0001
0002
0003
0004
0005
0006
0007
0008 #include <linux/platform_device.h>
0009 #include <linux/dmaengine.h>
0010 #include <linux/dma-mapping.h>
0011 #include <linux/delay.h>
0012 #include <linux/gpio/consumer.h>
0013 #include <linux/module.h>
0014 #include <linux/interrupt.h>
0015 #include <linux/jiffies.h>
0016 #include <linux/sched.h>
0017 #include <linux/mtd/mtd.h>
0018 #include <linux/mtd/nand-ecc-sw-bch.h>
0019 #include <linux/mtd/rawnand.h>
0020 #include <linux/mtd/partitions.h>
0021 #include <linux/omap-dma.h>
0022 #include <linux/iopoll.h>
0023 #include <linux/slab.h>
0024 #include <linux/of.h>
0025 #include <linux/of_device.h>
0026
0027 #include <linux/platform_data/elm.h>
0028
0029 #include <linux/omap-gpmc.h>
0030 #include <linux/platform_data/mtd-nand-omap2.h>
0031
0032 #define DRIVER_NAME "omap2-nand"
0033 #define OMAP_NAND_TIMEOUT_MS 5000
0034
0035 #define NAND_Ecc_P1e (1 << 0)
0036 #define NAND_Ecc_P2e (1 << 1)
0037 #define NAND_Ecc_P4e (1 << 2)
0038 #define NAND_Ecc_P8e (1 << 3)
0039 #define NAND_Ecc_P16e (1 << 4)
0040 #define NAND_Ecc_P32e (1 << 5)
0041 #define NAND_Ecc_P64e (1 << 6)
0042 #define NAND_Ecc_P128e (1 << 7)
0043 #define NAND_Ecc_P256e (1 << 8)
0044 #define NAND_Ecc_P512e (1 << 9)
0045 #define NAND_Ecc_P1024e (1 << 10)
0046 #define NAND_Ecc_P2048e (1 << 11)
0047
0048 #define NAND_Ecc_P1o (1 << 16)
0049 #define NAND_Ecc_P2o (1 << 17)
0050 #define NAND_Ecc_P4o (1 << 18)
0051 #define NAND_Ecc_P8o (1 << 19)
0052 #define NAND_Ecc_P16o (1 << 20)
0053 #define NAND_Ecc_P32o (1 << 21)
0054 #define NAND_Ecc_P64o (1 << 22)
0055 #define NAND_Ecc_P128o (1 << 23)
0056 #define NAND_Ecc_P256o (1 << 24)
0057 #define NAND_Ecc_P512o (1 << 25)
0058 #define NAND_Ecc_P1024o (1 << 26)
0059 #define NAND_Ecc_P2048o (1 << 27)
0060
0061 #define TF(value) (value ? 1 : 0)
0062
0063 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
0064 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
0065 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
0066 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
0067 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
0068 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
0069 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
0070 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
0071
0072 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
0073 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
0074 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
0075 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
0076 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
0077 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
0078 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
0079 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
0080
0081 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
0082 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
0083 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
0084 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
0085 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
0086 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
0087 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
0088 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
0089
0090 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
0091 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
0092 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
0093 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
0094 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
0095 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
0096 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
0097 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
0098
0099 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
