0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022 #include <linux/bitfield.h>
0023 #include <linux/can/core.h>
0024 #include <linux/can/dev.h>
0025 #include <linux/clk.h>
0026 #include <linux/completion.h>
0027 #include <linux/delay.h>
0028 #include <linux/device.h>
0029 #include <linux/ethtool.h>
0030 #include <linux/freezer.h>
0031 #include <linux/gpio.h>
0032 #include <linux/gpio/driver.h>
0033 #include <linux/interrupt.h>
0034 #include <linux/io.h>
0035 #include <linux/iopoll.h>
0036 #include <linux/kernel.h>
0037 #include <linux/module.h>
0038 #include <linux/netdevice.h>
0039 #include <linux/platform_device.h>
0040 #include <linux/property.h>
0041 #include <linux/regulator/consumer.h>
0042 #include <linux/slab.h>
0043 #include <linux/spi/spi.h>
0044 #include <linux/uaccess.h>
0045
0046
0047 #define INSTRUCTION_WRITE 0x02
0048 #define INSTRUCTION_READ 0x03
0049 #define INSTRUCTION_BIT_MODIFY 0x05
0050 #define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
0051 #define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
0052 #define INSTRUCTION_RESET 0xC0
0053 #define RTS_TXB0 0x01
0054 #define RTS_TXB1 0x02
0055 #define RTS_TXB2 0x04
0056 #define INSTRUCTION_RTS(n) (0x80 | ((n) & 0x07))
0057
0058
0059 #define BFPCTRL 0x0c
0060 # define BFPCTRL_B0BFM BIT(0)
0061 # define BFPCTRL_B1BFM BIT(1)
0062 # define BFPCTRL_BFM(n) (BFPCTRL_B0BFM << (n))
0063 # define BFPCTRL_BFM_MASK GENMASK(1, 0)
0064 # define BFPCTRL_B0BFE BIT(2)
0065 # define BFPCTRL_B1BFE BIT(3)
0066 # define BFPCTRL_BFE(n) (BFPCTRL_B0BFE << (n))
0067 # define BFPCTRL_BFE_MASK GENMASK(3, 2)
0068 # define BFPCTRL_B0BFS BIT(4)
0069 # define BFPCTRL_B1BFS BIT(5)
0070 # define BFPCTRL_BFS(n) (BFPCTRL_B0BFS << (n))
0071 # define BFPCTRL_BFS_MASK GENMASK(5, 4)
0072 #define TXRTSCTRL 0x0d
0073 # define TXRTSCTRL_B0RTSM BIT(0)
0074 # define TXRTSCTRL_B1RTSM BIT(1)
0075 # define TXRTSCTRL_B2RTSM BIT(2)
0076 # define TXRTSCTRL_RTSM(n) (TXRTSCTRL_B0RTSM << (n))
0077 # define TXRTSCTRL_RTSM_MASK GENMASK(2, 0)
0078 # define TXRTSCTRL_B0RTS BIT(3)
0079 # define TXRTSCTRL_B1RTS BIT(4)
0080 # define TXRTSCTRL_B2RTS BIT(5)
0081 # define TXRTSCTRL_RTS(n) (TXRTSCTRL_B0RTS << (n))
0082 # define TXRTSCTRL_RTS_MASK GENMASK(5, 3)
0083 #define CANSTAT 0x0e
0084 #define CANCTRL 0x0f
0085 # define CANCTRL_REQOP_MASK 0xe0
0086 # define CANCTRL_REQOP_CONF 0x80
0087 # define CANCTRL_REQOP_LISTEN_ONLY 0x60
0088 # define CANCTRL_REQOP_LOOPBACK 0x40
0089 # define CANCTRL_REQOP_SLEEP 0x20
0090 # define CANCTRL_REQOP_NORMAL 0x00
0091 # define CANCTRL_OSM 0x08
0092 # define CANCTRL_ABAT 0x10
0093 #define TEC 0x1c
0094 #define REC 0x1d
0095 #define CNF1 0x2a
0096 # define CNF1_SJW_SHIFT 6
0097 #define CNF2 0x29
0098 # define CNF2_BTLMODE 0x80
0099 # define CNF2_SAM 0x40
0100 # define CNF2_PS1_SHIFT 3
0101 #define CNF3 0x28
0102 # define CNF3_SOF 0x08
0103 # define CNF3_WAKFIL 0x04
0104 # define CNF3_PHSEG2_MASK 0x07
0105 #define CANINTE 0x2b
0106 # define CANINTE_MERRE 0x80
0107 # define CANINTE_WAKIE 0x40
0108 # define CANINTE_ERRIE 0x20
0109 # define CANINTE_TX2IE 0x10
0110 # define CANINTE_TX1IE 0x08
0111 # define CANINTE_TX0IE 0x04
0112 # define CANINTE_RX1IE 0x02
0113 # define CANINTE_RX0IE 0x01
0114 #define CANINTF 0x2c
0115 # define CANINTF_MERRF 0x80
0116 # define CANINTF_WAKIF 0x40
0117 # define CANINTF_ERRIF 0x20
0118 # define CANINTF_TX2IF 0x10
0119 # define CANINTF_TX1IF 0x08
0120 # define CANINTF_TX0IF 0x04
0121 # define CANINTF_RX1IF 0x02
0122 # define CANINTF_RX0IF 0x01
0123 # define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
0124 # define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
0125 # define CANINTF_ERR (CANINTF_ERRIF)
0126 #define EFLG 0x2d
0127 # define EFLG_EWARN 0x01
0128 # define EFLG_RXWAR 0x02
0129 # define EFLG_TXWAR 0x04
0130 # define EFLG_RXEP 0x08
0131 # define EFLG_TXEP 0x10
0132 # define EFLG_TXBO 0x20
0133 # define EFLG_RX0OVR 0x40
0134 # define EFLG_RX1OVR 0x80
0135 #define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
0136 # define TXBCTRL_ABTF 0x40
0137 # define TXBCTRL_MLOA 0x20
0138 # define TXBCTRL_TXERR 0x10
0139 # define TXBCTRL_TXREQ 0x08
0140 #define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
0141 # define SIDH_SHIFT 3
0142 #define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
0143 # define SIDL_SID_MASK 7
0144 # define SIDL_SID_SHIFT 5
0145 # define SIDL_EXIDE_SHIFT 3
0146 # define SIDL_EID_SHIFT 16
0147 # define SIDL_EID_MASK 3
0148 #define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
0149 #define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
0150 #define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
0151 # define DLC_RTR_SHIFT 6
0152 #define TXBCTRL_OFF 0
0153 #define TXBSIDH_OFF 1
0154 #define TXBSIDL_OFF 2
0155 #define TXBEID8_OFF 3
0156 #define TXBEID0_OFF 4
0157 #define TXBDLC_OFF 5
0158 #define TXBDAT_OFF 6
0159 #define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
0160 # define RXBCTRL_BUKT 0x04
0161 # define RXBCTRL_RXM0 0x20
0162 # define RXBCTRL_RXM1 0x40
0163 #define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
0164 # define RXBSIDH_SHIFT 3
0165 #define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
0166 # define RXBSIDL_IDE 0x08
