Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
0003  *
0004  * MCP2510 support and bug fixes by Christian Pellegrin
0005  * <chripell@evolware.org>
0006  *
0007  * Copyright 2009 Christian Pellegrin EVOL S.r.l.
0008  *
0009  * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
0010  * Written under contract by:
0011  *   Chris Elston, Katalix Systems, Ltd.
0012  *
0013  * Based on Microchip MCP251x CAN controller driver written by
0014  * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
0015  *
0016  * Based on CAN bus driver for the CCAN controller written by
0017  * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
0018  * - Simon Kallweit, intefo AG
0019  * Copyright 2007
0020  */
0021 
0022 #include <linux/bitfield.h>
0023 #include <linux/can/core.h>
0024 #include <linux/can/dev.h>
0025 #include <linux/clk.h>
0026 #include <linux/completion.h>
0027 #include <linux/delay.h>
0028 #include <linux/device.h>
0029 #include <linux/ethtool.h>
0030 #include <linux/freezer.h>
0031 #include <linux/gpio.h>
0032 #include <linux/gpio/driver.h>
0033 #include <linux/interrupt.h>
0034 #include <linux/io.h>
0035 #include <linux/iopoll.h>
0036 #include <linux/kernel.h>
0037 #include <linux/module.h>
0038 #include <linux/netdevice.h>
0039 #include <linux/platform_device.h>
0040 #include <linux/property.h>
0041 #include <linux/regulator/consumer.h>
0042 #include <linux/slab.h>
0043 #include <linux/spi/spi.h>
0044 #include <linux/uaccess.h>
0045 
0046 /* SPI interface instruction set */
0047 #define INSTRUCTION_WRITE   0x02
0048 #define INSTRUCTION_READ    0x03
0049 #define INSTRUCTION_BIT_MODIFY  0x05
0050 #define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
0051 #define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
0052 #define INSTRUCTION_RESET   0xC0
0053 #define RTS_TXB0        0x01
0054 #define RTS_TXB1        0x02
0055 #define RTS_TXB2        0x04
0056 #define INSTRUCTION_RTS(n)  (0x80 | ((n) & 0x07))
0057 
0058 /* MPC251x registers */
0059 #define BFPCTRL         0x0c
0060 #  define BFPCTRL_B0BFM     BIT(0)
0061 #  define BFPCTRL_B1BFM     BIT(1)
0062 #  define BFPCTRL_BFM(n)    (BFPCTRL_B0BFM << (n))
0063 #  define BFPCTRL_BFM_MASK  GENMASK(1, 0)
0064 #  define BFPCTRL_B0BFE     BIT(2)
0065 #  define BFPCTRL_B1BFE     BIT(3)
0066 #  define BFPCTRL_BFE(n)    (BFPCTRL_B0BFE << (n))
0067 #  define BFPCTRL_BFE_MASK  GENMASK(3, 2)
0068 #  define BFPCTRL_B0BFS     BIT(4)
0069 #  define BFPCTRL_B1BFS     BIT(5)
0070 #  define BFPCTRL_BFS(n)    (BFPCTRL_B0BFS << (n))
0071 #  define BFPCTRL_BFS_MASK  GENMASK(5, 4)
0072 #define TXRTSCTRL       0x0d
0073 #  define TXRTSCTRL_B0RTSM  BIT(0)
0074 #  define TXRTSCTRL_B1RTSM  BIT(1)
0075 #  define TXRTSCTRL_B2RTSM  BIT(2)
0076 #  define TXRTSCTRL_RTSM(n) (TXRTSCTRL_B0RTSM << (n))
0077 #  define TXRTSCTRL_RTSM_MASK   GENMASK(2, 0)
0078 #  define TXRTSCTRL_B0RTS   BIT(3)
0079 #  define TXRTSCTRL_B1RTS   BIT(4)
0080 #  define TXRTSCTRL_B2RTS   BIT(5)
0081 #  define TXRTSCTRL_RTS(n)  (TXRTSCTRL_B0RTS << (n))
0082 #  define TXRTSCTRL_RTS_MASK    GENMASK(5, 3)
0083 #define CANSTAT       0x0e
0084 #define CANCTRL       0x0f
0085 #  define CANCTRL_REQOP_MASK        0xe0
0086 #  define CANCTRL_REQOP_CONF        0x80
0087 #  define CANCTRL_REQOP_LISTEN_ONLY 0x60
0088 #  define CANCTRL_REQOP_LOOPBACK    0x40
0089 #  define CANCTRL_REQOP_SLEEP       0x20
0090 #  define CANCTRL_REQOP_NORMAL      0x00
0091 #  define CANCTRL_OSM           0x08
0092 #  define CANCTRL_ABAT          0x10
0093 #define TEC       0x1c
0094 #define REC       0x1d
0095 #define CNF1          0x2a
0096 #  define CNF1_SJW_SHIFT   6
0097 #define CNF2          0x29
0098 #  define CNF2_BTLMODE     0x80
0099 #  define CNF2_SAM         0x40
0100 #  define CNF2_PS1_SHIFT   3
0101 #define CNF3          0x28
0102 #  define CNF3_SOF     0x08
0103 #  define CNF3_WAKFIL      0x04
0104 #  define CNF3_PHSEG2_MASK 0x07
0105 #define CANINTE       0x2b
0106 #  define CANINTE_MERRE 0x80
0107 #  define CANINTE_WAKIE 0x40
0108 #  define CANINTE_ERRIE 0x20
0109 #  define CANINTE_TX2IE 0x10
0110 #  define CANINTE_TX1IE 0x08
0111 #  define CANINTE_TX0IE 0x04
0112 #  define CANINTE_RX1IE 0x02
0113 #  define CANINTE_RX0IE 0x01
0114 #define CANINTF       0x2c
0115 #  define CANINTF_MERRF 0x80
0116 #  define CANINTF_WAKIF 0x40
0117 #  define CANINTF_ERRIF 0x20
0118 #  define CANINTF_TX2IF 0x10
0119 #  define CANINTF_TX1IF 0x08
0120 #  define CANINTF_TX0IF 0x04
0121 #  define CANINTF_RX1IF 0x02
0122 #  define CANINTF_RX0IF 0x01
0123 #  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
0124 #  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
0125 #  define CANINTF_ERR (CANINTF_ERRIF)
0126 #define EFLG          0x2d
0127 #  define EFLG_EWARN    0x01
0128 #  define EFLG_RXWAR    0x02
0129 #  define EFLG_TXWAR    0x04
0130 #  define EFLG_RXEP 0x08
0131 #  define EFLG_TXEP 0x10
0132 #  define EFLG_TXBO 0x20
0133 #  define EFLG_RX0OVR   0x40
0134 #  define EFLG_RX1OVR   0x80
0135 #define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
0136 #  define TXBCTRL_ABTF  0x40
0137 #  define TXBCTRL_MLOA  0x20
0138 #  define TXBCTRL_TXERR 0x10
0139 #  define TXBCTRL_TXREQ 0x08
0140 #define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
0141 #  define SIDH_SHIFT    3
0142 #define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
