Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Copyright (C) STMicroelectronics 2018
0004  * Author: Christophe Kerello <christophe.kerello@st.com>
0005  */
0006 
0007 #include <linux/bitfield.h>
0008 #include <linux/clk.h>
0009 #include <linux/dmaengine.h>
0010 #include <linux/dma-mapping.h>
0011 #include <linux/errno.h>
0012 #include <linux/gpio/consumer.h>
0013 #include <linux/interrupt.h>
0014 #include <linux/iopoll.h>
0015 #include <linux/mfd/syscon.h>
0016 #include <linux/module.h>
0017 #include <linux/mtd/rawnand.h>
0018 #include <linux/of_address.h>
0019 #include <linux/pinctrl/consumer.h>
0020 #include <linux/platform_device.h>
0021 #include <linux/regmap.h>
0022 #include <linux/reset.h>
0023 
0024 /* Bad block marker length */
0025 #define FMC2_BBM_LEN            2
0026 
0027 /* ECC step size */
0028 #define FMC2_ECC_STEP_SIZE      512
0029 
0030 /* BCHDSRx registers length */
0031 #define FMC2_BCHDSRS_LEN        20
0032 
0033 /* HECCR length */
0034 #define FMC2_HECCR_LEN          4
0035 
0036 /* Max requests done for a 8k nand page size */
0037 #define FMC2_MAX_SG         16
0038 
0039 /* Max chip enable */
0040 #define FMC2_MAX_CE         2
0041 
0042 /* Max ECC buffer length */
0043 #define FMC2_MAX_ECC_BUF_LEN        (FMC2_BCHDSRS_LEN * FMC2_MAX_SG)
0044 
0045 #define FMC2_TIMEOUT_MS         5000
0046 
0047 /* Timings */
0048 #define FMC2_THIZ           1
0049 #define FMC2_TIO            8000
0050 #define FMC2_TSYNC          3000
0051 #define FMC2_PCR_TIMING_MASK        0xf
0052 #define FMC2_PMEM_PATT_TIMING_MASK  0xff
0053 
0054 /* FMC2 Controller Registers */
0055 #define FMC2_BCR1           0x0
0056 #define FMC2_PCR            0x80
0057 #define FMC2_SR             0x84
0058 #define FMC2_PMEM           0x88
0059 #define FMC2_PATT           0x8c
0060 #define FMC2_HECCR          0x94
0061 #define FMC2_ISR            0x184
0062 #define FMC2_ICR            0x188
0063 #define FMC2_CSQCR          0x200
0064 #define FMC2_CSQCFGR1           0x204
0065 #define FMC2_CSQCFGR2           0x208
0066 #define FMC2_CSQCFGR3           0x20c
0067 #define FMC2_CSQAR1         0x210
0068 #define FMC2_CSQAR2         0x214
0069 #define FMC2_CSQIER         0x220
0070 #define FMC2_CSQISR         0x224
0071 #define FMC2_CSQICR         0x228
0072 #define FMC2_CSQEMSR            0x230
0073 #define FMC2_BCHIER         0x250
0074 #define FMC2_BCHISR         0x254
0075 #define FMC2_BCHICR         0x258
0076 #define FMC2_BCHPBR1            0x260
0077 #define FMC2_BCHPBR2            0x264
0078 #define FMC2_BCHPBR3            0x268
0079 #define FMC2_BCHPBR4            0x26c
0080 #define FMC2_BCHDSR0            0x27c
0081 #define FMC2_BCHDSR1            0x280
0082 #define FMC2_BCHDSR2            0x284
0083 #define FMC2_BCHDSR3            0x288
0084 #define FMC2_BCHDSR4            0x28c
0085 
0086 /* Register: FMC2_BCR1 */
0087 #define FMC2_BCR1_FMC2EN        BIT(31)
0088 
0089 /* Register: FMC2_PCR */
0090 #define FMC2_PCR_PWAITEN        BIT(1)
0091 #define FMC2_PCR_PBKEN          BIT(2)
0092 #define FMC2_PCR_PWID           GENMASK(5, 4)
0093 #define FMC2_PCR_PWID_BUSWIDTH_8    0
0094 #define FMC2_PCR_PWID_BUSWIDTH_16   1
0095 #define FMC2_PCR_ECCEN          BIT(6)
0096 #define FMC2_PCR_ECCALG         BIT(8)
0097 #define FMC2_PCR_TCLR           GENMASK(12, 9)
0098 #define FMC2_PCR_TCLR_DEFAULT       0xf
0099 #define FMC2_PCR_TAR            GENMASK(16, 13)
0100 #define FMC2_PCR_TAR_DEFAULT        0xf
0101 #define FMC2_PCR_ECCSS          GENMASK(19, 17)
0102 #define FMC2_PCR_ECCSS_512      1
0103 #define FMC2_PCR_ECCSS_2048     3
0104 #define FMC2_PCR_BCHECC         BIT(24)
0105 #define FMC2_PCR_WEN            BIT(25)
0106 
0107 /* Register: FMC2_SR */
0108 #define FMC2_SR_NWRF            BIT(6)
0109 
0110 /* Register: FMC2_PMEM */
0111 #define FMC2_PMEM_MEMSET        GENMASK(7, 0)
0112 #define FMC2_PMEM_MEMWAIT       GENMASK(15, 8)
0113 #define FMC2_PMEM_MEMHOLD       GENMASK(23, 16)
0114 #define FMC2_PMEM_MEMHIZ        GENMASK(31, 24)
0115 #define FMC2_PMEM_DEFAULT       0x0a0a0a0a
0116 
0117 /* Register: FMC2_PATT */
0118 #define FMC2_PATT_ATTSET        GENMASK(7, 0)
0119 #define FMC2_PATT_ATTWAIT       GENMASK(15, 8)
0120 #define FMC2_PATT_ATTHOLD       GENMASK(23, 16)
0121 #define FMC2_PATT_ATTHIZ        GENMASK(31, 24)
0122 #define FMC2_PATT_DEFAULT       0x0a0a0a0a
0123 
0124 /* Register: FMC2_ISR */
0125 #define FMC2_ISR_IHLF           BIT(1)
0126 
0127 /* Register: FMC2_ICR */
0128 #define FMC2_ICR_CIHLF          BIT(1)
0129 
0130 /* Register: FMC2_CSQCR */
0131 #define FMC2_CSQCR_CSQSTART     BIT(0)
0132 
0133 /* Register: FMC2_CSQCFGR1 */
0134 #define FMC2_CSQCFGR1_CMD2EN        BIT(1)
0135 #define FMC2_CSQCFGR1_DMADEN        BIT(2)
0136 #define FMC2_CSQCFGR1_ACYNBR        GENMASK(6, 4)
0137 #define FMC2_CSQCFGR1_CMD1      GENMASK(15, 8)
0138 #define FMC2_CSQCFGR1_CMD2      GENMASK(23, 16)
0139 #define FMC2_CSQCFGR1_CMD1T     BIT(24)
0140 #define FMC2_CSQCFGR1_CMD2T     BIT(25)
0141 
0142 /* Register: FMC2_CSQCFGR2 */
0143 #define FMC2_CSQCFGR2_SQSDTEN       BIT(0)
0144 #define FMC2_CSQCFGR2_RCMD2EN       BIT(1)
0145 #define FMC2_CSQCFGR2_DMASEN        BIT(2)
0146 #define FMC2_CSQCFGR2_RCMD1     GENMASK(15, 8)
0147 #define FMC2_CSQCFGR2_RCMD2     GENMASK(23, 16)
0148 #define FMC2_CSQCFGR2_RCMD1T        BIT(24)
0149 #define FMC2_CSQCFGR2_RCMD2T        BIT(25)
0150 
0151 /* Register: FMC2_CSQCFGR3 */
0152 #define FMC2_CSQCFGR3_SNBR      GENMASK(13, 8)
0153 #define FMC2_CSQCFGR3_AC1T      BIT(16)
0154 #define FMC2_CSQCFGR3_AC2T      BIT(17)
0155 #define FMC2_CSQCFGR3_AC3T      BIT(18)
0156 #define FMC2_CSQCFGR3_AC4T      BIT(19)
0157 #define FMC2_CSQCFGR3_AC5T      BIT(20)
0158 #define FMC2_CSQCFGR3_SDT       BIT(21)
0159 #define FMC2_CSQCFGR3_RAC1T     BIT(22)
0160 #define FMC2_CSQCFGR3_RAC2T     BIT(23)
0161 
0162 /* Register: FMC2_CSQCAR1 */
0163 #define FMC2_CSQCAR1_ADDC1      GENMASK(7, 0)
0164 #define FMC2_CSQCAR1_ADDC2      GENMASK(15, 8)
0165 #define FMC2_CSQCAR1_ADDC3      GENMASK(23, 16)
0166 #define FMC2_CSQCAR1_ADDC4      GENMASK(31, 24)
0167 
0168 /* Register: FMC2_CSQCAR2 */
0169 #define FMC2_CSQCAR2_ADDC5      GENMASK(7, 0)
0170 #define FMC2_CSQCAR2_NANDCEN        GENMASK(11, 10)
0171 #define FMC2_CSQCAR2_SAO        GENMASK(31, 16)
0172 
0173 /* Register: FMC2_CSQIER */
0174 #define FMC2_CSQIER_TCIE        BIT(0)
0175 
0176 /* Register: FMC2_CSQICR */
0177 #define FMC2_CSQICR_CLEAR_IRQ       GENMASK(4, 0)
0178 
0179 /* Register: FMC2_CSQEMSR */
0180 #define FMC2_CSQEMSR_SEM        GENMASK(15, 0)
0181 
0182 /* Register: FMC2_BCHIER */
0183 #define FMC2_BCHIER_DERIE       BIT(1)
0184 #define FMC2_BCHIER_EPBRIE      BIT(4)
0185 
0186 /* Register: FMC2_BCHICR */
0187 #define FMC2_BCHICR_CLEAR_IRQ       GENMASK(4, 0)
0188 
0189 /* Register: FMC2_BCHDSR0 */
0190 #define FMC2_BCHDSR0_DUE        BIT(0)
0191 #define FMC2_BCHDSR0_DEF        BIT(1)
0192 #define FMC2_BCHDSR0_DEN        GENMASK(7, 4)
0193 
0194 /* Register: FMC2_BCHDSR1 */
