev_priv(dev);
1586 struct sk_buff *skb;
1587 int entry = -1;
1588
1589
1590 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1591 entry = np->dirty_rx % RX_RING_SIZE;
1592 if (np->rx_info[entry].skb == NULL) {
1593 skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1594 np->rx_info[entry].skb = skb;
1595 if (skb == NULL)
1596 break;
1597 np->rx_info[entry].mapping =
1598 dma_map_single(&np->pci_dev->dev, skb->data,
1599 np->rx_buf_sz, DMA_FROM_DEVICE);
1600 if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[entry].mapping)) {
1601 dev_kfree_skb(skb);
1602 np->rx_info[entry].skb = NULL;
1603 break;
1604 }
1605 np->rx_ring[entry].rxaddr =
1606 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1607 }
1608 if (entry == RX_RING_SIZE - 1)
1609 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1610 }
1611 if (entry >= 0)
1612 writew(entry, np->base + RxDescQIdx);
1613 }
1614
1615
1616 static void netdev_media_change(struct net_device *dev)
1617 {
1618 struct netdev_private *np = netdev_priv(dev);
1619 void __iomem *ioaddr = np->base;
1620 u16 reg0, reg1, reg4, reg5;
1621 u32 new_tx_mode;
1622 u32 new_intr_timer_ctrl;
1623
1624
1625 mdio_read(dev, np->phys[0], MII_BMCR);
1626 mdio_read(dev, np->phys[0], MII_BMSR);
1627
1628 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1629 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1630
1631 if (reg1 & BMSR_LSTATUS) {
1632
1633 if (reg0 & BMCR_ANENABLE) {
1634
1635 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1636 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1637 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1638 np->speed100 = 1;
1639 np->mii_if.full_duplex = 1;
1640 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1641 np->speed100 = 1;
1642 np->mii_if.full_duplex = 0;
1643 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1644 np->speed100 = 0;
1645 np->mii_if.full_duplex = 1;
1646 } else {
1647 np->speed100 = 0;
1648 np->mii_if.full_duplex = 0;
1649 }
1650 } else {
1651
1652 if (reg0 & BMCR_SPEED100)
1653 np->speed100 = 1;
1654 else
1655 np->speed100 = 0;
1656 if (reg0 & BMCR_FULLDPLX)
1657 np->mii_if.full_duplex = 1;
1658 else
1659 np->mii_if.full_duplex = 0;
1660 }
1661 netif_carrier_on(dev);
1662 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1663 dev->name,
1664 np->speed100 ? "100" : "10",
1665 np->mii_if.full_duplex ? "full" : "half");
1666
1667 new_tx_mode = np->tx_mode & ~FullDuplex;
1668 if (np->mii_if.full_duplex)
1669 new_tx_mode |= FullDuplex;
1670 if (np->tx_mode != new_tx_mode) {
1671 np->tx_mode = new_tx_mode;
1672 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1673 udelay(1000);
1674 writel(np->tx_mode, ioaddr + TxMode);
1675 }
1676
1677 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1678 if (np->speed100)
1679 new_intr_timer_ctrl |= Timer10X;
1680 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1681 np->intr_timer_ctrl = new_intr_timer_ctrl;
1682 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1683 }
1684 } else {
1685 netif_carrier_off(dev);
1686 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1687 }
1688 }
1689
1690
1691 static void netdev_error(struct net_device *dev, int intr_status)
1692 {
1693 struct netdev_private *np = netdev_priv(dev);
1694
1695
1696 if (intr_status & IntrTxDataLow) {
1697 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1698 writel(++np->tx_threshold, np->base + TxThreshold);
1699 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1700 dev->name, np->tx_threshold * 16);
1701 } else
1702 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1703 }
1704 if (intr_status & IntrRxGFPDead) {
1705 dev->stats.rx_fifo_errors++;
1706 dev->stats.rx_errors++;
1707 }
1708 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1709 dev->stats.tx_fifo_errors++;
1710 dev->stats.tx_errors++;
1711 }
1712 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1713 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1714 dev->name, intr_status);
1715 }
1716
1717
1718 static struct net_device_stats *get_stats(struct net_device *dev)
1719 {
1720 struct netdev_private *np = netdev_priv(dev);
1721 void __iomem *ioaddr = np->base;
1722
1723
1724 dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1725 dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1726 dev->stats.tx_packets = readl(ioaddr + 0x57000);
1727 dev->stats.tx_aborted_errors =
1728 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1729 dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1730 dev->stats.collisions =
1731 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1732
1733
1734 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1735 writew(0, ioaddr + RxDMAStatus);