0143 #  define SIDL_SID_MASK    7
0144 #  define SIDL_SID_SHIFT   5
0145 #  define SIDL_EXIDE_SHIFT 3
0146 #  define SIDL_EID_SHIFT   16
0147 #  define SIDL_EID_MASK    3
0148 #define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
0149 #define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
0150 #define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
0151 #  define DLC_RTR_SHIFT    6
0152 #define TXBCTRL_OFF 0
0153 #define TXBSIDH_OFF 1
0154 #define TXBSIDL_OFF 2
0155 #define TXBEID8_OFF 3
0156 #define TXBEID0_OFF 4
0157 #define TXBDLC_OFF  5
0158 #define TXBDAT_OFF  6
0159 #define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
0160 #  define RXBCTRL_BUKT  0x04
0161 #  define RXBCTRL_RXM0  0x20
0162 #  define RXBCTRL_RXM1  0x40
0163 #define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
0164 #  define RXBSIDH_SHIFT 3
0165 #define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
0166 #  define RXBSIDL_IDE   0x08
0167 #  define RXBSIDL_SRR   0x10
0168 #  define RXBSIDL_EID   3
0169 #  define RXBSIDL_SHIFT 5
0170 #define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
0171 #define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
0172 #define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
0173 #  define RXBDLC_LEN_MASK  0x0f
0174 #  define RXBDLC_RTR       0x40
0175 #define RXBCTRL_OFF 0
0176 #define RXBSIDH_OFF 1
0177 #define RXBSIDL_OFF 2
0178 #define RXBEID8_OFF 3
0179 #define RXBEID0_OFF 4
0180 #define RXBDLC_OFF  5
0181 #define RXBDAT_OFF  6
0182 #define RXFSID(n) ((n < 3) ? 0 : 4)
0183 #define RXFSIDH(n) ((n) * 4 + RXFSID(n))
0184 #define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
0185 #define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
0186 #define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
0187 #define RXMSIDH(n) ((n) * 4 + 0x20)
0188 #define RXMSIDL(n) ((n) * 4 + 0x21)
0189 #define RXMEID8(n) ((n) * 4 + 0x22)
0190 #define RXMEID0(n) ((n) * 4 + 0x23)
0191 
0192 #define GET_BYTE(val, byte)         \
0193     (((val) >> ((byte) * 8)) & 0xff)
0194 #define SET_BYTE(val, byte)         \
0195     (((val) & 0xff) << ((byte) * 8))
0196 
0197 /* Buffer size required for the largest SPI transfer (i.e., reading a
0198  * frame)
0199  */
0200 #define CAN_FRAME_MAX_DATA_LEN  8
0201 #define SPI_TRANSFER_BUF_LEN    (6 + CAN_FRAME_MAX_DATA_LEN)
0202 #define CAN_FRAME_MAX_BITS  128
0203 
0204 #define TX_ECHO_SKB_MAX 1
0205 
0206 #define MCP251X_OST_DELAY_MS    (5)
0207 
0208 #define DEVICE_NAME "mcp251x"
0209 
0210 static const struct can_bittiming_const mcp251x_bittiming_const = {
0211     .name = DEVICE_NAME,
0212     .tseg1_min = 3,
0213     .tseg1_max = 16,
0214     .tseg2_min = 2,
0215     .tseg2_max = 8,
0216     .sjw_max = 4,
0217     .brp_min = 1,
0218     .brp_max = 64,
0219     .brp_inc = 1,
0220 };
0221 
0222 enum mcp251x_model {
0223     CAN_MCP251X_MCP2510 = 0x2510,
0224     CAN_MCP251X_MCP2515 = 0x2515,
0225     CAN_MCP251X_MCP25625    = 0x25625,
0226 };
0227 
0228 struct mcp251x_priv {
0229     struct can_priv    can;
0230     struct net_device *net;
0231     struct spi_device *spi;
0232     enum mcp251x_model model;
0233 
0234     struct mutex mcp_lock; /* SPI device lock */
0235 
0236     u8 *spi_tx_buf;
0237     u8 *spi_rx_buf;
0238 
0239     struct sk_buff *tx_skb;
0240 
0241     struct workqueue_struct *wq;
0242     struct work_struct tx_work;
0243     struct work_struct restart_work;
0244 
0245     int force_quit;
0246     int after_suspend;
0247 #define AFTER_SUSPEND_UP 1
0248 #define AFTER_SUSPEND_DOWN 2
0249 #define AFTER_SUSPEND_POWER 4
0250 #define AFTER_SUSPEND_RESTART 8
0251     int restart_tx;
0252     bool tx_busy;
0253 
0254     struct regulator *power;
0255     struct regulator *transceiver;
0256     struct clk *clk;
0257 #ifdef CONFIG_GPIOLIB
0258     struct gpio_chip gpio;
0259     u8 reg_bfpctrl;
0260 #endif
0261 };
0262 
0263 #define MCP251X_IS(_model) \
0264 static inline int mcp251x_is_##_model(struct spi_device *spi) \
0265 { \
0266     struct mcp251x_priv *priv = spi_get_drvdata(spi); \
0267     return priv->model == CAN_MCP251X_MCP##_model; \
0268 }
0269 
0270 MCP251X_IS(2510);
0271 
0272 static void mcp251x_clean(struct net_device *net)
0273 {
0274     struct mcp251x_priv *priv = netdev_priv(net);
0275 
0276     if (priv->tx_skb || priv->tx_busy)
0277         net->stats.tx_errors++;
0278     dev_kfree_skb(priv->tx_skb);
0279     if (priv->tx_busy)
0280         can_free_echo_skb(priv->net, 0, NULL);
0281     priv->tx_skb = NULL;
0282     priv->tx_busy = false;
0283 }
0284 
0285 /* Note about handling of error return of mcp251x_spi_trans: accessing
0286  * registers via SPI is not really different conceptually than using
0287  * normal I/O assembler instructions, although it's much more
0288  * complicated from a practical POV. So it's not advisable to always
0289  * check the return value of this function. Imagine that every
0290  * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
0291  * error();", it would be a great mess (well there are some situation
0292  * when exception handling C++ like could be useful after all). So we
0293  * just check that transfers are OK at the beginning of our
0294  * conversation with the chip and to avoid doing really nasty things
0295  * (like injecting bogus packets in the network stack).
