Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0+
0002 /* Renesas R-Car CAN FD device driver
0003  *
0004  * Copyright (C) 2015 Renesas Electronics Corp.
0005  */
0006 
0007 /* The R-Car CAN FD controller can operate in either one of the below two modes
0008  *  - CAN FD only mode
0009  *  - Classical CAN (CAN 2.0) only mode
0010  *
0011  * This driver puts the controller in CAN FD only mode by default. In this
0012  * mode, the controller acts as a CAN FD node that can also interoperate with
0013  * CAN 2.0 nodes.
0014  *
0015  * To switch the controller to Classical CAN (CAN 2.0) only mode, add
0016  * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
0017  * also required to switch modes.
0018  *
0019  * Note: The h/w manual register naming convention is clumsy and not acceptable
0020  * to use as it is in the driver. However, those names are added as comments
0021  * wherever it is modified to a readable name.
0022  */
0023 
0024 #include <linux/module.h>
0025 #include <linux/moduleparam.h>
0026 #include <linux/kernel.h>
0027 #include <linux/types.h>
0028 #include <linux/interrupt.h>
0029 #include <linux/errno.h>
0030 #include <linux/ethtool.h>
0031 #include <linux/netdevice.h>
0032 #include <linux/platform_device.h>
0033 #include <linux/can/dev.h>
0034 #include <linux/clk.h>
0035 #include <linux/of.h>
0036 #include <linux/of_device.h>
0037 #include <linux/bitmap.h>
0038 #include <linux/bitops.h>
0039 #include <linux/iopoll.h>
0040 #include <linux/reset.h>
0041 
0042 #define RCANFD_DRV_NAME         "rcar_canfd"
0043 
0044 enum rcanfd_chip_id {
0045     RENESAS_RCAR_GEN3 = 0,
0046     RENESAS_RZG2L,
0047     RENESAS_R8A779A0,
0048 };
0049 
0050 /* Global register bits */
0051 
0052 /* RSCFDnCFDGRMCFG */
0053 #define RCANFD_GRMCFG_RCMC      BIT(0)
0054 
0055 /* RSCFDnCFDGCFG / RSCFDnGCFG */
0056 #define RCANFD_GCFG_EEFE        BIT(6)
0057 #define RCANFD_GCFG_CMPOC       BIT(5)  /* CAN FD only */
0058 #define RCANFD_GCFG_DCS         BIT(4)
0059 #define RCANFD_GCFG_DCE         BIT(1)
0060 #define RCANFD_GCFG_TPRI        BIT(0)
0061 
0062 /* RSCFDnCFDGCTR / RSCFDnGCTR */
0063 #define RCANFD_GCTR_TSRST       BIT(16)
0064 #define RCANFD_GCTR_CFMPOFIE        BIT(11) /* CAN FD only */
0065 #define RCANFD_GCTR_THLEIE      BIT(10)
0066 #define RCANFD_GCTR_MEIE        BIT(9)
0067 #define RCANFD_GCTR_DEIE        BIT(8)
0068 #define RCANFD_GCTR_GSLPR       BIT(2)
0069 #define RCANFD_GCTR_GMDC_MASK       (0x3)
0070 #define RCANFD_GCTR_GMDC_GOPM       (0x0)
0071 #define RCANFD_GCTR_GMDC_GRESET     (0x1)
0072 #define RCANFD_GCTR_GMDC_GTEST      (0x2)
0073 
0074 /* RSCFDnCFDGSTS / RSCFDnGSTS */
0075 #define RCANFD_GSTS_GRAMINIT        BIT(3)
0076 #define RCANFD_GSTS_GSLPSTS     BIT(2)
0077 #define RCANFD_GSTS_GHLTSTS     BIT(1)
0078 #define RCANFD_GSTS_GRSTSTS     BIT(0)
0079 /* Non-operational status */
0080 #define RCANFD_GSTS_GNOPM       (BIT(0) | BIT(1) | BIT(2) | BIT(3))
0081 
0082 /* RSCFDnCFDGERFL / RSCFDnGERFL */
0083 #define RCANFD_GERFL_EEF0_7     GENMASK(23, 16)
0084 #define RCANFD_GERFL_EEF1       BIT(17)
0085 #define RCANFD_GERFL_EEF0       BIT(16)
0086 #define RCANFD_GERFL_CMPOF      BIT(3)  /* CAN FD only */
0087 #define RCANFD_GERFL_THLES      BIT(2)
0088 #define RCANFD_GERFL_MES        BIT(1)
0089 #define RCANFD_GERFL_DEF        BIT(0)
0090 
0091 #define RCANFD_GERFL_ERR(gpriv, x) \
0092     ((x) & (reg_v3u(gpriv, RCANFD_GERFL_EEF0_7, \
0093             RCANFD_GERFL_EEF0 | RCANFD_GERFL_EEF1) | \
0094         RCANFD_GERFL_MES | \
0095         ((gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0)))
0096 
0097 /* AFL Rx rules registers */
0098 
0099 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
0100 #define RCANFD_GAFLCFG_SETRNC(gpriv, n, x) \
0101     (((x) & reg_v3u(gpriv, 0x1ff, 0xff)) << \
0102      (reg_v3u(gpriv, 16, 24) - (n) * reg_v3u(gpriv, 16, 8)))
0103 
0104 #define RCANFD_GAFLCFG_GETRNC(gpriv, n, x) \
0105     (((x) >> (reg_v3u(gpriv, 16, 24) - (n) * reg_v3u(gpriv, 16, 8))) & \
0106      reg_v3u(gpriv, 0x1ff, 0xff))
0107 
0108 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
0109 #define RCANFD_GAFLECTR_AFLDAE      BIT(8)
0110 #define RCANFD_GAFLECTR_AFLPN(gpriv, x) ((x) & reg_v3u(gpriv, 0x7f, 0x1f))
0111 
0112 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
0113 #define RCANFD_GAFLID_GAFLLB        BIT(29)
0114 
0115 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
0116 #define RCANFD_GAFLP1_GAFLFDP(x)    (1 << (x))
0117 
0118 /* Channel register bits */
0119 
0120 /* RSCFDnCmCFG - Classical CAN only */
0121 #define RCANFD_CFG_SJW(x)       (((x) & 0x3) << 24)
0122 #define RCANFD_CFG_TSEG2(x)     (((x) & 0x7) << 20)
0123 #define RCANFD_CFG_TSEG1(x)     (((x) & 0xf) << 16)
0124 #define RCANFD_CFG_BRP(x)       (((x) & 0x3ff) << 0)
0125 
0126 /* RSCFDnCFDCmNCFG - CAN FD only */
0127 #define RCANFD_NCFG_NTSEG2(gpriv, x) \
0128     (((x) & reg_v3u(gpriv, 0x7f, 0x1f)) << reg_v3u(gpriv, 25, 24))
0129 
0130 #define RCANFD_NCFG_NTSEG1(gpriv, x) \
0131     (((x) & reg_v3u(gpriv, 0xff, 0x7f)) << reg_v3u(gpriv, 17, 16))
0132 
0133 #define RCANFD_NCFG_NSJW(gpriv, x) \
0134     (((x) & reg_v3u(gpriv, 0x7f, 0x1f)) << reg_v3u(gpriv, 10, 11))
0135 
0136 #define RCANFD_NCFG_NBRP(x)     (((x) & 0x3ff) << 0)
0137 
0138 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
0139 #define RCANFD_CCTR_CTME        BIT(24)
0140 #define RCANFD_CCTR_ERRD        BIT(23)
0141 #define RCANFD_CCTR_BOM_MASK        (0x3 << 21)
0142 #define RCANFD_CCTR_BOM_ISO     (0x0 << 21)
0143 #define RCANFD_CCTR_BOM_BENTRY      (0x1 << 21)
0144 #define RCANFD_CCTR_BOM_BEND        (0x2 << 21)
0145 #define RCANFD_CCTR_TDCVFIE     BIT(19)
0146 #define RCANFD_CCTR_SOCOIE      BIT(18)
0147 #define RCANFD_CCTR_EOCOIE      BIT(17)
0148 #define RCANFD_CCTR_TAIE        BIT(16)
0149 #define RCANFD_CCTR_ALIE        BIT(15)
0150 #define RCANFD_CCTR_BLIE        BIT(14)
0151 #define RCANFD_CCTR_OLIE        BIT(13)
0152 #define RCANFD_CCTR_BORIE       BIT(12)
0153 #define RCANFD_CCTR_BOEIE       BIT(11)
0154 #define RCANFD_CCTR_EPIE        BIT(10)
0155 #define RCANFD_CCTR_EWIE        BIT(9)
0156 #define RCANFD_CCTR_BEIE        BIT(8)
0157 #define RCANFD_CCTR_CSLPR       BIT(2)
0158 #define RCANFD_CCTR_CHMDC_MASK      (0x3)
0159 #define RCANFD_CCTR_CHDMC_COPM      (0x0)
0160 #define RCANFD_CCTR_CHDMC_CRESET    (0x1)
0161 #define RCANFD_CCTR_CHDMC_CHLT      (0x2)
0162 
0163 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
0164 #define RCANFD_CSTS_COMSTS      BIT(7)
0165 #define RCANFD_CSTS_RECSTS      BIT(6)
0166 #define RCANFD_CSTS_TRMSTS      BIT(5)
0167 #define RCANFD_CSTS_BOSTS       BIT(4)
0168 #define RCANFD_CSTS_EPSTS       BIT(3)
0169 #define RCANFD_CSTS_SLPSTS      BIT(2)
0170 #define RCANFD_CSTS_HLTSTS      BIT(1)
0171 #define RCANFD_CSTS_CRSTSTS     BIT(0)
0172 
0173 #define RCANFD_CSTS_TECCNT(x)       (((x) >> 24) & 0xff)
0174 #define RCANFD_CSTS_RECCNT(x)       (((x) >> 16) & 0xff)
0175 
0176 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
0177 #define RCANFD_CERFL_ADERR      BIT(14)
0178 #define RCANFD_CERFL_B0ERR      BIT(13)
0179 #define RCANFD_CERFL_B1ERR      BIT(12)
0180 #define RCANFD_CERFL_CERR       BIT(11)
0181 #define RCANFD_CERFL_AERR       BIT(10)
0182 #define RCANFD_CERFL_FERR       BIT(9)
0183 #define RCANFD_CERFL_SERR       BIT(8)
0184 #define RCANFD_CERFL_ALF        BIT(7)
0185 #define RCANFD_CERFL_BLF        BIT(6)