1736 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1737 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1738 dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1739 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1740
1741 return &dev->stats;
1742 }
1743
1744 #ifdef VLAN_SUPPORT
1745 static u32 set_vlan_mode(struct netdev_private *np)
1746 {
1747 u32 ret = VlanMode;
1748 u16 vid;
1749 void __iomem *filter_addr = np->base + HashTable + 8;
1750 int vlan_count = 0;
1751
1752 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1753 if (vlan_count == 32)
1754 break;
1755 writew(vid, filter_addr);
1756 filter_addr += 16;
1757 vlan_count++;
1758 }
1759 if (vlan_count == 32) {
1760 ret |= PerfectFilterVlan;
1761 while (vlan_count < 32) {
1762 writew(0, filter_addr);
1763 filter_addr += 16;
1764 vlan_count++;
1765 }
1766 }
1767 return ret;
1768 }
1769 #endif
1770
1771 static void set_rx_mode(struct net_device *dev)
1772 {
1773 struct netdev_private *np = netdev_priv(dev);
1774 void __iomem *ioaddr = np->base;
1775 u32 rx_mode = MinVLANPrio;
1776 struct netdev_hw_addr *ha;
1777 int i;
1778
1779 #ifdef VLAN_SUPPORT
1780 rx_mode |= set_vlan_mode(np);
1781 #endif
1782
1783 if (dev->flags & IFF_PROMISC) {
1784 rx_mode |= AcceptAll;
1785 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1786 (dev->flags & IFF_ALLMULTI)) {
1787
1788 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1789 } else if (netdev_mc_count(dev) <= 14) {
1790
1791 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1792 const __be16 *eaddrs;
1793 netdev_for_each_mc_addr(ha, dev) {
1794 eaddrs = (__be16 *) ha->addr;
1795 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1796 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1797 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1798 }
1799 eaddrs = (const __be16 *)dev->dev_addr;
1800 i = netdev_mc_count(dev) + 2;
1801 while (i++ < 16) {
1802 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1803 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1804 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1805 }
1806 rx_mode |= AcceptBroadcast|PerfectFilter;
1807 } else {
1808
1809 void __iomem *filter_addr;
1810 const __be16 *eaddrs;
1811 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));
1812
1813 memset(mc_filter, 0, sizeof(mc_filter));
1814 netdev_for_each_mc_addr(ha, dev) {
1815
1816
1817 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1818 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1819
1820 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1821 }
1822
1823 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1824 eaddrs = (const __be16 *)dev->dev_addr;
1825 for (i = 2; i < 16; i++) {
1826 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1827 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1828 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1829 }
1830 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1831 writew(mc_filter[i], filter_addr);
1832 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1833 }
1834 writel(rx_mode, ioaddr + RxFilterMode);
1835 }
1836
1837 static int check_if_running(struct net_device *dev)
1838 {
1839 if (!netif_running(dev))
1840 return -EINVAL;
1841 return 0;
1842 }
1843
1844 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1845 {
1846 struct netdev_private *np = netdev_priv(dev);
1847 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1848 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1849 }
1850
1851 static int get_link_ksettings(struct net_device *dev,
1852 struct ethtool_link_ksettings *cmd)
1853 {
1854 struct netdev_private *np = netdev_priv(dev);
1855 spin_lock_irq(&np->lock);
1856 mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1857 spin_unlock_irq(&np->lock);
1858 return 0;
1859 }
1860
1861 static int set_link_ksettings(struct net_device *dev,
1862 const struct ethtool_link_ksettings *cmd)
1863 {
1864 struct netdev_private *np = netdev_priv(dev);
1865 int res;
1866 spin_lock_irq(&np->lock);
1867 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1868 spin_unlock_irq(&np->lock);
1869 check_duplex(dev);
1870 return res;
1871 }
1872
1873 static int nway_reset(struct net_device *dev)
1874 {
1875 struct netdev_private *np = netdev_priv(dev);
1876 return mii_nway_restart(&np->mii_if);
1877 }
1878
1879 static u32 get_link(struct net_device *dev)
1880 {
1881 struct netdev_private *np = netdev_priv(dev);
1882 return mii_link_ok(&np->mii_if);
1883 }
1884
1885 static u32 get_msglevel(struct net_device *dev)
1886 {
1887 return debug;
1888 }
1889
1890 static void set_msglevel(struct net_device *dev, u32 val)
1891 {
1892 debug = val;
1893 }
1894
1895 static const struct ethtool_ops ethtool_ops = {
