Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * Copyright (c) International Business Machines Corp., 2006
0004  * Copyright (c) Nokia Corporation, 2006, 2007
0005  *
0006  * Author: Artem Bityutskiy (Битюцкий Артём)
0007  */
0008 
0009 /*
0010  * UBI input/output sub-system.
0011  *
0012  * This sub-system provides a uniform way to work with all kinds of the
0013  * underlying MTD devices. It also implements handy functions for reading and
0014  * writing UBI headers.
0015  *
0016  * We are trying to have a paranoid mindset and not to trust to what we read
0017  * from the flash media in order to be more secure and robust. So this
0018  * sub-system validates every single header it reads from the flash media.
0019  *
0020  * Some words about how the eraseblock headers are stored.
0021  *
0022  * The erase counter header is always stored at offset zero. By default, the
0023  * VID header is stored after the EC header at the closest aligned offset
0024  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
0025  * header at the closest aligned offset. But this default layout may be
0026  * changed. For example, for different reasons (e.g., optimization) UBI may be
0027  * asked to put the VID header at further offset, and even at an unaligned
0028  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
0029  * proper padding in front of it. Data offset may also be changed but it has to
0030  * be aligned.
0031  *
0032  * About minimal I/O units. In general, UBI assumes flash device model where
0033  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
0034  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
0035  * @ubi->mtd->writesize field. But as an exception, UBI admits use of another
0036  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
0037  * to do different optimizations.
0038  *
0039  * This is extremely useful in case of NAND flashes which admit of several
0040  * write operations to one NAND page. In this case UBI can fit EC and VID
0041  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
0042  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
0043  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
0044  * users.
0045  *
0046  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
0047  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
0048  * headers.
0049  *
0050  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
0051  * device, e.g., make @ubi->min_io_size = 512 in the example above?
0052  *
0053  * A: because when writing a sub-page, MTD still writes a full 2K page but the
0054  * bytes which are not relevant to the sub-page are 0xFF. So, basically,
0055  * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
0056  * Thus, we prefer to use sub-pages only for EC and VID headers.
0057  *
0058  * As it was noted above, the VID header may start at a non-aligned offset.
0059  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
0060  * the VID header may reside at offset 1984 which is the last 64 bytes of the
0061  * last sub-page (EC header is always at offset zero). This causes some
0062  * difficulties when reading and writing VID headers.
0063  *
0064  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
0065  * the data and want to write this VID header out. As we can only write in
0066  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
0067  * to offset 448 of this buffer.
0068  *
0069  * The I/O sub-system does the following trick in order to avoid this extra
0070  * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
0071  * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
0072  * When the VID header is being written out, it shifts the VID header pointer
0073  * back and writes the whole sub-page.
0074  */
0075 
0076 #include <linux/crc32.h>
0077 #include <linux/err.h>
0078 #include <linux/slab.h>
0079 #include "ubi.h"
0080 
0081 static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
0082 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
0083 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
0084                  const struct ubi_ec_hdr *ec_hdr);
0085 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
0086 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
0087                   const struct ubi_vid_hdr *vid_hdr);
0088 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
0089                 int offset, int len);
0090 
0091 /**
0092  * ubi_io_read - read data from a physical eraseblock.
0093  * @ubi: UBI device description object
0094  * @buf: buffer where to store the read data
0095  * @pnum: physical eraseblock number to read from
0096  * @offset: offset within the physical eraseblock from where to read
0097  * @len: how many bytes to read
0098  *
0099  * This function reads data from offset @offset of physical eraseblock @pnum
0100  * and stores the read data in the @buf buffer. The following return codes are
0101  * possible:
0102  *
0103  * o %0 if all the requested data were successfully read;
0104  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
0105  *   correctable bit-flips were detected; this is harmless but may indicate
0106  *   that this eraseblock may become bad soon (but do not have to);
0107  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
0108  *   example it can be an ECC error in case of NAND; this most probably means
0109  *   that the data is corrupted;
0110  * o %-EIO if some I/O error occurred;
0111  * o other negative error codes in case of other errors.
0112  */
0113 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
0114         int len)
0115 {
0116     int err, retries = 0;
0117     size_t read;
0118     loff_t addr;
0119 
0120     dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
0121 
0122     ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
0123     ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
0124     ubi_assert(len > 0);
0125 
0126     err = self_check_not_bad(ubi, pnum);
0127     if (err)
0128         return err;
0129 
0130     /*
0131      * Deliberately corrupt the buffer to improve robustness. Indeed, if we
0132      * do not do this, the following may happen:
0133      * 1. The buffer contains data from previous operation, e.g., read from
0134      *    another PEB previously. The data looks like expected, e.g., if we
0135      *    just do not read anything and return - the caller would not
0136      *    notice this. E.g., if we are reading a VID header, the buffer may
0137      *    contain a valid VID header from another PEB.
0138      * 2. The driver is buggy and returns us success or -EBADMSG or
0139      *    -EUCLEAN, but it does not actually put any data to the buffer.
0140      *
0141      * This may confuse UBI or upper layers - they may think the buffer
0142      * contains valid data while in fact it is just old data. This is
0143      * especially possible because UBI (and UBIFS) relies on CRC, and
0144      * treats data as correct even in case of ECC errors if the CRC is
0145      * correct.
0146      *
0147      * Try to prevent this situation by changing the first byte of the
0148      * buffer.
0149      */
0150     *((uint8_t *)buf) ^= 0xFF;
0151 
0152     addr = (loff_t)pnum * ubi->peb_size + offset;
0153 retry:
0154     err = mtd_read(ubi->mtd, addr, len, &read, buf);
0155     if (err) {
0156         const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
0157 
0158         if (mtd_is_bitflip(err)) {
0159             /*
0160              * -EUCLEAN is reported if there was a bit-flip which
0161              * was corrected, so this is harmless.