0186 #define RCANFD_CERFL_OVLF       BIT(5)
0187 #define RCANFD_CERFL_BORF       BIT(4)
0188 #define RCANFD_CERFL_BOEF       BIT(3)
0189 #define RCANFD_CERFL_EPF        BIT(2)
0190 #define RCANFD_CERFL_EWF        BIT(1)
0191 #define RCANFD_CERFL_BEF        BIT(0)
0192 
0193 #define RCANFD_CERFL_ERR(x)     ((x) & (0x7fff)) /* above bits 14:0 */
0194 
0195 /* RSCFDnCFDCmDCFG */
0196 #define RCANFD_DCFG_DSJW(x)     (((x) & 0x7) << 24)
0197 
0198 #define RCANFD_DCFG_DTSEG2(gpriv, x) \
0199     (((x) & reg_v3u(gpriv, 0x0f, 0x7)) << reg_v3u(gpriv, 16, 20))
0200 
0201 #define RCANFD_DCFG_DTSEG1(gpriv, x) \
0202     (((x) & reg_v3u(gpriv, 0x1f, 0xf)) << reg_v3u(gpriv, 8, 16))
0203 
0204 #define RCANFD_DCFG_DBRP(x)     (((x) & 0xff) << 0)
0205 
0206 /* RSCFDnCFDCmFDCFG */
0207 #define RCANFD_FDCFG_CLOE       BIT(30)
0208 #define RCANFD_FDCFG_FDOE       BIT(28)
0209 #define RCANFD_FDCFG_TDCE       BIT(9)
0210 #define RCANFD_FDCFG_TDCOC      BIT(8)
0211 #define RCANFD_FDCFG_TDCO(x)        (((x) & 0x7f) >> 16)
0212 
0213 /* RSCFDnCFDRFCCx */
0214 #define RCANFD_RFCC_RFIM        BIT(12)
0215 #define RCANFD_RFCC_RFDC(x)     (((x) & 0x7) << 8)
0216 #define RCANFD_RFCC_RFPLS(x)        (((x) & 0x7) << 4)
0217 #define RCANFD_RFCC_RFIE        BIT(1)
0218 #define RCANFD_RFCC_RFE         BIT(0)
0219 
0220 /* RSCFDnCFDRFSTSx */
0221 #define RCANFD_RFSTS_RFIF       BIT(3)
0222 #define RCANFD_RFSTS_RFMLT      BIT(2)
0223 #define RCANFD_RFSTS_RFFLL      BIT(1)
0224 #define RCANFD_RFSTS_RFEMP      BIT(0)
0225 
0226 /* RSCFDnCFDRFIDx */
0227 #define RCANFD_RFID_RFIDE       BIT(31)
0228 #define RCANFD_RFID_RFRTR       BIT(30)
0229 
0230 /* RSCFDnCFDRFPTRx */
0231 #define RCANFD_RFPTR_RFDLC(x)       (((x) >> 28) & 0xf)
0232 #define RCANFD_RFPTR_RFPTR(x)       (((x) >> 16) & 0xfff)
0233 #define RCANFD_RFPTR_RFTS(x)        (((x) >> 0) & 0xffff)
0234 
0235 /* RSCFDnCFDRFFDSTSx */
0236 #define RCANFD_RFFDSTS_RFFDF        BIT(2)
0237 #define RCANFD_RFFDSTS_RFBRS        BIT(1)
0238 #define RCANFD_RFFDSTS_RFESI        BIT(0)
0239 
0240 /* Common FIFO bits */
0241 
0242 /* RSCFDnCFDCFCCk */
0243 #define RCANFD_CFCC_CFTML(gpriv, x) (((x) & 0xf) << reg_v3u(gpriv, 16, 20))
0244 #define RCANFD_CFCC_CFM(gpriv, x)   (((x) & 0x3) << reg_v3u(gpriv,  8, 16))
0245 #define RCANFD_CFCC_CFIM        BIT(12)
0246 #define RCANFD_CFCC_CFDC(gpriv, x)  (((x) & 0x7) << reg_v3u(gpriv, 21,  8))
0247 #define RCANFD_CFCC_CFPLS(x)        (((x) & 0x7) << 4)
0248 #define RCANFD_CFCC_CFTXIE      BIT(2)
0249 #define RCANFD_CFCC_CFE         BIT(0)
0250 
0251 /* RSCFDnCFDCFSTSk */
0252 #define RCANFD_CFSTS_CFMC(x)        (((x) >> 8) & 0xff)
0253 #define RCANFD_CFSTS_CFTXIF     BIT(4)
0254 #define RCANFD_CFSTS_CFMLT      BIT(2)
0255 #define RCANFD_CFSTS_CFFLL      BIT(1)
0256 #define RCANFD_CFSTS_CFEMP      BIT(0)
0257 
0258 /* RSCFDnCFDCFIDk */
0259 #define RCANFD_CFID_CFIDE       BIT(31)
0260 #define RCANFD_CFID_CFRTR       BIT(30)
0261 #define RCANFD_CFID_CFID_MASK(x)    ((x) & 0x1fffffff)
0262 
0263 /* RSCFDnCFDCFPTRk */
0264 #define RCANFD_CFPTR_CFDLC(x)       (((x) & 0xf) << 28)
0265 #define RCANFD_CFPTR_CFPTR(x)       (((x) & 0xfff) << 16)
0266 #define RCANFD_CFPTR_CFTS(x)        (((x) & 0xff) << 0)
0267 
0268 /* RSCFDnCFDCFFDCSTSk */
0269 #define RCANFD_CFFDCSTS_CFFDF       BIT(2)
0270 #define RCANFD_CFFDCSTS_CFBRS       BIT(1)
0271 #define RCANFD_CFFDCSTS_CFESI       BIT(0)
0272 
0273 /* This controller supports either Classical CAN only mode or CAN FD only mode.
0274  * These modes are supported in two separate set of register maps & names.
0275  * However, some of the register offsets are common for both modes. Those
0276  * offsets are listed below as Common registers.
0277  *
0278  * The CAN FD only mode specific registers & Classical CAN only mode specific
0279  * registers are listed separately. Their register names starts with
0280  * RCANFD_F_xxx & RCANFD_C_xxx respectively.
0281  */
0282 
0283 /* Common registers */
0284 
0285 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
0286 #define RCANFD_CCFG(m)          (0x0000 + (0x10 * (m)))
0287 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
0288 #define RCANFD_CCTR(m)          (0x0004 + (0x10 * (m)))
0289 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
0290 #define RCANFD_CSTS(m)          (0x0008 + (0x10 * (m)))
0291 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
0292 #define RCANFD_CERFL(m)         (0x000C + (0x10 * (m)))
0293 
0294 /* RSCFDnCFDGCFG / RSCFDnGCFG */
0295 #define RCANFD_GCFG         (0x0084)
0296 /* RSCFDnCFDGCTR / RSCFDnGCTR */
0297 #define RCANFD_GCTR         (0x0088)
0298 /* RSCFDnCFDGCTS / RSCFDnGCTS */
0299 #define RCANFD_GSTS         (0x008c)
0300 /* RSCFDnCFDGERFL / RSCFDnGERFL */
0301 #define RCANFD_GERFL            (0x0090)
0302 /* RSCFDnCFDGTSC / RSCFDnGTSC */
0303 #define RCANFD_GTSC         (0x0094)
0304 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
0305 #define RCANFD_GAFLECTR         (0x0098)
0306 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */
0307 #define RCANFD_GAFLCFG(ch)      (0x009c + (0x04 * ((ch) / 2)))
0308 /* RSCFDnCFDRMNB / RSCFDnRMNB */
0309 #define RCANFD_RMNB         (0x00a4)
0310 /* RSCFDnCFDRMND / RSCFDnRMND */
0311 #define RCANFD_RMND(y)          (0x00a8 + (0x04 * (y)))
0312 
0313 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
0314 #define RCANFD_RFCC(gpriv, x)       (reg_v3u(gpriv, 0x00c0, 0x00b8) + (0x04 * (x)))
0315 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
0316 #define RCANFD_RFSTS(gpriv, x)      (RCANFD_RFCC(gpriv, x) + 0x20)
0317 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
0318 #define RCANFD_RFPCTR(gpriv, x)     (RCANFD_RFCC(gpriv, x) + 0x40)
0319 
0320 /* Common FIFO Control registers */
0321 
0322 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
0323 #define RCANFD_CFCC(gpriv, ch, idx) \
0324     (reg_v3u(gpriv, 0x0120, 0x0118) + (0x0c * (ch)) + (0x04 * (idx)))
0325 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
0326 #define RCANFD_CFSTS(gpriv, ch, idx) \
0327     (reg_v3u(gpriv, 0x01e0, 0x0178) + (0x0c * (ch)) + (0x04 * (idx)))
0328 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
0329 #define RCANFD_CFPCTR(gpriv, ch, idx) \
0330     (reg_v3u(gpriv, 0x0240, 0x01d8) + (0x0c * (ch)) + (0x04 * (idx)))
0331 
0332 /* RSCFDnCFDFESTS / RSCFDnFESTS */
0333 #define RCANFD_FESTS            (0x0238)
0334 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */
0335 #define RCANFD_FFSTS            (0x023c)
0336 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */
0337 #define RCANFD_FMSTS            (0x0240)
0338 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */
0339 #define RCANFD_RFISTS           (0x0244)
0340 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
0341 #define RCANFD_CFRISTS          (0x0248)
0342 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
0343 #define RCANFD_CFTISTS          (0x024c)
0344 
0345 /* RSCFDnCFDTMCp / RSCFDnTMCp */
0346 #define RCANFD_TMC(p)           (0x0250 + (0x01 * (p)))
0347 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
0348 #define RCANFD_TMSTS(p)         (0x02d0 + (0x01 * (p)))
0349 
0350 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
0351 #define RCANFD_TMTRSTS(y)       (0x0350 + (0x04 * (y)))
0352 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
0353 #define RCANFD_TMTARSTS(y)      (0x0360 + (0x04 * (y)))