0296  */
0297 static int mcp251x_spi_trans(struct spi_device *spi, int len)
0298 {
0299     struct mcp251x_priv *priv = spi_get_drvdata(spi);
0300     struct spi_transfer t = {
0301         .tx_buf = priv->spi_tx_buf,
0302         .rx_buf = priv->spi_rx_buf,
0303         .len = len,
0304         .cs_change = 0,
0305     };
0306     struct spi_message m;
0307     int ret;
0308 
0309     spi_message_init(&m);
0310     spi_message_add_tail(&t, &m);
0311 
0312     ret = spi_sync(spi, &m);
0313     if (ret)
0314         dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
0315     return ret;
0316 }
0317 
0318 static int mcp251x_spi_write(struct spi_device *spi, int len)
0319 {
0320     struct mcp251x_priv *priv = spi_get_drvdata(spi);
0321     int ret;
0322 
0323     ret = spi_write(spi, priv->spi_tx_buf, len);
0324     if (ret)
0325         dev_err(&spi->dev, "spi write failed: ret = %d\n", ret);
0326 
0327     return ret;
0328 }
0329 
0330 static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
0331 {
0332     struct mcp251x_priv *priv = spi_get_drvdata(spi);
0333     u8 val = 0;
0334 
0335     priv->spi_tx_buf[0] = INSTRUCTION_READ;
0336     priv->spi_tx_buf[1] = reg;
0337 
0338     if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
0339         spi_write_then_read(spi, priv->spi_tx_buf, 2, &val, 1);
0340     } else {
0341         mcp251x_spi_trans(spi, 3);
0342         val = priv->spi_rx_buf[2];
0343     }
0344 
0345     return val;
0346 }
0347 
0348 static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
0349 {
0350     struct mcp251x_priv *priv = spi_get_drvdata(spi);
0351 
0352     priv->spi_tx_buf[0] = INSTRUCTION_READ;
0353     priv->spi_tx_buf[1] = reg;
0354 
0355     if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
0356         u8 val[2] = { 0 };
0357 
0358         spi_write_then_read(spi, priv->spi_tx_buf, 2, val, 2);
0359         *v1 = val[0];
0360         *v2 = val[1];
0361     } else {
0362         mcp251x_spi_trans(spi, 4);
0363 
0364         *v1 = priv->spi_rx_buf[2];
0365         *v2 = priv->spi_rx_buf[3];
0366     }
0367 }
0368 
0369 static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
0370 {
0371     struct mcp251x_priv *priv = spi_get_drvdata(spi);
0372 
0373     priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
0374     priv->spi_tx_buf[1] = reg;
0375     priv->spi_tx_buf[2] = val;
0376 
0377     mcp251x_spi_write(spi, 3);
0378 }
0379 
0380 static void mcp251x_write_2regs(struct spi_device *spi, u8 reg, u8 v1, u8 v2)
0381 {
0382     struct mcp251x_priv *priv = spi_get_drvdata(spi);
0383 
0384     priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
0385     priv->spi_tx_buf[1] = reg;
0386     priv->spi_tx_buf[2] = v1;
0387     priv->spi_tx_buf[3] = v2;
0388 
0389     mcp251x_spi_write(spi, 4);
0390 }
0391 
0392 static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
0393                    u8 mask, u8 val)
0394 {
0395     struct mcp251x_priv *priv = spi_get_drvdata(spi);
0396 
0397     priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
0398     priv->spi_tx_buf[1] = reg;
0399     priv->spi_tx_buf[2] = mask;
0400     priv->spi_tx_buf[3] = val;
0401 
0402     mcp251x_spi_write(spi, 4);
0403 }
0404 
0405 static u8 mcp251x_read_stat(struct spi_device *spi)
0406 {
0407     return mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK;
0408 }
0409 
0410 #define mcp251x_read_stat_poll_timeout(addr, val, cond, delay_us, timeout_us) \
0411     readx_poll_timeout(mcp251x_read_stat, addr, val, cond, \
0412                delay_us, timeout_us)
0413 
0414 #ifdef CONFIG_GPIOLIB
0415 enum {
0416     MCP251X_GPIO_TX0RTS = 0,        /* inputs */
0417     MCP251X_GPIO_TX1RTS,
0418     MCP251X_GPIO_TX2RTS,
0419     MCP251X_GPIO_RX0BF,         /* outputs */
0420     MCP251X_GPIO_RX1BF,
0421 };
0422 
0423 #define MCP251X_GPIO_INPUT_MASK \
0424     GENMASK(MCP251X_GPIO_TX2RTS, MCP251X_GPIO_TX0RTS)
0425 #define MCP251X_GPIO_OUTPUT_MASK \
0426     GENMASK(MCP251X_GPIO_RX1BF, MCP251X_GPIO_RX0BF)
0427 
0428 static const char * const mcp251x_gpio_names[] = {
0429     [MCP251X_GPIO_TX0RTS] = "TX0RTS",   /* inputs */
0430     [MCP251X_GPIO_TX1RTS] = "TX1RTS",
0431     [MCP251X_GPIO_TX2RTS] = "TX2RTS",
0432     [MCP251X_GPIO_RX0BF] = "RX0BF",     /* outputs */
0433     [MCP251X_GPIO_RX1BF] = "RX1BF",
0434 };
0435 
0436 static inline bool mcp251x_gpio_is_input(unsigned int offset)
0437 {
0438     return offset <= MCP251X_GPIO_TX2RTS;
0439 }
0440 
0441 static int mcp251x_gpio_request(struct gpio_chip *chip,
0442                 unsigned int offset)
0443 {
0444     struct mcp251x_priv *priv = gpiochip_get_data(chip);
0445     u8 val;
0446 
0447     /* nothing to be done for inputs */
0448     if (mcp251x_gpio_is_input(offset))
0449         return 0;
0450 
0451     val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
0452 
0453     mutex_lock(&priv->mcp_lock);
0454     mcp251x_write_bits(priv->spi, BFPCTRL, val, val);
0455     mutex_unlock(&priv->mcp_lock);
0456 
0457     priv->reg_bfpctrl |= val;
0458 
0459     return 0;
0460 }
0461 
0462 static void mcp251x_gpio_free(struct gpio_chip *chip,
0463                   unsigned int offset)
0464 {
0465     struct mcp251x_priv *priv = gpiochip_get_data(chip);
0466     u8 val;
0467 
0468     /* nothing to be done for inputs */
0469     if (mcp251x_gpio_is_input(offset))
0470         return;
0471 
0472     val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
0473 
0474     mutex_lock(&priv->mcp_lock);
0475     mcp251x_write_bits(priv->spi, BFPCTRL, val, 0);
0476     mutex_unlock(&priv->mcp_lock);
0477 
0478     priv->reg_bfpctrl &= ~val;
0479 }
0480 
0481 static int mcp251x_gpio_get_direction(struct gpio_chip *chip,
0482                       unsigned int offset)
0483 {
0484     if (mcp251x_gpio_is_input(offset))
0485         return GPIOF_DIR_IN;
0486 
0487     return GPIOF_DIR_OUT;
0488 }
0489 
0490 static int mcp251x_gpio_get(struct gpio_chip *chip, unsigned int offset)
0491 {
0492     struct mcp251x_priv *priv = gpiochip_get_data(chip);
0493     u8 reg, mask, val;
0494 
0495     if (mcp251x_gpio_is_input(offset)) {
0496         reg = TXRTSCTRL;
0497         mask = TXRTSCTRL_RTS(offset);
0498     } else {
0499         reg = BFPCTRL;
0500         mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
0501     }
0502 
0503     mutex_lock(&priv->mcp_lock);
0504     val = mcp251x_read_reg(priv->spi, reg);
0505     mutex_unlock(&priv->mcp_lock);
0506 
0507     return !!(val & mask);
0508 }
0509 
0510 static int mcp251x_gpio_get_multiple(struct gpio_chip *chip,
0511                      unsigned long *maskp, unsigned long *bitsp)
