0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011 #include <linux/bitfield.h>
0012 #include <linux/ethtool.h>
0013 #include <linux/interrupt.h>
0014 #include <linux/io.h>
0015 #include <linux/kernel.h>
0016 #include <linux/module.h>
0017 #include <linux/netdevice.h>
0018 #include <linux/of.h>
0019 #include <linux/of_device.h>
0020 #include <linux/platform_device.h>
0021 #include <linux/pm_runtime.h>
0022 #include <linux/iopoll.h>
0023 #include <linux/can/dev.h>
0024 #include <linux/pinctrl/consumer.h>
0025 #include <linux/phy/phy.h>
0026
0027 #include "m_can.h"
0028
0029
0030 enum m_can_reg {
0031 M_CAN_CREL = 0x0,
0032 M_CAN_ENDN = 0x4,
0033 M_CAN_CUST = 0x8,
0034 M_CAN_DBTP = 0xc,
0035 M_CAN_TEST = 0x10,
0036 M_CAN_RWD = 0x14,
0037 M_CAN_CCCR = 0x18,
0038 M_CAN_NBTP = 0x1c,
0039 M_CAN_TSCC = 0x20,
0040 M_CAN_TSCV = 0x24,
0041 M_CAN_TOCC = 0x28,
0042 M_CAN_TOCV = 0x2c,
0043 M_CAN_ECR = 0x40,
0044 M_CAN_PSR = 0x44,
0045
0046 M_CAN_TDCR = 0x48,
0047 M_CAN_IR = 0x50,
0048 M_CAN_IE = 0x54,
0049 M_CAN_ILS = 0x58,
0050 M_CAN_ILE = 0x5c,
0051 M_CAN_GFC = 0x80,
0052 M_CAN_SIDFC = 0x84,
0053 M_CAN_XIDFC = 0x88,
0054 M_CAN_XIDAM = 0x90,
0055 M_CAN_HPMS = 0x94,
0056 M_CAN_NDAT1 = 0x98,
0057 M_CAN_NDAT2 = 0x9c,
0058 M_CAN_RXF0C = 0xa0,
0059 M_CAN_RXF0S = 0xa4,
0060 M_CAN_RXF0A = 0xa8,
0061 M_CAN_RXBC = 0xac,
0062 M_CAN_RXF1C = 0xb0,
0063 M_CAN_RXF1S = 0xb4,
0064 M_CAN_RXF1A = 0xb8,
0065 M_CAN_RXESC = 0xbc,
0066 M_CAN_TXBC = 0xc0,
0067 M_CAN_TXFQS = 0xc4,
0068 M_CAN_TXESC = 0xc8,
0069 M_CAN_TXBRP = 0xcc,
0070 M_CAN_TXBAR = 0xd0,
0071 M_CAN_TXBCR = 0xd4,
0072 M_CAN_TXBTO = 0xd8,
0073 M_CAN_TXBCF = 0xdc,
0074 M_CAN_TXBTIE = 0xe0,
0075 M_CAN_TXBCIE = 0xe4,
0076 M_CAN_TXEFC = 0xf0,
0077 M_CAN_TXEFS = 0xf4,
0078 M_CAN_TXEFA = 0xf8,
0079 };
0080
0081
0082 #define MRAM_CFG_LEN 8
0083
0084
0085 #define CREL_REL_MASK GENMASK(31, 28)
0086 #define CREL_STEP_MASK GENMASK(27, 24)
0087 #define CREL_SUBSTEP_MASK GENMASK(23, 20)
0088
0089
0090 #define DBTP_TDC BIT(23)
0091 #define DBTP_DBRP_MASK GENMASK(20, 16)
0092 #define DBTP_DTSEG1_MASK GENMASK(12, 8)
0093 #define DBTP_DTSEG2_MASK GENMASK(7, 4)
0094 #define DBTP_DSJW_MASK GENMASK(3, 0)
0095
0096
0097 #define TDCR_TDCO_MASK GENMASK(14, 8)
0098 #define TDCR_TDCF_MASK GENMASK(6, 0)
0099
0100
0101 #define TEST_LBCK BIT(4)
0102
0103
0104 #define CCCR_TXP BIT(14)
0105 #define CCCR_TEST BIT(7)
0106 #define CCCR_DAR BIT(6)
0107 #define CCCR_MON BIT(5)
0108 #define CCCR_CSR BIT(4)
0109 #define CCCR_CSA BIT(3)
0110 #define CCCR_ASM BIT(2)
0111 #define CCCR_CCE BIT(1)
0112 #define CCCR_INIT BIT(0)
0113
0114 #define CCCR_CMR_MASK GENMASK(11, 10)
0115 #define CCCR_CMR_CANFD 0x1
0116 #define CCCR_CMR_CANFD_BRS 0x2
0117 #define CCCR_CMR_CAN 0x3
0118 #define CCCR_CME_MASK GENMASK(9, 8)
0119 #define CCCR_CME_CAN 0
0120 #define CCCR_CME_CANFD 0x1
0121 #define CCCR_CME_CANFD_BRS 0x2
0122
0123 #define CCCR_EFBI BIT(13)
0124 #define CCCR_PXHD BIT(12)
0125 #define CCCR_BRSE BIT(9)
0126 #define CCCR_FDOE BIT(8)
0127
0128 #define CCCR_NISO BIT(15)
0129
0130 #define CCCR_WMM BIT(11)
0131 #define CCCR_UTSU BIT(10)
0132
0133
0134 #define NBTP_NSJW_MASK GENMASK(31, 25)
0135 #define NBTP_NBRP_MASK GENMASK(24, 16)
0136 #define NBTP_NTSEG1_MASK GENMASK(15, 8)
0137 #define NBTP_NTSEG2_MASK GENMASK(6, 0)
0138
0139
0140 #define TSCC_TCP_MASK GENMASK(19, 16)
0141 #define TSCC_TSS_MASK GENMASK(1, 0)
0142 #define TSCC_TSS_DISABLE 0x0
0143 #define TSCC_TSS_INTERNAL 0x1
0144 #define TSCC_TSS_EXTERNAL 0x2
0145
0146
0147 #define TSCV_TSC_MASK GENMASK(15, 0)
0148
0149
0150 #define ECR_RP BIT(15)
0151 #define ECR_REC_MASK GENMASK(14, 8)
0152 #define ECR_TEC_MASK GENMASK(7, 0)
0153
0154
0155 #define PSR_BO BIT(7)
0156 #define PSR_EW BIT(6)
0157 #define PSR_EP BIT(5)
0158 #define PSR_LEC_MASK GENMASK(2, 0)
0159
0160
0161 #define IR_ALL_INT 0xffffffff
0162
0163
0164 #define IR_ARA BIT(29)
0165 #define IR_PED BIT(28)
0166 #define IR_PEA BIT(27)
0167
0168
0169 #define IR_STE BIT(31)
0170 #define IR_FOE BIT(30)
0171 #define IR_ACKE BIT(29)
0172 #define IR_BE BIT(28)
0173 #define IR_CRCE BIT(27)
0174 #define IR_WDI BIT(26)
0175 #define IR_BO BIT(25)
0176 #define IR_EW BIT(24)
0177 #define IR_EP BIT(23)
0178 #define IR_ELO BIT(22)
0179 #define IR_BEU BIT(21)
0180 #define IR_BEC BIT(20)
0181 #define IR_DRX BIT(19)
0182 #define IR_TOO BIT(18)
0183 #define IR_MRAF BIT(17)
0184 #define IR_TSW BIT(16)
0185 #define IR_TEFL BIT(15)
0186 #define IR_TEFF BIT(14)
0187 #define IR_TEFW BIT(13)
0188 #define IR_TEFN BIT(12)
0189 #define IR_TFE BIT(11)
0190 #define IR_TCF BIT(10)
0191 #define IR_TC BIT(9)
0192 #define IR_HPM BIT(8)
0193 #define IR_RF1L BIT(7)
0194 #define IR_RF1F BIT(6)
0195 #define IR_RF1W BIT(5)
0196 #define IR_RF1N BIT(4)
0197 #define IR_RF0L BIT(3)
0198 #define IR_RF0F BIT(2)
0199 #define IR_RF0W BIT(1)
0200 #define IR_RF0N BIT(0)
0201 #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP)
0202
0203
0204 #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
0205 #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \
0206 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
0207 IR_RF0L)
0208 #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X)
0209
0210
0211 #define IR_ERR_LEC_31X (IR_PED | IR_PEA)
0212 #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \
0213 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
0214 IR_RF0L)
0215 #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X)
0216
0217
0218 #define ILS_ALL_INT0 0x0
0219 #define ILS_ALL_INT1 0xFFFFFFFF
0220
0221
0222 #define ILE_EINT1 BIT(1)
0223 #define ILE_EINT0 BIT(0)
0224
0225
0226 #define RXFC_FWM_MASK GENMASK(30, 24)
0227 #define RXFC_FS_MASK GENMASK(22, 16)
0228
0229
0230 #define RXFS_RFL BIT(25)
0231 #define RXFS_FF BIT(24)
0232 #define RXFS_FPI_MASK GENMASK(21, 16)
0233 #define RXFS_FGI_MASK GENMASK(13, 8)
0234 #define RXFS_FFL_MASK GENMASK(6, 0)
0235
0236
0237 #define RXESC_RBDS_MASK GENMASK(10, 8)
0238 #define RXESC_F1DS_MASK GENMASK(6, 4)
0239 #define RXESC_F0DS_MASK GENMASK(2, 0)
0240 #define RXESC_64B 0x7
0241
0242
0243 #define TXBC_TFQS_MASK GENMASK(29, 24)