0167 # define RXBSIDL_SRR 0x10
0168 # define RXBSIDL_EID 3
0169 # define RXBSIDL_SHIFT 5
0170 #define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
0171 #define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
0172 #define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
0173 # define RXBDLC_LEN_MASK 0x0f
0174 # define RXBDLC_RTR 0x40
0175 #define RXBCTRL_OFF 0
0176 #define RXBSIDH_OFF 1
0177 #define RXBSIDL_OFF 2
0178 #define RXBEID8_OFF 3
0179 #define RXBEID0_OFF 4
0180 #define RXBDLC_OFF 5
0181 #define RXBDAT_OFF 6
0182 #define RXFSID(n) ((n < 3) ? 0 : 4)
0183 #define RXFSIDH(n) ((n) * 4 + RXFSID(n))
0184 #define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
0185 #define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
0186 #define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
0187 #define RXMSIDH(n) ((n) * 4 + 0x20)
0188 #define RXMSIDL(n) ((n) * 4 + 0x21)
0189 #define RXMEID8(n) ((n) * 4 + 0x22)
0190 #define RXMEID0(n) ((n) * 4 + 0x23)
0191
0192 #define GET_BYTE(val, byte) \
0193 (((val) >> ((byte) * 8)) & 0xff)
0194 #define SET_BYTE(val, byte) \
0195 (((val) & 0xff) << ((byte) * 8))
0196
0197
0198
0199
0200 #define CAN_FRAME_MAX_DATA_LEN 8
0201 #define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
0202 #define CAN_FRAME_MAX_BITS 128
0203
0204 #define TX_ECHO_SKB_MAX 1
0205
0206 #define MCP251X_OST_DELAY_MS (5)
0207
0208 #define DEVICE_NAME "mcp251x"
0209
0210 static const struct can_bittiming_const mcp251x_bittiming_const = {
0211 .name = DEVICE_NAME,
0212 .tseg1_min = 3,
0213 .tseg1_max = 16,
0214 .tseg2_min = 2,
0215 .tseg2_max = 8,
0216 .sjw_max = 4,
0217 .brp_min = 1,
0218 .brp_max = 64,
0219 .brp_inc = 1,
0220 };
0221
0222 enum mcp251x_model {
0223 CAN_MCP251X_MCP2510 = 0x2510,
0224 CAN_MCP251X_MCP2515 = 0x2515,
0225 CAN_MCP251X_MCP25625 = 0x25625,
0226 };
0227
0228 struct mcp251x_priv {
0229 struct can_priv can;
0230 struct net_device *net;
0231 struct spi_device *spi;
0232 enum mcp251x_model model;
0233
0234 struct mutex mcp_lock;
0235
0236 u8 *spi_tx_buf;
0237 u8 *spi_rx_buf;
0238
0239 struct sk_buff *tx_skb;
0240
0241 struct workqueue_struct *wq;
0242 struct work_struct tx_work;
0243 struct work_struct restart_work;
0244
0245 int force_quit;
0246 int after_suspend;
0247 #define AFTER_SUSPEND_UP 1
0248 #define AFTER_SUSPEND_DOWN 2
0249 #define AFTER_SUSPEND_POWER 4
0250 #define AFTER_SUSPEND_RESTART 8
0251 int restart_tx;
0252 bool tx_busy;
0253
0254 struct regulator *power;
0255 struct regulator *transceiver;
0256 struct clk *clk;
0257 #ifdef CONFIG_GPIOLIB
0258 struct gpio_chip gpio;
0259 u8 reg_bfpctrl;
0260 #endif
0261 };
0262
0263 #define MCP251X_IS(_model) \
0264 static inline int mcp251x_is_##_model(struct spi_device *spi) \
0265 { \
0266 struct mcp251x_priv *priv = spi_get_drvdata(spi); \
0267 return priv->model == CAN_MCP251X_MCP##_model; \
0268 }
0269
0270 MCP251X_IS(2510);
0271
0272 static void mcp251x_clean(struct net_device *net)
0273 {
0274 struct mcp251x_priv *priv = netdev_priv(net);
0275
0276 if (priv->tx_skb || priv->tx_busy)
0277 net->stats.tx_errors++;
0278 dev_kfree_skb(priv->tx_skb);
0279 if (priv->tx_busy)
0280 can_free_echo_skb(priv->net, 0, NULL);
0281 priv->tx_skb = NULL;
0282 priv->tx_busy = false;
0283 }
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297 static int mcp251x_spi_trans(struct spi_device *spi, int len)
0298 {
0299 struct mcp251x_priv *priv = spi_get_drvdata(spi);
0300 struct spi_transfer t = {
0301 .tx_buf = priv->spi_tx_buf,
0302 .rx_buf = priv->spi_rx_buf,
0303 .len = len,
0304 .cs_change = 0,
0305 };
0306 struct spi_message m;
0307 int ret;
0308
0309 spi_message_init(&m);
0310 spi_message_add_tail(&t, &m);
0311
0312 ret = spi_sync(spi, &m);
0313 if (ret)
0314 dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
0315 return ret;
0316 }
0317
0318 static int mcp251x_spi_write(struct spi_device *spi, int len)
0319 {
0320 struct mcp251x_priv *priv = spi_get_drvdata(spi);
0321 int ret;
0322
0323 ret = spi_write(spi, priv->spi_tx_buf, len);
0324 if (ret)
0325 dev_err(&spi->dev, "spi write failed: ret = %d\n", ret);
0326
0327 return ret;
0328 }
0329
0330 static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
0331 {
0332 struct mcp251x_priv *priv = spi_get_drvdata(spi);
0333 u8 val = 0;
0334
0335 priv->spi_tx_buf[0] = INSTRUCTION_READ;
0336 priv->spi_tx_buf[1] = reg;
0337
0338 if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
0339 spi_write_then_read(spi, priv->spi_tx_buf, 2, &val, 1);
0340 } else {
0341 mcp251x_spi_trans(spi, 3);
0342 val = priv->spi_rx_buf[2];
0343 }
0344
0345 return val;
0346 }
0347
0348 static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
0349 {
0350 struct mcp251x_priv *priv = spi_get_drvdata(spi);
0351
0352 priv->spi_tx_buf[0] = INSTRUCTION_READ;
0353 priv->spi_tx_buf[1] = reg;
0354
0355 if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
0356 u8 val[2] = { 0 };
0357
0358 spi_write_then_read(spi, priv->spi_tx_buf, 2, val, 2);
0359 *v1 = val[0];
0360 *v2 = val[1];
0361 } else {
0362 mcp251x_spi_trans(spi, 4);
0363
0364 *v1 = priv->spi_rx_buf[2];
0365 *v2 = priv->spi_rx_buf[3];
0366 }
0367 }
0368
0369 static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