0162              *
0163              * We do not report about it here unless debugging is
0164              * enabled. A corresponding message will be printed
0165              * later, when it is has been scrubbed.
0166              */
0167             ubi_msg(ubi, "fixable bit-flip detected at PEB %d",
0168                 pnum);
0169             ubi_assert(len == read);
0170             return UBI_IO_BITFLIPS;
0171         }
0172 
0173         if (retries++ < UBI_IO_RETRIES) {
0174             ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
0175                  err, errstr, len, pnum, offset, read);
0176             yield();
0177             goto retry;
0178         }
0179 
0180         ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
0181             err, errstr, len, pnum, offset, read);
0182         dump_stack();
0183 
0184         /*
0185          * The driver should never return -EBADMSG if it failed to read
0186          * all the requested data. But some buggy drivers might do
0187          * this, so we change it to -EIO.
0188          */
0189         if (read != len && mtd_is_eccerr(err)) {
0190             ubi_assert(0);
0191             err = -EIO;
0192         }
0193     } else {
0194         ubi_assert(len == read);
0195 
0196         if (ubi_dbg_is_bitflip(ubi)) {
0197             dbg_gen("bit-flip (emulated)");
0198             err = UBI_IO_BITFLIPS;
0199         }
0200     }
0201 
0202     return err;
0203 }
0204 
0205 /**
0206  * ubi_io_write - write data to a physical eraseblock.
0207  * @ubi: UBI device description object
0208  * @buf: buffer with the data to write
0209  * @pnum: physical eraseblock number to write to
0210  * @offset: offset within the physical eraseblock where to write
0211  * @len: how many bytes to write
0212  *
0213  * This function writes @len bytes of data from buffer @buf to offset @offset
0214  * of physical eraseblock @pnum. If all the data were successfully written,
0215  * zero is returned. If an error occurred, this function returns a negative
0216  * error code. If %-EIO is returned, the physical eraseblock most probably went
0217  * bad.
0218  *
0219  * Note, in case of an error, it is possible that something was still written
0220  * to the flash media, but may be some garbage.
0221  */
0222 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
0223          int len)
0224 {
0225     int err;
0226     size_t written;
0227     loff_t addr;
0228 
0229     dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
0230 
0231     ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
0232     ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
0233     ubi_assert(offset % ubi->hdrs_min_io_size == 0);
0234     ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
0235 
0236     if (ubi->ro_mode) {
0237         ubi_err(ubi, "read-only mode");
0238         return -EROFS;
0239     }
0240 
0241     err = self_check_not_bad(ubi, pnum);
0242     if (err)
0243         return err;
0244 
0245     /* The area we are writing to has to contain all 0xFF bytes */
0246     err = ubi_self_check_all_ff(ubi, pnum, offset, len);
0247     if (err)
0248         return err;
0249 
0250     if (offset >= ubi->leb_start) {
0251         /*
0252          * We write to the data area of the physical eraseblock. Make
0253          * sure it has valid EC and VID headers.
0254          */
0255         err = self_check_peb_ec_hdr(ubi, pnum);
0256         if (err)
0257             return err;
0258         err = self_check_peb_vid_hdr(ubi, pnum);
0259         if (err)
0260             return err;
0261     }
0262 
0263     if (ubi_dbg_is_write_failure(ubi)) {
0264         ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)",
0265             len, pnum, offset);
0266         dump_stack();
0267         return -EIO;
0268     }
0269 
0270     addr = (loff_t)pnum * ubi->peb_size + offset;
0271     err = mtd_write(ubi->mtd, addr, len, &written, buf);
0272     if (err) {
0273         ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
0274             err, len, pnum, offset, written);
0275         dump_stack();
0276         ubi_dump_flash(ubi, pnum, offset, len);
0277     } else
0278         ubi_assert(written == len);
0279 
0280     if (!err) {
0281         err = self_check_write(ubi, buf, pnum, offset, len);
0282         if (err)
0283             return err;
0284 
0285         /*
0286          * Since we always write sequentially, the rest of the PEB has
0287          * to contain only 0xFF bytes.
0288          */
0289         offset += len;
0290         len = ubi->peb_size - offset;
0291         if (len)
0292             err = ubi_self_check_all_ff(ubi, pnum, offset, len);
0293     }
0294 
0295     return err;
0296 }
0297 
0298 /**
0299  * do_sync_erase - synchronously erase a physical eraseblock.
0300  * @ubi: UBI device description object
0301  * @pnum: the physical eraseblock number to erase
0302  *
0303  * This function synchronously erases physical eraseblock @pnum and returns
0304  * zero in case of success and a negative error code in case of failure. If
0305  * %-EIO is returned, the physical eraseblock most probably went bad.
0306  */
0307 static int do_sync_erase(struct ubi_device *ubi, int pnum)
0308 {
0309     int err, retries = 0;
0310     struct erase_info ei;
0311 
0312     dbg_io("erase PEB %d", pnum);
0313     ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
0314 
0315     if (ubi->ro_mode) {
0316         ubi_err(ubi, "read-only mode");
0317         return -EROFS;
0318     }
0319 
0320 retry:
0321     memset(&ei, 0, sizeof(struct erase_info));
0322 
0323     ei.addr     = (loff_t)pnum * ubi->peb_size;
0324     ei.len      = ubi->peb_size;
0325 
0326     err = mtd_erase(ubi->mtd, &ei);
0327     if (err) {
0328         if (retries++ < UBI_IO_RETRIES) {
0329             ubi_warn(ubi, "error %d while erasing PEB %d, retry",
0330                  err, pnum);
0331             yield();
0332             goto retry;
0333         }
0334         ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err);
0335         dump_stack();
0336         return err;
0337     }
0338 
0339     err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
0340     if (err)
0341         return err;
0342 
0343     if (ubi_dbg_is_erase_failure(ubi)) {
0344         ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum);
0345         return -EIO;
0346     }
0347 
0348     return 0;
0349 }
0350 
0351 /* Patterns to write to a physical eraseblock when torturing it */
0352 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
0353 
0354 /**
0355  * torture_peb - test a supposedly bad physical eraseblock.