0195 #define FMC2_BCHDSR1_EBP1       GENMASK(12, 0)
0196 #define FMC2_BCHDSR1_EBP2       GENMASK(28, 16)
0197 
0198 /* Register: FMC2_BCHDSR2 */
0199 #define FMC2_BCHDSR2_EBP3       GENMASK(12, 0)
0200 #define FMC2_BCHDSR2_EBP4       GENMASK(28, 16)
0201 
0202 /* Register: FMC2_BCHDSR3 */
0203 #define FMC2_BCHDSR3_EBP5       GENMASK(12, 0)
0204 #define FMC2_BCHDSR3_EBP6       GENMASK(28, 16)
0205 
0206 /* Register: FMC2_BCHDSR4 */
0207 #define FMC2_BCHDSR4_EBP7       GENMASK(12, 0)
0208 #define FMC2_BCHDSR4_EBP8       GENMASK(28, 16)
0209 
0210 enum stm32_fmc2_ecc {
0211     FMC2_ECC_HAM = 1,
0212     FMC2_ECC_BCH4 = 4,
0213     FMC2_ECC_BCH8 = 8
0214 };
0215 
0216 enum stm32_fmc2_irq_state {
0217     FMC2_IRQ_UNKNOWN = 0,
0218     FMC2_IRQ_BCH,
0219     FMC2_IRQ_SEQ
0220 };
0221 
0222 struct stm32_fmc2_timings {
0223     u8 tclr;
0224     u8 tar;
0225     u8 thiz;
0226     u8 twait;
0227     u8 thold_mem;
0228     u8 tset_mem;
0229     u8 thold_att;
0230     u8 tset_att;
0231 };
0232 
0233 struct stm32_fmc2_nand {
0234     struct nand_chip chip;
0235     struct gpio_desc *wp_gpio;
0236     struct stm32_fmc2_timings timings;
0237     int ncs;
0238     int cs_used[FMC2_MAX_CE];
0239 };
0240 
0241 static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
0242 {
0243     return container_of(chip, struct stm32_fmc2_nand, chip);
0244 }
0245 
0246 struct stm32_fmc2_nfc {
0247     struct nand_controller base;
0248     struct stm32_fmc2_nand nand;
0249     struct device *dev;
0250     struct device *cdev;
0251     struct regmap *regmap;
0252     void __iomem *data_base[FMC2_MAX_CE];
0253     void __iomem *cmd_base[FMC2_MAX_CE];
0254     void __iomem *addr_base[FMC2_MAX_CE];
0255     phys_addr_t io_phys_addr;
0256     phys_addr_t data_phys_addr[FMC2_MAX_CE];
0257     struct clk *clk;
0258     u8 irq_state;
0259 
0260     struct dma_chan *dma_tx_ch;
0261     struct dma_chan *dma_rx_ch;
0262     struct dma_chan *dma_ecc_ch;
0263     struct sg_table dma_data_sg;
0264     struct sg_table dma_ecc_sg;
0265     u8 *ecc_buf;
0266     int dma_ecc_len;
0267 
0268     struct completion complete;
0269     struct completion dma_data_complete;
0270     struct completion dma_ecc_complete;
0271 
0272     u8 cs_assigned;
0273     int cs_sel;
0274 };
0275 
0276 static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base)
0277 {
0278     return container_of(base, struct stm32_fmc2_nfc, base);
0279 }
0280 
0281 static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip)
0282 {
0283     struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
0284     struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
0285     struct stm32_fmc2_timings *timings = &nand->timings;
0286     u32 pmem, patt;
0287 
0288     /* Set tclr/tar timings */
0289     regmap_update_bits(nfc->regmap, FMC2_PCR,
0290                FMC2_PCR_TCLR | FMC2_PCR_TAR,
0291                FIELD_PREP(FMC2_PCR_TCLR, timings->tclr) |
0292                FIELD_PREP(FMC2_PCR_TAR, timings->tar));
0293 
0294     /* Set tset/twait/thold/thiz timings in common bank */
0295     pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem);
0296     pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait);
0297     pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem);
0298     pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz);
0299     regmap_write(nfc->regmap, FMC2_PMEM, pmem);
0300 
0301     /* Set tset/twait/thold/thiz timings in attribut bank */
0302     patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att);
0303     patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait);
0304     patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att);
0305     patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz);
0306     regmap_write(nfc->regmap, FMC2_PATT, patt);
0307 }
0308 
0309 static void stm32_fmc2_nfc_setup(struct nand_chip *chip)
0310 {
0311     struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
0312     u32 pcr = 0, pcr_mask;
0313 
0314     /* Configure ECC algorithm (default configuration is Hamming) */
0315     pcr_mask = FMC2_PCR_ECCALG;
0316     pcr_mask |= FMC2_PCR_BCHECC;
0317     if (chip->ecc.strength == FMC2_ECC_BCH8) {
0318         pcr |= FMC2_PCR_ECCALG;
0319         pcr |= FMC2_PCR_BCHECC;
0320     } else if (chip->ecc.strength == FMC2_ECC_BCH4) {
0321         pcr |= FMC2_PCR_ECCALG;
0322     }
0323 
0324     /* Set buswidth */
0325     pcr_mask |= FMC2_PCR_PWID;
0326     if (chip->options & NAND_BUSWIDTH_16)
0327         pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16);
0328 
0329     /* Set ECC sector size */
0330     pcr_mask |= FMC2_PCR_ECCSS;
0331     pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512);
0332 
0333     regmap_update_bits(nfc->regmap, FMC2_PCR, pcr_mask, pcr);
0334 }
0335 
0336 static int stm32_fmc2_nfc_select_chip(struct nand_chip *chip, int chipnr)
0337 {
0338     struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
0339     struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
0340     struct dma_slave_config dma_cfg;
0341     int ret;
0342 
0343     if (nand->cs_used[chipnr] == nfc->cs_sel)
0344         return 0;
0345 
0346     nfc->cs_sel = nand->cs_used[chipnr];
0347     stm32_fmc2_nfc_setup(chip);
0348     stm32_fmc2_nfc_timings_init(chip);
0349 
0350     if (nfc->dma_tx_ch && nfc->dma_rx_ch) {
0351         memset(&dma_cfg, 0, sizeof(dma_cfg));
0352         dma_cfg.src_addr = nfc->data_phys_addr[nfc->cs_sel];
0353         dma_cfg.dst_addr = nfc->data_phys_addr[nfc->cs_sel];
0354         dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
0355         dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
0356         dma_cfg.src_maxburst = 32;
0357         dma_cfg.dst_maxburst = 32;
0358 
0359         ret = dmaengine_slave_config(nfc->dma_tx_ch, &dma_cfg);
0360         if (ret) {
0361             dev_err(nfc->dev, "tx DMA engine slave config failed\n");
0362             return ret;
0363         }
0364 
0365         ret = dmaengine_slave_config(nfc->dma_rx_ch, &dma_cfg);
0366         if (ret) {
0367             dev_err(nfc->dev, "rx DMA engine slave config failed\n");
0368             return ret;
0369         }
0370     }
0371 
0372     if (nfc->dma_ecc_ch) {
0373         /*
0374          * Hamming: we read HECCR register
0375          * BCH4/BCH8: we read BCHDSRSx registers
0376          */
0377         memset(&dma_cfg, 0, sizeof(dma_cfg));
0378         dma_cfg.src_addr = nfc->io_phys_addr;
0379         dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ?
0380                     FMC2_HECCR : FMC2_BCHDSR0;
0381         dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
0382 
0383         ret = dmaengine_slave_config(nfc->dma_ecc_ch, &dma_cfg);
0384         if (ret) {
0385             dev_err(nfc->dev, "ECC DMA engine slave config failed\n");
0386             return ret;
0387         }
0388 
0389         /* Calculate ECC length needed for one sector */
0390         nfc->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ?