0512 {
0513     struct mcp251x_priv *priv = gpiochip_get_data(chip);
0514     unsigned long bits = 0;
0515     u8 val;
0516 
0517     mutex_lock(&priv->mcp_lock);
0518     if (maskp[0] & MCP251X_GPIO_INPUT_MASK) {
0519         val = mcp251x_read_reg(priv->spi, TXRTSCTRL);
0520         val = FIELD_GET(TXRTSCTRL_RTS_MASK, val);
0521         bits |= FIELD_PREP(MCP251X_GPIO_INPUT_MASK, val);
0522     }
0523     if (maskp[0] & MCP251X_GPIO_OUTPUT_MASK) {
0524         val = mcp251x_read_reg(priv->spi, BFPCTRL);
0525         val = FIELD_GET(BFPCTRL_BFS_MASK, val);
0526         bits |= FIELD_PREP(MCP251X_GPIO_OUTPUT_MASK, val);
0527     }
0528     mutex_unlock(&priv->mcp_lock);
0529 
0530     bitsp[0] = bits;
0531     return 0;
0532 }
0533 
0534 static void mcp251x_gpio_set(struct gpio_chip *chip, unsigned int offset,
0535                  int value)
0536 {
0537     struct mcp251x_priv *priv = gpiochip_get_data(chip);
0538     u8 mask, val;
0539 
0540     mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
0541     val = value ? mask : 0;
0542 
0543     mutex_lock(&priv->mcp_lock);
0544     mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
0545     mutex_unlock(&priv->mcp_lock);
0546 
0547     priv->reg_bfpctrl &= ~mask;
0548     priv->reg_bfpctrl |= val;
0549 }
0550 
0551 static void
0552 mcp251x_gpio_set_multiple(struct gpio_chip *chip,
0553               unsigned long *maskp, unsigned long *bitsp)
0554 {
0555     struct mcp251x_priv *priv = gpiochip_get_data(chip);
0556     u8 mask, val;
0557 
0558     mask = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, maskp[0]);
0559     mask = FIELD_PREP(BFPCTRL_BFS_MASK, mask);
0560 
0561     val = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, bitsp[0]);
0562     val = FIELD_PREP(BFPCTRL_BFS_MASK, val);
0563 
0564     if (!mask)
0565         return;
0566 
0567     mutex_lock(&priv->mcp_lock);
0568     mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
0569     mutex_unlock(&priv->mcp_lock);
0570 
0571     priv->reg_bfpctrl &= ~mask;
0572     priv->reg_bfpctrl |= val;
0573 }
0574 
0575 static void mcp251x_gpio_restore(struct spi_device *spi)
0576 {
0577     struct mcp251x_priv *priv = spi_get_drvdata(spi);
0578 
0579     mcp251x_write_reg(spi, BFPCTRL, priv->reg_bfpctrl);
0580 }
0581 
0582 static int mcp251x_gpio_setup(struct mcp251x_priv *priv)
0583 {
0584     struct gpio_chip *gpio = &priv->gpio;
0585 
0586     if (!device_property_present(&priv->spi->dev, "gpio-controller"))
0587         return 0;
0588 
0589     /* gpiochip handles TX[0..2]RTS and RX[0..1]BF */
0590     gpio->label = priv->spi->modalias;
0591     gpio->parent = &priv->spi->dev;
0592     gpio->owner = THIS_MODULE;
0593     gpio->request = mcp251x_gpio_request;
0594     gpio->free = mcp251x_gpio_free;
0595     gpio->get_direction = mcp251x_gpio_get_direction;
0596     gpio->get = mcp251x_gpio_get;
0597     gpio->get_multiple = mcp251x_gpio_get_multiple;
0598     gpio->set = mcp251x_gpio_set;
0599     gpio->set_multiple = mcp251x_gpio_set_multiple;
0600     gpio->base = -1;
0601     gpio->ngpio = ARRAY_SIZE(mcp251x_gpio_names);
0602     gpio->names = mcp251x_gpio_names;
0603     gpio->can_sleep = true;
0604 
0605     return devm_gpiochip_add_data(&priv->spi->dev, gpio, priv);
0606 }
0607 #else
0608 static inline void mcp251x_gpio_restore(struct spi_device *spi)
0609 {
0610 }
0611 
0612 static inline int mcp251x_gpio_setup(struct mcp251x_priv *priv)
0613 {
0614     return 0;
0615 }
0616 #endif
0617 
0618 static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
0619                 int len, int tx_buf_idx)
0620 {
0621     struct mcp251x_priv *priv = spi_get_drvdata(spi);
0622 
0623     if (mcp251x_is_2510(spi)) {
0624         int i;
0625 
0626         for (i = 1; i < TXBDAT_OFF + len; i++)
0627             mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
0628                       buf[i]);
0629     } else {
0630         memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
0631         mcp251x_spi_write(spi, TXBDAT_OFF + len);
0632     }
0633 }
0634 
0635 static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
0636               int tx_buf_idx)
0637 {
0638     struct mcp251x_priv *priv = spi_get_drvdata(spi);
0639     u32 sid, eid, exide, rtr;
0640     u8 buf[SPI_TRANSFER_BUF_LEN];
0641 
0642     exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
0643     if (exide)
0644         sid = (frame->can_id & CAN_EFF_MASK) >> 18;
0645     else
0646         sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
0647     eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
0648     rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
0649 
0650     buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
0651     buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
0652     buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
0653         (exide << SIDL_EXIDE_SHIFT) |
0654         ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
0655     buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
0656     buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
0657     buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->len;
0658     memcpy(buf + TXBDAT_OFF, frame->data, frame->len);
0659     mcp251x_hw_tx_frame(spi, buf, frame->len, tx_buf_idx);
0660 
0661     /* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
0662     priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
0663     mcp251x_spi_write(priv->spi, 1);
0664 }
0665 
0666 static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
0667                 int buf_idx)
0668 {
0669     struct mcp251x_priv *priv = spi_get_drvdata(spi);
0670 
0671     if (mcp251x_is_2510(spi)) {
0672         int i, len;
0673 
0674         for (i = 1; i < RXBDAT_OFF; i++)
0675             buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
0676 
0677         len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
0678         for (; i < (RXBDAT_OFF + len); i++)
0679             buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
0680     } else {
0681         priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
0682         if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
0683             spi_write_then_read(spi, priv->spi_tx_buf, 1,
0684                         priv->spi_rx_buf,
0685                         SPI_TRANSFER_BUF_LEN);
0686             memcpy(buf + 1, priv->spi_rx_buf,
0687                    SPI_TRANSFER_BUF_LEN - 1);
0688         } else {
0689             mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