0356  * @ubi: UBI device description object
0357  * @pnum: the physical eraseblock number to test
0358  *
0359  * This function returns %-EIO if the physical eraseblock did not pass the
0360  * test, a positive number of erase operations done if the test was
0361  * successfully passed, and other negative error codes in case of other errors.
0362  */
0363 static int torture_peb(struct ubi_device *ubi, int pnum)
0364 {
0365     int err, i, patt_count;
0366 
0367     ubi_msg(ubi, "run torture test for PEB %d", pnum);
0368     patt_count = ARRAY_SIZE(patterns);
0369     ubi_assert(patt_count > 0);
0370 
0371     mutex_lock(&ubi->buf_mutex);
0372     for (i = 0; i < patt_count; i++) {
0373         err = do_sync_erase(ubi, pnum);
0374         if (err)
0375             goto out;
0376 
0377         /* Make sure the PEB contains only 0xFF bytes */
0378         err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
0379         if (err)
0380             goto out;
0381 
0382         err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
0383         if (err == 0) {
0384             ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found",
0385                 pnum);
0386             err = -EIO;
0387             goto out;
0388         }
0389 
0390         /* Write a pattern and check it */
0391         memset(ubi->peb_buf, patterns[i], ubi->peb_size);
0392         err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
0393         if (err)
0394             goto out;
0395 
0396         memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
0397         err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
0398         if (err)
0399             goto out;
0400 
0401         err = ubi_check_pattern(ubi->peb_buf, patterns[i],
0402                     ubi->peb_size);
0403         if (err == 0) {
0404             ubi_err(ubi, "pattern %x checking failed for PEB %d",
0405                 patterns[i], pnum);
0406             err = -EIO;
0407             goto out;
0408         }
0409     }
0410 
0411     err = patt_count;
0412     ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum);
0413 
0414 out:
0415     mutex_unlock(&ubi->buf_mutex);
0416     if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
0417         /*
0418          * If a bit-flip or data integrity error was detected, the test
0419          * has not passed because it happened on a freshly erased
0420          * physical eraseblock which means something is wrong with it.
0421          */
0422         ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad",
0423             pnum);
0424         err = -EIO;
0425     }
0426     return err;
0427 }
0428 
0429 /**
0430  * nor_erase_prepare - prepare a NOR flash PEB for erasure.
0431  * @ubi: UBI device description object
0432  * @pnum: physical eraseblock number to prepare
0433  *
0434  * NOR flash, or at least some of them, have peculiar embedded PEB erasure
0435  * algorithm: the PEB is first filled with zeroes, then it is erased. And
0436  * filling with zeroes starts from the end of the PEB. This was observed with
0437  * Spansion S29GL512N NOR flash.
0438  *
0439  * This means that in case of a power cut we may end up with intact data at the
0440  * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
0441  * EC and VID headers are OK, but a large chunk of data at the end of PEB is
0442  * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
0443  * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
0444  *
0445  * This function is called before erasing NOR PEBs and it zeroes out EC and VID
0446  * magic numbers in order to invalidate them and prevent the failures. Returns
0447  * zero in case of success and a negative error code in case of failure.
0448  */
0449 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
0450 {
0451     int err;
0452     size_t written;
0453     loff_t addr;
0454     uint32_t data = 0;
0455     struct ubi_ec_hdr ec_hdr;
0456     struct ubi_vid_io_buf vidb;
0457 
0458     /*
0459      * Note, we cannot generally define VID header buffers on stack,
0460      * because of the way we deal with these buffers (see the header
0461      * comment in this file). But we know this is a NOR-specific piece of
0462      * code, so we can do this. But yes, this is error-prone and we should
0463      * (pre-)allocate VID header buffer instead.
0464      */
0465     struct ubi_vid_hdr vid_hdr;
0466 
0467     /*
0468      * If VID or EC is valid, we have to corrupt them before erasing.
0469      * It is important to first invalidate the EC header, and then the VID
0470      * header. Otherwise a power cut may lead to valid EC header and
0471      * invalid VID header, in which case UBI will treat this PEB as
0472      * corrupted and will try to preserve it, and print scary warnings.
0473      */
0474     addr = (loff_t)pnum * ubi->peb_size;
0475     err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
0476     if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
0477         err != UBI_IO_FF){
0478         err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
0479         if(err)
0480             goto error;
0481     }
0482 
0483     ubi_init_vid_buf(ubi, &vidb, &vid_hdr);
0484     ubi_assert(&vid_hdr == ubi_get_vid_hdr(&vidb));
0485 
0486     err = ubi_io_read_vid_hdr(ubi, pnum, &vidb, 0);
0487     if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
0488         err != UBI_IO_FF){
0489         addr += ubi->vid_hdr_aloffset;
0490         err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
0491         if (err)
0492             goto error;
0493     }
0494     return 0;
0495 
0496 error:
0497     /*
0498      * The PEB contains a valid VID or EC header, but we cannot invalidate
0499      * it. Supposedly the flash media or the driver is screwed up, so
0500      * return an error.