0244 #define TXBC_NDTB_MASK GENMASK(21, 16)
0245
0246
0247 #define TXFQS_TFQF BIT(21)
0248 #define TXFQS_TFQPI_MASK GENMASK(20, 16)
0249 #define TXFQS_TFGI_MASK GENMASK(12, 8)
0250 #define TXFQS_TFFL_MASK GENMASK(5, 0)
0251
0252
0253 #define TXESC_TBDS_MASK GENMASK(2, 0)
0254 #define TXESC_TBDS_64B 0x7
0255
0256
0257 #define TXEFC_EFS_MASK GENMASK(21, 16)
0258
0259
0260 #define TXEFS_TEFL BIT(25)
0261 #define TXEFS_EFF BIT(24)
0262 #define TXEFS_EFGI_MASK GENMASK(12, 8)
0263 #define TXEFS_EFFL_MASK GENMASK(5, 0)
0264
0265
0266 #define TXEFA_EFAI_MASK GENMASK(4, 0)
0267
0268
0269 #define SIDF_ELEMENT_SIZE 4
0270 #define XIDF_ELEMENT_SIZE 8
0271 #define RXF0_ELEMENT_SIZE 72
0272 #define RXF1_ELEMENT_SIZE 72
0273 #define RXB_ELEMENT_SIZE 72
0274 #define TXE_ELEMENT_SIZE 8
0275 #define TXB_ELEMENT_SIZE 72
0276
0277
0278 #define M_CAN_FIFO_ID 0x0
0279 #define M_CAN_FIFO_DLC 0x4
0280 #define M_CAN_FIFO_DATA 0x8
0281
0282
0283
0284 #define RX_BUF_ESI BIT(31)
0285 #define RX_BUF_XTD BIT(30)
0286 #define RX_BUF_RTR BIT(29)
0287
0288 #define RX_BUF_ANMF BIT(31)
0289 #define RX_BUF_FDF BIT(21)
0290 #define RX_BUF_BRS BIT(20)
0291 #define RX_BUF_RXTS_MASK GENMASK(15, 0)
0292
0293
0294
0295 #define TX_BUF_ESI BIT(31)
0296 #define TX_BUF_XTD BIT(30)
0297 #define TX_BUF_RTR BIT(29)
0298
0299 #define TX_BUF_EFC BIT(23)
0300 #define TX_BUF_FDF BIT(21)
0301 #define TX_BUF_BRS BIT(20)
0302 #define TX_BUF_MM_MASK GENMASK(31, 24)
0303 #define TX_BUF_DLC_MASK GENMASK(19, 16)
0304
0305
0306
0307 #define TX_EVENT_MM_MASK GENMASK(31, 24)
0308 #define TX_EVENT_TXTS_MASK GENMASK(15, 0)
0309
0310
0311
0312
0313
0314 struct id_and_dlc {
0315 u32 id;
0316 u32 dlc;
0317 };
0318
0319 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
0320 {
0321 return cdev->ops->read_reg(cdev, reg);
0322 }
0323
0324 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
0325 u32 val)
0326 {
0327 cdev->ops->write_reg(cdev, reg, val);
0328 }
0329
0330 static int
0331 m_can_fifo_read(struct m_can_classdev *cdev,
0332 u32 fgi, unsigned int offset, void *val, size_t val_count)
0333 {
0334 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
0335 offset;
0336
0337 if (val_count == 0)
0338 return 0;
0339
0340 return cdev->ops->read_fifo(cdev, addr_offset, val, val_count);
0341 }
0342
0343 static int
0344 m_can_fifo_write(struct m_can_classdev *cdev,
0345 u32 fpi, unsigned int offset, const void *val, size_t val_count)
0346 {
0347 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
0348 offset;
0349
0350 if (val_count == 0)
0351 return 0;
0352
0353 return cdev->ops->write_fifo(cdev, addr_offset, val, val_count);
0354 }
0355
0356 static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev,
0357 u32 fpi, u32 val)
0358 {
0359 return cdev->ops->write_fifo(cdev, fpi, &val, 1);
0360 }
0361
0362 static int
0363 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val)
0364 {
0365 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
0366 offset;
0367
0368 return cdev->ops->read_fifo(cdev, addr_offset, val, 1);
0369 }
0370
0371 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
0372 {
0373 return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF);
0374 }
0375
0376 static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
0377 {
0378 u32 cccr = m_can_read(cdev, M_CAN_CCCR);
0379 u32 timeout = 10;
0380 u32 val = 0;
0381
0382
0383 if (cccr & CCCR_CSR)
0384 cccr &= ~CCCR_CSR;
0385
0386 if (enable) {
0387
0388 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
0389 udelay(5);
0390
0391 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
0392 } else {
0393 m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
0394 }
0395
0396
0397 if (enable)
0398 val = CCCR_INIT | CCCR_CCE;
0399
0400 while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
0401 if (timeout == 0) {
0402 netdev_warn(cdev->net, "Failed to init module\n");
0403 return;
0404 }
0405 timeout--;
0406 udelay(1);
0407 }
0408 }
0409
0410 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
0411 {
0412
0413 m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
0414 }
0415
0416 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
0417 {
0418 m_can_write(cdev, M_CAN_ILE, 0x0);
0419 }
0420
0421
0422
0423
0424 static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
0425 {
0426 u32 tscv;
0427 u32 tsc;
0428
0429 tscv = m_can_read(cdev, M_CAN_TSCV);
0430 tsc = FIELD_GET(TSCV_TSC_MASK, tscv);
0431
0432 return (tsc << 16);
0433 }
0434
0435 static void m_can_clean(struct net_device *net)
0436 {
0437 struct m_can_classdev *cdev = netdev_priv(net);
0438
0439 if (cdev->tx_skb) {
0440 int putidx = 0;
0441
0442 net->stats.tx_errors++;
0443 if (cdev->version > 30)
0444 putidx = FIELD_GET(TXFQS_TFQPI_MASK,
0445 m_can_read(cdev, M_CAN_TXFQS));
0446
0447 can_free_echo_skb(cdev->net, putidx, NULL);
0448 cdev->tx_skb = NULL;
0449 }
0450 }
0451
0452
0453
0454
0455
0456
0457 static void m_can_receive_skb(struct m_can_classdev *cdev,
0458 struct sk_buff *skb,
0459 u32 timestamp)
0460 {
0461 if (cdev->is_peripheral) {
0462 struct net_device_stats *stats = &cdev->net->stats;
0463 int err;
0464
0465 err = can_rx_offload_queue_timestamp(&cdev->offload, skb,
0466 timestamp);
0467 if (err)
0468 stats->rx_fifo_errors++;
0469 } else {
0470 netif_receive_skb(skb);
0471 }
0472 }
0473
0474 static int m_can_read_fifo(struct net_device *dev, u32 rxfs)
0475 {
0476 struct net_device_stats *stats = &dev->stats;
0477 struct m_can_classdev *cdev = netdev_priv(dev);
0478 struct canfd_frame *cf;
0479 struct sk_buff *skb;
0480 struct id_and_dlc fifo_header;
0481 u32 fgi;
0482 u32 timestamp = 0;
0483 int err;
0484
0485
0486 fgi = FIELD_GET(RXFS_FGI_MASK, rxfs);
0487 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2);
0488 if (err)
0489 goto out_fail;
0490
0491 if (fifo_header.dlc & RX_BUF_FDF)
0492 skb = alloc_canfd_skb(dev, &cf);
0493 else
0494 skb = alloc_can_skb(dev, (struct can_frame **)&cf);
0495 if (!skb) {
0496 stats->rx_dropped++;
0497 return 0;
0498 }
0499
0500 if (fifo_header.dlc & RX_BUF_FDF)
0501 cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F);
0502 else