0370 {
0371 struct mcp251x_priv *priv = spi_get_drvdata(spi);
0372
0373 priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
0374 priv->spi_tx_buf[1] = reg;
0375 priv->spi_tx_buf[2] = val;
0376
0377 mcp251x_spi_write(spi, 3);
0378 }
0379
0380 static void mcp251x_write_2regs(struct spi_device *spi, u8 reg, u8 v1, u8 v2)
0381 {
0382 struct mcp251x_priv *priv = spi_get_drvdata(spi);
0383
0384 priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
0385 priv->spi_tx_buf[1] = reg;
0386 priv->spi_tx_buf[2] = v1;
0387 priv->spi_tx_buf[3] = v2;
0388
0389 mcp251x_spi_write(spi, 4);
0390 }
0391
0392 static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
0393 u8 mask, u8 val)
0394 {
0395 struct mcp251x_priv *priv = spi_get_drvdata(spi);
0396
0397 priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
0398 priv->spi_tx_buf[1] = reg;
0399 priv->spi_tx_buf[2] = mask;
0400 priv->spi_tx_buf[3] = val;
0401
0402 mcp251x_spi_write(spi, 4);
0403 }
0404
0405 static u8 mcp251x_read_stat(struct spi_device *spi)
0406 {
0407 return mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK;
0408 }
0409
0410 #define mcp251x_read_stat_poll_timeout(addr, val, cond, delay_us, timeout_us) \
0411 readx_poll_timeout(mcp251x_read_stat, addr, val, cond, \
0412 delay_us, timeout_us)
0413
0414 #ifdef CONFIG_GPIOLIB
0415 enum {
0416 MCP251X_GPIO_TX0RTS = 0,
0417 MCP251X_GPIO_TX1RTS,
0418 MCP251X_GPIO_TX2RTS,
0419 MCP251X_GPIO_RX0BF,
0420 MCP251X_GPIO_RX1BF,
0421 };
0422
0423 #define MCP251X_GPIO_INPUT_MASK \
0424 GENMASK(MCP251X_GPIO_TX2RTS, MCP251X_GPIO_TX0RTS)
0425 #define MCP251X_GPIO_OUTPUT_MASK \
0426 GENMASK(MCP251X_GPIO_RX1BF, MCP251X_GPIO_RX0BF)
0427
0428 static const char * const mcp251x_gpio_names[] = {
0429 [MCP251X_GPIO_TX0RTS] = "TX0RTS",
0430 [MCP251X_GPIO_TX1RTS] = "TX1RTS",
0431 [MCP251X_GPIO_TX2RTS] = "TX2RTS",
0432 [MCP251X_GPIO_RX0BF] = "RX0BF",
0433 [MCP251X_GPIO_RX1BF] = "RX1BF",
0434 };
0435
0436 static inline bool mcp251x_gpio_is_input(unsigned int offset)
0437 {
0438 return offset <= MCP251X_GPIO_TX2RTS;
0439 }
0440
0441 static int mcp251x_gpio_request(struct gpio_chip *chip,
0442 unsigned int offset)
0443 {
0444 struct mcp251x_priv *priv = gpiochip_get_data(chip);
0445 u8 val;
0446
0447
0448 if (mcp251x_gpio_is_input(offset))
0449 return 0;
0450
0451 val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
0452
0453 mutex_lock(&priv->mcp_lock);
0454 mcp251x_write_bits(priv->spi, BFPCTRL, val, val);
0455 mutex_unlock(&priv->mcp_lock);
0456
0457 priv->reg_bfpctrl |= val;
0458
0459 return 0;
0460 }
0461
0462 static void mcp251x_gpio_free(struct gpio_chip *chip,
0463 unsigned int offset)
0464 {
0465 struct mcp251x_priv *priv = gpiochip_get_data(chip);
0466 u8 val;
0467
0468
0469 if (mcp251x_gpio_is_input(offset))
0470 return;
0471
0472 val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
0473
0474 mutex_lock(&priv->mcp_lock);
0475 mcp251x_write_bits(priv->spi, BFPCTRL, val, 0);
0476 mutex_unlock(&priv->mcp_lock);
0477
0478 priv->reg_bfpctrl &= ~val;
0479 }
0480
0481 static int mcp251x_gpio_get_direction(struct gpio_chip *chip,
0482 unsigned int offset)
0483 {
0484 if (mcp251x_gpio_is_input(offset))
0485 return GPIOF_DIR_IN;
0486
0487 return GPIOF_DIR_OUT;
0488 }
0489
0490 static int mcp251x_gpio_get(struct gpio_chip *chip, unsigned int offset)
0491 {
0492 struct mcp251x_priv *priv = gpiochip_get_data(chip);
0493 u8 reg, mask, val;
0494
0495 if (mcp251x_gpio_is_input(offset)) {
0496 reg = TXRTSCTRL;
0497 mask = TXRTSCTRL_RTS(offset);
0498 } else {
0499 reg = BFPCTRL;
0500 mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
0501 }
0502
0503 mutex_lock(&priv->mcp_lock);
0504 val = mcp251x_read_reg(priv->spi, reg);
0505 mutex_unlock(&priv->mcp_lock);
0506
0507 return !!(val & mask);
0508 }
0509
0510 static int mcp251x_gpio_get_multiple(struct gpio_chip *chip,
0511 unsigned long *maskp, unsigned long *bitsp)
0512 {
0513 struct mcp251x_priv *priv = gpiochip_get_data(chip);
0514 unsigned long bits = 0;
0515 u8 val;
0516
0517 mutex_lock(&priv->mcp_lock);
0518 if (maskp[0] & MCP251X_GPIO_INPUT_MASK) {
0519 val = mcp251x_read_reg(priv->spi, TXRTSCTRL);
0520 val = FIELD_GET(TXRTSCTRL_RTS_MASK, val);
0521 bits |= FIELD_PREP(MCP251X_GPIO_INPUT_MASK, val);
0522 }
0523 if (maskp[0] & MCP251X_GPIO_OUTPUT_MASK) {
0524 val = mcp251x_read_reg(priv->spi, BFPCTRL);
0525 val = FIELD_GET(BFPCTRL_BFS_MASK, val);
0526 bits |= FIELD_PREP(MCP251X_GPIO_OUTPUT_MASK, val);
0527 }
0528 mutex_unlock(&priv->mcp_lock);
0529
0530 bitsp[0] = bits;
0531 return 0;
0532 }
0533
0534 static void mcp251x_gpio_set(struct gpio_chip *chip, unsigned int offset,
0535 int value)
0536 {
0537 struct mcp251x_priv *priv = gpiochip_get_data(chip);
0538 u8 mask, val;
0539
0540 mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
0541 val = value ? mask : 0;
0542
0543 mutex_lock(&priv->mcp_lock);
0544 mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
0545 mutex_unlock(&priv->mcp_lock);
0546
0547 priv->reg_bfpctrl &= ~mask;
0548 priv->reg_bfpctrl |= val;
0549 }
0550
0551 static void
0552 mcp251x_gpio_set_multiple(struct gpio_chip *chip,
0553 unsigned long *maskp, unsigned long *bitsp)
0554 {
0555 struct mcp251x_priv *priv = gpiochip_get_data(chip);