0501      */
0502     ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err);
0503     ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
0504     return -EIO;
0505 }
0506 
0507 /**
0508  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
0509  * @ubi: UBI device description object
0510  * @pnum: physical eraseblock number to erase
0511  * @torture: if this physical eraseblock has to be tortured
0512  *
0513  * This function synchronously erases physical eraseblock @pnum. If @torture
0514  * flag is not zero, the physical eraseblock is checked by means of writing
0515  * different patterns to it and reading them back. If the torturing is enabled,
0516  * the physical eraseblock is erased more than once.
0517  *
0518  * This function returns the number of erasures made in case of success, %-EIO
0519  * if the erasure failed or the torturing test failed, and other negative error
0520  * codes in case of other errors. Note, %-EIO means that the physical
0521  * eraseblock is bad.
0522  */
0523 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
0524 {
0525     int err, ret = 0;
0526 
0527     ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
0528 
0529     err = self_check_not_bad(ubi, pnum);
0530     if (err != 0)
0531         return err;
0532 
0533     if (ubi->ro_mode) {
0534         ubi_err(ubi, "read-only mode");
0535         return -EROFS;
0536     }
0537 
0538     /*
0539      * If the flash is ECC-ed then we have to erase the ECC block before we
0540      * can write to it. But the write is in preparation to an erase in the
0541      * first place. This means we cannot zero out EC and VID before the
0542      * erase and we just have to hope the flash starts erasing from the
0543      * start of the page.
0544      */
0545     if (ubi->nor_flash && ubi->mtd->writesize == 1) {
0546         err = nor_erase_prepare(ubi, pnum);
0547         if (err)
0548             return err;
0549     }
0550 
0551     if (torture) {
0552         ret = torture_peb(ubi, pnum);
0553         if (ret < 0)
0554             return ret;
0555     }
0556 
0557     err = do_sync_erase(ubi, pnum);
0558     if (err)
0559         return err;
0560 
0561     return ret + 1;
0562 }
0563 
0564 /**
0565  * ubi_io_is_bad - check if a physical eraseblock is bad.
0566  * @ubi: UBI device description object
0567  * @pnum: the physical eraseblock number to check
0568  *
0569  * This function returns a positive number if the physical eraseblock is bad,
0570  * zero if not, and a negative error code if an error occurred.
0571  */
0572 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
0573 {
0574     struct mtd_info *mtd = ubi->mtd;
0575 
0576     ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
0577 
0578     if (ubi->bad_allowed) {
0579         int ret;
0580 
0581         ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
0582         if (ret < 0)
0583             ubi_err(ubi, "error %d while checking if PEB %d is bad",
0584                 ret, pnum);
0585         else if (ret)
0586             dbg_io("PEB %d is bad", pnum);
0587         return ret;
0588     }
0589 
0590     return 0;
0591 }
0592 
0593 /**
0594  * ubi_io_mark_bad - mark a physical eraseblock as bad.
0595  * @ubi: UBI device description object
0596  * @pnum: the physical eraseblock number to mark
0597  *
0598  * This function returns zero in case of success and a negative error code in
0599  * case of failure.
0600  */
0601 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
0602 {
0603     int err;
0604     struct mtd_info *mtd = ubi->mtd;
0605 
0606     ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
0607 
0608     if (ubi->ro_mode) {
0609         ubi_err(ubi, "read-only mode");
0610         return -EROFS;
0611     }
0612 
0613     if (!ubi->bad_allowed)
0614         return 0;
0615 
0616     err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
0617     if (err)
0618         ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err);
0619     return err;
0620 }
0621 
0622 /**
0623  * validate_ec_hdr - validate an erase counter header.
0624  * @ubi: UBI device description object
0625  * @ec_hdr: the erase counter header to check
0626  *
0627  * This function returns zero if the erase counter header is OK, and %1 if
0628  * not.
0629  */
0630 static int validate_ec_hdr(const struct ubi_device *ubi,
0631                const struct ubi_ec_hdr *ec_hdr)
0632 {
0633     long long ec;
0634     int vid_hdr_offset, leb_start;
0635 
0636     ec = be64_to_cpu(ec_hdr->ec);
0637     vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
0638     leb_start = be32_to_cpu(ec_hdr->data_offset);
0639 
0640     if (ec_hdr->version != UBI_VERSION) {
0641         ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
0642             UBI_VERSION, (int)ec_hdr->version);
0643         goto bad;
0644     }
0645 
0646     if (vid_hdr_offset != ubi->vid_hdr_offset) {
0647         ubi_err(ubi, "bad VID header offset %d, expected %d",
0648             vid_hdr_offset, ubi->vid_hdr_offset);
0649         goto bad;
0650     }
0651 
0652     if (leb_start != ubi->leb_start) {
0653         ubi_err(ubi, "bad data offset %d, expected %d",
0654             leb_start, ubi->leb_start);
0655         goto bad;
0656     }
0657 
0658     if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
0659         ubi_err(ubi, "bad erase counter %lld", ec);
0660         goto bad;
0661     }
0662 
0663     return 0;
0664 
0665 bad:
0666     ubi_err(ubi, "bad EC header");
0667     ubi_dump_ec_hdr(ec_hdr);
0668     dump_stack();
0669     return 1;
0670 }
0671 
0672 /**
0673  * ubi_io_read_ec_hdr - read and check an erase counter header.
0674  * @ubi: UBI device description object
0675  * @pnum: physical eraseblock to read from
0676  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
0677  * header
0678  * @verbose: be verbose if the header is corrupted or was not found
0679  *
0680  * This function reads erase counter header from physical eraseblock @pnum and
0681  * stores it in @ec_hdr. This function also checks CRC checksum of the read
0682  * erase counter header. The following codes may be returned:
0683  *
0684  * o %0 if the CRC checksum is correct and the header was successfully read;
0685  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
0686  *   and corrected by the flash driver; this is harmless but may indicate that
0687  *   this eraseblock may become bad soon (but may be not);
0688  * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
0689  * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
0690  *   a data integrity error (uncorrectable ECC error in case of NAND);
0691  * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
0692  * o a negative error code in case of failure.