0503 cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F);
0504
0505 if (fifo_header.id & RX_BUF_XTD)
0506 cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG;
0507 else
0508 cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK;
0509
0510 if (fifo_header.id & RX_BUF_ESI) {
0511 cf->flags |= CANFD_ESI;
0512 netdev_dbg(dev, "ESI Error\n");
0513 }
0514
0515 if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) {
0516 cf->can_id |= CAN_RTR_FLAG;
0517 } else {
0518 if (fifo_header.dlc & RX_BUF_BRS)
0519 cf->flags |= CANFD_BRS;
0520
0521 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA,
0522 cf->data, DIV_ROUND_UP(cf->len, 4));
0523 if (err)
0524 goto out_free_skb;
0525
0526 stats->rx_bytes += cf->len;
0527 }
0528 stats->rx_packets++;
0529
0530
0531 m_can_write(cdev, M_CAN_RXF0A, fgi);
0532
0533 timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16;
0534
0535 m_can_receive_skb(cdev, skb, timestamp);
0536
0537 return 0;
0538
0539 out_free_skb:
0540 kfree_skb(skb);
0541 out_fail:
0542 netdev_err(dev, "FIFO read returned %d\n", err);
0543 return err;
0544 }
0545
0546 static int m_can_do_rx_poll(struct net_device *dev, int quota)
0547 {
0548 struct m_can_classdev *cdev = netdev_priv(dev);
0549 u32 pkts = 0;
0550 u32 rxfs;
0551 int err;
0552
0553 rxfs = m_can_read(cdev, M_CAN_RXF0S);
0554 if (!(rxfs & RXFS_FFL_MASK)) {
0555 netdev_dbg(dev, "no messages in fifo0\n");
0556 return 0;
0557 }
0558
0559 while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
0560 err = m_can_read_fifo(dev, rxfs);
0561 if (err)
0562 return err;
0563
0564 quota--;
0565 pkts++;
0566 rxfs = m_can_read(cdev, M_CAN_RXF0S);
0567 }
0568
0569 return pkts;
0570 }
0571
0572 static int m_can_handle_lost_msg(struct net_device *dev)
0573 {
0574 struct m_can_classdev *cdev = netdev_priv(dev);
0575 struct net_device_stats *stats = &dev->stats;
0576 struct sk_buff *skb;
0577 struct can_frame *frame;
0578 u32 timestamp = 0;
0579
0580 netdev_err(dev, "msg lost in rxf0\n");
0581
0582 stats->rx_errors++;
0583 stats->rx_over_errors++;
0584
0585 skb = alloc_can_err_skb(dev, &frame);
0586 if (unlikely(!skb))
0587 return 0;
0588
0589 frame->can_id |= CAN_ERR_CRTL;
0590 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
0591
0592 if (cdev->is_peripheral)
0593 timestamp = m_can_get_timestamp(cdev);
0594
0595 m_can_receive_skb(cdev, skb, timestamp);
0596
0597 return 1;
0598 }
0599
0600 static int m_can_handle_lec_err(struct net_device *dev,
0601 enum m_can_lec_type lec_type)
0602 {
0603 struct m_can_classdev *cdev = netdev_priv(dev);
0604 struct net_device_stats *stats = &dev->stats;
0605 struct can_frame *cf;
0606 struct sk_buff *skb;
0607 u32 timestamp = 0;
0608
0609 cdev->can.can_stats.bus_error++;
0610 stats->rx_errors++;
0611
0612
0613 skb = alloc_can_err_skb(dev, &cf);
0614 if (unlikely(!skb))
0615 return 0;
0616
0617
0618
0619
0620 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
0621
0622 switch (lec_type) {
0623 case LEC_STUFF_ERROR:
0624 netdev_dbg(dev, "stuff error\n");
0625 cf->data[2] |= CAN_ERR_PROT_STUFF;
0626 break;
0627 case LEC_FORM_ERROR:
0628 netdev_dbg(dev, "form error\n");
0629 cf->data[2] |= CAN_ERR_PROT_FORM;
0630 break;
0631 case LEC_ACK_ERROR:
0632 netdev_dbg(dev, "ack error\n");
0633 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
0634 break;
0635 case LEC_BIT1_ERROR:
0636 netdev_dbg(dev, "bit1 error\n");
0637 cf->data[2] |= CAN_ERR_PROT_BIT1;
0638 break;
0639 case LEC_BIT0_ERROR:
0640 netdev_dbg(dev, "bit0 error\n");
0641 cf->data[2] |= CAN_ERR_PROT_BIT0;
0642 break;
0643 case LEC_CRC_ERROR:
0644 netdev_dbg(dev, "CRC error\n");
0645 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
0646 break;
0647 default:
0648 break;
0649 }
0650
0651 if (cdev->is_peripheral)
0652 timestamp = m_can_get_timestamp(cdev);
0653
0654 m_can_receive_skb(cdev, skb, timestamp);
0655
0656 return 1;
0657 }
0658
0659 static int __m_can_get_berr_counter(const struct net_device *dev,
0660 struct can_berr_counter *bec)
0661 {
0662 struct m_can_classdev *cdev = netdev_priv(dev);
0663 unsigned int ecr;
0664
0665 ecr = m_can_read(cdev, M_CAN_ECR);
0666 bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr);
0667 bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr);
0668
0669 return 0;
0670 }
0671
0672 static int m_can_clk_start(struct m_can_classdev *cdev)
0673 {
0674 if (cdev->pm_clock_support == 0)
0675 return 0;
0676
0677 return pm_runtime_resume_and_get(cdev->dev);
0678 }
0679
0680 static void m_can_clk_stop(struct m_can_classdev *cdev)
0681 {
0682 if (cdev->pm_clock_support)
0683 pm_runtime_put_sync(cdev->dev);
0684 }
0685
0686 static int m_can_get_berr_counter(const struct net_device *dev,
0687 struct can_berr_counter *bec)
0688 {
0689 struct m_can_classdev *cdev = netdev_priv(dev);
0690 int err;
0691
0692 err = m_can_clk_start(cdev);
0693 if (err)
0694 return err;
0695
0696 __m_can_get_berr_counter(dev, bec);
0697
0698 m_can_clk_stop(cdev);
0699
0700 return 0;
0701 }
0702
0703 static int m_can_handle_state_change(struct net_device *dev,
0704 enum can_state new_state)
0705 {
0706 struct m_can_classdev *cdev = netdev_priv(dev);
0707 struct can_frame *cf;
0708 struct sk_buff *skb;
0709 struct can_berr_counter bec;
0710 unsigned int ecr;
0711 u32 timestamp = 0;
0712
0713 switch (new_state) {
0714 case CAN_STATE_ERROR_WARNING:
0715
0716 cdev->can.can_stats.error_warning++;
0717 cdev->can.state = CAN_STATE_ERROR_WARNING;
0718 break;
0719 case CAN_STATE_ERROR_PASSIVE:
0720
0721 cdev->can.can_stats.error_passive++;
0722 cdev->can.state = CAN_STATE_ERROR_PASSIVE;
0723 break;
0724 case CAN_STATE_BUS_OFF:
0725
0726 cdev->can.state = CAN_STATE_BUS_OFF;
0727 m_can_disable_all_interrupts(cdev);
0728 cdev->can.can_stats.bus_off++;
0729 can_bus_off(dev);
0730 break;
0731 default:
0732 break;
0733 }
0734
0735
0736 skb = alloc_can_err_skb(dev, &cf);
0737 if (unlikely(!skb))
0738 return 0;
0739
0740 __m_can_get_berr_counter(dev, &bec);
0741
0742 switch (new_state) {
0743 case CAN_STATE_ERROR_WARNING:
0744
0745 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
0746 cf->data[1] = (bec.txerr > bec.rxerr) ?