0391                    FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN;
0392     }
0393 
0394     return 0;
0395 }
0396 
0397 static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc, bool set)
0398 {
0399     u32 pcr;
0400 
0401     pcr = set ? FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16) :
0402             FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_8);
0403 
0404     regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_PWID, pcr);
0405 }
0406 
0407 static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable)
0408 {
0409     regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_ECCEN,
0410                enable ? FMC2_PCR_ECCEN : 0);
0411 }
0412 
0413 static void stm32_fmc2_nfc_enable_seq_irq(struct stm32_fmc2_nfc *nfc)
0414 {
0415     nfc->irq_state = FMC2_IRQ_SEQ;
0416 
0417     regmap_update_bits(nfc->regmap, FMC2_CSQIER,
0418                FMC2_CSQIER_TCIE, FMC2_CSQIER_TCIE);
0419 }
0420 
0421 static void stm32_fmc2_nfc_disable_seq_irq(struct stm32_fmc2_nfc *nfc)
0422 {
0423     regmap_update_bits(nfc->regmap, FMC2_CSQIER, FMC2_CSQIER_TCIE, 0);
0424 
0425     nfc->irq_state = FMC2_IRQ_UNKNOWN;
0426 }
0427 
0428 static void stm32_fmc2_nfc_clear_seq_irq(struct stm32_fmc2_nfc *nfc)
0429 {
0430     regmap_write(nfc->regmap, FMC2_CSQICR, FMC2_CSQICR_CLEAR_IRQ);
0431 }
0432 
0433 static void stm32_fmc2_nfc_enable_bch_irq(struct stm32_fmc2_nfc *nfc, int mode)
0434 {
0435     nfc->irq_state = FMC2_IRQ_BCH;
0436 
0437     if (mode == NAND_ECC_WRITE)
0438         regmap_update_bits(nfc->regmap, FMC2_BCHIER,
0439                    FMC2_BCHIER_EPBRIE, FMC2_BCHIER_EPBRIE);
0440     else
0441         regmap_update_bits(nfc->regmap, FMC2_BCHIER,
0442                    FMC2_BCHIER_DERIE, FMC2_BCHIER_DERIE);
0443 }
0444 
0445 static void stm32_fmc2_nfc_disable_bch_irq(struct stm32_fmc2_nfc *nfc)
0446 {
0447     regmap_update_bits(nfc->regmap, FMC2_BCHIER,
0448                FMC2_BCHIER_DERIE | FMC2_BCHIER_EPBRIE, 0);
0449 
0450     nfc->irq_state = FMC2_IRQ_UNKNOWN;
0451 }
0452 
0453 static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc)
0454 {
0455     regmap_write(nfc->regmap, FMC2_BCHICR, FMC2_BCHICR_CLEAR_IRQ);
0456 }
0457 
0458 /*
0459  * Enable ECC logic and reset syndrome/parity bits previously calculated
0460  * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
0461  */
0462 static void stm32_fmc2_nfc_hwctl(struct nand_chip *chip, int mode)
0463 {
0464     struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
0465 
0466     stm32_fmc2_nfc_set_ecc(nfc, false);
0467 
0468     if (chip->ecc.strength != FMC2_ECC_HAM) {
0469         regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN,
0470                    mode == NAND_ECC_WRITE ? FMC2_PCR_WEN : 0);
0471 
0472         reinit_completion(&nfc->complete);
0473         stm32_fmc2_nfc_clear_bch_irq(nfc);
0474         stm32_fmc2_nfc_enable_bch_irq(nfc, mode);
0475     }
0476 
0477     stm32_fmc2_nfc_set_ecc(nfc, true);
0478 }
0479 
0480 /*
0481  * ECC Hamming calculation
0482  * ECC is 3 bytes for 512 bytes of data (supports error correction up to
0483  * max of 1-bit)
0484  */
0485 static void stm32_fmc2_nfc_ham_set_ecc(const u32 ecc_sta, u8 *ecc)
0486 {
0487     ecc[0] = ecc_sta;
0488     ecc[1] = ecc_sta >> 8;
0489     ecc[2] = ecc_sta >> 16;
0490 }
0491 
0492 static int stm32_fmc2_nfc_ham_calculate(struct nand_chip *chip, const u8 *data,
0493                     u8 *ecc)
0494 {
0495     struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
0496     u32 sr, heccr;
0497     int ret;
0498 
0499     ret = regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr,
0500                        sr & FMC2_SR_NWRF, 1,
0501                        1000 * FMC2_TIMEOUT_MS);
0502     if (ret) {
0503         dev_err(nfc->dev, "ham timeout\n");
0504         return ret;
0505     }
0506 
0507     regmap_read(nfc->regmap, FMC2_HECCR, &heccr);
0508     stm32_fmc2_nfc_ham_set_ecc(heccr, ecc);
0509     stm32_fmc2_nfc_set_ecc(nfc, false);
0510 
0511     return 0;
0512 }
0513 
0514 static int stm32_fmc2_nfc_ham_correct(struct nand_chip *chip, u8 *dat,
0515                       u8 *read_ecc, u8 *calc_ecc)
0516 {
0517     u8 bit_position = 0, b0, b1, b2;
0518     u32 byte_addr = 0, b;
0519     u32 i, shifting = 1;
0520 
0521     /* Indicate which bit and byte is faulty (if any) */
0522     b0 = read_ecc[0] ^ calc_ecc[0];
0523     b1 = read_ecc[1] ^ calc_ecc[1];
0524     b2 = read_ecc[2] ^ calc_ecc[2];
0525     b = b0 | (b1 << 8) | (b2 << 16);
0526 
0527     /* No errors */
0528     if (likely(!b))
0529         return 0;
0530 
0531     /* Calculate bit position */
0532     for (i = 0; i < 3; i++) {
0533         switch (b % 4) {
0534         case 2:
0535             bit_position += shifting;
0536             break;
0537         case 1:
0538             break;
0539         default:
0540             return -EBADMSG;
0541         }
0542         shifting <<= 1;
0543         b >>= 2;
0544     }
0545 
0546     /* Calculate byte position */
0547     shifting = 1;
0548     for (i = 0; i < 9; i++) {
0549         switch (b % 4) {
0550         case 2:
0551             byte_addr += shifting;
0552             break;
0553         case 1:
0554             break;
0555         default:
0556             return -EBADMSG;
0557         }
0558         shifting <<= 1;
0559         b >>= 2;
0560     }
0561 
0562     /* Flip the bit */
0563     dat[byte_addr] ^= (1 << bit_position);
0564 
0565     return 1;
0566 }
0567 
0568 /*
0569  * ECC BCH calculation and correction
0570  * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
0571  * max of 4-bit/8-bit)
0572  */
0573 static int stm32_fmc2_nfc_bch_calculate(struct nand_chip *chip, const u8 *data,
0574                     u8 *ecc)
0575 {
0576     struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
0577     u32 bchpbr;
0578 
0579     /* Wait until the BCH code is ready */
0580     if (!wait_for_completion_timeout(&nfc->complete,
0581                      msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
0582         dev_err(nfc->dev, "bch timeout\n");
0583         stm32_fmc2_nfc_disable_bch_irq(nfc);
0584         return -ETIMEDOUT;
0585     }
0586 
0587     /* Read parity bits */
0588     regmap_read(nfc->regmap, FMC2_BCHPBR1, &bchpbr);
0589     ecc[0] = bchpbr;
0590     ecc[1] = bchpbr >> 8;
0591     ecc[2] = bchpbr >> 16;
0592     ecc[3] = bchpbr >> 24;
0593 
0594     regmap_read(nfc->regmap, FMC2_BCHPBR2, &bchpbr);
0595     ecc[4] = bchpbr;
0596     ecc[5] = bchpbr >> 8;
0597     ecc[6] = bchpbr >> 16;
0598 
0599     if (chip->ecc.strength == FMC2_ECC_BCH8) {
0600         ecc[7] = bchpbr >> 24;
0601 
0602         regmap_read(nfc->regmap, FMC2_BCHPBR3, &bchpbr);
0603         ecc[8] = bchpbr;
0604         ecc[9] = bchpbr >> 8;
0605         ecc[10] = bchpbr >> 16;
0606         ecc[11] = bchpbr >> 24;
0607 
0608         regmap_read(nfc->regmap, FMC2_BCHPBR4, &bchpbr);
0609         ecc[12] = bchpbr;
0610     }
0611 
0612     stm32_fmc2_nfc_set_ecc(nfc, false);
0613 
0614     return 0;
0615 }
0616 
0617 static int stm32_fmc2_nfc_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta)
0618 {
0619     u32 bchdsr0 = ecc_sta[0];
0620     u32 bchdsr1 = ecc_sta[1];
0621     u32 bchdsr2 = ecc_sta[2];
0622     u32 bchdsr3 = ecc_sta[3];
0623     u32 bchdsr4 = ecc_sta[4];
0624     u16 pos[8];
0625     int i, den;
0626     unsigned int nb_errs = 0;
0627 
0628     /* No errors found */
0629     if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
0630         return 0;
0631 
0632     /* Too many errors detected */
0633     if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
0634         return -EBADMSG;
0635 
0636     pos[0] = FIELD_GET(FMC2_BCHDSR1_EBP1, bchdsr1);
0637     pos[1] = FIELD_GET(FMC2_BCHDSR1_EBP2, bchdsr1);
0638     pos[2] = FIELD_GET(FMC2_BCHDSR2_EBP3, bchdsr2);
0639     pos[3] = FIELD_GET(FMC2_BCHDSR2_EBP4, bchdsr2);
0640     pos[4] = FIELD_GET(FMC2_BCHDSR3_EBP5, bchdsr3);
0641     pos[5] = FIELD_GET(FMC2_BCHDSR3_EBP6, bchdsr3);
0642     pos[6] = FIELD_GET(FMC2_BCHDSR4_EBP7, bchdsr4);
0643     pos[7] = FIELD_GET(FMC2_BCHDSR4_EBP8, bchdsr4);
0644 
0645     den = FIELD_GET(FMC2_BCHDSR0_DEN, bchdsr0);
0646     for (i = 0; i < den; i++) {
0647         if (pos[i] < eccsize * 8) {
0648             change_bit(pos[i], (unsigned long *)dat);
0649             nb_errs++;
0650         }
0651     }
0652 
0653     return nb_errs;
0654 }
0655 
0656 static int stm32_fmc2_nfc_bch_correct(struct nand_chip *chip, u8 *dat,
0657                       u8 *read_ecc, u8 *calc_ecc)
0658 {
0659     struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
0660     u32 ecc_sta[5];
0661 
0662     /* Wait until the decoding error is ready */
0663     if (!wait_for_completion_timeout(&nfc->complete,
0664                      msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
0665         dev_err(nfc->dev, "bch timeout\n");
0666         stm32_fmc2_nfc_disable_bch_irq(nfc);
0667         return -ETIMEDOUT;
0668     }
0669 
0670     regmap_bulk_read(nfc->regmap, FMC2_BCHDSR0, ecc_sta, 5);
0671 
0672     stm32_fmc2_nfc_set_ecc(nfc, false);
0673 
0674     return stm32_fmc2_nfc_bch_decode(chip->ecc.size, dat, ecc_sta);
0675 }
0676 
0677 static int stm32_fmc2_nfc_read_page(struct nand_chip *chip, u8 *buf,
0678                     int oob_required, int page)
0679 {
0680     struct mtd_info *mtd = nand_to_mtd(chip);
0681     int ret, i, s, stat, eccsize = chip->ecc.size;
0682     int eccbytes = chip->ecc.bytes;
0683     int eccsteps = chip->ecc.steps;
0684     int eccstrength = chip->ecc.strength;
0685     u8 *p = buf;
0686     u8 *ecc_calc = chip->ecc.calc_buf;
0687     u8 *ecc_code = chip->ecc.code_buf;
0688     unsigned int max_bitflips = 0;
0689 
0690     ret = nand_read_page_op(chip, page, 0, NULL, 0);
0691     if (ret)
0692         return ret;
0693 
0694     for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
0695          s++, i += eccbytes, p += eccsize) {
0696         chip->ecc.hwctl(chip, NAND_ECC_READ);
0697 
0698         /* Read the nand page sector (512 bytes) */
0699         ret = nand_change_read_column_op(chip, s * eccsize, p,
0700                          eccsize, false);
0701         if (ret)
0702             return ret;
0703 
0704         /* Read the corresponding ECC bytes */
0705         ret = nand_change_read_column_op(chip, i, ecc_code,
0706                          eccbytes, false);
0707         if (ret)
0708             return ret;
0709 
0710         /* Correct the data */
0711         stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc);
0712         if (stat == -EBADMSG)
0713             /* Check for empty pages with bitflips */
0714             stat = nand_check_erased_ecc_chunk(p, eccsize,
0715                                ecc_code, eccbytes,
0716                                NULL, 0,
0717                                eccstrength);
0718 
0719         if (stat < 0) {
0720             mtd->ecc_stats.failed++;