0354 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
0355 #define RCANFD_TMTCSTS(y)       (0x0370 + (0x04 * (y)))
0356 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
0357 #define RCANFD_TMTASTS(y)       (0x0380 + (0x04 * (y)))
0358 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */
0359 #define RCANFD_TMIEC(y)         (0x0390 + (0x04 * (y)))
0360 
0361 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
0362 #define RCANFD_TXQCC(m)         (0x03a0 + (0x04 * (m)))
0363 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
0364 #define RCANFD_TXQSTS(m)        (0x03c0 + (0x04 * (m)))
0365 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
0366 #define RCANFD_TXQPCTR(m)       (0x03e0 + (0x04 * (m)))
0367 
0368 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
0369 #define RCANFD_THLCC(m)         (0x0400 + (0x04 * (m)))
0370 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
0371 #define RCANFD_THLSTS(m)        (0x0420 + (0x04 * (m)))
0372 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
0373 #define RCANFD_THLPCTR(m)       (0x0440 + (0x04 * (m)))
0374 
0375 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
0376 #define RCANFD_GTINTSTS0        (0x0460)
0377 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
0378 #define RCANFD_GTINTSTS1        (0x0464)
0379 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
0380 #define RCANFD_GTSTCFG          (0x0468)
0381 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
0382 #define RCANFD_GTSTCTR          (0x046c)
0383 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
0384 #define RCANFD_GLOCKK           (0x047c)
0385 /* RSCFDnCFDGRMCFG */
0386 #define RCANFD_GRMCFG           (0x04fc)
0387 
0388 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
0389 #define RCANFD_GAFLID(offset, j)    ((offset) + (0x10 * (j)))
0390 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
0391 #define RCANFD_GAFLM(offset, j)     ((offset) + 0x04 + (0x10 * (j)))
0392 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
0393 #define RCANFD_GAFLP0(offset, j)    ((offset) + 0x08 + (0x10 * (j)))
0394 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
0395 #define RCANFD_GAFLP1(offset, j)    ((offset) + 0x0c + (0x10 * (j)))
0396 
0397 /* Classical CAN only mode register map */
0398 
0399 /* RSCFDnGAFLXXXj offset */
0400 #define RCANFD_C_GAFL_OFFSET        (0x0500)
0401 
0402 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
0403 #define RCANFD_C_RMID(q)        (0x0600 + (0x10 * (q)))
0404 #define RCANFD_C_RMPTR(q)       (0x0604 + (0x10 * (q)))
0405 #define RCANFD_C_RMDF0(q)       (0x0608 + (0x10 * (q)))
0406 #define RCANFD_C_RMDF1(q)       (0x060c + (0x10 * (q)))
0407 
0408 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
0409 #define RCANFD_C_RFOFFSET   (0x0e00)
0410 #define RCANFD_C_RFID(x)    (RCANFD_C_RFOFFSET + (0x10 * (x)))
0411 #define RCANFD_C_RFPTR(x)   (RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x)))
0412 #define RCANFD_C_RFDF(x, df) \
0413         (RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df)))
0414 
0415 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
0416 #define RCANFD_C_CFOFFSET       (0x0e80)
0417 
0418 #define RCANFD_C_CFID(ch, idx) \
0419     (RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx)))
0420 
0421 #define RCANFD_C_CFPTR(ch, idx) \
0422     (RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx)))
0423 
0424 #define RCANFD_C_CFDF(ch, idx, df) \
0425     (RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df)))
0426 
0427 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
0428 #define RCANFD_C_TMID(p)        (0x1000 + (0x10 * (p)))
0429 #define RCANFD_C_TMPTR(p)       (0x1004 + (0x10 * (p)))
0430 #define RCANFD_C_TMDF0(p)       (0x1008 + (0x10 * (p)))
0431 #define RCANFD_C_TMDF1(p)       (0x100c + (0x10 * (p)))
0432 
0433 /* RSCFDnTHLACCm */
0434 #define RCANFD_C_THLACC(m)      (0x1800 + (0x04 * (m)))
0435 /* RSCFDnRPGACCr */
0436 #define RCANFD_C_RPGACC(r)      (0x1900 + (0x04 * (r)))
0437 
0438 /* R-Car V3U Classical and CAN FD mode specific register map */
0439 #define RCANFD_V3U_CFDCFG       (0x1314)
0440 #define RCANFD_V3U_DCFG(m)      (0x1400 + (0x20 * (m)))
0441 
0442 #define RCANFD_V3U_GAFL_OFFSET      (0x1800)
0443 
0444 /* CAN FD mode specific register map */
0445 
0446 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
0447 #define RCANFD_F_DCFG(m)        (0x0500 + (0x20 * (m)))
0448 #define RCANFD_F_CFDCFG(m)      (0x0504 + (0x20 * (m)))
0449 #define RCANFD_F_CFDCTR(m)      (0x0508 + (0x20 * (m)))
0450 #define RCANFD_F_CFDSTS(m)      (0x050c + (0x20 * (m)))
0451 #define RCANFD_F_CFDCRC(m)      (0x0510 + (0x20 * (m)))
0452 
0453 /* RSCFDnCFDGAFLXXXj offset */
0454 #define RCANFD_F_GAFL_OFFSET        (0x1000)
0455 
0456 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
0457 #define RCANFD_F_RMID(q)        (0x2000 + (0x20 * (q)))
0458 #define RCANFD_F_RMPTR(q)       (0x2004 + (0x20 * (q)))
0459 #define RCANFD_F_RMFDSTS(q)     (0x2008 + (0x20 * (q)))
0460 #define RCANFD_F_RMDF(q, b)     (0x200c + (0x04 * (b)) + (0x20 * (q)))
0461 
0462 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
0463 #define RCANFD_F_RFOFFSET(gpriv)    reg_v3u(gpriv, 0x6000, 0x3000)
0464 #define RCANFD_F_RFID(gpriv, x)     (RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x)))
0465 #define RCANFD_F_RFPTR(gpriv, x)    (RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x)))
0466 #define RCANFD_F_RFFDSTS(gpriv, x)  (RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x)))
0467 #define RCANFD_F_RFDF(gpriv, x, df) \
0468     (RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df)))
0469 
0470 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
0471 #define RCANFD_F_CFOFFSET(gpriv)    reg_v3u(gpriv, 0x6400, 0x3400)
0472 
0473 #define RCANFD_F_CFID(gpriv, ch, idx) \
0474     (RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx)))
0475 
0476 #define RCANFD_F_CFPTR(gpriv, ch, idx) \
0477     (RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx)))
0478 
0479 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \
0480     (RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx)))
0481 
0482 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \
0483     (RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \
0484      (0x04 * (df)))
0485 
0486 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
0487 #define RCANFD_F_TMID(p)        (0x4000 + (0x20 * (p)))
0488 #define RCANFD_F_TMPTR(p)       (0x4004 + (0x20 * (p)))
0489 #define RCANFD_F_TMFDCTR(p)     (0x4008 + (0x20 * (p)))
0490 #define RCANFD_F_TMDF(p, b)     (0x400c + (0x20 * (p)) + (0x04 * (b)))
0491 
0492 /* RSCFDnCFDTHLACCm */
0493 #define RCANFD_F_THLACC(m)      (0x6000 + (0x04 * (m)))
0494 /* RSCFDnCFDRPGACCr */
0495 #define RCANFD_F_RPGACC(r)      (0x6400 + (0x04 * (r)))
0496 
0497 /* Constants */
0498 #define RCANFD_FIFO_DEPTH       8   /* Tx FIFO depth */
0499 #define RCANFD_NAPI_WEIGHT      8   /* Rx poll quota */
0500 
0501 #define RCANFD_NUM_CHANNELS     8   /* Eight channels max */
0502 #define RCANFD_CHANNELS_MASK        BIT((RCANFD_NUM_CHANNELS) - 1)
0503 
0504 #define RCANFD_GAFL_PAGENUM(entry)  ((entry) / 16)
0505 #define RCANFD_CHANNEL_NUMRULES     1   /* only one rule per channel */
0506 
0507 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
0508  * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
0509  * number is added to RFFIFO index.