0690             memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
0691         }
0692     }
0693 }
0694 
0695 static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
0696 {
0697     struct mcp251x_priv *priv = spi_get_drvdata(spi);
0698     struct sk_buff *skb;
0699     struct can_frame *frame;
0700     u8 buf[SPI_TRANSFER_BUF_LEN];
0701 
0702     skb = alloc_can_skb(priv->net, &frame);
0703     if (!skb) {
0704         dev_err(&spi->dev, "cannot allocate RX skb\n");
0705         priv->net->stats.rx_dropped++;
0706         return;
0707     }
0708 
0709     mcp251x_hw_rx_frame(spi, buf, buf_idx);
0710     if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
0711         /* Extended ID format */
0712         frame->can_id = CAN_EFF_FLAG;
0713         frame->can_id |=
0714             /* Extended ID part */
0715             SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
0716             SET_BYTE(buf[RXBEID8_OFF], 1) |
0717             SET_BYTE(buf[RXBEID0_OFF], 0) |
0718             /* Standard ID part */
0719             (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
0720               (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
0721         /* Remote transmission request */
0722         if (buf[RXBDLC_OFF] & RXBDLC_RTR)
0723             frame->can_id |= CAN_RTR_FLAG;
0724     } else {
0725         /* Standard ID format */
0726         frame->can_id =
0727             (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
0728             (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
0729         if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
0730             frame->can_id |= CAN_RTR_FLAG;
0731     }
0732     /* Data length */
0733     frame->len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
0734     if (!(frame->can_id & CAN_RTR_FLAG)) {
0735         memcpy(frame->data, buf + RXBDAT_OFF, frame->len);
0736 
0737         priv->net->stats.rx_bytes += frame->len;
0738     }
0739     priv->net->stats.rx_packets++;
0740 
0741     netif_rx(skb);
0742 }
0743 
0744 static void mcp251x_hw_sleep(struct spi_device *spi)
0745 {
0746     mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
0747 }
0748 
0749 /* May only be called when device is sleeping! */
0750 static int mcp251x_hw_wake(struct spi_device *spi)
0751 {
0752     u8 value;
0753     int ret;
0754 
0755     /* Force wakeup interrupt to wake device, but don't execute IST */
0756     disable_irq(spi->irq);
0757     mcp251x_write_2regs(spi, CANINTE, CANINTE_WAKIE, CANINTF_WAKIF);
0758 
0759     /* Wait for oscillator startup timer after wake up */
0760     mdelay(MCP251X_OST_DELAY_MS);
0761 
0762     /* Put device into config mode */
0763     mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_CONF);
0764 
0765     /* Wait for the device to enter config mode */
0766     ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
0767                          MCP251X_OST_DELAY_MS * 1000,
0768                          USEC_PER_SEC);
0769     if (ret) {
0770         dev_err(&spi->dev, "MCP251x didn't enter in config mode\n");
0771         return ret;
0772     }
0773 
0774     /* Disable and clear pending interrupts */
0775     mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
0776     enable_irq(spi->irq);
0777 
0778     return 0;
0779 }
0780 
0781 static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
0782                        struct net_device *net)
0783 {
0784     struct mcp251x_priv *priv = netdev_priv(net);
0785     struct spi_device *spi = priv->spi;
0786 
0787     if (priv->tx_skb || priv->tx_busy) {
0788         dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
0789         return NETDEV_TX_BUSY;
0790     }
0791 
0792     if (can_dropped_invalid_skb(net, skb))
0793         return NETDEV_TX_OK;
0794 
0795     netif_stop_queue(net);
0796     priv->tx_skb = skb;
0797     queue_work(priv->wq, &priv->tx_work);
0798 
0799     return NETDEV_TX_OK;
0800 }
0801 
0802 static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
0803 {
0804     struct mcp251x_priv *priv = netdev_priv(net);
0805 
0806     switch (mode) {
0807     case CAN_MODE_START:
0808         mcp251x_clean(net);
0809         /* We have to delay work since SPI I/O may sleep */
0810         priv->can.state = CAN_STATE_ERROR_ACTIVE;
0811         priv->restart_tx = 1;
0812         if (priv->can.restart_ms == 0)
0813             priv->after_suspend = AFTER_SUSPEND_RESTART;
0814         queue_work(priv->wq, &priv->restart_work);
0815         break;
0816     default:
0817         return -EOPNOTSUPP;
0818     }
0819 
0820     return 0;
0821 }
0822 
0823 static int mcp251x_set_normal_mode(struct spi_device *spi)
0824 {
0825     struct mcp251x_priv *priv = spi_get_drvdata(spi);
0826     u8 value;
0827     int ret;
0828 
0829     /* Enable interrupts */
0830     mcp251x_write_reg(spi, CANINTE,
0831               CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
0832               CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
0833 
0834     if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
0835         /* Put device into loopback mode */
0836         mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
0837     } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
0838         /* Put device into listen-only mode */
0839         mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
0840     } else {
0841         /* Put device into normal mode */
0842         mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
0843 
0844         /* Wait for the device to enter normal mode */
0845         ret = mcp251x_read_stat_poll_timeout(spi, value, value == 0,
0846                              MCP251X_OST_DELAY_MS * 1000,
0847                              USEC_PER_SEC);
0848         if (ret) {
0849             dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
0850             return ret;
0851         }
0852     }
0853     priv->can.state = CAN_STATE_ERROR_ACTIVE;
0854     return 0;
0855 }
0856 
0857 static int mcp251x_do_set_bittiming(struct net_device *net)
0858 {
0859     struct mcp251x_priv *priv = netdev_priv(net);
0860     struct can_bittiming *bt = &priv->can.bittiming;
0861     struct spi_device *spi = priv->spi;
0862 
0863     mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
0864               (bt->brp - 1));
0865     mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
0866               (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
0867                CNF2_SAM : 0) |
0868               ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
0869               (bt->prop_seg - 1));