0721         } else {
0722             mtd->ecc_stats.corrected += stat;
0723             max_bitflips = max_t(unsigned int, max_bitflips, stat);
0724         }
0725     }
0726 
0727     /* Read oob */
0728     if (oob_required) {
0729         ret = nand_change_read_column_op(chip, mtd->writesize,
0730                          chip->oob_poi, mtd->oobsize,
0731                          false);
0732         if (ret)
0733             return ret;
0734     }
0735 
0736     return max_bitflips;
0737 }
0738 
0739 /* Sequencer read/write configuration */
0740 static void stm32_fmc2_nfc_rw_page_init(struct nand_chip *chip, int page,
0741                     int raw, bool write_data)
0742 {
0743     struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
0744     struct mtd_info *mtd = nand_to_mtd(chip);
0745     u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN;
0746     /*
0747      * cfg[0] => csqcfgr1, cfg[1] => csqcfgr2, cfg[2] => csqcfgr3
0748      * cfg[3] => csqar1, cfg[4] => csqar2
0749      */
0750     u32 cfg[5];
0751 
0752     regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN,
0753                write_data ? FMC2_PCR_WEN : 0);
0754 
0755     /*
0756      * - Set Program Page/Page Read command
0757      * - Enable DMA request data
0758      * - Set timings
0759      */
0760     cfg[0] = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T;
0761     if (write_data)
0762         cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_SEQIN);
0763     else
0764         cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_READ0) |
0765               FMC2_CSQCFGR1_CMD2EN |
0766               FIELD_PREP(FMC2_CSQCFGR1_CMD2, NAND_CMD_READSTART) |
0767               FMC2_CSQCFGR1_CMD2T;
0768 
0769     /*
0770      * - Set Random Data Input/Random Data Read command
0771      * - Enable the sequencer to access the Spare data area
0772      * - Enable  DMA request status decoding for read
0773      * - Set timings
0774      */
0775     if (write_data)
0776         cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDIN);
0777     else
0778         cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDOUT) |
0779              FMC2_CSQCFGR2_RCMD2EN |
0780              FIELD_PREP(FMC2_CSQCFGR2_RCMD2, NAND_CMD_RNDOUTSTART) |
0781              FMC2_CSQCFGR2_RCMD1T |
0782              FMC2_CSQCFGR2_RCMD2T;
0783     if (!raw) {
0784         cfg[1] |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN;
0785         cfg[1] |= FMC2_CSQCFGR2_SQSDTEN;
0786     }
0787 
0788     /*
0789      * - Set the number of sectors to be written
0790      * - Set timings
0791      */
0792     cfg[2] = FIELD_PREP(FMC2_CSQCFGR3_SNBR, chip->ecc.steps - 1);
0793     if (write_data) {
0794         cfg[2] |= FMC2_CSQCFGR3_RAC2T;
0795         if (chip->options & NAND_ROW_ADDR_3)
0796             cfg[2] |= FMC2_CSQCFGR3_AC5T;
0797         else
0798             cfg[2] |= FMC2_CSQCFGR3_AC4T;
0799     }
0800 
0801     /*
0802      * Set the fourth first address cycles
0803      * Byte 1 and byte 2 => column, we start at 0x0
0804      * Byte 3 and byte 4 => page
0805      */
0806     cfg[3] = FIELD_PREP(FMC2_CSQCAR1_ADDC3, page);
0807     cfg[3] |= FIELD_PREP(FMC2_CSQCAR1_ADDC4, page >> 8);
0808 
0809     /*
0810      * - Set chip enable number
0811      * - Set ECC byte offset in the spare area
0812      * - Calculate the number of address cycles to be issued
0813      * - Set byte 5 of address cycle if needed
0814      */
0815     cfg[4] = FIELD_PREP(FMC2_CSQCAR2_NANDCEN, nfc->cs_sel);
0816     if (chip->options & NAND_BUSWIDTH_16)
0817         cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset >> 1);
0818     else
0819         cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset);
0820     if (chip->options & NAND_ROW_ADDR_3) {
0821         cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 5);
0822         cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_ADDC5, page >> 16);
0823     } else {
0824         cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 4);
0825     }
0826 
0827     regmap_bulk_write(nfc->regmap, FMC2_CSQCFGR1, cfg, 5);
0828 }
0829 
0830 static void stm32_fmc2_nfc_dma_callback(void *arg)
0831 {
0832     complete((struct completion *)arg);
0833 }
0834 
0835 /* Read/write data from/to a page */
0836 static int stm32_fmc2_nfc_xfer(struct nand_chip *chip, const u8 *buf,
0837                    int raw, bool write_data)
0838 {
0839     struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
0840     struct dma_async_tx_descriptor *desc_data, *desc_ecc;
0841     struct scatterlist *sg;
0842     struct dma_chan *dma_ch = nfc->dma_rx_ch;
0843     enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE;
0844     enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM;
0845     int eccsteps = chip->ecc.steps;
0846     int eccsize = chip->ecc.size;
0847     unsigned long timeout = msecs_to_jiffies(FMC2_TIMEOUT_MS);
0848     const u8 *p = buf;
0849     int s, ret;
0850 
0851     /* Configure DMA data */
0852     if (write_data) {
0853         dma_data_dir = DMA_TO_DEVICE;
0854         dma_transfer_dir = DMA_MEM_TO_DEV;
0855         dma_ch = nfc->dma_tx_ch;
0856     }
0857 
0858     for_each_sg(nfc->dma_data_sg.sgl, sg, eccsteps, s) {
0859         sg_set_buf(sg, p, eccsize);
0860         p += eccsize;
0861     }
0862 
0863     ret = dma_map_sg(nfc->dev, nfc->dma_data_sg.sgl,
0864              eccsteps, dma_data_dir);
0865     if (ret < 0)
0866         return ret;
0867 
0868     desc_data = dmaengine_prep_slave_sg(dma_ch, nfc->dma_data_sg.sgl,
0869                         eccsteps, dma_transfer_dir,
0870                         DMA_PREP_INTERRUPT);
0871     if (!desc_data) {
0872         ret = -ENOMEM;
0873         goto err_unmap_data;
0874     }
0875 
0876     reinit_completion(&nfc->dma_data_complete);
0877     reinit_completion(&nfc->complete);
0878     desc_data->callback = stm32_fmc2_nfc_dma_callback;
0879     desc_data->callback_param = &nfc->dma_data_complete;
0880     ret = dma_submit_error(dmaengine_submit(desc_data));
0881     if (ret)
0882         goto err_unmap_data;
0883 
0884     dma_async_issue_pending(dma_ch);
0885 
0886     if (!write_data && !raw) {
0887         /* Configure DMA ECC status */
0888         p = nfc->ecc_buf;
0889         for_each_sg(nfc->dma_ecc_sg.sgl, sg, eccsteps, s) {
0890             sg_set_buf(sg, p, nfc->dma_ecc_len);
0891             p += nfc->dma_ecc_len;
0892         }
0893 
0894         ret = dma_map_sg(nfc->dev, nfc->dma_ecc_sg.sgl,
0895                  eccsteps, dma_data_dir);
0896         if (ret < 0)
0897             goto err_unmap_data;
0898 
0899         desc_ecc = dmaengine_prep_slave_sg(nfc->dma_ecc_ch,
0900                            nfc->dma_ecc_sg.sgl,
0901                            eccsteps, dma_transfer_dir,
0902                            DMA_PREP_INTERRUPT);
0903         if (!desc_ecc) {
0904             ret = -ENOMEM;
0905             goto err_unmap_ecc;
0906         }
0907 
0908         reinit_completion(&nfc->dma_ecc_complete);
0909         desc_ecc->callback = stm32_fmc2_nfc_dma_callback;
0910         desc_ecc->callback_param = &nfc->dma_ecc_complete;
0911         ret = dma_submit_error(dmaengine_submit(desc_ecc));
0912         if (ret)
0913             goto err_unmap_ecc;
0914 
0915         dma_async_issue_pending(nfc->dma_ecc_ch);
0916     }
0917 
0918     stm32_fmc2_nfc_clear_seq_irq(nfc);
0919     stm32_fmc2_nfc_enable_seq_irq(nfc);
0920 
0921     /* Start the transfer */
0922     regmap_update_bits(nfc->regmap, FMC2_CSQCR,
0923                FMC2_CSQCR_CSQSTART, FMC2_CSQCR_CSQSTART);
0924 
0925     /* Wait end of sequencer transfer */
0926     if (!wait_for_completion_timeout(&nfc->complete, timeout)) {
0927         dev_err(nfc->dev, "seq timeout\n");
0928         stm32_fmc2_nfc_disable_seq_irq(nfc);
0929         dmaengine_terminate_all(dma_ch);
0930         if (!write_data && !raw)
0931             dmaengine_terminate_all(nfc->dma_ecc_ch);
0932         ret = -ETIMEDOUT;
0933         goto err_unmap_ecc;
0934     }
0935 
0936     /* Wait DMA data transfer completion */
0937     if (!wait_for_completion_timeout(&nfc->dma_data_complete, timeout)) {
0938         dev_err(nfc->dev, "data DMA timeout\n");
0939         dmaengine_terminate_all(dma_ch);
0940         ret = -ETIMEDOUT;
0941     }
0942 
0943     /* Wait DMA ECC transfer completion */
0944     if (!write_data && !raw) {
0945         if (!wait_for_completion_timeout(&nfc->dma_ecc_complete,
0946                          timeout)) {
0947             dev_err(nfc->dev, "ECC DMA timeout\n");
0948             dmaengine_terminate_all(nfc->dma_ecc_ch);
0949             ret = -ETIMEDOUT;
0950         }
0951     }
0952 
0953 err_unmap_ecc:
0954     if (!write_data && !raw)
0955         dma_unmap_sg(nfc->dev, nfc->dma_ecc_sg.sgl,
0956                  eccsteps, dma_data_dir);
0957 
0958 err_unmap_data:
0959     dma_unmap_sg(nfc->dev, nfc->dma_data_sg.sgl, eccsteps, dma_data_dir);
0960 
0961     return ret;
0962 }
0963 
0964 static int stm32_fmc2_nfc_seq_write(struct nand_chip *chip, const u8 *buf,
0965                     int oob_required, int page, int raw)
0966 {
0967     struct mtd_info *mtd = nand_to_mtd(chip);
0968     int ret;
0969 
0970     /* Configure the sequencer */
0971     stm32_fmc2_nfc_rw_page_init(chip, page, raw, true);
0972 
0973     /* Write the page */
0974     ret = stm32_fmc2_nfc_xfer(chip, buf, raw, true);
0975     if (ret)
0976         return ret;
0977 
0978     /* Write oob */
0979     if (oob_required) {
0980         ret = nand_change_write_column_op(chip, mtd->writesize,
0981                           chip->oob_poi, mtd->oobsize,
0982                           false);
0983         if (ret)
0984             return ret;
0985     }
0986 
0987     return nand_prog_page_end_op(chip);
0988 }
0989 
0990 static int stm32_fmc2_nfc_seq_write_page(struct nand_chip *chip, const u8 *buf,
0991                      int oob_required, int page)
0992 {
0993     int ret;
0994 
0995     ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
0996     if (ret)
0997         return ret;
0998 
0999     return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, false);
1000 }
1001 
1002 static int stm32_fmc2_nfc_seq_write_page_raw(struct nand_chip *chip,
1003                          const u8 *buf, int oob_required,
1004                          int page)
1005 {
1006     int ret;
1007 
1008     ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1009     if (ret)
1010         return ret;
1011 
1012     return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, true);
1013 }
1014 
1015 /* Get a status indicating which sectors have errors */
1016 static u16 stm32_fmc2_nfc_get_mapping_status(struct stm32_fmc2_nfc *nfc)
1017 {
1018     u32 csqemsr;
1019 
1020     regmap_read(nfc->regmap, FMC2_CSQEMSR, &csqemsr);
1021 
1022     return FIELD_GET(FMC2_CSQEMSR_SEM, csqemsr);
1023 }
1024 