0747 CAN_ERR_CRTL_TX_WARNING :
0748 CAN_ERR_CRTL_RX_WARNING;
0749 cf->data[6] = bec.txerr;
0750 cf->data[7] = bec.rxerr;
0751 break;
0752 case CAN_STATE_ERROR_PASSIVE:
0753
0754 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
0755 ecr = m_can_read(cdev, M_CAN_ECR);
0756 if (ecr & ECR_RP)
0757 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
0758 if (bec.txerr > 127)
0759 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
0760 cf->data[6] = bec.txerr;
0761 cf->data[7] = bec.rxerr;
0762 break;
0763 case CAN_STATE_BUS_OFF:
0764
0765 cf->can_id |= CAN_ERR_BUSOFF;
0766 break;
0767 default:
0768 break;
0769 }
0770
0771 if (cdev->is_peripheral)
0772 timestamp = m_can_get_timestamp(cdev);
0773
0774 m_can_receive_skb(cdev, skb, timestamp);
0775
0776 return 1;
0777 }
0778
0779 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
0780 {
0781 struct m_can_classdev *cdev = netdev_priv(dev);
0782 int work_done = 0;
0783
0784 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
0785 netdev_dbg(dev, "entered error warning state\n");
0786 work_done += m_can_handle_state_change(dev,
0787 CAN_STATE_ERROR_WARNING);
0788 }
0789
0790 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
0791 netdev_dbg(dev, "entered error passive state\n");
0792 work_done += m_can_handle_state_change(dev,
0793 CAN_STATE_ERROR_PASSIVE);
0794 }
0795
0796 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
0797 netdev_dbg(dev, "entered error bus off state\n");
0798 work_done += m_can_handle_state_change(dev,
0799 CAN_STATE_BUS_OFF);
0800 }
0801
0802 return work_done;
0803 }
0804
0805 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
0806 {
0807 if (irqstatus & IR_WDI)
0808 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
0809 if (irqstatus & IR_BEU)
0810 netdev_err(dev, "Bit Error Uncorrected\n");
0811 if (irqstatus & IR_BEC)
0812 netdev_err(dev, "Bit Error Corrected\n");
0813 if (irqstatus & IR_TOO)
0814 netdev_err(dev, "Timeout reached\n");
0815 if (irqstatus & IR_MRAF)
0816 netdev_err(dev, "Message RAM access failure occurred\n");
0817 }
0818
0819 static inline bool is_lec_err(u32 psr)
0820 {
0821 psr &= LEC_UNUSED;
0822
0823 return psr && (psr != LEC_UNUSED);
0824 }
0825
0826 static inline bool m_can_is_protocol_err(u32 irqstatus)
0827 {
0828 return irqstatus & IR_ERR_LEC_31X;
0829 }
0830
0831 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
0832 {
0833 struct net_device_stats *stats = &dev->stats;
0834 struct m_can_classdev *cdev = netdev_priv(dev);
0835 struct can_frame *cf;
0836 struct sk_buff *skb;
0837 u32 timestamp = 0;
0838
0839
0840 skb = alloc_can_err_skb(dev, &cf);
0841
0842
0843 stats->tx_errors++;
0844
0845
0846 if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
0847 netdev_dbg(dev, "Protocol error in Arbitration fail\n");
0848 cdev->can.can_stats.arbitration_lost++;
0849 if (skb) {
0850 cf->can_id |= CAN_ERR_LOSTARB;
0851 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
0852 }
0853 }
0854
0855 if (unlikely(!skb)) {
0856 netdev_dbg(dev, "allocation of skb failed\n");
0857 return 0;
0858 }
0859
0860 if (cdev->is_peripheral)
0861 timestamp = m_can_get_timestamp(cdev);
0862
0863 m_can_receive_skb(cdev, skb, timestamp);
0864
0865 return 1;
0866 }
0867
0868 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
0869 u32 psr)
0870 {
0871 struct m_can_classdev *cdev = netdev_priv(dev);
0872 int work_done = 0;
0873
0874 if (irqstatus & IR_RF0L)
0875 work_done += m_can_handle_lost_msg(dev);
0876
0877
0878 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
0879 is_lec_err(psr))
0880 work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
0881
0882
0883 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
0884 m_can_is_protocol_err(irqstatus))
0885 work_done += m_can_handle_protocol_error(dev, irqstatus);
0886
0887
0888 m_can_handle_other_err(dev, irqstatus);
0889
0890 return work_done;
0891 }
0892
0893 static int m_can_rx_handler(struct net_device *dev, int quota)
0894 {
0895 struct m_can_classdev *cdev = netdev_priv(dev);
0896 int rx_work_or_err;
0897 int work_done = 0;
0898 u32 irqstatus, psr;
0899
0900 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
0901 if (!irqstatus)
0902 goto end;
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914 if (cdev->version <= 31 && irqstatus & IR_MRAF &&
0915 m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
0916 struct can_berr_counter bec;
0917
0918 __m_can_get_berr_counter(dev, &bec);
0919 if (bec.rxerr == 127) {
0920 m_can_write(cdev, M_CAN_IR, IR_MRAF);
0921 irqstatus &= ~IR_MRAF;
0922 }
0923 }
0924
0925 psr = m_can_read(cdev, M_CAN_PSR);
0926
0927 if (irqstatus & IR_ERR_STATE)
0928 work_done += m_can_handle_state_errors(dev, psr);
0929
0930 if (irqstatus & IR_ERR_BUS_30X)
0931 work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
0932
0933 if (irqstatus & IR_RF0N) {
0934 rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done));
0935 if (rx_work_or_err < 0)
0936 return rx_work_or_err;
0937
0938 work_done += rx_work_or_err;
0939 }
0940 end:
0941 return work_done;
0942 }
0943
0944 static int m_can_rx_peripheral(struct net_device *dev)
0945 {
0946 struct m_can_classdev *cdev = netdev_priv(dev);
0947 int work_done;
0948
0949 work_done = m_can_rx_handler(dev, NAPI_POLL_WEIGHT);
0950
0951
0952
0953
0954 if (work_done >= 0)
0955 m_can_enable_all_interrupts(cdev);
0956
0957 return work_done;
0958 }
0959
0960 static int m_can_poll(struct napi_struct *napi, int quota)
0961 {
0962 struct net_device *dev = napi->dev;
0963 struct m_can_classdev *cdev = netdev_priv(dev);
0964 int work_done;
0965
0966 work_done = m_can_rx_handler(dev, quota);
0967
0968
0969
0970
0971 if (work_done >= 0 && work_done < quota) {
0972 napi_complete_done(napi, work_done);
0973 m_can_enable_all_interrupts(cdev);
0974 }
0975
0976 return work_done;
0977 }
0978
0979
0980
0981
0982
0983 static void m_can_tx_update_stats(struct m_can_classdev *cdev,
0984 unsigned int msg_mark,
0985 u32 timestamp)
0986 {
0987 struct net_device *dev = cdev->net;
0988 struct net_device_stats *stats = &dev->stats;
0989
0990 if (cdev->is_peripheral)
0991 stats->tx_bytes +=
0992 can_rx_offload_get_echo_skb(&cdev->offload,