0693  */
0694 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
0695                struct ubi_ec_hdr *ec_hdr, int verbose)
0696 {
0697     int err, read_err;
0698     uint32_t crc, magic, hdr_crc;
0699 
0700     dbg_io("read EC header from PEB %d", pnum);
0701     ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
0702 
0703     read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
0704     if (read_err) {
0705         if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
0706             return read_err;
0707 
0708         /*
0709          * We read all the data, but either a correctable bit-flip
0710          * occurred, or MTD reported a data integrity error
0711          * (uncorrectable ECC error in case of NAND). The former is
0712          * harmless, the later may mean that the read data is
0713          * corrupted. But we have a CRC check-sum and we will detect
0714          * this. If the EC header is still OK, we just report this as
0715          * there was a bit-flip, to force scrubbing.
0716          */
0717     }
0718 
0719     magic = be32_to_cpu(ec_hdr->magic);
0720     if (magic != UBI_EC_HDR_MAGIC) {
0721         if (mtd_is_eccerr(read_err))
0722             return UBI_IO_BAD_HDR_EBADMSG;
0723 
0724         /*
0725          * The magic field is wrong. Let's check if we have read all
0726          * 0xFF. If yes, this physical eraseblock is assumed to be
0727          * empty.
0728          */
0729         if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
0730             /* The physical eraseblock is supposedly empty */
0731             if (verbose)
0732                 ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes",
0733                      pnum);
0734             dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
0735                 pnum);
0736             if (!read_err)
0737                 return UBI_IO_FF;
0738             else
0739                 return UBI_IO_FF_BITFLIPS;
0740         }
0741 
0742         /*
0743          * This is not a valid erase counter header, and these are not
0744          * 0xFF bytes. Report that the header is corrupted.
0745          */
0746         if (verbose) {
0747             ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
0748                  pnum, magic, UBI_EC_HDR_MAGIC);
0749             ubi_dump_ec_hdr(ec_hdr);
0750         }
0751         dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
0752             pnum, magic, UBI_EC_HDR_MAGIC);
0753         return UBI_IO_BAD_HDR;
0754     }
0755 
0756     crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
0757     hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
0758 
0759     if (hdr_crc != crc) {
0760         if (verbose) {
0761             ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
0762                  pnum, crc, hdr_crc);
0763             ubi_dump_ec_hdr(ec_hdr);
0764         }
0765         dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
0766             pnum, crc, hdr_crc);
0767 
0768         if (!read_err)
0769             return UBI_IO_BAD_HDR;
0770         else
0771             return UBI_IO_BAD_HDR_EBADMSG;
0772     }
0773 
0774     /* And of course validate what has just been read from the media */
0775     err = validate_ec_hdr(ubi, ec_hdr);
0776     if (err) {
0777         ubi_err(ubi, "validation failed for PEB %d", pnum);
0778         return -EINVAL;
0779     }
0780 
0781     /*
0782      * If there was %-EBADMSG, but the header CRC is still OK, report about
0783      * a bit-flip to force scrubbing on this PEB.
0784      */
0785     return read_err ? UBI_IO_BITFLIPS : 0;
0786 }
0787 
0788 /**
0789  * ubi_io_write_ec_hdr - write an erase counter header.
0790  * @ubi: UBI device description object
0791  * @pnum: physical eraseblock to write to
0792  * @ec_hdr: the erase counter header to write
0793  *
0794  * This function writes erase counter header described by @ec_hdr to physical
0795  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
0796  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
0797  * field.
0798  *
0799  * This function returns zero in case of success and a negative error code in
0800  * case of failure. If %-EIO is returned, the physical eraseblock most probably
0801  * went bad.
0802  */
0803 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
0804             struct ubi_ec_hdr *ec_hdr)
0805 {
0806     int err;
0807     uint32_t crc;
0808 
0809     dbg_io("write EC header to PEB %d", pnum);
0810     ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
0811 
0812     ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
0813     ec_hdr->version = UBI_VERSION;
0814     ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
0815     ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
0816     ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
0817     crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
0818     ec_hdr->hdr_crc = cpu_to_be32(crc);
0819 
0820     err = self_check_ec_hdr(ubi, pnum, ec_hdr);
0821     if (err)
0822         return err;
0823 
0824     if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE))
0825         return -EROFS;
0826 
0827     err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
0828     return err;
0829 }
0830 
0831 /**
0832  * validate_vid_hdr - validate a volume identifier header.