1025 static int stm32_fmc2_nfc_seq_correct(struct nand_chip *chip, u8 *dat,
1026                       u8 *read_ecc, u8 *calc_ecc)
1027 {
1028     struct mtd_info *mtd = nand_to_mtd(chip);
1029     struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1030     int eccbytes = chip->ecc.bytes;
1031     int eccsteps = chip->ecc.steps;
1032     int eccstrength = chip->ecc.strength;
1033     int i, s, eccsize = chip->ecc.size;
1034     u32 *ecc_sta = (u32 *)nfc->ecc_buf;
1035     u16 sta_map = stm32_fmc2_nfc_get_mapping_status(nfc);
1036     unsigned int max_bitflips = 0;
1037 
1038     for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) {
1039         int stat = 0;
1040 
1041         if (eccstrength == FMC2_ECC_HAM) {
1042             /* Ecc_sta = FMC2_HECCR */
1043             if (sta_map & BIT(s)) {
1044                 stm32_fmc2_nfc_ham_set_ecc(*ecc_sta,
1045                                &calc_ecc[i]);
1046                 stat = stm32_fmc2_nfc_ham_correct(chip, dat,
1047                                   &read_ecc[i],
1048                                   &calc_ecc[i]);
1049             }
1050             ecc_sta++;
1051         } else {
1052             /*
1053              * Ecc_sta[0] = FMC2_BCHDSR0
1054              * Ecc_sta[1] = FMC2_BCHDSR1
1055              * Ecc_sta[2] = FMC2_BCHDSR2
1056              * Ecc_sta[3] = FMC2_BCHDSR3
1057              * Ecc_sta[4] = FMC2_BCHDSR4
1058              */
1059             if (sta_map & BIT(s))
1060                 stat = stm32_fmc2_nfc_bch_decode(eccsize, dat,
1061                                  ecc_sta);
1062             ecc_sta += 5;
1063         }
1064 
1065         if (stat == -EBADMSG)
1066             /* Check for empty pages with bitflips */
1067             stat = nand_check_erased_ecc_chunk(dat, eccsize,
1068                                &read_ecc[i],
1069                                eccbytes,
1070                                NULL, 0,
1071                                eccstrength);
1072 
1073         if (stat < 0) {
1074             mtd->ecc_stats.failed++;
1075         } else {
1076             mtd->ecc_stats.corrected += stat;
1077             max_bitflips = max_t(unsigned int, max_bitflips, stat);
1078         }
1079     }
1080 
1081     return max_bitflips;
1082 }
1083 
1084 static int stm32_fmc2_nfc_seq_read_page(struct nand_chip *chip, u8 *buf,
1085                     int oob_required, int page)
1086 {
1087     struct mtd_info *mtd = nand_to_mtd(chip);
1088     struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1089     u8 *ecc_calc = chip->ecc.calc_buf;
1090     u8 *ecc_code = chip->ecc.code_buf;
1091     u16 sta_map;
1092     int ret;
1093 
1094     ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1095     if (ret)
1096         return ret;
1097 
1098     /* Configure the sequencer */
1099     stm32_fmc2_nfc_rw_page_init(chip, page, 0, false);
1100 
1101     /* Read the page */
1102     ret = stm32_fmc2_nfc_xfer(chip, buf, 0, false);
1103     if (ret)
1104         return ret;
1105 
1106     sta_map = stm32_fmc2_nfc_get_mapping_status(nfc);
1107 
1108     /* Check if errors happen */
1109     if (likely(!sta_map)) {
1110         if (oob_required)
1111             return nand_change_read_column_op(chip, mtd->writesize,
1112                               chip->oob_poi,
1113                               mtd->oobsize, false);
1114 
1115         return 0;
1116     }
1117 
1118     /* Read oob */
1119     ret = nand_change_read_column_op(chip, mtd->writesize,
1120                      chip->oob_poi, mtd->oobsize, false);
1121     if (ret)
1122         return ret;
1123 
1124     ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1125                      chip->ecc.total);
1126     if (ret)
1127         return ret;
1128 
1129     /* Correct data */
1130     return chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
1131 }
1132 
1133 static int stm32_fmc2_nfc_seq_read_page_raw(struct nand_chip *chip, u8 *buf,
1134                         int oob_required, int page)
1135 {
1136     struct mtd_info *mtd = nand_to_mtd(chip);
1137     int ret;
1138 
1139     ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1140     if (ret)
1141         return ret;
1142 
1143     /* Configure the sequencer */
1144     stm32_fmc2_nfc_rw_page_init(chip, page, 1, false);
1145 
1146     /* Read the page */
1147     ret = stm32_fmc2_nfc_xfer(chip, buf, 1, false);
1148     if (ret)
1149         return ret;
1150 
1151     /* Read oob */
1152     if (oob_required)
1153         return nand_change_read_column_op(chip, mtd->writesize,
1154                           chip->oob_poi, mtd->oobsize,
1155                           false);
1156 
1157     return 0;
1158 }
1159 
1160 static irqreturn_t stm32_fmc2_nfc_irq(int irq, void *dev_id)
1161 {
1162     struct stm32_fmc2_nfc *nfc = (struct stm32_fmc2_nfc *)dev_id;
1163 
1164     if (nfc->irq_state == FMC2_IRQ_SEQ)
1165         /* Sequencer is used */
1166         stm32_fmc2_nfc_disable_seq_irq(nfc);
1167     else if (nfc->irq_state == FMC2_IRQ_BCH)
1168         /* BCH is used */
1169         stm32_fmc2_nfc_disable_bch_irq(nfc);
1170 
1171     complete(&nfc->complete);
1172 
1173     return IRQ_HANDLED;
1174 }
1175 
1176 static void stm32_fmc2_nfc_read_data(struct nand_chip *chip, void *buf,
1177                      unsigned int len, bool force_8bit)
1178 {
1179     struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1180     void __iomem *io_addr_r = nfc->data_base[nfc->cs_sel];
1181 
1182     if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1183         /* Reconfigure bus width to 8-bit */
1184         stm32_fmc2_nfc_set_buswidth_16(nfc, false);
1185 
1186     if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
1187         if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
1188             *(u8 *)buf = readb_relaxed(io_addr_r);
1189             buf += sizeof(u8);
1190             len -= sizeof(u8);
1191         }
1192 
1193         if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
1194             len >= sizeof(u16)) {
1195             *(u16 *)buf = readw_relaxed(io_addr_r);
1196             buf += sizeof(u16);
1197             len -= sizeof(u16);
1198         }
1199     }
1200 
1201     /* Buf is aligned */
1202     while (len >= sizeof(u32)) {
1203         *(u32 *)buf = readl_relaxed(io_addr_r);
1204         buf += sizeof(u32);
1205         len -= sizeof(u32);
1206     }
1207 
1208     /* Read remaining bytes */
1209     if (len >= sizeof(u16)) {
1210         *(u16 *)buf = readw_relaxed(io_addr_r);
1211         buf += sizeof(u16);
1212         len -= sizeof(u16);
1213     }
1214 
1215     if (len)
1216         *(u8 *)buf = readb_relaxed(io_addr_r);
1217 
1218     if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1219         /* Reconfigure bus width to 16-bit */
1220         stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1221 }
1222 
1223 static void stm32_fmc2_nfc_write_data(struct nand_chip *chip, const void *buf,
1224                       unsigned int len, bool force_8bit)
1225 {
1226     struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1227     void __iomem *io_addr_w = nfc->data_base[nfc->cs_sel];
1228 
1229     if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1230         /* Reconfigure bus width to 8-bit */
1231         stm32_fmc2_nfc_set_buswidth_16(nfc, false);
1232 
1233     if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
1234         if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
1235             writeb_relaxed(*(u8 *)buf, io_addr_w);
1236             buf += sizeof(u8);
1237             len -= sizeof(u8);
1238         }
1239 
1240         if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
1241             len >= sizeof(u16)) {
1242             writew_relaxed(*(u16 *)buf, io_addr_w);
1243             buf += sizeof(u16);
1244             len -= sizeof(u16);
1245         }
1246     }
1247 
1248     /* Buf is aligned */
1249     while (len >= sizeof(u32)) {
1250         writel_relaxed(*(u32 *)buf, io_addr_w);
1251         buf += sizeof(u32);
1252         len -= sizeof(u32);
1253     }
1254 
1255     /* Write remaining bytes */
1256     if (len >= sizeof(u16)) {
1257         writew_relaxed(*(u16 *)buf, io_addr_w);
1258         buf += sizeof(u16);
1259         len -= sizeof(u16);
1260     }
1261 
1262     if (len)
1263         writeb_relaxed(*(u8 *)buf, io_addr_w);
1264 
1265     if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1266         /* Reconfigure bus width to 16-bit */
1267         stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1268 }
1269 
1270 static int stm32_fmc2_nfc_waitrdy(struct nand_chip *chip,
1271                   unsigned long timeout_ms)
1272 {
1273     struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1274     const struct nand_sdr_timings *timings;
1275     u32 isr, sr;
1276 
1277     /* Check if there is no pending requests to the NAND flash */
1278     if (regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr,
1279                      sr & FMC2_SR_NWRF, 1,
1280                      1000 * FMC2_TIMEOUT_MS))
1281         dev_warn(nfc->dev, "Waitrdy timeout\n");
1282 
1283     /* Wait tWB before R/B# signal is low */
1284     timings = nand_get_sdr_timings(nand_get_interface_config(chip));
1285     ndelay(PSEC_TO_NSEC(timings->tWB_max));
1286 
1287     /* R/B# signal is low, clear high level flag */
1288     regmap_write(nfc->regmap, FMC2_ICR, FMC2_ICR_CIHLF);
1289 
1290     /* Wait R/B# signal is high */
1291     return regmap_read_poll_timeout(nfc->regmap, FMC2_ISR, isr,
1292                     isr & FMC2_ISR_IHLF, 5,
1293                     1000 * FMC2_TIMEOUT_MS);
1294 }
1295 
1296 static int stm32_fmc2_nfc_exec_op(struct nand_chip *chip,
1297                   const struct nand_operation *op,
1298                   bool check_only)
1299 {
1300     struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1301     const struct nand_op_instr *instr = NULL;
1302     unsigned int op_id, i, timeout;
1303     int ret;
1304 
1305     if (check_only)
1306         return 0;
1307 
1308     ret = stm32_fmc2_nfc_select_chip(chip, op->cs);
1309     if (ret)
1310         return ret;
1311 
1312     for (op_id = 0; op_id < op->ninstrs; op_id++) {
1313         instr = &op->instrs[op_id];
1314 
1315         switch (instr->type) {
1316         case NAND_OP_CMD_INSTR:
1317             writeb_relaxed(instr->ctx.cmd.opcode,
1318                        nfc->cmd_base[nfc->cs_sel]);
1319             break;
1320 
1321         case NAND_OP_ADDR_INSTR:
1322             for (i = 0; i < instr->ctx.addr.naddrs; i++)
1323                 writeb_relaxed(instr->ctx.addr.addrs[i],
1324                            nfc->addr_base[nfc->cs_sel]);
1325             break;
1326 
1327         case NAND_OP_DATA_IN_INSTR:
1328             stm32_fmc2_nfc_read_data(chip, instr->ctx.data.buf.in,
1329                          instr->ctx.data.len,