0870     mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
0871                (bt->phase_seg2 - 1));
0872     dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
0873         mcp251x_read_reg(spi, CNF1),
0874         mcp251x_read_reg(spi, CNF2),
0875         mcp251x_read_reg(spi, CNF3));
0876 
0877     return 0;
0878 }
0879 
0880 static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
0881 {
0882     mcp251x_do_set_bittiming(net);
0883 
0884     mcp251x_write_reg(spi, RXBCTRL(0),
0885               RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
0886     mcp251x_write_reg(spi, RXBCTRL(1),
0887               RXBCTRL_RXM0 | RXBCTRL_RXM1);
0888     return 0;
0889 }
0890 
0891 static int mcp251x_hw_reset(struct spi_device *spi)
0892 {
0893     struct mcp251x_priv *priv = spi_get_drvdata(spi);
0894     u8 value;
0895     int ret;
0896 
0897     /* Wait for oscillator startup timer after power up */
0898     mdelay(MCP251X_OST_DELAY_MS);
0899 
0900     priv->spi_tx_buf[0] = INSTRUCTION_RESET;
0901     ret = mcp251x_spi_write(spi, 1);
0902     if (ret)
0903         return ret;
0904 
0905     /* Wait for oscillator startup timer after reset */
0906     mdelay(MCP251X_OST_DELAY_MS);
0907 
0908     /* Wait for reset to finish */
0909     ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
0910                          MCP251X_OST_DELAY_MS * 1000,
0911                          USEC_PER_SEC);
0912     if (ret)
0913         dev_err(&spi->dev, "MCP251x didn't enter in conf mode after reset\n");
0914     return ret;
0915 }
0916 
0917 static int mcp251x_hw_probe(struct spi_device *spi)
0918 {
0919     u8 ctrl;
0920     int ret;
0921 
0922     ret = mcp251x_hw_reset(spi);
0923     if (ret)
0924         return ret;
0925 
0926     ctrl = mcp251x_read_reg(spi, CANCTRL);
0927 
0928     dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
0929 
0930     /* Check for power up default value */
0931     if ((ctrl & 0x17) != 0x07)
0932         return -ENODEV;
0933 
0934     return 0;
0935 }
0936 
0937 static int mcp251x_power_enable(struct regulator *reg, int enable)
0938 {
0939     if (IS_ERR_OR_NULL(reg))
0940         return 0;
0941 
0942     if (enable)
0943         return regulator_enable(reg);
0944     else
0945         return regulator_disable(reg);
0946 }
0947 
0948 static int mcp251x_stop(struct net_device *net)
0949 {
0950     struct mcp251x_priv *priv = netdev_priv(net);
0951     struct spi_device *spi = priv->spi;
0952 
0953     close_candev(net);
0954 
0955     priv->force_quit = 1;
0956     free_irq(spi->irq, priv);
0957 
0958     mutex_lock(&priv->mcp_lock);
0959 
0960     /* Disable and clear pending interrupts */
0961     mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
0962 
0963     mcp251x_write_reg(spi, TXBCTRL(0), 0);
0964     mcp251x_clean(net);
0965 
0966     mcp251x_hw_sleep(spi);
0967 
0968     mcp251x_power_enable(priv->transceiver, 0);
0969 
0970     priv->can.state = CAN_STATE_STOPPED;
0971 
0972     mutex_unlock(&priv->mcp_lock);
0973 
0974     return 0;
0975 }
0976 
0977 static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
0978 {
0979     struct sk_buff *skb;
0980     struct can_frame *frame;
0981 
0982     skb = alloc_can_err_skb(net, &frame);
0983     if (skb) {
0984         frame->can_id |= can_id;
0985         frame->data[1] = data1;
0986         netif_rx(skb);
0987     } else {
0988         netdev_err(net, "cannot allocate error skb\n");
0989     }
0990 }
0991 
0992 static void mcp251x_tx_work_handler(struct work_struct *ws)
0993 {
0994     struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
0995                          tx_work);
0996     struct spi_device *spi = priv->spi;
0997     struct net_device *net = priv->net;
0998     struct can_frame *frame;
0999 
1000     mutex_lock(&priv->mcp_lock);
1001     if (priv->tx_skb) {
1002         if (priv->can.state == CAN_STATE_BUS_OFF) {
1003             mcp251x_clean(net);
1004         } else {
1005             frame = (struct can_frame *)priv->tx_skb->data;
1006 
1007             if (frame->len > CAN_FRAME_MAX_DATA_LEN)
1008                 frame->len = CAN_FRAME_MAX_DATA_LEN;
1009             mcp251x_hw_tx(spi, frame, 0);
1010             priv->tx_busy = true;
1011             can_put_echo_skb(priv->tx_skb, net, 0, 0);
1012             priv->tx_skb = NULL;
1013         }
1014     }
1015     mutex_unlock(&priv->mcp_lock);
1016 }
1017 
1018 static void mcp251x_restart_work_handler(struct work_struct *ws)
1019 {
1020     struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
1021                          restart_work);
1022     struct spi_device *spi = priv->spi;
1023     struct net_device *net = priv->net;
1024 
1025     mutex_lock(&priv->mcp_lock);
1026     if (priv->after_suspend) {
1027         if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1028             mcp251x_hw_reset(spi);
1029             mcp251x_setup(net, spi);
1030             mcp251x_gpio_restore(spi);
1031         } else {
1032             mcp251x_hw_wake(spi);
1033         }
1034         priv->force_quit = 0;
1035         if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
1036             mcp251x_set_normal_mode(spi);
1037         } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
1038             netif_device_attach(net);
1039             mcp251x_clean(net);
1040             mcp251x_set_normal_mode(spi);
1041             netif_wake_queue(net);
1042         } else {
1043             mcp251x_hw_sleep(spi);
1044         }
1045         priv->after_suspend = 0;
1046     }
1047 
1048     if (priv->restart_tx) {
1049         priv->restart_tx = 0;
1050         mcp251x_write_reg(spi, TXBCTRL(0), 0);
1051         mcp251x_clean(net);
1052         netif_wake_queue(net);
1053         mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
1054     }
1055     mutex_unlock(&priv->mcp_lock);
1056 }
1057 
1058 static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
1059 {
1060     struct mcp251x_priv *priv = dev_id;
1061     struct spi_device *spi = priv->spi;
1062     struct net_device *net = priv->net;
1063 
1064     mutex_lock(&priv->mcp_lock);
1065     while (!priv->force_quit) {
1066         enum can_state new_state;
1067         u8 intf, eflag;
1068         u8 clear_intf = 0;
1069         int can_id = 0, data1 = 0;
1070 
1071         mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
1072 
1073         /* receive buffer 0 */
1074         if (intf & CANINTF_RX0IF) {
1075             mcp251x_hw_rx(spi, 0);
1076             /* Free one buffer ASAP
1077              * (The MCP2515/25625 does this automatically.)