0993 msg_mark,
0994 timestamp,
0995 NULL);
0996 else
0997 stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL);
0998
0999 stats->tx_packets++;
1000 }
1001
1002 static int m_can_echo_tx_event(struct net_device *dev)
1003 {
1004 u32 txe_count = 0;
1005 u32 m_can_txefs;
1006 u32 fgi = 0;
1007 int i = 0;
1008 unsigned int msg_mark;
1009
1010 struct m_can_classdev *cdev = netdev_priv(dev);
1011
1012
1013 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
1014
1015
1016 txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs);
1017
1018
1019 for (i = 0; i < txe_count; i++) {
1020 u32 txe, timestamp = 0;
1021 int err;
1022
1023
1024 fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_read(cdev, M_CAN_TXEFS));
1025
1026
1027 err = m_can_txe_fifo_read(cdev, fgi, 4, &txe);
1028 if (err) {
1029 netdev_err(dev, "TXE FIFO read returned %d\n", err);
1030 return err;
1031 }
1032
1033 msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe);
1034 timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16;
1035
1036
1037 m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK,
1038 fgi));
1039
1040
1041 m_can_tx_update_stats(cdev, msg_mark, timestamp);
1042 }
1043
1044 return 0;
1045 }
1046
1047 static irqreturn_t m_can_isr(int irq, void *dev_id)
1048 {
1049 struct net_device *dev = (struct net_device *)dev_id;
1050 struct m_can_classdev *cdev = netdev_priv(dev);
1051 u32 ir;
1052
1053 if (pm_runtime_suspended(cdev->dev))
1054 return IRQ_NONE;
1055 ir = m_can_read(cdev, M_CAN_IR);
1056 if (!ir)
1057 return IRQ_NONE;
1058
1059
1060 if (ir & IR_ALL_INT)
1061 m_can_write(cdev, M_CAN_IR, ir);
1062
1063 if (cdev->ops->clear_interrupts)
1064 cdev->ops->clear_interrupts(cdev);
1065
1066
1067
1068
1069
1070
1071 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
1072 cdev->irqstatus = ir;
1073 m_can_disable_all_interrupts(cdev);
1074 if (!cdev->is_peripheral)
1075 napi_schedule(&cdev->napi);
1076 else if (m_can_rx_peripheral(dev) < 0)
1077 goto out_fail;
1078 }
1079
1080 if (cdev->version == 30) {
1081 if (ir & IR_TC) {
1082
1083 u32 timestamp = 0;
1084
1085 if (cdev->is_peripheral)
1086 timestamp = m_can_get_timestamp(cdev);
1087 m_can_tx_update_stats(cdev, 0, timestamp);
1088 netif_wake_queue(dev);
1089 }
1090 } else {
1091 if (ir & IR_TEFN) {
1092
1093 if (m_can_echo_tx_event(dev) != 0)
1094 goto out_fail;
1095
1096 if (netif_queue_stopped(dev) &&
1097 !m_can_tx_fifo_full(cdev))
1098 netif_wake_queue(dev);
1099 }
1100 }
1101
1102 if (cdev->is_peripheral)
1103 can_rx_offload_threaded_irq_finish(&cdev->offload);
1104
1105 return IRQ_HANDLED;
1106
1107 out_fail:
1108 m_can_disable_all_interrupts(cdev);
1109 return IRQ_HANDLED;
1110 }
1111
1112 static const struct can_bittiming_const m_can_bittiming_const_30X = {
1113 .name = KBUILD_MODNAME,
1114 .tseg1_min = 2,
1115 .tseg1_max = 64,
1116 .tseg2_min = 1,
1117 .tseg2_max = 16,
1118 .sjw_max = 16,
1119 .brp_min = 1,
1120 .brp_max = 1024,
1121 .brp_inc = 1,
1122 };
1123
1124 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1125 .name = KBUILD_MODNAME,
1126 .tseg1_min = 2,
1127 .tseg1_max = 16,
1128 .tseg2_min = 1,
1129 .tseg2_max = 8,
1130 .sjw_max = 4,
1131 .brp_min = 1,
1132 .brp_max = 32,
1133 .brp_inc = 1,
1134 };
1135
1136 static const struct can_bittiming_const m_can_bittiming_const_31X = {
1137 .name = KBUILD_MODNAME,
1138 .tseg1_min = 2,
1139 .tseg1_max = 256,
1140 .tseg2_min = 2,
1141 .tseg2_max = 128,
1142 .sjw_max = 128,
1143 .brp_min = 1,
1144 .brp_max = 512,
1145 .brp_inc = 1,
1146 };
1147
1148 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1149 .name = KBUILD_MODNAME,
1150 .tseg1_min = 1,
1151 .tseg1_max = 32,
1152 .tseg2_min = 1,
1153 .tseg2_max = 16,
1154 .sjw_max = 16,
1155 .brp_min = 1,
1156 .brp_max = 32,
1157 .brp_inc = 1,
1158 };
1159
1160 static int m_can_set_bittiming(struct net_device *dev)
1161 {
1162 struct m_can_classdev *cdev = netdev_priv(dev);
1163 const struct can_bittiming *bt = &cdev->can.bittiming;
1164 const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1165 u16 brp, sjw, tseg1, tseg2;
1166 u32 reg_btp;
1167
1168 brp = bt->brp - 1;
1169 sjw = bt->sjw - 1;
1170 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1171 tseg2 = bt->phase_seg2 - 1;
1172 reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) |
1173 FIELD_PREP(NBTP_NSJW_MASK, sjw) |
1174 FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) |
1175 FIELD_PREP(NBTP_NTSEG2_MASK, tseg2);
1176 m_can_write(cdev, M_CAN_NBTP, reg_btp);
1177
1178 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1179 reg_btp = 0;
1180 brp = dbt->brp - 1;
1181 sjw = dbt->sjw - 1;
1182 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1183 tseg2 = dbt->phase_seg2 - 1;
1184
1185
1186
1187
1188
1189 if (dbt->bitrate > 2500000) {
1190 u32 tdco, ssp;
1191
1192
1193
1194
1195 ssp = dbt->sample_point;
1196
1197
1198
1199
1200 tdco = (cdev->can.clock.freq / 1000) *
1201 ssp / dbt->bitrate;
1202
1203
1204 if (tdco > 127) {
1205 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1206 tdco);
1207 tdco = 127;
1208 }
1209
1210 reg_btp |= DBTP_TDC;
1211 m_can_write(cdev, M_CAN_TDCR,
1212 FIELD_PREP(TDCR_TDCO_MASK, tdco));
1213 }
1214
1215 reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) |
1216 FIELD_PREP(DBTP_DSJW_MASK, sjw) |
1217 FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) |
1218 FIELD_PREP(DBTP_DTSEG2_MASK, tseg2);
1219
1220 m_can_write(cdev, M_CAN_DBTP, reg_btp);
1221 }
1222
1223 return 0;
1224 }
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236 static void m_can_chip_config(struct net_device *dev)
1237 {
1238 struct m_can_classdev *cdev = netdev_priv(dev);
1239 u32 cccr, test;
1240
1241 m_can_config_endisable(cdev, true);
1242
1243
1244 m_can_write(cdev, M_CAN_RXESC,
1245 FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) |
1246 FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) |
1247 FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B));
1248
1249
1250 m_can_write(cdev, M_CAN_GFC, 0x0);
1251
1252 if (cdev->version == 30) {
1253
1254 m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) |
1255 cdev->mcfg[MRAM_TXB].off);