1330                          instr->ctx.data.force_8bit);
1331             break;
1332 
1333         case NAND_OP_DATA_OUT_INSTR:
1334             stm32_fmc2_nfc_write_data(chip, instr->ctx.data.buf.out,
1335                           instr->ctx.data.len,
1336                           instr->ctx.data.force_8bit);
1337             break;
1338 
1339         case NAND_OP_WAITRDY_INSTR:
1340             timeout = instr->ctx.waitrdy.timeout_ms;
1341             ret = stm32_fmc2_nfc_waitrdy(chip, timeout);
1342             break;
1343         }
1344     }
1345 
1346     return ret;
1347 }
1348 
1349 static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc)
1350 {
1351     u32 pcr;
1352 
1353     regmap_read(nfc->regmap, FMC2_PCR, &pcr);
1354 
1355     /* Set CS used to undefined */
1356     nfc->cs_sel = -1;
1357 
1358     /* Enable wait feature and nand flash memory bank */
1359     pcr |= FMC2_PCR_PWAITEN;
1360     pcr |= FMC2_PCR_PBKEN;
1361 
1362     /* Set buswidth to 8 bits mode for identification */
1363     pcr &= ~FMC2_PCR_PWID;
1364 
1365     /* ECC logic is disabled */
1366     pcr &= ~FMC2_PCR_ECCEN;
1367 
1368     /* Default mode */
1369     pcr &= ~FMC2_PCR_ECCALG;
1370     pcr &= ~FMC2_PCR_BCHECC;
1371     pcr &= ~FMC2_PCR_WEN;
1372 
1373     /* Set default ECC sector size */
1374     pcr &= ~FMC2_PCR_ECCSS;
1375     pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_2048);
1376 
1377     /* Set default tclr/tar timings */
1378     pcr &= ~FMC2_PCR_TCLR;
1379     pcr |= FIELD_PREP(FMC2_PCR_TCLR, FMC2_PCR_TCLR_DEFAULT);
1380     pcr &= ~FMC2_PCR_TAR;
1381     pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT);
1382 
1383     /* Enable FMC2 controller */
1384     if (nfc->dev == nfc->cdev)
1385         regmap_update_bits(nfc->regmap, FMC2_BCR1,
1386                    FMC2_BCR1_FMC2EN, FMC2_BCR1_FMC2EN);
1387 
1388     regmap_write(nfc->regmap, FMC2_PCR, pcr);
1389     regmap_write(nfc->regmap, FMC2_PMEM, FMC2_PMEM_DEFAULT);
1390     regmap_write(nfc->regmap, FMC2_PATT, FMC2_PATT_DEFAULT);
1391 }
1392 
1393 static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip,
1394                     const struct nand_sdr_timings *sdrt)
1395 {
1396     struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1397     struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
1398     struct stm32_fmc2_timings *tims = &nand->timings;
1399     unsigned long hclk = clk_get_rate(nfc->clk);
1400     unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000);
1401     unsigned long timing, tar, tclr, thiz, twait;
1402     unsigned long tset_mem, tset_att, thold_mem, thold_att;
1403 
1404     tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
1405     timing = DIV_ROUND_UP(tar, hclkp) - 1;
1406     tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
1407 
1408     tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
1409     timing = DIV_ROUND_UP(tclr, hclkp) - 1;
1410     tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
1411 
1412     tims->thiz = FMC2_THIZ;
1413     thiz = (tims->thiz + 1) * hclkp;
1414 
1415     /*
1416      * tWAIT > tRP
1417      * tWAIT > tWP
1418      * tWAIT > tREA + tIO
1419      */
1420     twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
1421     twait = max_t(unsigned long, twait, sdrt->tWP_min);
1422     twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
1423     timing = DIV_ROUND_UP(twait, hclkp);
1424     tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1425 
1426     /*
1427      * tSETUP_MEM > tCS - tWAIT
1428      * tSETUP_MEM > tALS - tWAIT
1429      * tSETUP_MEM > tDS - (tWAIT - tHIZ)
1430      */
1431     tset_mem = hclkp;
1432     if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
1433         tset_mem = sdrt->tCS_min - twait;
1434     if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
1435         tset_mem = sdrt->tALS_min - twait;
1436     if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
1437         (tset_mem < sdrt->tDS_min - (twait - thiz)))
1438         tset_mem = sdrt->tDS_min - (twait - thiz);
1439     timing = DIV_ROUND_UP(tset_mem, hclkp);
1440     tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1441 
1442     /*
1443      * tHOLD_MEM > tCH
1444      * tHOLD_MEM > tREH - tSETUP_MEM
1445      * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
1446      */
1447     thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
1448     if (sdrt->tREH_min > tset_mem &&
1449         (thold_mem < sdrt->tREH_min - tset_mem))
1450         thold_mem = sdrt->tREH_min - tset_mem;
1451     if ((sdrt->tRC_min > tset_mem + twait) &&
1452         (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
1453         thold_mem = sdrt->tRC_min - (tset_mem + twait);
1454     if ((sdrt->tWC_min > tset_mem + twait) &&
1455         (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
1456         thold_mem = sdrt->tWC_min - (tset_mem + twait);
1457     timing = DIV_ROUND_UP(thold_mem, hclkp);
1458     tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1459 
1460     /*
1461      * tSETUP_ATT > tCS - tWAIT
1462      * tSETUP_ATT > tCLS - tWAIT
1463      * tSETUP_ATT > tALS - tWAIT
1464      * tSETUP_ATT > tRHW - tHOLD_MEM
1465      * tSETUP_ATT > tDS - (tWAIT - tHIZ)
1466      */
1467     tset_att = hclkp;
1468     if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
1469         tset_att = sdrt->tCS_min - twait;
1470     if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
1471         tset_att = sdrt->tCLS_min - twait;
1472     if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
1473         tset_att = sdrt->tALS_min - twait;
1474     if (sdrt->tRHW_min > thold_mem &&
1475         (tset_att < sdrt->tRHW_min - thold_mem))
1476         tset_att = sdrt->tRHW_min - thold_mem;
1477     if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
1478         (tset_att < sdrt->tDS_min - (twait - thiz)))
1479         tset_att = sdrt->tDS_min - (twait - thiz);
1480     timing = DIV_ROUND_UP(tset_att, hclkp);
1481     tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1482 
1483     /*
1484      * tHOLD_ATT > tALH
1485      * tHOLD_ATT > tCH
1486      * tHOLD_ATT > tCLH
1487      * tHOLD_ATT > tCOH
1488      * tHOLD_ATT > tDH
1489      * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
1490      * tHOLD_ATT > tADL - tSETUP_MEM
1491      * tHOLD_ATT > tWH - tSETUP_MEM
1492      * tHOLD_ATT > tWHR - tSETUP_MEM
1493      * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
1494      * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
1495      */
1496     thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
1497     thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
1498     thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
1499     thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
1500     thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
1501     if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
1502         (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
1503         thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
1504     if (sdrt->tADL_min > tset_mem &&
1505         (thold_att < sdrt->tADL_min - tset_mem))
1506         thold_att = sdrt->tADL_min - tset_mem;
1507     if (sdrt->tWH_min > tset_mem &&
1508         (thold_att < sdrt->tWH_min - tset_mem))
1509         thold_att = sdrt->tWH_min - tset_mem;
1510     if (sdrt->tWHR_min > tset_mem &&
1511         (thold_att < sdrt->tWHR_min - tset_mem))
1512         thold_att = sdrt->tWHR_min - tset_mem;
1513     if ((sdrt->tRC_min > tset_att + twait) &&
1514         (thold_att < sdrt->tRC_min - (tset_att + twait)))
1515         thold_att = sdrt->tRC_min - (tset_att + twait);
1516     if ((sdrt->tWC_min > tset_att + twait) &&
1517         (thold_att < sdrt->tWC_min - (tset_att + twait)))
1518         thold_att = sdrt->tWC_min - (tset_att + twait);
1519     timing = DIV_ROUND_UP(thold_att, hclkp);
1520     tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1521 }
1522 
1523 static int stm32_fmc2_nfc_setup_interface(struct nand_chip *chip, int chipnr,
1524                       const struct nand_interface_config *conf)
1525 {
1526     const struct nand_sdr_timings *sdrt;
1527 
1528     sdrt = nand_get_sdr_timings(conf);
1529     if (IS_ERR(sdrt))
1530         return PTR_ERR(sdrt);
1531 
1532     if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
1533         return 0;
1534 
1535     stm32_fmc2_nfc_calc_timings(chip, sdrt);
1536     stm32_fmc2_nfc_timings_init(chip);
1537 
1538     return 0;
1539 }
1540 
1541 static int stm32_fmc2_nfc_dma_setup(struct stm32_fmc2_nfc *nfc)
1542 {
1543     int ret = 0;
1544 
1545     nfc->dma_tx_ch = dma_request_chan(nfc->dev, "tx");
1546     if (IS_ERR(nfc->dma_tx_ch)) {
1547         ret = PTR_ERR(nfc->dma_tx_ch);
1548         if (ret != -ENODEV && ret != -EPROBE_DEFER)
1549             dev_err(nfc->dev,
1550                 "failed to request tx DMA channel: %d\n", ret);
1551         nfc->dma_tx_ch = NULL;
1552         goto err_dma;
1553     }
1554 
1555     nfc->dma_rx_ch = dma_request_chan(nfc->dev, "rx");
1556     if (IS_ERR(nfc->dma_rx_ch)) {
1557         ret = PTR_ERR(nfc->dma_rx_ch);
1558         if (ret != -ENODEV && ret != -EPROBE_DEFER)
1559             dev_err(nfc->dev,
1560                 "failed to request rx DMA channel: %d\n", ret);
1561         nfc->dma_rx_ch = NULL;
1562         goto err_dma;
1563     }
1564 
1565     nfc->dma_ecc_ch = dma_request_chan(nfc->dev, "ecc");
1566     if (IS_ERR(nfc->dma_ecc_ch)) {
1567         ret = PTR_ERR(nfc->dma_ecc_ch);
1568         if (ret != -ENODEV && ret != -EPROBE_DEFER)
1569             dev_err(nfc->dev,
1570                 "failed to request ecc DMA channel: %d\n", ret);
1571         nfc->dma_ecc_ch = NULL;
1572         goto err_dma;
1573     }
1574 
1575     ret = sg_alloc_table(&nfc->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL);
1576     if (ret)
1577         return ret;
1578 
1579     /* Allocate a buffer to store ECC status registers */
1580     nfc->ecc_buf = devm_kzalloc(nfc->dev, FMC2_MAX_ECC_BUF_LEN, GFP_KERNEL);
1581     if (!nfc->ecc_buf)
1582         return -ENOMEM;
1583 
1584     ret = sg_alloc_table(&nfc->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL);
1585     if (ret)
1586         return ret;
1587 
1588     init_completion(&nfc->dma_data_complete);
1589     init_completion(&nfc->dma_ecc_complete);
1590 
1591     return 0;
1592 
1593 err_dma:
1594     if (ret == -ENODEV) {
1595         dev_warn(nfc->dev,
1596              "DMAs not defined in the DT, polling mode is used\n");
1597         ret = 0;
1598     }
1599 
1600     return ret;
1601 }
1602 
1603 static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip)
1604 {
1605     struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1606 
1607     /*
1608      * Specific callbacks to read/write a page depending on
1609      * the mode (polling/sequencer) and the algo used (Hamming, BCH).