1896 .begin = check_if_running,
1897 .get_drvinfo = get_drvinfo,
1898 .nway_reset = nway_reset,
1899 .get_link = get_link,
1900 .get_msglevel = get_msglevel,
1901 .set_msglevel = set_msglevel,
1902 .get_link_ksettings = get_link_ksettings,
1903 .set_link_ksettings = set_link_ksettings,
1904 };
1905
1906 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1907 {
1908 struct netdev_private *np = netdev_priv(dev);
1909 struct mii_ioctl_data *data = if_mii(rq);
1910 int rc;
1911
1912 if (!netif_running(dev))
1913 return -EINVAL;
1914
1915 spin_lock_irq(&np->lock);
1916 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1917 spin_unlock_irq(&np->lock);
1918
1919 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1920 check_duplex(dev);
1921
1922 return rc;
1923 }
1924
1925 static int netdev_close(struct net_device *dev)
1926 {
1927 struct netdev_private *np = netdev_priv(dev);
1928 void __iomem *ioaddr = np->base;
1929 int i;
1930
1931 netif_stop_queue(dev);
1932
1933 napi_disable(&np->napi);
1934
1935 if (debug > 1) {
1936 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1937 dev->name, (int) readl(ioaddr + IntrStatus));
1938 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1939 dev->name, np->cur_tx, np->dirty_tx,
1940 np->cur_rx, np->dirty_rx);
1941 }
1942
1943
1944 writel(0, ioaddr + IntrEnable);
1945
1946
1947 writel(0, ioaddr + GenCtrl);
1948 readl(ioaddr + GenCtrl);
1949
1950 if (debug > 5) {
1951 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1952 (long long) np->tx_ring_dma);
1953 for (i = 0; i < 8 ; i++)
1954 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1955 i, le32_to_cpu(np->tx_ring[i].status),
1956 (long long) dma_to_cpu(np->tx_ring[i].addr),
1957 le32_to_cpu(np->tx_done_q[i].status));
1958 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1959 (long long) np->rx_ring_dma, np->rx_done_q);
1960 if (np->rx_done_q)
1961 for (i = 0; i < 8 ; i++) {
1962 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1963 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1964 }
1965 }
1966
1967 free_irq(np->pci_dev->irq, dev);
1968
1969
1970 for (i = 0; i < RX_RING_SIZE; i++) {
1971 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0);
1972 if (np->rx_info[i].skb != NULL) {
1973 dma_unmap_single(&np->pci_dev->dev,
1974 np->rx_info[i].mapping,
1975 np->rx_buf_sz, DMA_FROM_DEVICE);
1976 dev_kfree_skb(np->rx_info[i].skb);
1977 }
1978 np->rx_info[i].skb = NULL;
1979 np->rx_info[i].mapping = 0;
1980 }
1981 for (i = 0; i < TX_RING_SIZE; i++) {
1982 struct sk_buff *skb = np->tx_info[i].skb;
1983 if (skb == NULL)
1984 continue;
1985 dma_unmap_single(&np->pci_dev->dev, np->tx_info[i].mapping,
1986 skb_first_frag_len(skb), DMA_TO_DEVICE);
1987 np->tx_info[i].mapping = 0;
1988 dev_kfree_skb(skb);
1989 np->tx_info[i].skb = NULL;
1990 }
1991
1992 return 0;
1993 }
1994
1995 static int __maybe_unused starfire_suspend(struct device *dev_d)
1996 {
1997 struct net_device *dev = dev_get_drvdata(dev_d);
1998
1999 if (netif_running(dev)) {
2000 netif_device_detach(dev);
2001 netdev_close(dev);
2002 }
2003
2004 return 0;
2005 }
2006
2007 static int __maybe_unused starfire_resume(struct device *dev_d)
2008 {
2009 struct net_device *dev = dev_get_drvdata(dev_d);
2010
2011 if (netif_running(dev)) {
2012 netdev_open(dev);
2013 netif_device_attach(dev);
2014 }
2015
2016 return 0;
2017 }
2018
2019 static void starfire_remove_one(struct pci_dev *pdev)
2020 {
2021 struct net_device *dev = pci_get_drvdata(pdev);
2022 struct netdev_private *np = netdev_priv(dev);
2023
2024 BUG_ON(!dev);
2025
2026 unregister_netdev(dev);
2027
2028 if (np->queue_mem)
2029 dma_free_coherent(&pdev->dev, np->queue_mem_size,
2030 np->queue_mem, np->queue_mem_dma);
2031
2032
2033
2034 pci_set_power_state(pdev, PCI_D3hot);
2035 pci_disable_device(pdev);
2036
2037 iounmap(np->base);
2038 pci_release_regions(pdev);
2039
2040 free_netdev(dev);
2041 }
2042
2043 static SIMPLE_DEV_PM_OPS(starfire_pm_ops, starfire_suspend, starfire_resume);
2044
2045 static struct pci_driver starfire_driver = {
2046 .name = DRV_NAME,
2047 .probe = starfire_init_one,
2048 .remove = starfire_remove_one,
2049 .driver.pm = &starfire_pm_ops,
2050 .id_table = starfire_pci_tbl,
2051 };
2052
2053
2054 static int __init starfire_init (void)
2055 {
2056
2057 #ifdef MODULE
2058 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2059 #endif
2060
2061 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2062
2063 return pci_register_driver(&starfire_driver);
2064 }
2065
2066
2067 static void __exit starfire_cleanup (void)
2068 {
2069 pci_unregister_driver (&starfire_driver);
2070 }
2071
2072
2073 module_init(starfire_init);
2074 module_exit(starfire_cleanup);