0100 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
0101
0102 #define PREFETCH_CONFIG1_CS_SHIFT 24
0103 #define ECC_CONFIG_CS_SHIFT 1
0104 #define CS_MASK 0x7
0105 #define ENABLE_PREFETCH (0x1 << 7)
0106 #define DMA_MPU_MODE_SHIFT 2
0107 #define ECCSIZE0_SHIFT 12
0108 #define ECCSIZE1_SHIFT 22
0109 #define ECC1RESULTSIZE 0x1
0110 #define ECCCLEAR 0x100
0111 #define ECC1 0x1
0112 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40
0113 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
0114 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
0115 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
0116 #define STATUS_BUFF_EMPTY 0x00000001
0117
0118 #define SECTOR_BYTES 512
0119
0120 #define BCH4_BIT_PAD 4
0121
0122
0123 #define BCH_WRAPMODE_1 1
0124 #define BCH8R_ECC_SIZE0 0x1a
0125 #define BCH8R_ECC_SIZE1 0x2
0126 #define BCH4R_ECC_SIZE0 0xd
0127 #define BCH4R_ECC_SIZE1 0x3
0128
0129
0130 #define BCH_WRAPMODE_6 6
0131 #define BCH_ECC_SIZE0 0x0
0132 #define BCH_ECC_SIZE1 0x20
0133
0134 #define BBM_LEN 2
0135
0136 static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
0137 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
0138 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
0139 0x07, 0x0e};
0140 static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
0141 0xac, 0x6b, 0xff, 0x99, 0x7b};
0142 static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
0143
0144 struct omap_nand_info {
0145 struct nand_chip nand;
0146 struct platform_device *pdev;
0147
0148 int gpmc_cs;
0149 bool dev_ready;
0150 enum nand_io xfer_type;
0151 enum omap_ecc ecc_opt;
0152 struct device_node *elm_of_node;
0153
0154 unsigned long phys_base;
0155 struct completion comp;
0156 struct dma_chan *dma;
0157 int gpmc_irq_fifo;
0158 int gpmc_irq_count;
0159 enum {
0160 OMAP_NAND_IO_READ = 0,
0161 OMAP_NAND_IO_WRITE,
0162 } iomode;
0163 u_char *buf;
0164 int buf_len;
0165
0166 void __iomem *fifo;
0167 struct gpmc_nand_regs reg;
0168 struct gpmc_nand_ops *ops;
0169 bool flash_bbt;
0170
0171 struct device *elm_dev;
0172
0173 struct gpio_desc *ready_gpiod;
0174 unsigned int neccpg;
0175 unsigned int nsteps_per_eccpg;
0176 unsigned int eccpg_size;
0177 unsigned int eccpg_bytes;
0178 void (*data_in)(struct nand_chip *chip, void *buf,
0179 unsigned int len, bool force_8bit);
0180 void (*data_out)(struct nand_chip *chip,
0181 const void *buf, unsigned int len,
0182 bool force_8bit);
0183 };
0184
0185 static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
0186 {
0187 return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
0188 }
0189
0190 static void omap_nand_data_in(struct nand_chip *chip, void *buf,
0191 unsigned int len, bool force_8bit);
0192
0193 static void omap_nand_data_out(struct nand_chip *chip,
0194 const void *buf, unsigned int len,
0195 bool force_8bit);
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
0207 unsigned int u32_count, int is_write, struct omap_nand_info *info)
0208 {
0209 u32 val;
0210
0211 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
0212 return -1;
0213
0214 if (readl(info->reg.gpmc_prefetch_control))
0215 return -EBUSY;
0216
0217
0218 writel(u32_count, info->reg.gpmc_prefetch_config2);
0219
0220
0221
0222
0223 val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
0224 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
0225 (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
0226 writel(val, info->reg.gpmc_prefetch_config1);
0227
0228
0229 writel(0x1, info->reg.gpmc_prefetch_control);
0230
0231 return 0;
0232 }
0233
0234
0235
0236
0237 static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
0238 {
0239 u32 config1;
0240
0241
0242 config1 = readl(info->reg.gpmc_prefetch_config1);
0243 if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