1610      */
1611     if (nfc->dma_tx_ch && nfc->dma_rx_ch && nfc->dma_ecc_ch) {
1612         /* DMA => use sequencer mode callbacks */
1613         chip->ecc.correct = stm32_fmc2_nfc_seq_correct;
1614         chip->ecc.write_page = stm32_fmc2_nfc_seq_write_page;
1615         chip->ecc.read_page = stm32_fmc2_nfc_seq_read_page;
1616         chip->ecc.write_page_raw = stm32_fmc2_nfc_seq_write_page_raw;
1617         chip->ecc.read_page_raw = stm32_fmc2_nfc_seq_read_page_raw;
1618     } else {
1619         /* No DMA => use polling mode callbacks */
1620         chip->ecc.hwctl = stm32_fmc2_nfc_hwctl;
1621         if (chip->ecc.strength == FMC2_ECC_HAM) {
1622             /* Hamming is used */
1623             chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate;
1624             chip->ecc.correct = stm32_fmc2_nfc_ham_correct;
1625             chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
1626         } else {
1627             /* BCH is used */
1628             chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate;
1629             chip->ecc.correct = stm32_fmc2_nfc_bch_correct;
1630             chip->ecc.read_page = stm32_fmc2_nfc_read_page;
1631         }
1632     }
1633 
1634     /* Specific configurations depending on the algo used */
1635     if (chip->ecc.strength == FMC2_ECC_HAM)
1636         chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
1637     else if (chip->ecc.strength == FMC2_ECC_BCH8)
1638         chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
1639     else
1640         chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
1641 }
1642 
1643 static int stm32_fmc2_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
1644                     struct mtd_oob_region *oobregion)
1645 {
1646     struct nand_chip *chip = mtd_to_nand(mtd);
1647     struct nand_ecc_ctrl *ecc = &chip->ecc;
1648 
1649     if (section)
1650         return -ERANGE;
1651 
1652     oobregion->length = ecc->total;
1653     oobregion->offset = FMC2_BBM_LEN;
1654 
1655     return 0;
1656 }
1657 
1658 static int stm32_fmc2_nfc_ooblayout_free(struct mtd_info *mtd, int section,
1659                      struct mtd_oob_region *oobregion)
1660 {
1661     struct nand_chip *chip = mtd_to_nand(mtd);
1662     struct nand_ecc_ctrl *ecc = &chip->ecc;
1663 
1664     if (section)
1665         return -ERANGE;
1666 
1667     oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN;
1668     oobregion->offset = ecc->total + FMC2_BBM_LEN;
1669 
1670     return 0;
1671 }
1672 
1673 static const struct mtd_ooblayout_ops stm32_fmc2_nfc_ooblayout_ops = {
1674     .ecc = stm32_fmc2_nfc_ooblayout_ecc,
1675     .free = stm32_fmc2_nfc_ooblayout_free,
1676 };
1677 
1678 static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength)
1679 {
1680     /* Hamming */
1681     if (strength == FMC2_ECC_HAM)
1682         return 4;
1683 
1684     /* BCH8 */
1685     if (strength == FMC2_ECC_BCH8)
1686         return 14;
1687 
1688     /* BCH4 */
1689     return 8;
1690 }
1691 
1692 NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes,
1693              FMC2_ECC_STEP_SIZE,
1694              FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
1695 
1696 static int stm32_fmc2_nfc_attach_chip(struct nand_chip *chip)
1697 {
1698     struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1699     struct mtd_info *mtd = nand_to_mtd(chip);
1700     int ret;
1701 
1702     /*
1703      * Only NAND_ECC_ENGINE_TYPE_ON_HOST mode is actually supported
1704      * Hamming => ecc.strength = 1
1705      * BCH4 => ecc.strength = 4
1706      * BCH8 => ecc.strength = 8
1707      * ECC sector size = 512
1708      */
1709     if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
1710         dev_err(nfc->dev,
1711             "nand_ecc_engine_type is not well defined in the DT\n");
1712         return -EINVAL;
1713     }
1714 
1715     /* Default ECC settings in case they are not set in the device tree */
1716     if (!chip->ecc.size)
1717         chip->ecc.size = FMC2_ECC_STEP_SIZE;
1718 
1719     if (!chip->ecc.strength)
1720         chip->ecc.strength = FMC2_ECC_BCH8;
1721 
1722     ret = nand_ecc_choose_conf(chip, &stm32_fmc2_nfc_ecc_caps,
1723                    mtd->oobsize - FMC2_BBM_LEN);
1724     if (ret) {
1725         dev_err(nfc->dev, "no valid ECC settings set\n");
1726         return ret;
1727     }
1728 
1729     if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) {
1730         dev_err(nfc->dev, "nand page size is not supported\n");
1731         return -EINVAL;
1732     }
1733 
1734     if (chip->bbt_options & NAND_BBT_USE_FLASH)
1735         chip->bbt_options |= NAND_BBT_NO_OOB;
1736 
1737     stm32_fmc2_nfc_nand_callbacks_setup(chip);
1738 
1739     mtd_set_ooblayout(mtd, &stm32_fmc2_nfc_ooblayout_ops);
1740 
1741     stm32_fmc2_nfc_setup(chip);
1742 
1743     return 0;
1744 }
1745 
1746 static const struct nand_controller_ops stm32_fmc2_nfc_controller_ops = {
1747     .attach_chip = stm32_fmc2_nfc_attach_chip,
1748     .exec_op = stm32_fmc2_nfc_exec_op,
1749     .setup_interface = stm32_fmc2_nfc_setup_interface,
1750 };
1751 
1752 static void stm32_fmc2_nfc_wp_enable(struct stm32_fmc2_nand *nand)
1753 {
1754     if (nand->wp_gpio)
1755         gpiod_set_value(nand->wp_gpio, 1);
1756 }
1757 
1758 static void stm32_fmc2_nfc_wp_disable(struct stm32_fmc2_nand *nand)
1759 {
1760     if (nand->wp_gpio)
1761         gpiod_set_value(nand->wp_gpio, 0);
1762 }
1763 
1764 static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc,
1765                       struct device_node *dn)
1766 {
1767     struct stm32_fmc2_nand *nand = &nfc->nand;
1768     u32 cs;
1769     int ret, i;
1770 
1771     if (!of_get_property(dn, "reg", &nand->ncs))
1772         return -EINVAL;
1773 
1774     nand->ncs /= sizeof(u32);
1775     if (!nand->ncs) {
1776         dev_err(nfc->dev, "invalid reg property size\n");
1777         return -EINVAL;
1778     }
1779 
1780     for (i = 0; i < nand->ncs; i++) {
1781         ret = of_property_read_u32_index(dn, "reg", i, &cs);
1782         if (ret) {
1783             dev_err(nfc->dev, "could not retrieve reg property: %d\n",
1784                 ret);
1785             return ret;
1786         }
1787 
1788         if (cs >= FMC2_MAX_CE) {
1789             dev_err(nfc->dev, "invalid reg value: %d\n", cs);
1790             return -EINVAL;
1791         }
1792 
1793         if (nfc->cs_assigned & BIT(cs)) {
1794             dev_err(nfc->dev, "cs already assigned: %d\n", cs);
1795             return -EINVAL;
1796         }
1797 
1798         nfc->cs_assigned |= BIT(cs);
1799         nand->cs_used[i] = cs;
1800     }
1801 
1802     nand->wp_gpio = devm_gpiod_get_from_of_node(nfc->dev, dn,
1803                             "wp-gpios", 0,
1804                             GPIOD_OUT_HIGH, "wp");
1805     if (IS_ERR(nand->wp_gpio)) {
1806         ret = PTR_ERR(nand->wp_gpio);
1807         if (ret != -ENOENT)
1808             return dev_err_probe(nfc->dev, ret,
1809                          "failed to request WP GPIO\n");
1810 
1811         nand->wp_gpio = NULL;
1812     }
1813 
1814     nand_set_flash_node(&nand->chip, dn);
1815 
1816     return 0;
1817 }
1818 
1819 static int stm32_fmc2_nfc_parse_dt(struct stm32_fmc2_nfc *nfc)
1820 {
1821     struct device_node *dn = nfc->dev->of_node;
1822     struct device_node *child;
1823     int nchips = of_get_child_count(dn);
1824     int ret = 0;
1825 
1826     if (!nchips) {
1827         dev_err(nfc->dev, "NAND chip not defined\n");
1828         return -EINVAL;
1829     }
1830 
1831     if (nchips > 1) {
1832         dev_err(nfc->dev, "too many NAND chips defined\n");
1833         return -EINVAL;
1834     }
1835 
1836     for_each_child_of_node(dn, child) {
1837         ret = stm32_fmc2_nfc_parse_child(nfc, child);
1838         if (ret < 0) {
1839             of_node_put(child);
1840             return ret;
1841         }
1842     }
1843 
1844     return ret;
1845 }
1846 
1847 static int stm32_fmc2_nfc_set_cdev(struct stm32_fmc2_nfc *nfc)
1848 {
1849     struct device *dev = nfc->dev;
1850     bool ebi_found = false;