0556 u8 mask, val;
0557
0558 mask = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, maskp[0]);
0559 mask = FIELD_PREP(BFPCTRL_BFS_MASK, mask);
0560
0561 val = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, bitsp[0]);
0562 val = FIELD_PREP(BFPCTRL_BFS_MASK, val);
0563
0564 if (!mask)
0565 return;
0566
0567 mutex_lock(&priv->mcp_lock);
0568 mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
0569 mutex_unlock(&priv->mcp_lock);
0570
0571 priv->reg_bfpctrl &= ~mask;
0572 priv->reg_bfpctrl |= val;
0573 }
0574
0575 static void mcp251x_gpio_restore(struct spi_device *spi)
0576 {
0577 struct mcp251x_priv *priv = spi_get_drvdata(spi);
0578
0579 mcp251x_write_reg(spi, BFPCTRL, priv->reg_bfpctrl);
0580 }
0581
0582 static int mcp251x_gpio_setup(struct mcp251x_priv *priv)
0583 {
0584 struct gpio_chip *gpio = &priv->gpio;
0585
0586 if (!device_property_present(&priv->spi->dev, "gpio-controller"))
0587 return 0;
0588
0589
0590 gpio->label = priv->spi->modalias;
0591 gpio->parent = &priv->spi->dev;
0592 gpio->owner = THIS_MODULE;
0593 gpio->request = mcp251x_gpio_request;
0594 gpio->free = mcp251x_gpio_free;
0595 gpio->get_direction = mcp251x_gpio_get_direction;
0596 gpio->get = mcp251x_gpio_get;
0597 gpio->get_multiple = mcp251x_gpio_get_multiple;
0598 gpio->set = mcp251x_gpio_set;
0599 gpio->set_multiple = mcp251x_gpio_set_multiple;
0600 gpio->base = -1;
0601 gpio->ngpio = ARRAY_SIZE(mcp251x_gpio_names);
0602 gpio->names = mcp251x_gpio_names;
0603 gpio->can_sleep = true;
0604
0605 return devm_gpiochip_add_data(&priv->spi->dev, gpio, priv);
0606 }
0607 #else
0608 static inline void mcp251x_gpio_restore(struct spi_device *spi)
0609 {
0610 }
0611
0612 static inline int mcp251x_gpio_setup(struct mcp251x_priv *priv)
0613 {
0614 return 0;
0615 }
0616 #endif
0617
0618 static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
0619 int len, int tx_buf_idx)
0620 {
0621 struct mcp251x_priv *priv = spi_get_drvdata(spi);
0622
0623 if (mcp251x_is_2510(spi)) {
0624 int i;
0625
0626 for (i = 1; i < TXBDAT_OFF + len; i++)
0627 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
0628 buf[i]);
0629 } else {
0630 memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
0631 mcp251x_spi_write(spi, TXBDAT_OFF + len);
0632 }
0633 }
0634
0635 static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
0636 int tx_buf_idx)
0637 {
0638 struct mcp251x_priv *priv = spi_get_drvdata(spi);
0639 u32 sid, eid, exide, rtr;
0640 u8 buf[SPI_TRANSFER_BUF_LEN];
0641
0642 exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0;
0643 if (exide)
0644 sid = (frame->can_id & CAN_EFF_MASK) >> 18;
0645 else
0646 sid = frame->can_id & CAN_SFF_MASK;
0647 eid = frame->can_id & CAN_EFF_MASK;
0648 rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0;
0649
0650 buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
0651 buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
0652 buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
0653 (exide << SIDL_EXIDE_SHIFT) |
0654 ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
0655 buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
0656 buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
0657 buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->len;
0658 memcpy(buf + TXBDAT_OFF, frame->data, frame->len);
0659 mcp251x_hw_tx_frame(spi, buf, frame->len, tx_buf_idx);
0660
0661
0662 priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
0663 mcp251x_spi_write(priv->spi, 1);
0664 }
0665
0666 static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
0667 int buf_idx)
0668 {
0669 struct mcp251x_priv *priv = spi_get_drvdata(spi);
0670
0671 if (mcp251x_is_2510(spi)) {
0672 int i, len;
0673
0674 for (i = 1; i < RXBDAT_OFF; i++)
0675 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
0676
0677 len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
0678 for (; i < (RXBDAT_OFF + len); i++)
0679 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
0680 } else {
0681 priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
0682 if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
0683 spi_write_then_read(spi, priv->spi_tx_buf, 1,
0684 priv->spi_rx_buf,
0685 SPI_TRANSFER_BUF_LEN);
0686 memcpy(buf + 1, priv->spi_rx_buf,
0687 SPI_TRANSFER_BUF_LEN - 1);
0688 } else {
0689 mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
0690 memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
0691 }
0692 }
0693 }
0694
0695 static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
0696 {
0697 struct mcp251x_priv *priv = spi_get_drvdata(spi);
0698 struct sk_buff *skb;
0699 struct can_frame *frame;
0700 u8 buf[SPI_TRANSFER_BUF_LEN];
0701
0702 skb = alloc_can_skb(priv->net, &frame);
0703 if (!skb) {
0704 dev_err(&spi->dev, "cannot allocate RX skb\n");
0705 priv->net->stats.rx_dropped++;
0706 return;
0707 }
0708
0709 mcp251x_hw_rx_frame(spi, buf, buf_idx);
0710 if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
0711
0712 frame->can_id = CAN_EFF_FLAG;
0713 frame->can_id |=
0714
0715 SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
0716 SET_BYTE(buf[RXBEID8_OFF], 1) |
0717 SET_BYTE(buf[RXBEID0_OFF], 0) |
0718
0719 (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