0833  * @ubi: UBI device description object
0834  * @vid_hdr: the volume identifier header to check
0835  *
0836  * This function checks that data stored in the volume identifier header
0837  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
0838  */
0839 static int validate_vid_hdr(const struct ubi_device *ubi,
0840                 const struct ubi_vid_hdr *vid_hdr)
0841 {
0842     int vol_type = vid_hdr->vol_type;
0843     int copy_flag = vid_hdr->copy_flag;
0844     int vol_id = be32_to_cpu(vid_hdr->vol_id);
0845     int lnum = be32_to_cpu(vid_hdr->lnum);
0846     int compat = vid_hdr->compat;
0847     int data_size = be32_to_cpu(vid_hdr->data_size);
0848     int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
0849     int data_pad = be32_to_cpu(vid_hdr->data_pad);
0850     int data_crc = be32_to_cpu(vid_hdr->data_crc);
0851     int usable_leb_size = ubi->leb_size - data_pad;
0852 
0853     if (copy_flag != 0 && copy_flag != 1) {
0854         ubi_err(ubi, "bad copy_flag");
0855         goto bad;
0856     }
0857 
0858     if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
0859         data_pad < 0) {
0860         ubi_err(ubi, "negative values");
0861         goto bad;
0862     }
0863 
0864     if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
0865         ubi_err(ubi, "bad vol_id");
0866         goto bad;
0867     }
0868 
0869     if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
0870         ubi_err(ubi, "bad compat");
0871         goto bad;
0872     }
0873 
0874     if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
0875         compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
0876         compat != UBI_COMPAT_REJECT) {
0877         ubi_err(ubi, "bad compat");
0878         goto bad;
0879     }
0880 
0881     if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
0882         ubi_err(ubi, "bad vol_type");
0883         goto bad;
0884     }
0885 
0886     if (data_pad >= ubi->leb_size / 2) {
0887         ubi_err(ubi, "bad data_pad");
0888         goto bad;
0889     }
0890 
0891     if (data_size > ubi->leb_size) {
0892         ubi_err(ubi, "bad data_size");
0893         goto bad;
0894     }
0895 
0896     if (vol_type == UBI_VID_STATIC) {
0897         /*
0898          * Although from high-level point of view static volumes may
0899          * contain zero bytes of data, but no VID headers can contain
0900          * zero at these fields, because they empty volumes do not have
0901          * mapped logical eraseblocks.
0902          */
0903         if (used_ebs == 0) {
0904             ubi_err(ubi, "zero used_ebs");
0905             goto bad;
0906         }
0907         if (data_size == 0) {
0908             ubi_err(ubi, "zero data_size");
0909             goto bad;
0910         }
0911         if (lnum < used_ebs - 1) {
0912             if (data_size != usable_leb_size) {
0913                 ubi_err(ubi, "bad data_size");
0914                 goto bad;
0915             }
0916         } else if (lnum > used_ebs - 1) {
0917             ubi_err(ubi, "too high lnum");
0918             goto bad;
0919         }
0920     } else {
0921         if (copy_flag == 0) {
0922             if (data_crc != 0) {
0923                 ubi_err(ubi, "non-zero data CRC");
0924                 goto bad;
0925             }
0926             if (data_size != 0) {
0927                 ubi_err(ubi, "non-zero data_size");
0928                 goto bad;
0929             }
0930         } else {
0931             if (data_size == 0) {
0932                 ubi_err(ubi, "zero data_size of copy");
0933                 goto bad;
0934             }
0935         }
0936         if (used_ebs != 0) {
0937             ubi_err(ubi, "bad used_ebs");
0938             goto bad;
0939         }
0940     }
0941 
0942     return 0;
0943 
0944 bad:
0945     ubi_err(ubi, "bad VID header");
0946     ubi_dump_vid_hdr(vid_hdr);
0947     dump_stack();
0948     return 1;
0949 }
0950 
0951 /**
0952  * ubi_io_read_vid_hdr - read and check a volume identifier header.
0953  * @ubi: UBI device description object
0954  * @pnum: physical eraseblock number to read from
0955  * @vidb: the volume identifier buffer to store data in
0956  * @verbose: be verbose if the header is corrupted or wasn't found
0957  *
0958  * This function reads the volume identifier header from physical eraseblock
0959  * @pnum and stores it in @vidb. It also checks CRC checksum of the read
0960  * volume identifier header. The error codes are the same as in
0961  * 'ubi_io_read_ec_hdr()'.
0962  *
0963  * Note, the implementation of this function is also very similar to
0964  * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
0965  */
0966 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
0967             struct ubi_vid_io_buf *vidb, int verbose)
0968 {
0969     int err, read_err;
0970     uint32_t crc, magic, hdr_crc;
0971     struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
0972     void *p = vidb->buffer;
0973 
0974     dbg_io("read VID header from PEB %d", pnum);
0975     ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
0976 
0977     read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
0978               ubi->vid_hdr_shift + UBI_VID_HDR_SIZE);
0979     if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
0980         return read_err;
0981 
0982     magic = be32_to_cpu(vid_hdr->magic);
0983     if (magic != UBI_VID_HDR_MAGIC) {
0984         if (mtd_is_eccerr(read_err))
0985             return UBI_IO_BAD_HDR_EBADMSG;
0986 
0987         if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
0988             if (verbose)
0989                 ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes",
0990                      pnum);
0991             dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
0992                 pnum);
0993             if (!read_err)
0994                 return UBI_IO_FF;
0995             else
0996                 return UBI_IO_FF_BITFLIPS;
0997         }
0998 
0999         if (verbose) {
1000             ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
1001                  pnum, magic, UBI_VID_HDR_MAGIC);
1002             ubi_dump_vid_hdr(vid_hdr);
1003         }
1004         dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1005             pnum, magic, UBI_VID_HDR_MAGIC);
1006         return UBI_IO_BAD_HDR;
1007     }
1008 
1009     crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1010     hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1011 
1012     if (hdr_crc != crc) {
1013         if (verbose) {
1014             ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x",
1015                  pnum, crc, hdr_crc);
1016             ubi_dump_vid_hdr(vid_hdr);
1017         }
1018         dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1019             pnum, crc, hdr_crc);
1020         if (!read_err)
1021             return UBI_IO_BAD_HDR;
1022         else
1023             return UBI_IO_BAD_HDR_EBADMSG;
1024     }
1025 
1026     err = validate_vid_hdr(ubi, vid_hdr);
1027     if (err) {
1028         ubi_err(ubi, "validation failed for PEB %d", pnum);
1029         return -EINVAL;
1030     }
1031 
1032     return read_err ? UBI_IO_BITFLIPS : 0;
1033 }
1034 
1035 /**
1036  * ubi_io_write_vid_hdr - write a volume identifier header.