0510  */
0511 #define RCANFD_RFFIFO_IDX       0
0512 
0513 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
0514  * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
0515  */
0516 #define RCANFD_CFFIFO_IDX       0
0517 
0518 /* fCAN clock select register settings */
0519 enum rcar_canfd_fcanclk {
0520     RCANFD_CANFDCLK = 0,        /* CANFD clock */
0521     RCANFD_EXTCLK,          /* Externally input clock */
0522 };
0523 
0524 struct rcar_canfd_global;
0525 
0526 /* Channel priv data */
0527 struct rcar_canfd_channel {
0528     struct can_priv can;            /* Must be the first member */
0529     struct net_device *ndev;
0530     struct rcar_canfd_global *gpriv;    /* Controller reference */
0531     void __iomem *base;         /* Register base address */
0532     struct napi_struct napi;
0533     u32 tx_head;                /* Incremented on xmit */
0534     u32 tx_tail;                /* Incremented on xmit done */
0535     u32 channel;                /* Channel number */
0536     spinlock_t tx_lock;         /* To protect tx path */
0537 };
0538 
0539 /* Global priv data */
0540 struct rcar_canfd_global {
0541     struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
0542     void __iomem *base;     /* Register base address */
0543     struct platform_device *pdev;   /* Respective platform device */
0544     struct clk *clkp;       /* Peripheral clock */
0545     struct clk *can_clk;        /* fCAN clock */
0546     enum rcar_canfd_fcanclk fcan;   /* CANFD or Ext clock */
0547     unsigned long channels_mask;    /* Enabled channels mask */
0548     bool fdmode;            /* CAN FD or Classical CAN only mode */
0549     struct reset_control *rstc1;
0550     struct reset_control *rstc2;
0551     enum rcanfd_chip_id chip_id;
0552     u32 max_channels;
0553 };
0554 
0555 /* CAN FD mode nominal rate constants */
0556 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = {
0557     .name = RCANFD_DRV_NAME,
0558     .tseg1_min = 2,
0559     .tseg1_max = 128,
0560     .tseg2_min = 2,
0561     .tseg2_max = 32,
0562     .sjw_max = 32,
0563     .brp_min = 1,
0564     .brp_max = 1024,
0565     .brp_inc = 1,
0566 };
0567 
0568 /* CAN FD mode data rate constants */
0569 static const struct can_bittiming_const rcar_canfd_data_bittiming_const = {
0570     .name = RCANFD_DRV_NAME,
0571     .tseg1_min = 2,
0572     .tseg1_max = 16,
0573     .tseg2_min = 2,
0574     .tseg2_max = 8,
0575     .sjw_max = 8,
0576     .brp_min = 1,
0577     .brp_max = 256,
0578     .brp_inc = 1,
0579 };
0580 
0581 /* Classical CAN mode bitrate constants */
0582 static const struct can_bittiming_const rcar_canfd_bittiming_const = {
0583     .name = RCANFD_DRV_NAME,
0584     .tseg1_min = 4,
0585     .tseg1_max = 16,
0586     .tseg2_min = 2,
0587     .tseg2_max = 8,
0588     .sjw_max = 4,
0589     .brp_min = 1,
0590     .brp_max = 1024,
0591     .brp_inc = 1,
0592 };
0593 
0594 /* Helper functions */
0595 static inline bool is_v3u(struct rcar_canfd_global *gpriv)
0596 {
0597     return gpriv->chip_id == RENESAS_R8A779A0;
0598 }
0599 
0600 static inline u32 reg_v3u(struct rcar_canfd_global *gpriv,
0601               u32 v3u, u32 not_v3u)
0602 {
0603     return is_v3u(gpriv) ? v3u : not_v3u;
0604 }
0605 
0606 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
0607 {
0608     u32 data = readl(reg);
0609 
0610     data &= ~mask;
0611     data |= (val & mask);
0612     writel(data, reg);
0613 }
0614 
0615 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
0616 {
0617     return readl(base + (offset));
0618 }
0619 
0620 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
0621 {
0622     writel(val, base + (offset));
0623 }
0624 
0625 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
0626 {
0627     rcar_canfd_update(val, val, base + (reg));
0628 }
0629 
0630 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
0631 {
0632     rcar_canfd_update(val, 0, base + (reg));
0633 }
0634 
0635 static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
0636                   u32 mask, u32 val)
0637 {
0638     rcar_canfd_update(mask, val, base + (reg));
0639 }
0640 
0641 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
0642                 struct canfd_frame *cf, u32 off)
0643 {
0644     u32 i, lwords;
0645 
0646     lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
0647     for (i = 0; i < lwords; i++)
0648         *((u32 *)cf->data + i) =
0649             rcar_canfd_read(priv->base, off + (i * sizeof(u32)));
0650 }
0651 
0652 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
0653                 struct canfd_frame *cf, u32 off)
0654 {
0655     u32 i, lwords;
0656 
0657     lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
0658     for (i = 0; i < lwords; i++)
0659         rcar_canfd_write(priv->base, off + (i * sizeof(u32)),
0660                  *((u32 *)cf->data + i));
0661 }
0662 
0663 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
0664 {
0665     u32 i;
0666 
0667     for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
0668         can_free_echo_skb(ndev, i, NULL);
0669 }
0670 
0671 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv)
0672 {
0673     if (is_v3u(gpriv)) {
0674         if (gpriv->fdmode)
0675             rcar_canfd_set_bit(gpriv->base, RCANFD_V3U_CFDCFG,
0676                        RCANFD_FDCFG_FDOE);
0677         else
0678             rcar_canfd_set_bit(gpriv->base, RCANFD_V3U_CFDCFG,
0679                        RCANFD_FDCFG_CLOE);
0680     } else {
0681         if (gpriv->fdmode)
0682             rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
0683                        RCANFD_GRMCFG_RCMC);
0684         else
0685             rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
0686                          RCANFD_GRMCFG_RCMC);
0687     }
0688 }
0689 
0690 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
0691 {
0692     u32 sts, ch;
0693     int err;
0694 
0695     /* Check RAMINIT flag as CAN RAM initialization takes place
0696      * after the MCU reset
0697      */
0698     err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
0699                  !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
0700     if (err) {
0701         dev_dbg(&gpriv->pdev->dev, "global raminit failed\n");
0702         return err;
0703     }
0704 
0705     /* Transition to Global Reset mode */
0706     rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
0707     rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
0708                   RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
0709 
0710     /* Ensure Global reset mode */
0711     err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
0712                  (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
0713     if (err) {
0714         dev_dbg(&gpriv->pdev->dev, "global reset failed\n");
0715         return err;
0716     }
0717 
0718     /* Reset Global error flags */
0719     rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
0720 
0721     /* Set the controller into appropriate mode */
0722     rcar_canfd_set_mode(gpriv);
0723 
0724     /* Transition all Channels to reset mode */
0725     for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
0726         rcar_canfd_clear_bit(gpriv->base,
0727                      RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
0728 
0729         rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
0730                       RCANFD_CCTR_CHMDC_MASK,
0731                       RCANFD_CCTR_CHDMC_CRESET);
0732 
0733         /* Ensure Channel reset mode */
0734         err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
0735                      (sts & RCANFD_CSTS_CRSTSTS),
0736                      2, 500000);
0737         if (err) {
0738             dev_dbg(&gpriv->pdev->dev,
0739                 "channel %u reset failed\n", ch);
0740             return err;
0741         }
0742     }
0743     return 0;
0744 }
0745 
0746 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
0747 {
0748     u32 cfg, ch;
0749 
0750     /* Global configuration settings */
0751 
0752     /* ECC Error flag Enable */
0753     cfg = RCANFD_GCFG_EEFE;
0754 
0755     if (gpriv->fdmode)
0756         /* Truncate payload to configured message size RFPLS */
0757         cfg |= RCANFD_GCFG_CMPOC;
0758 
0759     /* Set External Clock if selected */
0760     if (gpriv->fcan != RCANFD_CANFDCLK)
0761         cfg |= RCANFD_GCFG_DCS;
0762 
0763     rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
0764 
0765     /* Channel configuration settings */
0766     for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
0767         rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
0768                    RCANFD_CCTR_ERRD);
0769         rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
0770                       RCANFD_CCTR_BOM_MASK,
0771                       RCANFD_CCTR_BOM_BENTRY);
0772     }
0773 }
0774 
0775 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
0776                        u32 ch)
0777 {
0778     u32 cfg;
0779     int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES;
0780     u32 ridx = ch + RCANFD_RFFIFO_IDX;
0781 
0782     if (ch == 0) {
0783         start = 0; /* Channel 0 always starts from 0th rule */
0784     } else {
0785         /* Get number of Channel 0 rules and adjust */
0786         cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG(ch));
0787         start = RCANFD_GAFLCFG_GETRNC(gpriv, 0, cfg);
0788     }
0789 
0790     /* Enable write access to entry */
0791     page = RCANFD_GAFL_PAGENUM(start);
0792     rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
0793                (RCANFD_GAFLECTR_AFLPN(gpriv, page) |
0794                 RCANFD_GAFLECTR_AFLDAE));
0795 
0796     /* Write number of rules for channel */
0797     rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(ch),
0798                RCANFD_GAFLCFG_SETRNC(gpriv, ch, num_rules));
0799     if (is_v3u(gpriv))
0800         offset = RCANFD_V3U_GAFL_OFFSET;
0801     else if (gpriv->fdmode)
0802         offset = RCANFD_F_GAFL_OFFSET;
0803     else
0804         offset = RCANFD_C_GAFL_OFFSET;
0805 
0806     /* Accept all IDs */
0807     rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0);
0808     /* IDE or RTR is not considered for matching */
0809     rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0);
0810     /* Any data length accepted */
0811     rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0);
0812     /* Place the msg in corresponding Rx FIFO entry */
0813     rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, start),
0814                RCANFD_GAFLP1_GAFLFDP(ridx));
0815 
0816     /* Disable write access to page */
0817     rcar_canfd_clear_bit(gpriv->base,
0818                  RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
0819 }
0820 
0821 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
0822 {
0823     /* Rx FIFO is used for reception */
0824     u32 cfg;
0825     u16 rfdc, rfpls;
0826 
0827     /* Select Rx FIFO based on channel */
0828     u32 ridx = ch + RCANFD_RFFIFO_IDX;
0829 
0830     rfdc = 2;       /* b010 - 8 messages Rx FIFO depth */
0831     if (gpriv->fdmode)
0832         rfpls = 7;  /* b111 - Max 64 bytes payload */
0833     else
0834         rfpls = 0;  /* b000 - Max 8 bytes payload */
0835 
0836     cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
0837         RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
0838     rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg);
0839 }
0840 
0841 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
0842 {
0843     /* Tx/Rx(Common) FIFO configured in Tx mode is
0844      * used for transmission
0845      *
0846      * Each channel has 3 Common FIFO dedicated to them.
0847      * Use the 1st (index 0) out of 3
0848      */
0849     u32 cfg;
0850     u16 cftml, cfm, cfdc, cfpls;
0851 
0852     cftml = 0;      /* 0th buffer */
0853     cfm = 1;        /* b01 - Transmit mode */
0854     cfdc = 2;       /* b010 - 8 messages Tx FIFO depth */
0855     if (gpriv->fdmode)
0856         cfpls = 7;  /* b111 - Max 64 bytes payload */
0857     else
0858         cfpls = 0;  /* b000 - Max 8 bytes payload */
0859 
0860     cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) |
0861         RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) |
0862         RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
0863     rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg);
0864 
0865     if (gpriv->fdmode)
0866         /* Clear FD mode specific control/status register */
0867         rcar_canfd_write(gpriv->base,
0868                  RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0);
0869 }
0870 
0871 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
0872 {
0873     u32 ctr;
0874 
0875     /* Clear any stray error interrupt flags */
0876     rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
0877 
0878     /* Global interrupts setup */
0879     ctr = RCANFD_GCTR_MEIE;
0880     if (gpriv->fdmode)
0881         ctr |= RCANFD_GCTR_CFMPOFIE;
0882 
0883     rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
0884 }
0885 
0886 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
0887                          *gpriv)
0888 {
0889     /* Disable all interrupts */
0890     rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
0891 
0892     /* Clear any stray error interrupt flags */
0893     rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
0894 }
0895 
0896 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
0897                          *priv)
0898 {
0899     u32 ctr, ch = priv->channel;
0900 
0901     /* Clear any stray error flags */
0902     rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
0903 
0904     /* Channel interrupts setup */
0905     ctr = (RCANFD_CCTR_TAIE |
0906            RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
0907            RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
0908            RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
0909            RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
0910     rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
0911 }
0912 
0913 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
0914                           *priv)
0915 {
0916     u32 ctr, ch = priv->channel;
0917 
0918     ctr = (RCANFD_CCTR_TAIE |
0919            RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
0920            RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
0921            RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
0922            RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
0923     rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
0924 
0925     /* Clear any stray error flags */
0926     rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
0927 }
0928 
0929 static void rcar_canfd_global_error(struct net_device *ndev)
0930 {
0931     struct rcar_canfd_channel *priv = netdev_priv(ndev);
0932     struct rcar_canfd_global *gpriv = priv->gpriv;
0933     struct net_device_stats *stats = &ndev->stats;
0934     u32 ch = priv->channel;
0935     u32 gerfl, sts;
0936     u32 ridx = ch + RCANFD_RFFIFO_IDX;
0937 
0938     gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
0939     if ((gerfl & RCANFD_GERFL_EEF0) && (ch == 0)) {
0940         netdev_dbg(ndev, "Ch0: ECC Error flag\n");
0941         stats->tx_dropped++;
0942     }
0943     if ((gerfl & RCANFD_GERFL_EEF1) && (ch == 1)) {
0944         netdev_dbg(ndev, "Ch1: ECC Error flag\n");
0945         stats->tx_dropped++;
0946     }
0947     if (gerfl & RCANFD_GERFL_MES) {
0948         sts = rcar_canfd_read(priv->base,
0949                       RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
0950         if (sts & RCANFD_CFSTS_CFMLT) {
0951             netdev_dbg(ndev, "Tx Message Lost flag\n");
0952             stats->tx_dropped++;
0953             rcar_canfd_write(priv->base,
0954                      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
0955                      sts & ~RCANFD_CFSTS_CFMLT);
0956         }
0957 
0958         sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
0959         if (sts & RCANFD_RFSTS_RFMLT) {
0960             netdev_dbg(ndev, "Rx Message Lost flag\n");
0961             stats->rx_dropped++;
0962             rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
0963                      sts & ~RCANFD_RFSTS_RFMLT);
0964         }
0965     }
0966     if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
0967         /* Message Lost flag will be set for respective channel
0968          * when this condition happens with counters and flags
0969          * already updated.