0720 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
0721
0722 if (buf[RXBDLC_OFF] & RXBDLC_RTR)
0723 frame->can_id |= CAN_RTR_FLAG;
0724 } else {
0725
0726 frame->can_id =
0727 (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
0728 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
0729 if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
0730 frame->can_id |= CAN_RTR_FLAG;
0731 }
0732
0733 frame->len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
0734 if (!(frame->can_id & CAN_RTR_FLAG)) {
0735 memcpy(frame->data, buf + RXBDAT_OFF, frame->len);
0736
0737 priv->net->stats.rx_bytes += frame->len;
0738 }
0739 priv->net->stats.rx_packets++;
0740
0741 netif_rx(skb);
0742 }
0743
0744 static void mcp251x_hw_sleep(struct spi_device *spi)
0745 {
0746 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
0747 }
0748
0749
0750 static int mcp251x_hw_wake(struct spi_device *spi)
0751 {
0752 u8 value;
0753 int ret;
0754
0755
0756 disable_irq(spi->irq);
0757 mcp251x_write_2regs(spi, CANINTE, CANINTE_WAKIE, CANINTF_WAKIF);
0758
0759
0760 mdelay(MCP251X_OST_DELAY_MS);
0761
0762
0763 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_CONF);
0764
0765
0766 ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
0767 MCP251X_OST_DELAY_MS * 1000,
0768 USEC_PER_SEC);
0769 if (ret) {
0770 dev_err(&spi->dev, "MCP251x didn't enter in config mode\n");
0771 return ret;
0772 }
0773
0774
0775 mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
0776 enable_irq(spi->irq);
0777
0778 return 0;
0779 }
0780
0781 static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
0782 struct net_device *net)
0783 {
0784 struct mcp251x_priv *priv = netdev_priv(net);
0785 struct spi_device *spi = priv->spi;
0786
0787 if (priv->tx_skb || priv->tx_busy) {
0788 dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
0789 return NETDEV_TX_BUSY;
0790 }
0791
0792 if (can_dropped_invalid_skb(net, skb))
0793 return NETDEV_TX_OK;
0794
0795 netif_stop_queue(net);
0796 priv->tx_skb = skb;
0797 queue_work(priv->wq, &priv->tx_work);
0798
0799 return NETDEV_TX_OK;
0800 }
0801
0802 static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
0803 {
0804 struct mcp251x_priv *priv = netdev_priv(net);
0805
0806 switch (mode) {
0807 case CAN_MODE_START:
0808 mcp251x_clean(net);
0809
0810 priv->can.state = CAN_STATE_ERROR_ACTIVE;
0811 priv->restart_tx = 1;
0812 if (priv->can.restart_ms == 0)
0813 priv->after_suspend = AFTER_SUSPEND_RESTART;
0814 queue_work(priv->wq, &priv->restart_work);
0815 break;
0816 default:
0817 return -EOPNOTSUPP;
0818 }
0819
0820 return 0;
0821 }
0822
0823 static int mcp251x_set_normal_mode(struct spi_device *spi)
0824 {
0825 struct mcp251x_priv *priv = spi_get_drvdata(spi);
0826 u8 value;
0827 int ret;
0828
0829
0830 mcp251x_write_reg(spi, CANINTE,
0831 CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
0832 CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
0833
0834 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
0835
0836 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
0837 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
0838
0839 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
0840 } else {
0841
0842 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
0843
0844
0845 ret = mcp251x_read_stat_poll_timeout(spi, value, value == 0,
0846 MCP251X_OST_DELAY_MS * 1000,
0847 USEC_PER_SEC);
0848 if (ret) {
0849 dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
0850 return ret;
0851 }
0852 }
0853 priv->can.state = CAN_STATE_ERROR_ACTIVE;
0854 return 0;
0855 }
0856
0857 static int mcp251x_do_set_bittiming(struct net_device *net)
0858 {
0859 struct mcp251x_priv *priv = netdev_priv(net);
0860 struct can_bittiming *bt = &priv->can.bittiming;
0861 struct spi_device *spi = priv->spi;
0862
0863 mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
0864 (bt->brp - 1));
0865 mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
0866 (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
0867 CNF2_SAM : 0) |
0868 ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
0869 (bt->prop_seg - 1));
0870 mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
0871 (bt->phase_seg2 - 1));
0872 dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
0873 mcp251x_read_reg(spi, CNF1),
0874 mcp251x_read_reg(spi, CNF2),
0875 mcp251x_read_reg(spi, CNF3));
0876
0877 return 0;
0878 }
0879
0880 static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
0881 {
0882 mcp251x_do_set_bittiming(net);
0883
0884 mcp251x_write_reg(spi, RXBCTRL(0),
0885 RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
0886 mcp251x_write_reg(spi, RXBCTRL(1),
0887 RXBCTRL_RXM0 | RXBCTRL_RXM1);
0888 return 0;
0889 }
0890
0891 static int mcp251x_hw_reset(struct spi_device *spi)
0892 {
0893 struct mcp251x_priv *priv = spi_get_drvdata(spi);
0894 u8 value;
0895 int ret;
0896
0897
0898 mdelay(MCP251X_OST_DELAY_MS);
0899
0900 priv->spi_tx_buf[0] = INSTRUCTION_RESET;
0901 ret = mcp251x_spi_write(spi, 1);
0902 if (ret)
0903 return ret;
0904
0905
0906 mdelay(MCP251X_OST_DELAY_MS);
0907
0908
0909 ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
0910 MCP251X_OST_DELAY_MS * 1000,
0911 USEC_PER_SEC);
0912 if (ret)
0913 dev_err(&spi->dev, "MCP251x didn't enter in conf mode after reset\n");