1037  * @ubi: UBI device description object
1038  * @pnum: the physical eraseblock number to write to
1039  * @vidb: the volume identifier buffer to write
1040  *
1041  * This function writes the volume identifier header described by @vid_hdr to
1042  * physical eraseblock @pnum. This function automatically fills the
1043  * @vidb->hdr->magic and the @vidb->hdr->version fields, as well as calculates
1044  * header CRC checksum and stores it at vidb->hdr->hdr_crc.
1045  *
1046  * This function returns zero in case of success and a negative error code in
1047  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1048  * bad.
1049  */
1050 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1051              struct ubi_vid_io_buf *vidb)
1052 {
1053     struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1054     int err;
1055     uint32_t crc;
1056     void *p = vidb->buffer;
1057 
1058     dbg_io("write VID header to PEB %d", pnum);
1059     ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1060 
1061     err = self_check_peb_ec_hdr(ubi, pnum);
1062     if (err)
1063         return err;
1064 
1065     vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1066     vid_hdr->version = UBI_VERSION;
1067     crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1068     vid_hdr->hdr_crc = cpu_to_be32(crc);
1069 
1070     err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1071     if (err)
1072         return err;
1073 
1074     if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE))
1075         return -EROFS;
1076 
1077     err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1078                ubi->vid_hdr_alsize);
1079     return err;
1080 }
1081 
1082 /**
1083  * self_check_not_bad - ensure that a physical eraseblock is not bad.
1084  * @ubi: UBI device description object
1085  * @pnum: physical eraseblock number to check
1086  *
1087  * This function returns zero if the physical eraseblock is good, %-EINVAL if
1088  * it is bad and a negative error code if an error occurred.
1089  */
1090 static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
1091 {
1092     int err;
1093 
1094     if (!ubi_dbg_chk_io(ubi))
1095         return 0;
1096 
1097     err = ubi_io_is_bad(ubi, pnum);
1098     if (!err)
1099         return err;
1100 
1101     ubi_err(ubi, "self-check failed for PEB %d", pnum);
1102     dump_stack();
1103     return err > 0 ? -EINVAL : err;
1104 }
1105 
1106 /**
1107  * self_check_ec_hdr - check if an erase counter header is all right.
1108  * @ubi: UBI device description object
1109  * @pnum: physical eraseblock number the erase counter header belongs to
1110  * @ec_hdr: the erase counter header to check
1111  *
1112  * This function returns zero if the erase counter header contains valid
1113  * values, and %-EINVAL if not.
1114  */
1115 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1116                  const struct ubi_ec_hdr *ec_hdr)
1117 {
1118     int err;
1119     uint32_t magic;
1120 
1121     if (!ubi_dbg_chk_io(ubi))
1122         return 0;
1123 
1124     magic = be32_to_cpu(ec_hdr->magic);
1125     if (magic != UBI_EC_HDR_MAGIC) {
1126         ubi_err(ubi, "bad magic %#08x, must be %#08x",
1127             magic, UBI_EC_HDR_MAGIC);
1128         goto fail;
1129     }
1130 
1131     err = validate_ec_hdr(ubi, ec_hdr);
1132     if (err) {
1133         ubi_err(ubi, "self-check failed for PEB %d", pnum);
1134         goto fail;
1135     }
1136 
1137     return 0;
1138 
1139 fail:
1140     ubi_dump_ec_hdr(ec_hdr);
1141     dump_stack();
1142     return -EINVAL;
1143 }
1144 
1145 /**
1146  * self_check_peb_ec_hdr - check erase counter header.
1147  * @ubi: UBI device description object
1148  * @pnum: the physical eraseblock number to check
1149  *
1150  * This function returns zero if the erase counter header is all right and and
1151  * a negative error code if not or if an error occurred.
1152  */
1153 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1154 {
1155     int err;
1156     uint32_t crc, hdr_crc;
1157     struct ubi_ec_hdr *ec_hdr;
1158 
1159     if (!ubi_dbg_chk_io(ubi))
1160         return 0;
1161 
1162     ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1163     if (!ec_hdr)
1164         return -ENOMEM;
1165 
1166     err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1167     if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1168         goto exit;
1169 
1170     crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1171     hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1172     if (hdr_crc != crc) {
1173         ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x",
1174             crc, hdr_crc);
1175         ubi_err(ubi, "self-check failed for PEB %d", pnum);
1176         ubi_dump_ec_hdr(ec_hdr);
1177         dump_stack();
1178         err = -EINVAL;
1179         goto exit;
1180     }
1181 
1182     err = self_check_ec_hdr(ubi, pnum, ec_hdr);
1183 
1184 exit:
1185     kfree(ec_hdr);
1186     return err;
1187 }
1188 
1189 /**
1190  * self_check_vid_hdr - check that a volume identifier header is all right.
1191  * @ubi: UBI device description object
1192  * @pnum: physical eraseblock number the volume identifier header belongs to
1193  * @vid_hdr: the volume identifier header to check
1194  *
1195  * This function returns zero if the volume identifier header is all right, and
1196  * %-EINVAL if not.