0970          */
0971         netdev_dbg(ndev, "global payload overflow interrupt\n");
0972     }
0973 
0974     /* Clear all global error interrupts. Only affected channels bits
0975      * get cleared
0976      */
0977     rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
0978 }
0979 
0980 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
0981                  u16 txerr, u16 rxerr)
0982 {
0983     struct rcar_canfd_channel *priv = netdev_priv(ndev);
0984     struct net_device_stats *stats = &ndev->stats;
0985     struct can_frame *cf;
0986     struct sk_buff *skb;
0987     u32 ch = priv->channel;
0988 
0989     netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
0990 
0991     /* Propagate the error condition to the CAN stack */
0992     skb = alloc_can_err_skb(ndev, &cf);
0993     if (!skb) {
0994         stats->rx_dropped++;
0995         return;
0996     }
0997 
0998     /* Channel error interrupts */
0999     if (cerfl & RCANFD_CERFL_BEF) {
1000         netdev_dbg(ndev, "Bus error\n");
1001         cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
1002         cf->data[2] = CAN_ERR_PROT_UNSPEC;
1003         priv->can.can_stats.bus_error++;
1004     }
1005     if (cerfl & RCANFD_CERFL_ADERR) {
1006         netdev_dbg(ndev, "ACK Delimiter Error\n");
1007         stats->tx_errors++;
1008         cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
1009     }
1010     if (cerfl & RCANFD_CERFL_B0ERR) {
1011         netdev_dbg(ndev, "Bit Error (dominant)\n");
1012         stats->tx_errors++;
1013         cf->data[2] |= CAN_ERR_PROT_BIT0;
1014     }
1015     if (cerfl & RCANFD_CERFL_B1ERR) {
1016         netdev_dbg(ndev, "Bit Error (recessive)\n");
1017         stats->tx_errors++;
1018         cf->data[2] |= CAN_ERR_PROT_BIT1;
1019     }
1020     if (cerfl & RCANFD_CERFL_CERR) {
1021         netdev_dbg(ndev, "CRC Error\n");
1022         stats->rx_errors++;
1023         cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
1024     }
1025     if (cerfl & RCANFD_CERFL_AERR) {
1026         netdev_dbg(ndev, "ACK Error\n");
1027         stats->tx_errors++;
1028         cf->can_id |= CAN_ERR_ACK;
1029         cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
1030     }
1031     if (cerfl & RCANFD_CERFL_FERR) {
1032         netdev_dbg(ndev, "Form Error\n");
1033         stats->rx_errors++;
1034         cf->data[2] |= CAN_ERR_PROT_FORM;
1035     }
1036     if (cerfl & RCANFD_CERFL_SERR) {
1037         netdev_dbg(ndev, "Stuff Error\n");
1038         stats->rx_errors++;
1039         cf->data[2] |= CAN_ERR_PROT_STUFF;
1040     }
1041     if (cerfl & RCANFD_CERFL_ALF) {
1042         netdev_dbg(ndev, "Arbitration lost Error\n");
1043         priv->can.can_stats.arbitration_lost++;
1044         cf->can_id |= CAN_ERR_LOSTARB;
1045         cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
1046     }
1047     if (cerfl & RCANFD_CERFL_BLF) {
1048         netdev_dbg(ndev, "Bus Lock Error\n");
1049         stats->rx_errors++;
1050         cf->can_id |= CAN_ERR_BUSERROR;
1051     }
1052     if (cerfl & RCANFD_CERFL_EWF) {
1053         netdev_dbg(ndev, "Error warning interrupt\n");
1054         priv->can.state = CAN_STATE_ERROR_WARNING;
1055         priv->can.can_stats.error_warning++;
1056         cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1057         cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
1058             CAN_ERR_CRTL_RX_WARNING;
1059         cf->data[6] = txerr;
1060         cf->data[7] = rxerr;
1061     }
1062     if (cerfl & RCANFD_CERFL_EPF) {
1063         netdev_dbg(ndev, "Error passive interrupt\n");
1064         priv->can.state = CAN_STATE_ERROR_PASSIVE;
1065         priv->can.can_stats.error_passive++;
1066         cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1067         cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
1068             CAN_ERR_CRTL_RX_PASSIVE;
1069         cf->data[6] = txerr;
1070         cf->data[7] = rxerr;
1071     }
1072     if (cerfl & RCANFD_CERFL_BOEF) {
1073         netdev_dbg(ndev, "Bus-off entry interrupt\n");
1074         rcar_canfd_tx_failure_cleanup(ndev);
1075         priv->can.state = CAN_STATE_BUS_OFF;
1076         priv->can.can_stats.bus_off++;
1077         can_bus_off(ndev);
1078         cf->can_id |= CAN_ERR_BUSOFF;
1079     }
1080     if (cerfl & RCANFD_CERFL_OVLF) {
1081         netdev_dbg(ndev,
1082                "Overload Frame Transmission error interrupt\n");
1083         stats->tx_errors++;
1084         cf->can_id |= CAN_ERR_PROT;
1085         cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
1086     }
1087 
1088     /* Clear channel error interrupts that are handled */
1089     rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
1090              RCANFD_CERFL_ERR(~cerfl));
1091     netif_rx(skb);
1092 }
1093 
1094 static void rcar_canfd_tx_done(struct net_device *ndev)
1095 {
1096     struct rcar_canfd_channel *priv = netdev_priv(ndev);
1097     struct rcar_canfd_global *gpriv = priv->gpriv;
1098     struct net_device_stats *stats = &ndev->stats;
1099     u32 sts;
1100     unsigned long flags;
1101     u32 ch = priv->channel;
1102 
1103     do {
1104         u8 unsent, sent;
1105 
1106         sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
1107         stats->tx_packets++;
1108         stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL);
1109 
1110         spin_lock_irqsave(&priv->tx_lock, flags);
1111         priv->tx_tail++;
1112         sts = rcar_canfd_read(priv->base,
1113                       RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1114         unsent = RCANFD_CFSTS_CFMC(sts);
1115 
1116         /* Wake producer only when there is room */
1117         if (unsent != RCANFD_FIFO_DEPTH)
1118             netif_wake_queue(ndev);
1119 
1120         if (priv->tx_head - priv->tx_tail <= unsent) {
1121             spin_unlock_irqrestore(&priv->tx_lock, flags);
1122             break;
1123         }
1124         spin_unlock_irqrestore(&priv->tx_lock, flags);
1125 
1126     } while (1);
1127 
1128     /* Clear interrupt */
1129     rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1130              sts & ~RCANFD_CFSTS_CFTXIF);
1131 }
1132 
1133 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch)
1134 {
1135     struct rcar_canfd_channel *priv = gpriv->ch[ch];
1136     struct net_device *ndev = priv->ndev;
1137     u32 gerfl;
1138 
1139     /* Handle global error interrupts */
1140     gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1141     if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
1142         rcar_canfd_global_error(ndev);
1143 }
1144 
1145 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id)
1146 {
1147     struct rcar_canfd_global *gpriv = dev_id;
1148     u32 ch;
1149 
1150     for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels)
1151         rcar_canfd_handle_global_err(gpriv, ch);
1152 
1153     return IRQ_HANDLED;
1154 }
1155 
1156 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch)
1157 {
1158     struct rcar_canfd_channel *priv = gpriv->ch[ch];
1159     u32 ridx = ch + RCANFD_RFFIFO_IDX;
1160     u32 sts;
1161 
1162     /* Handle Rx interrupts */
1163     sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1164     if (likely(sts & RCANFD_RFSTS_RFIF)) {
1165         if (napi_schedule_prep(&priv->napi)) {
1166             /* Disable Rx FIFO interrupts */
1167             rcar_canfd_clear_bit(priv->base,
1168                          RCANFD_RFCC(gpriv, ridx),
1169                          RCANFD_RFCC_RFIE);
1170             __napi_schedule(&priv->napi);
1171         }
1172     }
1173 }
1174 
1175 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id)
1176 {
1177     struct rcar_canfd_global *gpriv = dev_id;
1178     u32 ch;
1179 
1180     for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels)
1181         rcar_canfd_handle_global_receive(gpriv, ch);
1182 
1183     return IRQ_HANDLED;
1184 }
1185 
1186 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
1187 {
1188     struct rcar_canfd_global *gpriv = dev_id;
1189     u32 ch;
1190 
1191     /* Global error interrupts still indicate a condition specific
1192      * to a channel. RxFIFO interrupt is a global interrupt.