1078              */
1079             if (mcp251x_is_2510(spi))
1080                 mcp251x_write_bits(spi, CANINTF,
1081                            CANINTF_RX0IF, 0x00);
1082 
1083             /* check if buffer 1 is already known to be full, no need to re-read */
1084             if (!(intf & CANINTF_RX1IF)) {
1085                 u8 intf1, eflag1;
1086 
1087                 /* intf needs to be read again to avoid a race condition */
1088                 mcp251x_read_2regs(spi, CANINTF, &intf1, &eflag1);
1089 
1090                 /* combine flags from both operations for error handling */
1091                 intf |= intf1;
1092                 eflag |= eflag1;
1093             }
1094         }
1095 
1096         /* receive buffer 1 */
1097         if (intf & CANINTF_RX1IF) {
1098             mcp251x_hw_rx(spi, 1);
1099             /* The MCP2515/25625 does this automatically. */
1100             if (mcp251x_is_2510(spi))
1101                 clear_intf |= CANINTF_RX1IF;
1102         }
1103 
1104         /* mask out flags we don't care about */
1105         intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
1106 
1107         /* any error or tx interrupt we need to clear? */
1108         if (intf & (CANINTF_ERR | CANINTF_TX))
1109             clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
1110         if (clear_intf)
1111             mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
1112 
1113         if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
1114             mcp251x_write_bits(spi, EFLG, eflag, 0x00);
1115 
1116         /* Update can state */
1117         if (eflag & EFLG_TXBO) {
1118             new_state = CAN_STATE_BUS_OFF;
1119             can_id |= CAN_ERR_BUSOFF;
1120         } else if (eflag & EFLG_TXEP) {
1121             new_state = CAN_STATE_ERROR_PASSIVE;
1122             can_id |= CAN_ERR_CRTL;
1123             data1 |= CAN_ERR_CRTL_TX_PASSIVE;
1124         } else if (eflag & EFLG_RXEP) {
1125             new_state = CAN_STATE_ERROR_PASSIVE;
1126             can_id |= CAN_ERR_CRTL;
1127             data1 |= CAN_ERR_CRTL_RX_PASSIVE;
1128         } else if (eflag & EFLG_TXWAR) {
1129             new_state = CAN_STATE_ERROR_WARNING;
1130             can_id |= CAN_ERR_CRTL;
1131             data1 |= CAN_ERR_CRTL_TX_WARNING;
1132         } else if (eflag & EFLG_RXWAR) {
1133             new_state = CAN_STATE_ERROR_WARNING;
1134             can_id |= CAN_ERR_CRTL;
1135             data1 |= CAN_ERR_CRTL_RX_WARNING;
1136         } else {
1137             new_state = CAN_STATE_ERROR_ACTIVE;
1138         }
1139 
1140         /* Update can state statistics */
1141         switch (priv->can.state) {
1142         case CAN_STATE_ERROR_ACTIVE:
1143             if (new_state >= CAN_STATE_ERROR_WARNING &&
1144                 new_state <= CAN_STATE_BUS_OFF)
1145                 priv->can.can_stats.error_warning++;
1146             fallthrough;
1147         case CAN_STATE_ERROR_WARNING:
1148             if (new_state >= CAN_STATE_ERROR_PASSIVE &&
1149                 new_state <= CAN_STATE_BUS_OFF)
1150                 priv->can.can_stats.error_passive++;
1151             break;
1152         default:
1153             break;
1154         }
1155         priv->can.state = new_state;
1156 
1157         if (intf & CANINTF_ERRIF) {
1158             /* Handle overflow counters */
1159             if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
1160                 if (eflag & EFLG_RX0OVR) {
1161                     net->stats.rx_over_errors++;
1162                     net->stats.rx_errors++;
1163                 }
1164                 if (eflag & EFLG_RX1OVR) {
1165                     net->stats.rx_over_errors++;
1166                     net->stats.rx_errors++;
1167                 }
1168                 can_id |= CAN_ERR_CRTL;
1169                 data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
1170             }
1171             mcp251x_error_skb(net, can_id, data1);
1172         }
1173 
1174         if (priv->can.state == CAN_STATE_BUS_OFF) {
1175             if (priv->can.restart_ms == 0) {
1176                 priv->force_quit = 1;
1177                 priv->can.can_stats.bus_off++;
1178                 can_bus_off(net);
1179                 mcp251x_hw_sleep(spi);
1180                 break;
1181             }
1182         }
1183 
1184         if (intf == 0)
1185             break;
1186 
1187         if (intf & CANINTF_TX) {
1188             if (priv->tx_busy) {
1189                 net->stats.tx_packets++;
1190                 net->stats.tx_bytes += can_get_echo_skb(net, 0,
1191                                     NULL);
1192                 priv->tx_busy = false;
1193             }
1194             netif_wake_queue(net);
1195         }
1196     }
1197     mutex_unlock(&priv->mcp_lock);
1198     return IRQ_HANDLED;
1199 }
1200 
1201 static int mcp251x_open(struct net_device *net)
1202 {
1203     struct mcp251x_priv *priv = netdev_priv(net);
1204     struct spi_device *spi = priv->spi;
1205     unsigned long flags = 0;
1206     int ret;
1207 
1208     ret = open_candev(net);
1209     if (ret) {
1210         dev_err(&spi->dev, "unable to set initial baudrate!\n");
1211         return ret;
1212     }
1213 
1214     mutex_lock(&priv->mcp_lock);
1215     mcp251x_power_enable(priv->transceiver, 1);
1216 
1217     priv->force_quit = 0;
1218     priv->tx_skb = NULL;
1219     priv->tx_busy = false;
1220 
1221     if (!dev_fwnode(&spi->dev))
1222         flags = IRQF_TRIGGER_FALLING;
1223 
1224     ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
1225                    flags | IRQF_ONESHOT, dev_name(&spi->dev),
1226                    priv);
1227     if (ret) {
1228         dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
1229         goto out_close;
1230     }
1231 
1232     ret = mcp251x_hw_wake(spi);
1233     if (ret)
1234         goto out_free_irq;
1235     ret = mcp251x_setup(net, spi);
1236     if (ret)
1237         goto out_free_irq;
1238     ret = mcp251x_set_normal_mode(spi);
1239     if (ret)
1240         goto out_free_irq;
1241 
1242     netif_wake_queue(net);
1243     mutex_unlock(&priv->mcp_lock);
1244 
1245     return 0;
1246 
1247 out_free_irq:
1248     free_irq(spi->irq, priv);
1249     mcp251x_hw_sleep(spi);
1250 out_close:
1251     mcp251x_power_enable(priv->transceiver, 0);
1252     close_candev(net);
1253     mutex_unlock(&priv->mcp_lock);
1254     return ret;
1255 }
1256 
1257 static const struct net_device_ops mcp251x_netdev_ops = {
1258     .ndo_open = mcp251x_open,
1259     .ndo_stop = mcp251x_stop,
1260     .ndo_start_xmit = mcp251x_hard_start_xmit,
1261     .ndo_change_mtu = can_change_mtu,
1262 };
1263 
1264 static const struct ethtool_ops mcp251x_ethtool_ops = {
1265     .get_ts_info = ethtool_op_get_ts_info,
1266 };
1267 
1268 static const struct of_device_id mcp251x_of_match[] = {
1269     {
1270         .compatible = "microchip,mcp2510",
1271         .data       = (void *)CAN_MCP251X_MCP2510,
1272     },
1273     {
1274         .compatible = "microchip,mcp2515",
1275         .data       = (void *)CAN_MCP251X_MCP2515,
1276     },
1277     {
1278         .compatible = "microchip,mcp25625",
1279         .data       = (void *)CAN_MCP251X_MCP25625,
1280     },
1281     { }
1282 };
1283 MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1284 
1285 static const struct spi_device_id mcp251x_id_table[] = {
1286     {