1256 } else {
1257
1258 m_can_write(cdev, M_CAN_TXBC,
1259 FIELD_PREP(TXBC_TFQS_MASK,
1260 cdev->mcfg[MRAM_TXB].num) |
1261 cdev->mcfg[MRAM_TXB].off);
1262 }
1263
1264
1265 m_can_write(cdev, M_CAN_TXESC,
1266 FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B));
1267
1268
1269 if (cdev->version == 30) {
1270 m_can_write(cdev, M_CAN_TXEFC,
1271 FIELD_PREP(TXEFC_EFS_MASK, 1) |
1272 cdev->mcfg[MRAM_TXE].off);
1273 } else {
1274
1275 m_can_write(cdev, M_CAN_TXEFC,
1276 FIELD_PREP(TXEFC_EFS_MASK,
1277 cdev->mcfg[MRAM_TXE].num) |
1278 cdev->mcfg[MRAM_TXE].off);
1279 }
1280
1281
1282 m_can_write(cdev, M_CAN_RXF0C,
1283 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) |
1284 cdev->mcfg[MRAM_RXF0].off);
1285
1286 m_can_write(cdev, M_CAN_RXF1C,
1287 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) |
1288 cdev->mcfg[MRAM_RXF1].off);
1289
1290 cccr = m_can_read(cdev, M_CAN_CCCR);
1291 test = m_can_read(cdev, M_CAN_TEST);
1292 test &= ~TEST_LBCK;
1293 if (cdev->version == 30) {
1294
1295
1296 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1297 FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) |
1298 FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK)));
1299
1300 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1301 cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS);
1302
1303 } else {
1304
1305 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1306 CCCR_NISO | CCCR_DAR);
1307
1308
1309 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1310 cccr |= CCCR_NISO;
1311
1312 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1313 cccr |= (CCCR_BRSE | CCCR_FDOE);
1314 }
1315
1316
1317 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1318 cccr |= CCCR_TEST | CCCR_MON;
1319 test |= TEST_LBCK;
1320 }
1321
1322
1323 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1324 cccr |= CCCR_MON;
1325
1326
1327 if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1328 cccr |= CCCR_DAR;
1329
1330
1331 m_can_write(cdev, M_CAN_CCCR, cccr);
1332 m_can_write(cdev, M_CAN_TEST, test);
1333
1334
1335 m_can_write(cdev, M_CAN_IR, IR_ALL_INT);
1336 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1337 if (cdev->version == 30)
1338 m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1339 ~(IR_ERR_LEC_30X));
1340 else
1341 m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1342 ~(IR_ERR_LEC_31X));
1343 else
1344 m_can_write(cdev, M_CAN_IE, IR_ALL_INT);
1345
1346
1347 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1348
1349
1350 m_can_set_bittiming(dev);
1351
1352
1353
1354
1355 m_can_write(cdev, M_CAN_TSCC,
1356 FIELD_PREP(TSCC_TCP_MASK, 0xf) |
1357 FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL));
1358
1359 m_can_config_endisable(cdev, false);
1360
1361 if (cdev->ops->init)
1362 cdev->ops->init(cdev);
1363 }
1364
1365 static void m_can_start(struct net_device *dev)
1366 {
1367 struct m_can_classdev *cdev = netdev_priv(dev);
1368
1369
1370 m_can_chip_config(dev);
1371
1372 cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1373
1374 m_can_enable_all_interrupts(cdev);
1375 }
1376
1377 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1378 {
1379 switch (mode) {
1380 case CAN_MODE_START:
1381 m_can_clean(dev);
1382 m_can_start(dev);
1383 netif_wake_queue(dev);
1384 break;
1385 default:
1386 return -EOPNOTSUPP;
1387 }
1388
1389 return 0;
1390 }
1391
1392
1393
1394
1395
1396
1397 static int m_can_check_core_release(struct m_can_classdev *cdev)
1398 {
1399 u32 crel_reg;
1400 u8 rel;
1401 u8 step;
1402 int res;
1403
1404
1405
1406
1407 crel_reg = m_can_read(cdev, M_CAN_CREL);
1408 rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg);
1409 step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg);
1410
1411 if (rel == 3) {
1412
1413 res = 30 + step;
1414 } else {
1415
1416 res = 0;
1417 }
1418
1419 return res;
1420 }
1421
1422
1423
1424
1425 static bool m_can_niso_supported(struct m_can_classdev *cdev)
1426 {
1427 u32 cccr_reg, cccr_poll = 0;
1428 int niso_timeout = -ETIMEDOUT;
1429 int i;
1430
1431 m_can_config_endisable(cdev, true);
1432 cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1433 cccr_reg |= CCCR_NISO;
1434 m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1435
1436 for (i = 0; i <= 10; i++) {
1437 cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1438 if (cccr_poll == cccr_reg) {
1439 niso_timeout = 0;
1440 break;
1441 }
1442
1443 usleep_range(1, 5);
1444 }
1445
1446
1447 cccr_reg &= ~(CCCR_NISO);
1448 m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1449
1450 m_can_config_endisable(cdev, false);
1451
1452
1453 return !niso_timeout;
1454 }
1455
1456 static int m_can_dev_setup(struct m_can_classdev *cdev)
1457 {
1458 struct net_device *dev = cdev->net;
1459 int m_can_version, err;
1460
1461 m_can_version = m_can_check_core_release(cdev);
1462
1463 if (!m_can_version) {
1464 dev_err(cdev->dev, "Unsupported version number: %2d",
1465 m_can_version);
1466 return -EINVAL;
1467 }
1468
1469 if (!cdev->is_peripheral)
1470 netif_napi_add(dev, &cdev->napi,
1471 m_can_poll, NAPI_POLL_WEIGHT);
1472
1473
1474 cdev->version = m_can_version;
1475 cdev->can.do_set_mode = m_can_set_mode;
1476 cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1477
1478
1479 cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1480 CAN_CTRLMODE_LISTENONLY |
1481 CAN_CTRLMODE_BERR_REPORTING |
1482 CAN_CTRLMODE_FD |
1483 CAN_CTRLMODE_ONE_SHOT;
1484
1485
1486 switch (cdev->version) {
1487 case 30:
1488
1489 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1490 if (err)
1491 return err;
1492 cdev->can.bittiming_const = &m_can_bittiming_const_30X;
1493 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X;
1494 break;
1495 case 31:
1496
1497 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1498 if (err)
1499 return err;
1500 cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1501 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1502 break;
1503 case 32:
1504 case 33:
1505
1506 cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1507 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1508
1509 cdev->can.ctrlmode_supported |=
1510 (m_can_niso_supported(cdev) ?