1851 
1852     if (dev->parent && of_device_is_compatible(dev->parent->of_node,
1853                            "st,stm32mp1-fmc2-ebi"))
1854         ebi_found = true;
1855 
1856     if (of_device_is_compatible(dev->of_node, "st,stm32mp1-fmc2-nfc")) {
1857         if (ebi_found) {
1858             nfc->cdev = dev->parent;
1859 
1860             return 0;
1861         }
1862 
1863         return -EINVAL;
1864     }
1865 
1866     if (ebi_found)
1867         return -EINVAL;
1868 
1869     nfc->cdev = dev;
1870 
1871     return 0;
1872 }
1873 
1874 static int stm32_fmc2_nfc_probe(struct platform_device *pdev)
1875 {
1876     struct device *dev = &pdev->dev;
1877     struct reset_control *rstc;
1878     struct stm32_fmc2_nfc *nfc;
1879     struct stm32_fmc2_nand *nand;
1880     struct resource *res;
1881     struct mtd_info *mtd;
1882     struct nand_chip *chip;
1883     struct resource cres;
1884     int chip_cs, mem_region, ret, irq;
1885     int start_region = 0;
1886 
1887     nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1888     if (!nfc)
1889         return -ENOMEM;
1890 
1891     nfc->dev = dev;
1892     nand_controller_init(&nfc->base);
1893     nfc->base.ops = &stm32_fmc2_nfc_controller_ops;
1894 
1895     ret = stm32_fmc2_nfc_set_cdev(nfc);
1896     if (ret)
1897         return ret;
1898 
1899     ret = stm32_fmc2_nfc_parse_dt(nfc);
1900     if (ret)
1901         return ret;
1902 
1903     ret = of_address_to_resource(nfc->cdev->of_node, 0, &cres);
1904     if (ret)
1905         return ret;
1906 
1907     nfc->io_phys_addr = cres.start;
1908 
1909     nfc->regmap = device_node_to_regmap(nfc->cdev->of_node);
1910     if (IS_ERR(nfc->regmap))
1911         return PTR_ERR(nfc->regmap);
1912 
1913     if (nfc->dev == nfc->cdev)
1914         start_region = 1;
1915 
1916     for (chip_cs = 0, mem_region = start_region; chip_cs < FMC2_MAX_CE;
1917          chip_cs++, mem_region += 3) {
1918         if (!(nfc->cs_assigned & BIT(chip_cs)))
1919             continue;
1920 
1921         res = platform_get_resource(pdev, IORESOURCE_MEM, mem_region);
1922         nfc->data_base[chip_cs] = devm_ioremap_resource(dev, res);
1923         if (IS_ERR(nfc->data_base[chip_cs]))
1924             return PTR_ERR(nfc->data_base[chip_cs]);
1925 
1926         nfc->data_phys_addr[chip_cs] = res->start;
1927 
1928         nfc->cmd_base[chip_cs] = devm_platform_ioremap_resource(pdev, mem_region + 1);
1929         if (IS_ERR(nfc->cmd_base[chip_cs]))
1930             return PTR_ERR(nfc->cmd_base[chip_cs]);
1931 
1932         nfc->addr_base[chip_cs] = devm_platform_ioremap_resource(pdev, mem_region + 2);
1933         if (IS_ERR(nfc->addr_base[chip_cs]))
1934             return PTR_ERR(nfc->addr_base[chip_cs]);
1935     }
1936 
1937     irq = platform_get_irq(pdev, 0);
1938     if (irq < 0)
1939         return irq;
1940 
1941     ret = devm_request_irq(dev, irq, stm32_fmc2_nfc_irq, 0,
1942                    dev_name(dev), nfc);
1943     if (ret) {
1944         dev_err(dev, "failed to request irq\n");
1945         return ret;
1946     }
1947 
1948     init_completion(&nfc->complete);
1949 
1950     nfc->clk = devm_clk_get(nfc->cdev, NULL);
1951     if (IS_ERR(nfc->clk))
1952         return PTR_ERR(nfc->clk);
1953 
1954     ret = clk_prepare_enable(nfc->clk);
1955     if (ret) {
1956         dev_err(dev, "can not enable the clock\n");
1957         return ret;
1958     }
1959 
1960     rstc = devm_reset_control_get(dev, NULL);
1961     if (IS_ERR(rstc)) {
1962         ret = PTR_ERR(rstc);
1963         if (ret == -EPROBE_DEFER)
1964             goto err_clk_disable;
1965     } else {
1966         reset_control_assert(rstc);
1967         reset_control_deassert(rstc);
1968     }
1969 
1970     ret = stm32_fmc2_nfc_dma_setup(nfc);
1971     if (ret)
1972         goto err_release_dma;
1973 
1974     stm32_fmc2_nfc_init(nfc);
1975 
1976     nand = &nfc->nand;
1977     chip = &nand->chip;
1978     mtd = nand_to_mtd(chip);
1979     mtd->dev.parent = dev;
1980 
1981     chip->controller = &nfc->base;
1982     chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
1983              NAND_USES_DMA;
1984 
1985     stm32_fmc2_nfc_wp_disable(nand);
1986 
1987     /* Scan to find existence of the device */
1988     ret = nand_scan(chip, nand->ncs);
1989     if (ret)
1990         goto err_wp_enable;
1991 
1992     ret = mtd_device_register(mtd, NULL, 0);
1993     if (ret)
1994         goto err_nand_cleanup;
1995 
1996     platform_set_drvdata(pdev, nfc);
1997 
1998     return 0;
1999 
2000 err_nand_cleanup:
2001     nand_cleanup(chip);
2002 
2003 err_wp_enable:
2004     stm32_fmc2_nfc_wp_enable(nand);
2005 
2006 err_release_dma:
2007     if (nfc->dma_ecc_ch)
2008         dma_release_channel(nfc->dma_ecc_ch);
2009     if (nfc->dma_tx_ch)
2010         dma_release_channel(nfc->dma_tx_ch);
2011     if (nfc->dma_rx_ch)
2012         dma_release_channel(nfc->dma_rx_ch);
2013 
2014     sg_free_table(&nfc->dma_data_sg);
2015     sg_free_table(&nfc->dma_ecc_sg);
2016 
2017 err_clk_disable:
2018     clk_disable_unprepare(nfc->clk);
2019 
2020     return ret;
2021 }
2022 
2023 static int stm32_fmc2_nfc_remove(struct platform_device *pdev)
2024 {
2025     struct stm32_fmc2_nfc *nfc = platform_get_drvdata(pdev);
2026     struct stm32_fmc2_nand *nand = &nfc->nand;
2027     struct nand_chip *chip = &nand->chip;
2028     int ret;
2029 
2030     ret = mtd_device_unregister(nand_to_mtd(chip));
2031     WARN_ON(ret);
2032     nand_cleanup(chip);
2033 
2034     if (nfc->dma_ecc_ch)
2035         dma_release_channel(nfc->dma_ecc_ch);
2036     if (nfc->dma_tx_ch)
2037         dma_release_channel(nfc->dma_tx_ch);
2038     if (nfc->dma_rx_ch)
2039         dma_release_channel(nfc->dma_rx_ch);
2040 
2041     sg_free_table(&nfc->dma_data_sg);
2042     sg_free_table(&nfc->dma_ecc_sg);
2043 
2044     clk_disable_unprepare(nfc->clk);
2045 
2046     stm32_fmc2_nfc_wp_enable(nand);
2047 
2048     return 0;
2049 }
2050 
2051 static int __maybe_unused stm32_fmc2_nfc_suspend(struct device *dev)
2052 {
2053     struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev);
2054     struct stm32_fmc2_nand *nand = &nfc->nand;
2055 
2056     clk_disable_unprepare(nfc->clk);
2057 
2058     stm32_fmc2_nfc_wp_enable(nand);
2059 
2060     pinctrl_pm_select_sleep_state(dev);
2061 
2062     return 0;
2063 }
2064 
2065 static int __maybe_unused stm32_fmc2_nfc_resume(struct device *dev)
2066 {
2067     struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev);
2068     struct stm32_fmc2_nand *nand = &nfc->nand;
2069     int chip_cs, ret;
2070 
2071     pinctrl_pm_select_default_state(dev);
2072 
2073     ret = clk_prepare_enable(nfc->clk);
2074     if (ret) {
2075         dev_err(dev, "can not enable the clock\n");
2076         return ret;
2077     }
2078 
2079     stm32_fmc2_nfc_init(nfc);
2080 
2081     stm32_fmc2_nfc_wp_disable(nand);
2082 
2083     for (chip_cs = 0; chip_cs < FMC2_MAX_CE; chip_cs++) {
2084         if (!(nfc->cs_assigned & BIT(chip_cs)))
2085             continue;
2086 
2087         nand_reset(&nand->chip, chip_cs);
2088     }
2089 
2090     return 0;
2091 }
2092 
2093 static SIMPLE_DEV_PM_OPS(stm32_fmc2_nfc_pm_ops, stm32_fmc2_nfc_suspend,
2094              stm32_fmc2_nfc_resume);
2095 
2096 static const struct of_device_id stm32_fmc2_nfc_match[] = {
2097     {.compatible = "st,stm32mp15-fmc2"},
2098     {.compatible = "st,stm32mp1-fmc2-nfc"},
2099     {}
2100 };
2101 MODULE_DEVICE_TABLE(of, stm32_fmc2_nfc_match);
2102 
2103 static struct platform_driver stm32_fmc2_nfc_driver = {
2104     .probe  = stm32_fmc2_nfc_probe,
2105     .remove = stm32_fmc2_nfc_remove,
2106     .driver = {
2107         .name = "stm32_fmc2_nfc",
2108         .of_match_table = stm32_fmc2_nfc_match,
2109         .pm = &stm32_fmc2_nfc_pm_ops,
2110     },
2111 };
2112 module_platform_driver(stm32_fmc2_nfc_driver);
2113 
2114 MODULE_ALIAS("platform:stm32_fmc2_nfc");
2115 MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>");
2116 MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 NFC driver");
2117 MODULE_LICENSE("GPL v2");