1287         .name       = "mcp2510",
1288         .driver_data    = (kernel_ulong_t)CAN_MCP251X_MCP2510,
1289     },
1290     {
1291         .name       = "mcp2515",
1292         .driver_data    = (kernel_ulong_t)CAN_MCP251X_MCP2515,
1293     },
1294     {
1295         .name       = "mcp25625",
1296         .driver_data    = (kernel_ulong_t)CAN_MCP251X_MCP25625,
1297     },
1298     { }
1299 };
1300 MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1301 
1302 static int mcp251x_can_probe(struct spi_device *spi)
1303 {
1304     const void *match = device_get_match_data(&spi->dev);
1305     struct net_device *net;
1306     struct mcp251x_priv *priv;
1307     struct clk *clk;
1308     u32 freq;
1309     int ret;
1310 
1311     clk = devm_clk_get_optional(&spi->dev, NULL);
1312     if (IS_ERR(clk))
1313         return PTR_ERR(clk);
1314 
1315     freq = clk_get_rate(clk);
1316     if (freq == 0)
1317         device_property_read_u32(&spi->dev, "clock-frequency", &freq);
1318 
1319     /* Sanity check */
1320     if (freq < 1000000 || freq > 25000000)
1321         return -ERANGE;
1322 
1323     /* Allocate can/net device */
1324     net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1325     if (!net)
1326         return -ENOMEM;
1327 
1328     ret = clk_prepare_enable(clk);
1329     if (ret)
1330         goto out_free;
1331 
1332     net->netdev_ops = &mcp251x_netdev_ops;
1333     net->ethtool_ops = &mcp251x_ethtool_ops;
1334     net->flags |= IFF_ECHO;
1335 
1336     priv = netdev_priv(net);
1337     priv->can.bittiming_const = &mcp251x_bittiming_const;
1338     priv->can.do_set_mode = mcp251x_do_set_mode;
1339     priv->can.clock.freq = freq / 2;
1340     priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1341         CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1342     if (match)
1343         priv->model = (enum mcp251x_model)(uintptr_t)match;
1344     else
1345         priv->model = spi_get_device_id(spi)->driver_data;
1346     priv->net = net;
1347     priv->clk = clk;
1348 
1349     spi_set_drvdata(spi, priv);
1350 
1351     /* Configure the SPI bus */
1352     spi->bits_per_word = 8;
1353     if (mcp251x_is_2510(spi))
1354         spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1355     else
1356         spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1357     ret = spi_setup(spi);
1358     if (ret)
1359         goto out_clk;
1360 
1361     priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1362     priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1363     if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1364         (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1365         ret = -EPROBE_DEFER;
1366         goto out_clk;
1367     }
1368 
1369     ret = mcp251x_power_enable(priv->power, 1);
1370     if (ret)
1371         goto out_clk;
1372 
1373     priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
1374                    0);
1375     if (!priv->wq) {
1376         ret = -ENOMEM;
1377         goto out_clk;
1378     }
1379     INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
1380     INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
1381 
1382     priv->spi = spi;
1383     mutex_init(&priv->mcp_lock);
1384 
1385     priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1386                     GFP_KERNEL);
1387     if (!priv->spi_tx_buf) {
1388         ret = -ENOMEM;
1389         goto error_probe;
1390     }
1391 
1392     priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1393                     GFP_KERNEL);
1394     if (!priv->spi_rx_buf) {
1395         ret = -ENOMEM;
1396         goto error_probe;
1397     }
1398 
1399     SET_NETDEV_DEV(net, &spi->dev);
1400 
1401     /* Here is OK to not lock the MCP, no one knows about it yet */
1402     ret = mcp251x_hw_probe(spi);
1403     if (ret) {
1404         if (ret == -ENODEV)
1405             dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
1406                 priv->model);
1407         goto error_probe;
1408     }
1409 
1410     mcp251x_hw_sleep(spi);
1411 
1412     ret = register_candev(net);
1413     if (ret)
1414         goto error_probe;
1415 
1416     ret = mcp251x_gpio_setup(priv);
1417     if (ret)
1418         goto error_probe;
1419 
1420     netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1421     return 0;
1422 
1423 error_probe:
1424     destroy_workqueue(priv->wq);
1425     priv->wq = NULL;
1426     mcp251x_power_enable(priv->power, 0);
1427 
1428 out_clk:
1429     clk_disable_unprepare(clk);
1430 
1431 out_free:
1432     free_candev(net);
1433 
1434     dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1435     return ret;
1436 }
1437 
1438 static void mcp251x_can_remove(struct spi_device *spi)
1439 {
1440     struct mcp251x_priv *priv = spi_get_drvdata(spi);
1441     struct net_device *net = priv->net;
1442 
1443     unregister_candev(net);
1444 
1445     mcp251x_power_enable(priv->power, 0);
1446 
1447     destroy_workqueue(priv->wq);
1448     priv->wq = NULL;
1449 
1450     clk_disable_unprepare(priv->clk);
1451 
1452     free_candev(net);
1453 }
1454 
1455 static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1456 {
1457     struct spi_device *spi = to_spi_device(dev);
1458     struct mcp251x_priv *priv = spi_get_drvdata(spi);
1459     struct net_device *net = priv->net;
1460 
1461     priv->force_quit = 1;
1462     disable_irq(spi->irq);
1463     /* Note: at this point neither IST nor workqueues are running.
1464      * open/stop cannot be called anyway so locking is not needed
1465      */
1466     if (netif_running(net)) {
1467         netif_device_detach(net);
1468 
1469         mcp251x_hw_sleep(spi);
1470         mcp251x_power_enable(priv->transceiver, 0);
1471         priv->after_suspend = AFTER_SUSPEND_UP;
1472     } else {
1473         priv->after_suspend = AFTER_SUSPEND_DOWN;
1474     }
1475 
1476     mcp251x_power_enable(priv->power, 0);
1477     priv->after_suspend |= AFTER_SUSPEND_POWER;
1478 
1479     return 0;
1480 }
1481 
1482 static int __maybe_unused mcp251x_can_resume(struct device *dev)
1483 {
1484     struct spi_device *spi = to_spi_device(dev);
1485     struct mcp251x_priv *priv = spi_get_drvdata(spi);
1486 
1487     if (priv->after_suspend & AFTER_SUSPEND_POWER)
1488         mcp251x_power_enable(priv->power, 1);
1489     if (priv->after_suspend & AFTER_SUSPEND_UP)
1490         mcp251x_power_enable(priv->transceiver, 1);
1491 
1492     if (priv->after_suspend & (AFTER_SUSPEND_POWER | AFTER_SUSPEND_UP))
1493         queue_work(priv->wq, &priv->restart_work);
1494     else
1495         priv->after_suspend = 0;
1496 
1497     priv->force_quit = 0;
1498     enable_irq(spi->irq);
1499     return 0;
1500 }
1501 
1502 static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1503     mcp251x_can_resume);
1504 
1505 static struct spi_driver mcp251x_can_driver = {
1506     .driver = {
1507         .name = DEVICE_NAME,
1508         .of_match_table = mcp251x_of_match,
1509         .pm = &mcp251x_can_pm_ops,
1510     },
1511     .id_table = mcp251x_id_table,
1512     .probe = mcp251x_can_probe,
1513     .remove = mcp251x_can_remove,
1514 };
1515 module_spi_driver(mcp251x_can_driver);
1516 
1517 MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1518           "Christian Pellegrin <chripell@evolware.org>");
1519 MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1520 MODULE_LICENSE("GPL v2");