1197  */
1198 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1199                   const struct ubi_vid_hdr *vid_hdr)
1200 {
1201     int err;
1202     uint32_t magic;
1203 
1204     if (!ubi_dbg_chk_io(ubi))
1205         return 0;
1206 
1207     magic = be32_to_cpu(vid_hdr->magic);
1208     if (magic != UBI_VID_HDR_MAGIC) {
1209         ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x",
1210             magic, pnum, UBI_VID_HDR_MAGIC);
1211         goto fail;
1212     }
1213 
1214     err = validate_vid_hdr(ubi, vid_hdr);
1215     if (err) {
1216         ubi_err(ubi, "self-check failed for PEB %d", pnum);
1217         goto fail;
1218     }
1219 
1220     return err;
1221 
1222 fail:
1223     ubi_err(ubi, "self-check failed for PEB %d", pnum);
1224     ubi_dump_vid_hdr(vid_hdr);
1225     dump_stack();
1226     return -EINVAL;
1227 
1228 }
1229 
1230 /**
1231  * self_check_peb_vid_hdr - check volume identifier header.
1232  * @ubi: UBI device description object
1233  * @pnum: the physical eraseblock number to check
1234  *
1235  * This function returns zero if the volume identifier header is all right,
1236  * and a negative error code if not or if an error occurred.
1237  */
1238 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1239 {
1240     int err;
1241     uint32_t crc, hdr_crc;
1242     struct ubi_vid_io_buf *vidb;
1243     struct ubi_vid_hdr *vid_hdr;
1244     void *p;
1245 
1246     if (!ubi_dbg_chk_io(ubi))
1247         return 0;
1248 
1249     vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1250     if (!vidb)
1251         return -ENOMEM;
1252 
1253     vid_hdr = ubi_get_vid_hdr(vidb);
1254     p = vidb->buffer;
1255     err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1256               ubi->vid_hdr_alsize);
1257     if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1258         goto exit;
1259 
1260     crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1261     hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1262     if (hdr_crc != crc) {
1263         ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1264             pnum, crc, hdr_crc);
1265         ubi_err(ubi, "self-check failed for PEB %d", pnum);
1266         ubi_dump_vid_hdr(vid_hdr);
1267         dump_stack();
1268         err = -EINVAL;
1269         goto exit;
1270     }
1271 
1272     err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1273 
1274 exit:
1275     ubi_free_vid_buf(vidb);
1276     return err;
1277 }
1278 
1279 /**
1280  * self_check_write - make sure write succeeded.
1281  * @ubi: UBI device description object
1282  * @buf: buffer with data which were written
1283  * @pnum: physical eraseblock number the data were written to
1284  * @offset: offset within the physical eraseblock the data were written to
1285  * @len: how many bytes were written
1286  *
1287  * This functions reads data which were recently written and compares it with
1288  * the original data buffer - the data have to match. Returns zero if the data
1289  * match and a negative error code if not or in case of failure.
1290  */
1291 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1292                 int offset, int len)
1293 {
1294     int err, i;
1295     size_t read;
1296     void *buf1;
1297     loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1298 
1299     if (!ubi_dbg_chk_io(ubi))
1300         return 0;
1301 
1302     buf1 = __vmalloc(len, GFP_NOFS);
1303     if (!buf1) {
1304         ubi_err(ubi, "cannot allocate memory to check writes");
1305         return 0;
1306     }
1307 
1308     err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1309     if (err && !mtd_is_bitflip(err))
1310         goto out_free;
1311 
1312     for (i = 0; i < len; i++) {
1313         uint8_t c = ((uint8_t *)buf)[i];
1314         uint8_t c1 = ((uint8_t *)buf1)[i];
1315         int dump_len;
1316 
1317         if (c == c1)
1318             continue;
1319 
1320         ubi_err(ubi, "self-check failed for PEB %d:%d, len %d",
1321             pnum, offset, len);
1322         ubi_msg(ubi, "data differ at position %d", i);
1323         dump_len = max_t(int, 128, len - i);
1324         ubi_msg(ubi, "hex dump of the original buffer from %d to %d",
1325             i, i + dump_len);
1326         print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1327                    buf + i, dump_len, 1);
1328         ubi_msg(ubi, "hex dump of the read buffer from %d to %d",
1329             i, i + dump_len);
1330         print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1331                    buf1 + i, dump_len, 1);
1332         dump_stack();
1333         err = -EINVAL;
1334         goto out_free;
1335     }
1336 
1337     vfree(buf1);
1338     return 0;
1339 
1340 out_free:
1341     vfree(buf1);
1342     return err;
1343 }
1344 
1345 /**
1346  * ubi_self_check_all_ff - check that a region of flash is empty.
1347  * @ubi: UBI device description object
1348  * @pnum: the physical eraseblock number to check
1349  * @offset: the starting offset within the physical eraseblock to check
1350  * @len: the length of the region to check
1351  *
1352  * This function returns zero if only 0xFF bytes are present at offset
1353  * @offset of the physical eraseblock @pnum, and a negative error code if not
1354  * or if an error occurred.
1355  */
1356 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1357 {
1358     size_t read;
1359     int err;
1360     void *buf;
1361     loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1362 
1363     if (!ubi_dbg_chk_io(ubi))
1364         return 0;
1365 
1366     buf = __vmalloc(len, GFP_NOFS);
1367     if (!buf) {
1368         ubi_err(ubi, "cannot allocate memory to check for 0xFFs");
1369         return 0;
1370     }
1371 
1372     err = mtd_read(ubi->mtd, addr, len, &read, buf);
1373     if (err && !mtd_is_bitflip(err)) {
1374         ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1375             err, len, pnum, offset, read);
1376         goto error;
1377     }
1378 
1379     err = ubi_check_pattern(buf, 0xFF, len);
1380     if (err == 0) {
1381         ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1382             pnum, offset, len);
1383         goto fail;
1384     }
1385 
1386     vfree(buf);
1387     return 0;
1388 
1389 fail:
1390     ubi_err(ubi, "self-check failed for PEB %d", pnum);
1391     ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len);
1392     print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1393     err = -EINVAL;
1394 error:
1395     dump_stack();
1396     vfree(buf);
1397     return err;
1398 }