1511 CAN_CTRLMODE_FD_NON_ISO : 0);
1512 break;
1513 default:
1514 dev_err(cdev->dev, "Unsupported version number: %2d",
1515 cdev->version);
1516 return -EINVAL;
1517 }
1518
1519 if (cdev->ops->init)
1520 cdev->ops->init(cdev);
1521
1522 return 0;
1523 }
1524
1525 static void m_can_stop(struct net_device *dev)
1526 {
1527 struct m_can_classdev *cdev = netdev_priv(dev);
1528
1529
1530 m_can_disable_all_interrupts(cdev);
1531
1532
1533 m_can_config_endisable(cdev, true);
1534
1535
1536 cdev->can.state = CAN_STATE_STOPPED;
1537 }
1538
1539 static int m_can_close(struct net_device *dev)
1540 {
1541 struct m_can_classdev *cdev = netdev_priv(dev);
1542
1543 netif_stop_queue(dev);
1544
1545 if (!cdev->is_peripheral)
1546 napi_disable(&cdev->napi);
1547
1548 m_can_stop(dev);
1549 m_can_clk_stop(cdev);
1550 free_irq(dev->irq, dev);
1551
1552 if (cdev->is_peripheral) {
1553 cdev->tx_skb = NULL;
1554 destroy_workqueue(cdev->tx_wq);
1555 cdev->tx_wq = NULL;
1556 }
1557
1558 if (cdev->is_peripheral)
1559 can_rx_offload_disable(&cdev->offload);
1560
1561 close_candev(dev);
1562
1563 phy_power_off(cdev->transceiver);
1564
1565 return 0;
1566 }
1567
1568 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1569 {
1570 struct m_can_classdev *cdev = netdev_priv(dev);
1571
1572 unsigned int wrap = cdev->can.echo_skb_max;
1573 int next_idx;
1574
1575
1576 next_idx = (++putidx >= wrap ? 0 : putidx);
1577
1578
1579 return !!cdev->can.echo_skb[next_idx];
1580 }
1581
1582 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1583 {
1584 struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1585 struct net_device *dev = cdev->net;
1586 struct sk_buff *skb = cdev->tx_skb;
1587 struct id_and_dlc fifo_header;
1588 u32 cccr, fdflags;
1589 int err;
1590 int putidx;
1591
1592 cdev->tx_skb = NULL;
1593
1594
1595
1596 if (cf->can_id & CAN_EFF_FLAG) {
1597 fifo_header.id = cf->can_id & CAN_EFF_MASK;
1598 fifo_header.id |= TX_BUF_XTD;
1599 } else {
1600 fifo_header.id = ((cf->can_id & CAN_SFF_MASK) << 18);
1601 }
1602
1603 if (cf->can_id & CAN_RTR_FLAG)
1604 fifo_header.id |= TX_BUF_RTR;
1605
1606 if (cdev->version == 30) {
1607 netif_stop_queue(dev);
1608
1609 fifo_header.dlc = can_fd_len2dlc(cf->len) << 16;
1610
1611
1612 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_header, 2);
1613 if (err)
1614 goto out_fail;
1615
1616 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA,
1617 cf->data, DIV_ROUND_UP(cf->len, 4));
1618 if (err)
1619 goto out_fail;
1620
1621 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1622 cccr = m_can_read(cdev, M_CAN_CCCR);
1623 cccr &= ~CCCR_CMR_MASK;
1624 if (can_is_canfd_skb(skb)) {
1625 if (cf->flags & CANFD_BRS)
1626 cccr |= FIELD_PREP(CCCR_CMR_MASK,
1627 CCCR_CMR_CANFD_BRS);
1628 else
1629 cccr |= FIELD_PREP(CCCR_CMR_MASK,
1630 CCCR_CMR_CANFD);
1631 } else {
1632 cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN);
1633 }
1634 m_can_write(cdev, M_CAN_CCCR, cccr);
1635 }
1636 m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1637
1638 can_put_echo_skb(skb, dev, 0, 0);
1639
1640 m_can_write(cdev, M_CAN_TXBAR, 0x1);
1641
1642 } else {
1643
1644
1645
1646 if (m_can_tx_fifo_full(cdev)) {
1647
1648 netif_stop_queue(dev);
1649 netdev_warn(dev,
1650 "TX queue active although FIFO is full.");
1651
1652 if (cdev->is_peripheral) {
1653 kfree_skb(skb);
1654 dev->stats.tx_dropped++;
1655 return NETDEV_TX_OK;
1656 } else {
1657 return NETDEV_TX_BUSY;
1658 }
1659 }
1660
1661
1662 putidx = FIELD_GET(TXFQS_TFQPI_MASK,
1663 m_can_read(cdev, M_CAN_TXFQS));
1664
1665
1666
1667
1668
1669
1670
1671 fdflags = 0;
1672 if (can_is_canfd_skb(skb)) {
1673 fdflags |= TX_BUF_FDF;
1674 if (cf->flags & CANFD_BRS)
1675 fdflags |= TX_BUF_BRS;
1676 }
1677
1678 fifo_header.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) |
1679 FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) |
1680 fdflags | TX_BUF_EFC;
1681 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, &fifo_header, 2);
1682 if (err)
1683 goto out_fail;
1684
1685 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA,
1686 cf->data, DIV_ROUND_UP(cf->len, 4));
1687 if (err)
1688 goto out_fail;
1689
1690
1691
1692
1693 can_put_echo_skb(skb, dev, putidx, 0);
1694
1695
1696 m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1697
1698
1699 if (m_can_tx_fifo_full(cdev) ||
1700 m_can_next_echo_skb_occupied(dev, putidx))
1701 netif_stop_queue(dev);
1702 }
1703
1704 return NETDEV_TX_OK;
1705
1706 out_fail:
1707 netdev_err(dev, "FIFO write returned %d\n", err);
1708 m_can_disable_all_interrupts(cdev);
1709 return NETDEV_TX_BUSY;
1710 }
1711
1712 static void m_can_tx_work_queue(struct work_struct *ws)
1713 {
1714 struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1715 tx_work);
1716
1717 m_can_tx_handler(cdev);
1718 }
1719
1720 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1721 struct net_device *dev)
1722 {
1723 struct m_can_classdev *cdev = netdev_priv(dev);
1724
1725 if (can_dropped_invalid_skb(dev, skb))
1726 return NETDEV_TX_OK;
1727
1728 if (cdev->is_peripheral) {
1729 if (cdev->tx_skb) {
1730 netdev_err(dev, "hard_xmit called while tx busy\n");
1731 return NETDEV_TX_BUSY;
1732 }
1733
1734 if (cdev->can.state == CAN_STATE_BUS_OFF) {
1735 m_can_clean(dev);
1736 } else {
1737
1738
1739
1740
1741
1742 cdev->tx_skb = skb;
1743 netif_stop_queue(cdev->net);
1744 queue_work(cdev->tx_wq, &cdev->tx_work);
1745 }
1746 } else {
1747 cdev->tx_skb = skb;
1748 return m_can_tx_handler(cdev);
1749 }
1750
1751 return NETDEV_TX_OK;
1752 }
1753
1754 static int m_can_open(struct net_device *dev)
1755 {
1756 struct m_can_classdev *cdev = netdev_priv(dev);
1757 int err;
1758
1759 err = phy_power_on(cdev->transceiver);
1760 if (err)
1761 return err;
1762
1763 err = m_can_clk_start(cdev);
1764 if (err)
1765 goto out_phy_power_off;
1766
1767
1768 err = open_candev(dev);
1769 if (err) {
1770 netdev_err(dev, "failed to open can device\n");
1771 goto exit_disable_clks;
1772 }
1773
1774 if (cdev->is_peripheral)
1775 can_rx_offload_enable(&cdev->offload);
1776
1777
1778 if (cdev->is_peripheral) {
1779 cdev->tx_skb = NULL;
1780 cdev->tx_wq = alloc_workqueue("mcan_wq",
1781 WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1782 if (!cdev->tx_wq) {
1783 err = -ENOMEM;
1784 goto out_wq_fail;
1785 }
1786
1787 INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1788
1789 err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1790 IRQF_ONESHOT,
1791 dev->name, dev);
1792 } else {
1793 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1794 dev);
1795 }
1796
1797 if (err < 0) {
1798 netdev_err(dev, "failed to request interrupt\n");
1799 goto exit_irq_fail;
1800 }
1801
1802
1803 m_can_start(dev);
1804
1805 if (!cdev->is_peripheral)
1806 napi_enable(&cdev->napi);
1807
1808 netif_start_queue(dev);
1809
1810 return 0;
1811
1812 exit_irq_fail:
1813 if (cdev->is_peripheral)
1814 destroy_workqueue(cdev->tx_wq);
1815 out_wq_fail:
1816 if (cdev->is_peripheral)
1817 can_rx_offload_disable(&cdev->offload);
1818 close_candev(dev);
1819 exit_disable_clks:
1820 m_can_clk_stop(cdev);
1821 out_phy_power_off:
1822 phy_power_off(cdev->transceiver);
1823 return err;
1824 }
1825
1826 static const struct net_device_ops m_can_netdev_ops = {
1827 .ndo_open = m_can_open,
1828 .ndo_stop = m_can_close,
1829 .ndo_start_xmit = m_can_start_xmit,
1830 .ndo_change_mtu = can_change_mtu,
1831 };
1832
1833 static const struct ethtool_ops m_can_ethtool_ops = {
1834 .get_ts_info = ethtool_op_get_ts_info,
1835 };
1836
1837 static int register_m_can_dev(struct net_device *dev)
1838 {
1839 dev->flags |= IFF_ECHO;
1840 dev->netdev_ops = &m_can_netdev_ops;
1841 dev->ethtool_ops = &m_can_ethtool_ops;
1842
1843 return register_candev(dev);
1844 }
1845
1846 static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1847 const u32 *mram_config_vals)
1848 {
1849 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1850 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1851 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1852 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1853 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1854 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1855 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1856 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1857 FIELD_MAX(RXFC_FS_MASK);
1858 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1859 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1860 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1861 FIELD_MAX(RXFC_FS_MASK);
1862 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1863 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1864 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1865 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1866 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1867 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1868 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1869 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1870 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1871 FIELD_MAX(TXBC_NDTB_MASK);
1872
1873 dev_dbg(cdev->dev,
1874 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1875 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1876 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1877 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1878 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1879 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1880 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1881 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1882 }
1883
1884 int m_can_init_ram(struct m_can_classdev *cdev)
1885 {
1886 int end, i, start;
1887 int err = 0;
1888
1889
1890
1891
1892 start = cdev->mcfg[MRAM_SIDF].off;
1893 end = cdev->mcfg[MRAM_TXB].off +
1894 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1895
1896 for (i = start; i < end; i += 4) {
1897 err = m_can_fifo_write_no_off(cdev, i, 0x0);
1898 if (err)
1899 break;
1900 }
1901
1902 return err;
1903 }
1904 EXPORT_SYMBOL_GPL(m_can_init_ram);
1905
1906 int m_can_class_get_clocks(struct m_can_classdev *cdev)
1907 {
1908 int ret = 0;
1909
1910 cdev->hclk = devm_clk_get(cdev->dev, "hclk");
1911 cdev->cclk = devm_clk_get(cdev->dev, "cclk");
1912
1913 if (IS_ERR(cdev->cclk)) {
1914 dev_err(cdev->dev, "no clock found\n");
1915 ret = -ENODEV;
1916 }
1917
1918 return ret;
1919 }
1920 EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1921
1922 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
1923 int sizeof_priv)
1924 {
1925 struct m_can_classdev *class_dev = NULL;
1926 u32 mram_config_vals[MRAM_CFG_LEN];
1927 struct net_device *net_dev;
1928 u32 tx_fifo_size;
1929 int ret;
1930
1931 ret = fwnode_property_read_u32_array(dev_fwnode(dev),
1932 "bosch,mram-cfg",
1933 mram_config_vals,
1934 sizeof(mram_config_vals) / 4);
1935 if (ret) {
1936 dev_err(dev, "Could not get Message RAM configuration.");
1937 goto out;
1938 }
1939
1940
1941
1942
1943 tx_fifo_size = mram_config_vals[7];
1944
1945
1946 net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
1947 if (!net_dev) {
1948 dev_err(dev, "Failed to allocate CAN device");
1949 goto out;
1950 }
1951
1952 class_dev = netdev_priv(net_dev);
1953 class_dev->net = net_dev;
1954 class_dev->dev = dev;
1955 SET_NETDEV_DEV(net_dev, dev);
1956
1957 m_can_of_parse_mram(class_dev, mram_config_vals);
1958 out:
1959 return class_dev;
1960 }
1961 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
1962
1963 void m_can_class_free_dev(struct net_device *net)
1964 {
1965 free_candev(net);
1966 }
1967 EXPORT_SYMBOL_GPL(m_can_class_free_dev);
1968
1969 int m_can_class_register(struct m_can_classdev *cdev)
1970 {
1971 int ret;
1972
1973 if (cdev->pm_clock_support) {
1974 ret = m_can_clk_start(cdev);
1975 if (ret)
1976 return ret;
1977 }
1978
1979 if (cdev->is_peripheral) {
1980 ret = can_rx_offload_add_manual(cdev->net, &cdev->offload,
1981 NAPI_POLL_WEIGHT);
1982 if (ret)
1983 goto clk_disable;
1984 }
1985
1986 ret = m_can_dev_setup(cdev);
1987 if (ret)
1988 goto rx_offload_del;
1989
1990 ret = register_m_can_dev(cdev->net);
1991 if (ret) {
1992 dev_err(cdev->dev, "registering %s failed (err=%d)\n",
1993 cdev->net->name, ret);
1994 goto rx_offload_del;
1995 }
1996
1997 of_can_transceiver(cdev->net);
1998
1999 dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
2000 KBUILD_MODNAME, cdev->net->irq, cdev->version);
2001
2002
2003
2004
2005 m_can_clk_stop(cdev);
2006
2007 return 0;
2008
2009 rx_offload_del:
2010 if (cdev->is_peripheral)
2011 can_rx_offload_del(&cdev->offload);
2012 clk_disable:
2013 m_can_clk_stop(cdev);
2014
2015 return ret;
2016 }
2017 EXPORT_SYMBOL_GPL(m_can_class_register);
2018
2019 void m_can_class_unregister(struct m_can_classdev *cdev)
2020 {
2021 if (cdev->is_peripheral)
2022 can_rx_offload_del(&cdev->offload);
2023 unregister_candev(cdev->net);
2024 }
2025 EXPORT_SYMBOL_GPL(m_can_class_unregister);
2026
2027 int m_can_class_suspend(struct device *dev)
2028 {
2029 struct m_can_classdev *cdev = dev_get_drvdata(dev);
2030 struct net_device *ndev = cdev->net;
2031
2032 if (netif_running(ndev)) {
2033 netif_stop_queue(ndev);
2034 netif_device_detach(ndev);
2035 m_can_stop(ndev);
2036 m_can_clk_stop(cdev);
2037 }
2038
2039 pinctrl_pm_select_sleep_state(dev);
2040
2041 cdev->can.state = CAN_STATE_SLEEPING;
2042
2043 return 0;
2044 }
2045 EXPORT_SYMBOL_GPL(m_can_class_suspend);
2046
2047 int m_can_class_resume(struct device *dev)
2048 {
2049 struct m_can_classdev *cdev = dev_get_drvdata(dev);
2050 struct net_device *ndev = cdev->net;
2051
2052 pinctrl_pm_select_default_state(dev);
2053
2054 cdev->can.state = CAN_STATE_ERROR_ACTIVE;
2055
2056 if (netif_running(ndev)) {
2057 int ret;
2058
2059 ret = m_can_clk_start(cdev);
2060 if (ret)
2061 return ret;
2062
2063 m_can_init_ram(cdev);
2064 m_can_start(ndev);
2065 netif_device_attach(ndev);
2066 netif_start_queue(ndev);
2067 }
2068
2069 return 0;
2070 }
2071 EXPORT_SYMBOL_GPL(m_can_class_resume);
2072
2073 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
2074 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
2075 MODULE_LICENSE("GPL v2");
2076 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");