1193      */
1194     for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
1195         rcar_canfd_handle_global_err(gpriv, ch);
1196         rcar_canfd_handle_global_receive(gpriv, ch);
1197     }
1198     return IRQ_HANDLED;
1199 }
1200 
1201 static void rcar_canfd_state_change(struct net_device *ndev,
1202                     u16 txerr, u16 rxerr)
1203 {
1204     struct rcar_canfd_channel *priv = netdev_priv(ndev);
1205     struct net_device_stats *stats = &ndev->stats;
1206     enum can_state rx_state, tx_state, state = priv->can.state;
1207     struct can_frame *cf;
1208     struct sk_buff *skb;
1209 
1210     /* Handle transition from error to normal states */
1211     if (txerr < 96 && rxerr < 96)
1212         state = CAN_STATE_ERROR_ACTIVE;
1213     else if (txerr < 128 && rxerr < 128)
1214         state = CAN_STATE_ERROR_WARNING;
1215 
1216     if (state != priv->can.state) {
1217         netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
1218                state, priv->can.state, txerr, rxerr);
1219         skb = alloc_can_err_skb(ndev, &cf);
1220         if (!skb) {
1221             stats->rx_dropped++;
1222             return;
1223         }
1224         tx_state = txerr >= rxerr ? state : 0;
1225         rx_state = txerr <= rxerr ? state : 0;
1226 
1227         can_change_state(ndev, cf, tx_state, rx_state);
1228         netif_rx(skb);
1229     }
1230 }
1231 
1232 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch)
1233 {
1234     struct rcar_canfd_channel *priv = gpriv->ch[ch];
1235     struct net_device *ndev = priv->ndev;
1236     u32 sts;
1237 
1238     /* Handle Tx interrupts */
1239     sts = rcar_canfd_read(priv->base,
1240                   RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1241     if (likely(sts & RCANFD_CFSTS_CFTXIF))
1242         rcar_canfd_tx_done(ndev);
1243 }
1244 
1245 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id)
1246 {
1247     struct rcar_canfd_global *gpriv = dev_id;
1248     u32 ch;
1249 
1250     for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels)
1251         rcar_canfd_handle_channel_tx(gpriv, ch);
1252 
1253     return IRQ_HANDLED;
1254 }
1255 
1256 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch)
1257 {
1258     struct rcar_canfd_channel *priv = gpriv->ch[ch];
1259     struct net_device *ndev = priv->ndev;
1260     u16 txerr, rxerr;
1261     u32 sts, cerfl;
1262 
1263     /* Handle channel error interrupts */
1264     cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
1265     sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1266     txerr = RCANFD_CSTS_TECCNT(sts);
1267     rxerr = RCANFD_CSTS_RECCNT(sts);
1268     if (unlikely(RCANFD_CERFL_ERR(cerfl)))
1269         rcar_canfd_error(ndev, cerfl, txerr, rxerr);
1270 
1271     /* Handle state change to lower states */
1272     if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE &&
1273              priv->can.state != CAN_STATE_BUS_OFF))
1274         rcar_canfd_state_change(ndev, txerr, rxerr);
1275 }
1276 
1277 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id)
1278 {
1279     struct rcar_canfd_global *gpriv = dev_id;
1280     u32 ch;
1281 
1282     for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels)
1283         rcar_canfd_handle_channel_err(gpriv, ch);
1284 
1285     return IRQ_HANDLED;
1286 }
1287 
1288 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
1289 {
1290     struct rcar_canfd_global *gpriv = dev_id;
1291     u32 ch;
1292 
1293     /* Common FIFO is a per channel resource */
1294     for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
1295         rcar_canfd_handle_channel_err(gpriv, ch);
1296         rcar_canfd_handle_channel_tx(gpriv, ch);
1297     }
1298 
1299     return IRQ_HANDLED;
1300 }
1301 
1302 static void rcar_canfd_set_bittiming(struct net_device *dev)
1303 {
1304     struct rcar_canfd_channel *priv = netdev_priv(dev);
1305     struct rcar_canfd_global *gpriv = priv->gpriv;
1306     const struct can_bittiming *bt = &priv->can.bittiming;
1307     const struct can_bittiming *dbt = &priv->can.data_bittiming;
1308     u16 brp, sjw, tseg1, tseg2;
1309     u32 cfg;
1310     u32 ch = priv->channel;
1311 
1312     /* Nominal bit timing settings */
1313     brp = bt->brp - 1;
1314     sjw = bt->sjw - 1;
1315     tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1316     tseg2 = bt->phase_seg2 - 1;
1317 
1318     if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1319         /* CAN FD only mode */
1320         cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) |
1321                RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1322 
1323         rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1324         netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1325                brp, sjw, tseg1, tseg2);
1326 
1327         /* Data bit timing settings */
1328         brp = dbt->brp - 1;
1329         sjw = dbt->sjw - 1;
1330         tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1331         tseg2 = dbt->phase_seg2 - 1;
1332 
1333         cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) |
1334                RCANFD_DCFG_DSJW(sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2));
1335 
1336         if (is_v3u(gpriv))
1337             rcar_canfd_write(priv->base, RCANFD_V3U_DCFG(ch), cfg);
1338         else
1339             rcar_canfd_write(priv->base, RCANFD_F_DCFG(ch), cfg);
1340         netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1341                brp, sjw, tseg1, tseg2);
1342     } else {
1343         /* Classical CAN only mode */
1344         if (is_v3u(gpriv)) {
1345             cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) |
1346                    RCANFD_NCFG_NBRP(brp) |
1347                    RCANFD_NCFG_NSJW(gpriv, sjw) |
1348                    RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1349         } else {
1350             cfg = (RCANFD_CFG_TSEG1(tseg1) |
1351                    RCANFD_CFG_BRP(brp) |
1352                    RCANFD_CFG_SJW(sjw) |
1353                    RCANFD_CFG_TSEG2(tseg2));
1354         }
1355 
1356         rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1357         netdev_dbg(priv->ndev,
1358                "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1359                brp, sjw, tseg1, tseg2);
1360     }
1361 }
1362 
1363 static int rcar_canfd_start(struct net_device *ndev)
1364 {
1365     struct rcar_canfd_channel *priv = netdev_priv(ndev);
1366     struct rcar_canfd_global *gpriv = priv->gpriv;
1367     int err = -EOPNOTSUPP;
1368     u32 sts, ch = priv->channel;
1369     u32 ridx = ch + RCANFD_RFFIFO_IDX;
1370 
1371     rcar_canfd_set_bittiming(ndev);
1372 
1373     rcar_canfd_enable_channel_interrupts(priv);
1374 
1375     /* Set channel to Operational mode */
1376     rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1377                   RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
1378 
1379     /* Verify channel mode change */
1380     err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1381                  (sts & RCANFD_CSTS_COMSTS), 2, 500000);
1382     if (err) {
1383         netdev_err(ndev, "channel %u communication state failed\n", ch);
1384         goto fail_mode_change;
1385     }
1386 
1387     /* Enable Common & Rx FIFO */
1388     rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1389                RCANFD_CFCC_CFE);
1390     rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1391 
1392     priv->can.state = CAN_STATE_ERROR_ACTIVE;
1393     return 0;
1394 
1395 fail_mode_change:
1396     rcar_canfd_disable_channel_interrupts(priv);
1397     return err;
1398 }
1399 
1400 static int rcar_canfd_open(struct net_device *ndev)
1401 {
1402     struct rcar_canfd_channel *priv = netdev_priv(ndev);
1403     struct rcar_canfd_global *gpriv = priv->gpriv;
1404     int err;
1405 
1406     /* Peripheral clock is already enabled in probe */
1407     err = clk_prepare_enable(gpriv->can_clk);
1408     if (err) {
1409         netdev_err(ndev, "failed to enable CAN clock, error %d\n", err);
1410         goto out_clock;
1411     }
1412 
1413     err = open_candev(ndev);
1414     if (err) {
1415         netdev_err(ndev, "open_candev() failed, error %d\n", err);
1416         goto out_can_clock;
1417     }
1418 
1419     napi_enable(&priv->napi);
1420     err = rcar_canfd_start(ndev);
1421     if (err)
1422         goto out_close;
1423     netif_start_queue(ndev);
1424     return 0;
1425 out_close:
1426     napi_disable(&priv->napi);
1427     close_candev(ndev);
1428 out_can_clock:
1429     clk_disable_unprepare(gpriv->can_clk);
1430 out_clock:
1431     return err;
1432 }
1433 
1434 static void rcar_canfd_stop(struct net_device *ndev)
1435 {
1436     struct rcar_canfd_channel *priv = netdev_priv(ndev);
1437     struct rcar_canfd_global *gpriv = priv->gpriv;
1438     int err;
1439     u32 sts, ch = priv->channel;
1440     u32 ridx = ch + RCANFD_RFFIFO_IDX;
1441 
1442     /* Transition to channel reset mode  */
1443     rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1444                   RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
1445 
1446     /* Check Channel reset mode */
1447     err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1448                  (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
1449     if (err)
1450         netdev_err(ndev, "channel %u reset failed\n", ch);
1451 
1452     rcar_canfd_disable_channel_interrupts(priv);
1453 
1454     /* Disable Common & Rx FIFO */
1455     rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1456                  RCANFD_CFCC_CFE);
1457     rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1458 
1459     /* Set the state as STOPPED */
1460     priv->can.state = CAN_STATE_STOPPED;
1461 }
1462 
1463 static int rcar_canfd_close(struct net_device *ndev)
1464 {
1465     struct rcar_canfd_channel *priv = netdev_priv(ndev);
1466     struct rcar_canfd_global *gpriv = priv->gpriv;
1467 
1468     netif_stop_queue(ndev);
1469     rcar_canfd_stop(ndev);
1470     napi_disable(&priv->napi);
1471     clk_disable_unprepare(gpriv->can_clk);
1472     close_candev(ndev);
1473     return 0;
1474 }
1475 
1476 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
1477                      struct net_device *ndev)
1478 {
1479     struct rcar_canfd_channel *priv = netdev_priv(ndev);
1480     struct rcar_canfd_global *gpriv = priv->gpriv;
1481     struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1482     u32 sts = 0, id, dlc;
1483     unsigned long flags;
1484     u32 ch = priv->channel;
1485 
1486     if (can_dropped_invalid_skb(ndev, skb))
1487         return NETDEV_TX_OK;
1488 
1489     if (cf->can_id & CAN_EFF_FLAG) {
1490         id = cf->can_id & CAN_EFF_MASK;
1491         id |= RCANFD_CFID_CFIDE;
1492     } else {
1493         id = cf->can_id & CAN_SFF_MASK;
1494     }
1495 
1496     if (cf->can_id & CAN_RTR_FLAG)
1497         id |= RCANFD_CFID_CFRTR;
1498 
1499     dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len));
1500 
1501     if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_v3u(gpriv)) {
1502         rcar_canfd_write(priv->base,