0914 return ret;
0915 }
0916
0917 static int mcp251x_hw_probe(struct spi_device *spi)
0918 {
0919 u8 ctrl;
0920 int ret;
0921
0922 ret = mcp251x_hw_reset(spi);
0923 if (ret)
0924 return ret;
0925
0926 ctrl = mcp251x_read_reg(spi, CANCTRL);
0927
0928 dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
0929
0930
0931 if ((ctrl & 0x17) != 0x07)
0932 return -ENODEV;
0933
0934 return 0;
0935 }
0936
0937 static int mcp251x_power_enable(struct regulator *reg, int enable)
0938 {
0939 if (IS_ERR_OR_NULL(reg))
0940 return 0;
0941
0942 if (enable)
0943 return regulator_enable(reg);
0944 else
0945 return regulator_disable(reg);
0946 }
0947
0948 static int mcp251x_stop(struct net_device *net)
0949 {
0950 struct mcp251x_priv *priv = netdev_priv(net);
0951 struct spi_device *spi = priv->spi;
0952
0953 close_candev(net);
0954
0955 priv->force_quit = 1;
0956 free_irq(spi->irq, priv);
0957
0958 mutex_lock(&priv->mcp_lock);
0959
0960
0961 mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
0962
0963 mcp251x_write_reg(spi, TXBCTRL(0), 0);
0964 mcp251x_clean(net);
0965
0966 mcp251x_hw_sleep(spi);
0967
0968 mcp251x_power_enable(priv->transceiver, 0);
0969
0970 priv->can.state = CAN_STATE_STOPPED;
0971
0972 mutex_unlock(&priv->mcp_lock);
0973
0974 return 0;
0975 }
0976
0977 static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
0978 {
0979 struct sk_buff *skb;
0980 struct can_frame *frame;
0981
0982 skb = alloc_can_err_skb(net, &frame);
0983 if (skb) {
0984 frame->can_id |= can_id;
0985 frame->data[1] = data1;
0986 netif_rx(skb);
0987 } else {
0988 netdev_err(net, "cannot allocate error skb\n");
0989 }
0990 }
0991
0992 static void mcp251x_tx_work_handler(struct work_struct *ws)
0993 {
0994 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
0995 tx_work);
0996 struct spi_device *spi = priv->spi;
0997 struct net_device *net = priv->net;
0998 struct can_frame *frame;
0999
1000 mutex_lock(&priv->mcp_lock);
1001 if (priv->tx_skb) {
1002 if (priv->can.state == CAN_STATE_BUS_OFF) {
1003 mcp251x_clean(net);
1004 } else {
1005 frame = (struct can_frame *)priv->tx_skb->data;
1006
1007 if (frame->len > CAN_FRAME_MAX_DATA_LEN)
1008 frame->len = CAN_FRAME_MAX_DATA_LEN;
1009 mcp251x_hw_tx(spi, frame, 0);
1010 priv->tx_busy = true;
1011 can_put_echo_skb(priv->tx_skb, net, 0, 0);
1012 priv->tx_skb = NULL;
1013 }
1014 }
1015 mutex_unlock(&priv->mcp_lock);
1016 }
1017
1018 static void mcp251x_restart_work_handler(struct work_struct *ws)
1019 {
1020 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
1021 restart_work);
1022 struct spi_device *spi = priv->spi;
1023 struct net_device *net = priv->net;
1024
1025 mutex_lock(&priv->mcp_lock);
1026 if (priv->after_suspend) {
1027 if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1028 mcp251x_hw_reset(spi);
1029 mcp251x_setup(net, spi);
1030 mcp251x_gpio_restore(spi);
1031 } else {
1032 mcp251x_hw_wake(spi);
1033 }
1034 priv->force_quit = 0;
1035 if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
1036 mcp251x_set_normal_mode(spi);
1037 } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
1038 netif_device_attach(net);
1039 mcp251x_clean(net);
1040 mcp251x_set_normal_mode(spi);
1041 netif_wake_queue(net);
1042 } else {
1043 mcp251x_hw_sleep(spi);
1044 }
1045 priv->after_suspend = 0;
1046 }
1047
1048 if (priv->restart_tx) {
1049 priv->restart_tx = 0;
1050 mcp251x_write_reg(spi, TXBCTRL(0), 0);
1051 mcp251x_clean(net);
1052 netif_wake_queue(net);
1053 mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
1054 }
1055 mutex_unlock(&priv->mcp_lock);
1056 }
1057
1058 static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
1059 {
1060 struct mcp251x_priv *priv = dev_id;
1061 struct spi_device *spi = priv->spi;
1062 struct net_device *net = priv->net;
1063
1064 mutex_lock(&priv->mcp_lock);
1065 while (!priv->force_quit) {
1066 enum can_state new_state;
1067 u8 intf, eflag;
1068 u8 clear_intf = 0;
1069 int can_id = 0, data1 = 0;
1070
1071 mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
1072
1073
1074 if (intf & CANINTF_RX0IF) {
1075 mcp251x_hw_rx(spi, 0);
1076
1077
1078
1079 if (mcp251x_is_2510(spi))
1080 mcp251x_write_bits(spi, CANINTF,
1081 CANINTF_RX0IF, 0x00);
1082
1083
1084 if (!(intf & CANINTF_RX1IF)) {
1085 u8 intf1, eflag1;
1086
1087
1088 mcp251x_read_2regs(spi, CANINTF, &intf1, &eflag1);
1089
1090
1091 intf |= intf1;
1092 eflag |= eflag1;
1093 }
1094 }
1095
1096
1097 if (intf & CANINTF_RX1IF) {
1098 mcp251x_hw_rx(spi, 1);
1099
1100 if (mcp251x_is_2510(spi))
1101 clear_intf |= CANINTF_RX1IF;
1102 }
1103
1104
1105 intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
1106
1107
1108 if (intf & (CANINTF_ERR | CANINTF_TX))
1109 clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
1110 if (clear_intf)
1111 mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
1112
1113 if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
1114 mcp251x_write_bits(spi, EFLG, eflag, 0x00);
1115
1116
1117 if (eflag & EFLG_TXBO) {
1118 new_state = CAN_STATE_BUS_OFF;
1119 can_id |= CAN_ERR_BUSOFF;
1120 } else if (eflag & EFLG_TXEP) {
1121 new_state = CAN_STATE_ERROR_PASSIVE;
1122 can_id |= CAN_ERR_CRTL;
1123 data1 |= CAN_ERR_CRTL_TX_PASSIVE;
1124 } else if (eflag & EFLG_RXEP) {
1125 new_state = CAN_STATE_ERROR_PASSIVE;
1126 can_id |= CAN_ERR_CRTL;
1127 data1 |= CAN_ERR_CRTL_RX_PASSIVE;
1128 } else if (eflag & EFLG_TXWAR) {
1129 new_state = CAN_STATE_ERROR_WARNING;
1130 can_id |= CAN_ERR_CRTL;
1131 data1 |= CAN_ERR_CRTL_TX_WARNING;
1132 } else if (eflag & EFLG_RXWAR) {
1133 new_state = CAN_STATE_ERROR_WARNING;
1134 can_id |= CAN_ERR_CRTL;
1135 data1 |= CAN_ERR_CRTL_RX_WARNING;
1136 } else {
1137 new_state = CAN_STATE_ERROR_ACTIVE;
1138 }
1139
1140
1141 switch (priv->can.state) {
1142 case CAN_STATE_ERROR_ACTIVE:
1143 if (new_state >= CAN_STATE_ERROR_WARNING &&
1144 new_state <= CAN_STATE_BUS_OFF)
1145 priv->can.can_stats.error_warning++;
1146 fallthrough;
1147 case CAN_STATE_ERROR_WARNING:
1148 if (new_state >= CAN_STATE_ERROR_PASSIVE &&
1149 new_state <= CAN_STATE_BUS_OFF)
1150 priv->can.can_stats.error_passive++;
1151 break;
1152 default:
1153 break;
1154 }
1155 priv->can.state = new_state;
1156
1157 if (intf & CANINTF_ERRIF) {
1158
1159 if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
1160 if (eflag & EFLG_RX0OVR) {
1161 net->stats.rx_over_errors++;
1162 net->stats.rx_errors++;
1163 }
1164 if (eflag & EFLG_RX1OVR) {
1165 net->stats.rx_over_errors++;
1166 net->stats.rx_errors++;
1167 }
1168 can_id |= CAN_ERR_CRTL;
1169 data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
1170 }
1171 mcp251x_error_skb(net, can_id, data1);
1172 }
1173
1174 if (priv->can.state == CAN_STATE_BUS_OFF) {
1175 if (priv->can.restart_ms == 0) {
1176 priv->force_quit = 1;
1177 priv->can.can_stats.bus_off++;
1178 can_bus_off(net);
1179 mcp251x_hw_sleep(spi);
1180 break;
1181 }
1182 }
1183
1184 if (intf == 0)
1185 break;
1186
1187 if (intf & CANINTF_TX) {
1188 if (priv->tx_busy) {
1189 net->stats.tx_packets++;
1190 net->stats.tx_bytes += can_get_echo_skb(net, 0,
1191 NULL);
1192 priv->tx_busy = false;
1193 }
1194 netif_wake_queue(net);
1195 }
1196 }
1197 mutex_unlock(&priv->mcp_lock);
1198 return IRQ_HANDLED;
1199 }
1200
1201 static int mcp251x_open(struct net_device *net)
1202 {
1203 struct mcp251x_priv *priv = netdev_priv(net);
1204 struct spi_device *spi = priv->spi;
1205 unsigned long flags = 0;
1206 int ret;
1207
1208 ret = open_candev(net);
1209 if (ret) {
1210 dev_err(&spi->dev, "unable to set initial baudrate!\n");
1211 return ret;
1212 }
1213
1214 mutex_lock(&priv->mcp_lock);
1215 mcp251x_power_enable(priv->transceiver, 1);
1216
1217 priv->force_quit = 0;
1218 priv->tx_skb = NULL;
1219 priv->tx_busy = false;
1220
1221 if (!dev_fwnode(&spi->dev))
1222 flags = IRQF_TRIGGER_FALLING;
1223
1224 ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
1225 flags | IRQF_ONESHOT, dev_name(&spi->dev),
1226 priv);
1227 if (ret) {
1228 dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
1229 goto out_close;
1230 }
1231
1232 ret = mcp251x_hw_wake(spi);
1233 if (ret)
1234 goto out_free_irq;
1235 ret = mcp251x_setup(net, spi);
1236 if (ret)
1237 goto out_free_irq;
1238 ret = mcp251x_set_normal_mode(spi);
1239 if (ret)
1240 goto out_free_irq;
1241
1242 netif_wake_queue(net);
1243 mutex_unlock(&priv->mcp_lock);
1244
1245 return 0;
1246
1247 out_free_irq:
1248 free_irq(spi->irq, priv);
1249 mcp251x_hw_sleep(spi);
1250 out_close:
1251 mcp251x_power_enable(priv->transceiver, 0);
1252 close_candev(net);
1253 mutex_unlock(&priv->mcp_lock);
1254 return ret;
1255 }
1256
1257 static const struct net_device_ops mcp251x_netdev_ops = {
1258 .ndo_open = mcp251x_open,
1259 .ndo_stop = mcp251x_stop,
1260 .ndo_start_xmit = mcp251x_hard_start_xmit,
1261 .ndo_change_mtu = can_change_mtu,
1262 };
1263
1264 static const struct ethtool_ops mcp251x_ethtool_ops = {
1265 .get_ts_info = ethtool_op_get_ts_info,
1266 };
1267
1268 static const struct of_device_id mcp251x_of_match[] = {
1269 {
1270 .compatible = "microchip,mcp2510",
1271 .data = (void *)CAN_MCP251X_MCP2510,
1272 },
1273 {
1274 .compatible = "microchip,mcp2515",
1275 .data = (void *)CAN_MCP251X_MCP2515,
1276 },
1277 {
1278 .compatible = "microchip,mcp25625",
1279 .data = (void *)CAN_MCP251X_MCP25625,
1280 },
1281 { }
1282 };
1283 MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1284
1285 static const struct spi_device_id mcp251x_id_table[] = {
1286 {
1287 .name = "mcp2510",
1288 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP2510,
1289 },
1290 {
1291 .name = "mcp2515",
1292 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP2515,
1293 },
1294 {
1295 .name = "mcp25625",
1296 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP25625,
1297 },
1298 { }
1299 };
1300 MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1301
1302 static int mcp251x_can_probe(struct spi_device *spi)
1303 {
1304 const void *match = device_get_match_data(&spi->dev);
1305 struct net_device *net;
1306 struct mcp251x_priv *priv;
1307 struct clk *clk;
1308 u32 freq;
1309 int ret;
1310
1311 clk = devm_clk_get_optional(&spi->dev, NULL);
1312 if (IS_ERR(clk))
1313 return PTR_ERR(clk);
1314
1315 freq = clk_get_rate(clk);
1316 if (freq == 0)
1317 device_property_read_u32(&spi->dev, "clock-frequency", &freq);
1318
1319
1320 if (freq < 1000000 || freq > 25000000)
1321 return -ERANGE;
1322
1323
1324 net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1325 if (!net)