1503                  RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id);
1504         rcar_canfd_write(priv->base,
1505                  RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc);
1506 
1507         if (can_is_canfd_skb(skb)) {
1508             /* CAN FD frame format */
1509             sts |= RCANFD_CFFDCSTS_CFFDF;
1510             if (cf->flags & CANFD_BRS)
1511                 sts |= RCANFD_CFFDCSTS_CFBRS;
1512 
1513             if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
1514                 sts |= RCANFD_CFFDCSTS_CFESI;
1515         }
1516 
1517         rcar_canfd_write(priv->base,
1518                  RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts);
1519 
1520         rcar_canfd_put_data(priv, cf,
1521                     RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0));
1522     } else {
1523         rcar_canfd_write(priv->base,
1524                  RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
1525         rcar_canfd_write(priv->base,
1526                  RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1527         rcar_canfd_put_data(priv, cf,
1528                     RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1529     }
1530 
1531     can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0);
1532 
1533     spin_lock_irqsave(&priv->tx_lock, flags);
1534     priv->tx_head++;
1535 
1536     /* Stop the queue if we've filled all FIFO entries */
1537     if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
1538         netif_stop_queue(ndev);
1539 
1540     /* Start Tx: Write 0xff to CFPC to increment the CPU-side
1541      * pointer for the Common FIFO
1542      */
1543     rcar_canfd_write(priv->base,
1544              RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff);
1545 
1546     spin_unlock_irqrestore(&priv->tx_lock, flags);
1547     return NETDEV_TX_OK;
1548 }
1549 
1550 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
1551 {
1552     struct net_device_stats *stats = &priv->ndev->stats;
1553     struct rcar_canfd_global *gpriv = priv->gpriv;
1554     struct canfd_frame *cf;
1555     struct sk_buff *skb;
1556     u32 sts = 0, id, dlc;
1557     u32 ch = priv->channel;
1558     u32 ridx = ch + RCANFD_RFFIFO_IDX;
1559 
1560     if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_v3u(gpriv)) {
1561         id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx));
1562         dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx));
1563 
1564         sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx));
1565 
1566         if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) &&
1567             sts & RCANFD_RFFDSTS_RFFDF)
1568             skb = alloc_canfd_skb(priv->ndev, &cf);
1569         else
1570             skb = alloc_can_skb(priv->ndev,
1571                         (struct can_frame **)&cf);
1572     } else {
1573         id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
1574         dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
1575         skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
1576     }
1577 
1578     if (!skb) {
1579         stats->rx_dropped++;
1580         return;
1581     }
1582 
1583     if (id & RCANFD_RFID_RFIDE)
1584         cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
1585     else
1586         cf->can_id = id & CAN_SFF_MASK;
1587 
1588     if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1589         if (sts & RCANFD_RFFDSTS_RFFDF)
1590             cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1591         else
1592             cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1593 
1594         if (sts & RCANFD_RFFDSTS_RFESI) {
1595             cf->flags |= CANFD_ESI;
1596             netdev_dbg(priv->ndev, "ESI Error\n");
1597         }
1598 
1599         if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
1600             cf->can_id |= CAN_RTR_FLAG;
1601         } else {
1602             if (sts & RCANFD_RFFDSTS_RFBRS)
1603                 cf->flags |= CANFD_BRS;
1604 
1605             rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1606         }
1607     } else {
1608         cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1609         if (id & RCANFD_RFID_RFRTR)
1610             cf->can_id |= CAN_RTR_FLAG;
1611         else if (is_v3u(gpriv))
1612             rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1613         else
1614             rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
1615     }
1616 
1617     /* Write 0xff to RFPC to increment the CPU-side
1618      * pointer of the Rx FIFO
1619      */
1620     rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff);
1621 
1622     if (!(cf->can_id & CAN_RTR_FLAG))
1623         stats->rx_bytes += cf->len;
1624     stats->rx_packets++;
1625     netif_receive_skb(skb);
1626 }
1627 
1628 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
1629 {
1630     struct rcar_canfd_channel *priv =
1631         container_of(napi, struct rcar_canfd_channel, napi);
1632     struct rcar_canfd_global *gpriv = priv->gpriv;
1633     int num_pkts;
1634     u32 sts;
1635     u32 ch = priv->channel;
1636     u32 ridx = ch + RCANFD_RFFIFO_IDX;
1637 
1638     for (num_pkts = 0; num_pkts < quota; num_pkts++) {
1639         sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1640         /* Check FIFO empty condition */
1641         if (sts & RCANFD_RFSTS_RFEMP)
1642             break;
1643 
1644         rcar_canfd_rx_pkt(priv);
1645 
1646         /* Clear interrupt bit */
1647         if (sts & RCANFD_RFSTS_RFIF)
1648             rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1649                      sts & ~RCANFD_RFSTS_RFIF);
1650     }
1651 
1652     /* All packets processed */
1653     if (num_pkts < quota) {
1654         if (napi_complete_done(napi, num_pkts)) {
1655             /* Enable Rx FIFO interrupts */
1656             rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx),
1657                        RCANFD_RFCC_RFIE);
1658         }
1659     }
1660     return num_pkts;
1661 }
1662 
1663 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
1664 {
1665     int err;
1666 
1667     switch (mode) {
1668     case CAN_MODE_START:
1669         err = rcar_canfd_start(ndev);
1670         if (err)
1671             return err;
1672         netif_wake_queue(ndev);
1673         return 0;
1674     default:
1675         return -EOPNOTSUPP;
1676     }
1677 }
1678 
1679 static int rcar_canfd_get_berr_counter(const struct net_device *dev,
1680                        struct can_berr_counter *bec)
1681 {
1682     struct rcar_canfd_channel *priv = netdev_priv(dev);
1683     u32 val, ch = priv->channel;
1684 
1685     /* Peripheral clock is already enabled in probe */
1686     val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1687     bec->txerr = RCANFD_CSTS_TECCNT(val);
1688     bec->rxerr = RCANFD_CSTS_RECCNT(val);
1689     return 0;
1690 }
1691 
1692 static const struct net_device_ops rcar_canfd_netdev_ops = {
1693     .ndo_open = rcar_canfd_open,
1694     .ndo_stop = rcar_canfd_close,
1695     .ndo_start_xmit = rcar_canfd_start_xmit,
1696     .ndo_change_mtu = can_change_mtu,
1697 };
1698 
1699 static const struct ethtool_ops rcar_canfd_ethtool_ops = {
1700     .get_ts_info = ethtool_op_get_ts_info,
1701 };
1702 
1703 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
1704                     u32 fcan_freq)
1705 {
1706     struct platform_device *pdev = gpriv->pdev;
1707     struct rcar_canfd_channel *priv;
1708     struct net_device *ndev;
1709     int err = -ENODEV;
1710 
1711     ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
1712     if (!ndev) {
1713         dev_err(&pdev->dev, "alloc_candev() failed\n");
1714         return -ENOMEM;
1715     }
1716     priv = netdev_priv(ndev);
1717 
1718     ndev->netdev_ops = &rcar_canfd_netdev_ops;
1719     ndev->ethtool_ops = &rcar_canfd_ethtool_ops;
1720     ndev->flags |= IFF_ECHO;
1721     priv->ndev = ndev;
1722     priv->base = gpriv->base;
1723     priv->channel = ch;
1724     priv->can.clock.freq = fcan_freq;
1725     dev_info(&pdev->dev, "can_clk rate is %u\n", priv->can.clock.freq);
1726 
1727     if (gpriv->chip_id == RENESAS_RZG2L) {
1728         char *irq_name;
1729         int err_irq;
1730         int tx_irq;
1731 
1732         err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err");
1733         if (err_irq < 0) {
1734             err = err_irq;
1735             goto fail;
1736         }
1737 
1738         tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx");
1739         if (tx_irq < 0) {
1740             err = tx_irq;
1741             goto fail;
1742         }
1743 
1744         irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
1745                       "canfd.ch%d_err", ch);
1746         if (!irq_name) {
1747             err = -ENOMEM;
1748             goto fail;
1749         }
1750         err = devm_request_irq(&pdev->dev, err_irq,
1751                        rcar_canfd_channel_err_interrupt, 0,
1752                        irq_name, gpriv);
1753         if (err) {
1754             dev_err(&pdev->dev, "devm_request_irq CH Err(%d) failed, error %d\n",
1755                 err_irq, err);
1756             goto fail;
1757         }
1758         irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
1759                       "canfd.ch%d_trx", ch);
1760         if (!irq_name) {
1761             err = -ENOMEM;
1762             goto fail;
1763         }
1764         err = devm_request_irq(&pdev->dev, tx_irq,
1765                        rcar_canfd_channel_tx_interrupt, 0,
1766                        irq_name, gpriv);
1767         if (err) {
1768             dev_err(&pdev->dev, "devm_request_irq Tx (%d) failed, error %d\n",
1769                 tx_irq, err);
1770             goto fail;
1771         }
1772     }
1773 
1774     if (gpriv->fdmode) {
1775         priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const;
1776         priv->can.data_bittiming_const =
1777             &rcar_canfd_data_bittiming_const;
1778 
1779         /* Controller starts in CAN FD only mode */
1780         err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
1781         if (err)
1782             goto fail;
1783         priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1784     } else {
1785         /* Controller starts in Classical CAN only mode */
1786         priv->can.bittiming_const = &rcar_canfd_bittiming_const;
1787         priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1788     }
1789 
1790     priv->can.do_set_mode = rcar_canfd_do_set_mode;
1791     priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
1792     priv->gpriv = gpriv;
1793     SET_NETDEV_DEV(ndev, &pdev->dev);
1794 
1795     netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll,
1796                   RCANFD_NAPI_WEIGHT);
1797     spin_lock_init(&priv->tx_lock);
1798     gpriv->ch[priv->channel] = priv;
1799     err = register_candev(ndev);
1800     if (err) {
1801         dev_err(&pdev->dev,
1802             "register_candev() failed, error %d\n", err);
1803         goto fail_candev;
1804     }
1805     dev_info(&pdev->dev, "device registered (channel %u)\n", priv->channel);