1326 return -ENOMEM;
1327
1328 ret = clk_prepare_enable(clk);
1329 if (ret)
1330 goto out_free;
1331
1332 net->netdev_ops = &mcp251x_netdev_ops;
1333 net->ethtool_ops = &mcp251x_ethtool_ops;
1334 net->flags |= IFF_ECHO;
1335
1336 priv = netdev_priv(net);
1337 priv->can.bittiming_const = &mcp251x_bittiming_const;
1338 priv->can.do_set_mode = mcp251x_do_set_mode;
1339 priv->can.clock.freq = freq / 2;
1340 priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1341 CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1342 if (match)
1343 priv->model = (enum mcp251x_model)(uintptr_t)match;
1344 else
1345 priv->model = spi_get_device_id(spi)->driver_data;
1346 priv->net = net;
1347 priv->clk = clk;
1348
1349 spi_set_drvdata(spi, priv);
1350
1351
1352 spi->bits_per_word = 8;
1353 if (mcp251x_is_2510(spi))
1354 spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1355 else
1356 spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1357 ret = spi_setup(spi);
1358 if (ret)
1359 goto out_clk;
1360
1361 priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1362 priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1363 if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1364 (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1365 ret = -EPROBE_DEFER;
1366 goto out_clk;
1367 }
1368
1369 ret = mcp251x_power_enable(priv->power, 1);
1370 if (ret)
1371 goto out_clk;
1372
1373 priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
1374 0);
1375 if (!priv->wq) {
1376 ret = -ENOMEM;
1377 goto out_clk;
1378 }
1379 INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
1380 INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
1381
1382 priv->spi = spi;
1383 mutex_init(&priv->mcp_lock);
1384
1385 priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1386 GFP_KERNEL);
1387 if (!priv->spi_tx_buf) {
1388 ret = -ENOMEM;
1389 goto error_probe;
1390 }
1391
1392 priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1393 GFP_KERNEL);
1394 if (!priv->spi_rx_buf) {
1395 ret = -ENOMEM;
1396 goto error_probe;
1397 }
1398
1399 SET_NETDEV_DEV(net, &spi->dev);
1400
1401
1402 ret = mcp251x_hw_probe(spi);
1403 if (ret) {
1404 if (ret == -ENODEV)
1405 dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
1406 priv->model);
1407 goto error_probe;
1408 }
1409
1410 mcp251x_hw_sleep(spi);
1411
1412 ret = register_candev(net);
1413 if (ret)
1414 goto error_probe;
1415
1416 ret = mcp251x_gpio_setup(priv);
1417 if (ret)
1418 goto error_probe;
1419
1420 netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1421 return 0;
1422
1423 error_probe:
1424 destroy_workqueue(priv->wq);
1425 priv->wq = NULL;
1426 mcp251x_power_enable(priv->power, 0);
1427
1428 out_clk:
1429 clk_disable_unprepare(clk);
1430
1431 out_free:
1432 free_candev(net);
1433
1434 dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1435 return ret;
1436 }
1437
1438 static void mcp251x_can_remove(struct spi_device *spi)
1439 {
1440 struct mcp251x_priv *priv = spi_get_drvdata(spi);
1441 struct net_device *net = priv->net;
1442
1443 unregister_candev(net);
1444
1445 mcp251x_power_enable(priv->power, 0);
1446
1447 destroy_workqueue(priv->wq);
1448 priv->wq = NULL;
1449
1450 clk_disable_unprepare(priv->clk);
1451
1452 free_candev(net);
1453 }
1454
1455 static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1456 {
1457 struct spi_device *spi = to_spi_device(dev);
1458 struct mcp251x_priv *priv = spi_get_drvdata(spi);
1459 struct net_device *net = priv->net;
1460
1461 priv->force_quit = 1;
1462 disable_irq(spi->irq);
1463
1464
1465
1466 if (netif_running(net)) {
1467 netif_device_detach(net);
1468
1469 mcp251x_hw_sleep(spi);
1470 mcp251x_power_enable(priv->transceiver, 0);
1471 priv->after_suspend = AFTER_SUSPEND_UP;
1472 } else {
1473 priv->after_suspend = AFTER_SUSPEND_DOWN;
1474 }
1475
1476 mcp251x_power_enable(priv->power, 0);
1477 priv->after_suspend |= AFTER_SUSPEND_POWER;
1478
1479 return 0;
1480 }
1481
1482 static int __maybe_unused mcp251x_can_resume(struct device *dev)
1483 {
1484 struct spi_device *spi = to_spi_device(dev);
1485 struct mcp251x_priv *priv = spi_get_drvdata(spi);
1486
1487 if (priv->after_suspend & AFTER_SUSPEND_POWER)
1488 mcp251x_power_enable(priv->power, 1);
1489 if (priv->after_suspend & AFTER_SUSPEND_UP)
1490 mcp251x_power_enable(priv->transceiver, 1);
1491
1492 if (priv->after_suspend & (AFTER_SUSPEND_POWER | AFTER_SUSPEND_UP))
1493 queue_work(priv->wq, &priv->restart_work);
1494 else
1495 priv->after_suspend = 0;
1496
1497 priv->force_quit = 0;
1498 enable_irq(spi->irq);
1499 return 0;
1500 }
1501
1502 static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1503 mcp251x_can_resume);
1504
1505 static struct spi_driver mcp251x_can_driver = {
1506 .driver = {
1507 .name = DEVICE_NAME,
1508 .of_match_table = mcp251x_of_match,
1509 .pm = &mcp251x_can_pm_ops,
1510 },
1511 .id_table = mcp251x_id_table,
1512 .probe = mcp251x_can_probe,
1513 .remove = mcp251x_can_remove,
1514 };
1515 module_spi_driver(mcp251x_can_driver);
1516
1517 MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1518 "Christian Pellegrin <chripell@evolware.org>");
1519 MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1520 MODULE_LICENSE("GPL v2");