1806     return 0;
1807 
1808 fail_candev:
1809     netif_napi_del(&priv->napi);
1810 fail:
1811     free_candev(ndev);
1812     return err;
1813 }
1814 
1815 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
1816 {
1817     struct rcar_canfd_channel *priv = gpriv->ch[ch];
1818 
1819     if (priv) {
1820         unregister_candev(priv->ndev);
1821         netif_napi_del(&priv->napi);
1822         free_candev(priv->ndev);
1823     }
1824 }
1825 
1826 static int rcar_canfd_probe(struct platform_device *pdev)
1827 {
1828     void __iomem *addr;
1829     u32 sts, ch, fcan_freq;
1830     struct rcar_canfd_global *gpriv;
1831     struct device_node *of_child;
1832     unsigned long channels_mask = 0;
1833     int err, ch_irq, g_irq;
1834     int g_err_irq, g_recc_irq;
1835     bool fdmode = true;         /* CAN FD only mode - default */
1836     enum rcanfd_chip_id chip_id;
1837     int max_channels;
1838     char name[9] = "channelX";
1839     int i;
1840 
1841     chip_id = (uintptr_t)of_device_get_match_data(&pdev->dev);
1842     max_channels = chip_id == RENESAS_R8A779A0 ? 8 : 2;
1843 
1844     if (of_property_read_bool(pdev->dev.of_node, "renesas,no-can-fd"))
1845         fdmode = false;         /* Classical CAN only mode */
1846 
1847     for (i = 0; i < max_channels; ++i) {
1848         name[7] = '0' + i;
1849         of_child = of_get_child_by_name(pdev->dev.of_node, name);
1850         if (of_child && of_device_is_available(of_child))
1851             channels_mask |= BIT(i);
1852         of_node_put(of_child);
1853     }
1854 
1855     if (chip_id != RENESAS_RZG2L) {
1856         ch_irq = platform_get_irq_byname_optional(pdev, "ch_int");
1857         if (ch_irq < 0) {
1858             /* For backward compatibility get irq by index */
1859             ch_irq = platform_get_irq(pdev, 0);
1860             if (ch_irq < 0)
1861                 return ch_irq;
1862         }
1863 
1864         g_irq = platform_get_irq_byname_optional(pdev, "g_int");
1865         if (g_irq < 0) {
1866             /* For backward compatibility get irq by index */
1867             g_irq = platform_get_irq(pdev, 1);
1868             if (g_irq < 0)
1869                 return g_irq;
1870         }
1871     } else {
1872         g_err_irq = platform_get_irq_byname(pdev, "g_err");
1873         if (g_err_irq < 0)
1874             return g_err_irq;
1875 
1876         g_recc_irq = platform_get_irq_byname(pdev, "g_recc");
1877         if (g_recc_irq < 0)
1878             return g_recc_irq;
1879     }
1880 
1881     /* Global controller context */
1882     gpriv = devm_kzalloc(&pdev->dev, sizeof(*gpriv), GFP_KERNEL);
1883     if (!gpriv) {
1884         err = -ENOMEM;
1885         goto fail_dev;
1886     }
1887     gpriv->pdev = pdev;
1888     gpriv->channels_mask = channels_mask;
1889     gpriv->fdmode = fdmode;
1890     gpriv->chip_id = chip_id;
1891     gpriv->max_channels = max_channels;
1892 
1893     if (gpriv->chip_id == RENESAS_RZG2L) {
1894         gpriv->rstc1 = devm_reset_control_get_exclusive(&pdev->dev, "rstp_n");
1895         if (IS_ERR(gpriv->rstc1))
1896             return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc1),
1897                          "failed to get rstp_n\n");
1898 
1899         gpriv->rstc2 = devm_reset_control_get_exclusive(&pdev->dev, "rstc_n");
1900         if (IS_ERR(gpriv->rstc2))
1901             return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc2),
1902                          "failed to get rstc_n\n");
1903     }
1904 
1905     /* Peripheral clock */
1906     gpriv->clkp = devm_clk_get(&pdev->dev, "fck");
1907     if (IS_ERR(gpriv->clkp)) {
1908         err = PTR_ERR(gpriv->clkp);
1909         dev_err(&pdev->dev, "cannot get peripheral clock, error %d\n",
1910             err);
1911         goto fail_dev;
1912     }
1913 
1914     /* fCAN clock: Pick External clock. If not available fallback to
1915      * CANFD clock
1916      */
1917     gpriv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1918     if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
1919         gpriv->can_clk = devm_clk_get(&pdev->dev, "canfd");
1920         if (IS_ERR(gpriv->can_clk)) {
1921             err = PTR_ERR(gpriv->can_clk);
1922             dev_err(&pdev->dev,
1923                 "cannot get canfd clock, error %d\n", err);
1924             goto fail_dev;
1925         }
1926         gpriv->fcan = RCANFD_CANFDCLK;
1927 
1928     } else {
1929         gpriv->fcan = RCANFD_EXTCLK;
1930     }
1931     fcan_freq = clk_get_rate(gpriv->can_clk);
1932 
1933     if (gpriv->fcan == RCANFD_CANFDCLK && gpriv->chip_id != RENESAS_RZG2L)
1934         /* CANFD clock is further divided by (1/2) within the IP */
1935         fcan_freq /= 2;
1936 
1937     addr = devm_platform_ioremap_resource(pdev, 0);
1938     if (IS_ERR(addr)) {
1939         err = PTR_ERR(addr);
1940         goto fail_dev;
1941     }
1942     gpriv->base = addr;
1943 
1944     /* Request IRQ that's common for both channels */
1945     if (gpriv->chip_id != RENESAS_RZG2L) {
1946         err = devm_request_irq(&pdev->dev, ch_irq,
1947                        rcar_canfd_channel_interrupt, 0,
1948                        "canfd.ch_int", gpriv);
1949         if (err) {
1950             dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1951                 ch_irq, err);
1952             goto fail_dev;
1953         }
1954 
1955         err = devm_request_irq(&pdev->dev, g_irq,
1956                        rcar_canfd_global_interrupt, 0,
1957                        "canfd.g_int", gpriv);
1958         if (err) {
1959             dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1960                 g_irq, err);
1961             goto fail_dev;
1962         }
1963     } else {
1964         err = devm_request_irq(&pdev->dev, g_recc_irq,
1965                        rcar_canfd_global_receive_fifo_interrupt, 0,
1966                        "canfd.g_recc", gpriv);
1967 
1968         if (err) {
1969             dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1970                 g_recc_irq, err);
1971             goto fail_dev;
1972         }
1973 
1974         err = devm_request_irq(&pdev->dev, g_err_irq,
1975                        rcar_canfd_global_err_interrupt, 0,
1976                        "canfd.g_err", gpriv);
1977         if (err) {
1978             dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1979                 g_err_irq, err);
1980             goto fail_dev;
1981         }
1982     }
1983 
1984     err = reset_control_reset(gpriv->rstc1);
1985     if (err)
1986         goto fail_dev;
1987     err = reset_control_reset(gpriv->rstc2);
1988     if (err) {
1989         reset_control_assert(gpriv->rstc1);
1990         goto fail_dev;
1991     }
1992 
1993     /* Enable peripheral clock for register access */
1994     err = clk_prepare_enable(gpriv->clkp);
1995     if (err) {
1996         dev_err(&pdev->dev,
1997             "failed to enable peripheral clock, error %d\n", err);
1998         goto fail_reset;
1999     }
2000 
2001     err = rcar_canfd_reset_controller(gpriv);
2002     if (err) {
2003         dev_err(&pdev->dev, "reset controller failed\n");
2004         goto fail_clk;
2005     }
2006 
2007     /* Controller in Global reset & Channel reset mode */
2008     rcar_canfd_configure_controller(gpriv);
2009 
2010     /* Configure per channel attributes */
2011     for_each_set_bit(ch, &gpriv->channels_mask, max_channels) {
2012         /* Configure Channel's Rx fifo */
2013         rcar_canfd_configure_rx(gpriv, ch);
2014 
2015         /* Configure Channel's Tx (Common) fifo */
2016         rcar_canfd_configure_tx(gpriv, ch);
2017 
2018         /* Configure receive rules */
2019         rcar_canfd_configure_afl_rules(gpriv, ch);
2020     }
2021 
2022     /* Configure common interrupts */
2023     rcar_canfd_enable_global_interrupts(gpriv);
2024 
2025     /* Start Global operation mode */
2026     rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
2027                   RCANFD_GCTR_GMDC_GOPM);
2028 
2029     /* Verify mode change */
2030     err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
2031                  !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
2032     if (err) {
2033         dev_err(&pdev->dev, "global operational mode failed\n");
2034         goto fail_mode;
2035     }
2036 
2037     for_each_set_bit(ch, &gpriv->channels_mask, max_channels) {
2038         err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq);
2039         if (err)
2040             goto fail_channel;
2041     }
2042 
2043     platform_set_drvdata(pdev, gpriv);
2044     dev_info(&pdev->dev, "global operational state (clk %d, fdmode %d)\n",
2045          gpriv->fcan, gpriv->fdmode);
2046     return 0;
2047 
2048 fail_channel:
2049     for_each_set_bit(ch, &gpriv->channels_mask, max_channels)
2050         rcar_canfd_channel_remove(gpriv, ch);
2051 fail_mode:
2052     rcar_canfd_disable_global_interrupts(gpriv);
2053 fail_clk:
2054     clk_disable_unprepare(gpriv->clkp);
2055 fail_reset:
2056     reset_control_assert(gpriv->rstc1);
2057     reset_control_assert(gpriv->rstc2);
2058 fail_dev:
2059     return err;
2060 }
2061 
2062 static int rcar_canfd_remove(struct platform_device *pdev)
2063 {
2064     struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
2065     u32 ch;
2066 
2067     rcar_canfd_reset_controller(gpriv);
2068     rcar_canfd_disable_global_interrupts(gpriv);
2069 
2070     for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
2071         rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
2072         rcar_canfd_channel_remove(gpriv, ch);
2073     }
2074 
2075     /* Enter global sleep mode */
2076     rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
2077     clk_disable_unprepare(gpriv->clkp);
2078     reset_control_assert(gpriv->rstc1);
2079     reset_control_assert(gpriv->rstc2);
2080 
2081     return 0;
2082 }
2083 
2084 static int __maybe_unused rcar_canfd_suspend(struct device *dev)
2085 {
2086     return 0;
2087 }
2088 
2089 static int __maybe_unused rcar_canfd_resume(struct device *dev)
2090 {
2091     return 0;
2092 }
2093 
2094 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
2095              rcar_canfd_resume);
2096 
2097 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = {
2098     { .compatible = "renesas,rcar-gen3-canfd", .data = (void *)RENESAS_RCAR_GEN3 },
2099     { .compatible = "renesas,rzg2l-canfd", .data = (void *)RENESAS_RZG2L },
2100     { .compatible = "renesas,r8a779a0-canfd", .data = (void *)RENESAS_R8A779A0 },
2101     { }
2102 };
2103 
2104 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
2105 
2106 static struct platform_driver rcar_canfd_driver = {
2107     .driver = {
2108         .name = RCANFD_DRV_NAME,
2109         .of_match_table = of_match_ptr(rcar_canfd_of_table),
2110         .pm = &rcar_canfd_pm_ops,
2111     },
2112     .probe = rcar_canfd_probe,
2113     .remove = rcar_canfd_remove,
2114 };
2115 
2116 module_platform_driver(rcar_canfd_driver);
2117 
2118 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
2119 MODULE_LICENSE("GPL");
2120 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
2121 MODULE_ALIAS("platform:" RCANFD_DRV_NAME);