0244 return -EINVAL;
0245
0246
0247 writel(0x0, info->reg.gpmc_prefetch_control);
0248
0249
0250 writel(0x0, info->reg.gpmc_prefetch_config1);
0251
0252 return 0;
0253 }
0254
0255
0256
0257
0258 static void omap_nand_data_in_pref(struct nand_chip *chip, void *buf,
0259 unsigned int len, bool force_8bit)
0260 {
0261 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
0262 uint32_t r_count = 0;
0263 int ret = 0;
0264 u32 *p = (u32 *)buf;
0265 unsigned int pref_len;
0266
0267 if (force_8bit) {
0268 omap_nand_data_in(chip, buf, len, force_8bit);
0269 return;
0270 }
0271
0272
0273
0274
0275 pref_len = len - (len & 3);
0276 ret = omap_prefetch_enable(info->gpmc_cs,
0277 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, pref_len, 0x0, info);
0278 if (ret) {
0279
0280 omap_nand_data_in(chip, buf, len, false);
0281 } else {
0282 do {
0283 r_count = readl(info->reg.gpmc_prefetch_status);
0284 r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
0285 r_count = r_count >> 2;
0286 ioread32_rep(info->fifo, p, r_count);
0287 p += r_count;
0288 pref_len -= r_count << 2;
0289 } while (pref_len);
0290
0291 omap_prefetch_reset(info->gpmc_cs, info);
0292
0293 if (len & 3)
0294 omap_nand_data_in(chip, p, len & 3, false);
0295 }
0296 }
0297
0298
0299
0300
0301 static void omap_nand_data_out_pref(struct nand_chip *chip,
0302 const void *buf, unsigned int len,
0303 bool force_8bit)
0304 {
0305 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
0306 uint32_t w_count = 0;
0307 int i = 0, ret = 0;
0308 u16 *p = (u16 *)buf;
0309 unsigned long tim, limit;
0310 u32 val;
0311
0312 if (force_8bit) {
0313 omap_nand_data_out(chip, buf, len, force_8bit);
0314 return;
0315 }
0316
0317
0318 if (len % 2 != 0) {
0319 writeb(*(u8 *)buf, info->fifo);
0320 p = (u16 *)(buf + 1);
0321 len--;
0322 }
0323
0324
0325 ret = omap_prefetch_enable(info->gpmc_cs,
0326 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
0327 if (ret) {
0328
0329 omap_nand_data_out(chip, buf, len, false);
0330 } else {
0331 while (len) {
0332 w_count = readl(info->reg.gpmc_prefetch_status);
0333 w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
0334 w_count = w_count >> 1;
0335 for (i = 0; (i < w_count) && len; i++, len -= 2)
0336 iowrite16(*p++, info->fifo);
0337 }
0338
0339 tim = 0;
0340 limit = (loops_per_jiffy *
0341 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
0342 do {
0343 cpu_relax();
0344 val = readl(info->reg.gpmc_prefetch_status);
0345 val = PREFETCH_STATUS_COUNT(val);
0346 } while (val && (tim++ < limit));
0347
0348
0349 omap_prefetch_reset(info->gpmc_cs, info);
0350 }
0351 }
0352
0353
0354
0355
0356
0357 static void omap_nand_dma_callback(void *data)
0358 {
0359 complete((struct completion *) data);
0360 }
0361
0362
0363
0364
0365
0366
0367
0368
0369 static inline int omap_nand_dma_transfer(struct nand_chip *chip,
0370 const void *addr, unsigned int len,
0371 int is_write)
0372 {
0373 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
0374 struct dma_async_tx_descriptor *tx;
0375 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
0376 DMA_FROM_DEVICE;
0377 struct scatterlist sg;
0378 unsigned long tim, limit;
0379 unsigned n;
0380 int ret;
0381 u32 val;
0382
0383 if (!virt_addr_valid(addr))
0384 goto out_copy;
0385
0386 sg_init_one(&sg, addr, len);
0387 n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
0388 if (n == 0) {
0389 dev_err(&info->pdev->dev,
0390 "Couldn't DMA map a %d byte buffer\n", len);
0391 goto out_copy;
0392 }
0393
0394 tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
0395 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
0396 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
0397 if (!tx)
0398 goto out_copy_unmap;
0399
0400 tx->callback = omap_nand_dma_callback;
0401 tx->callback_param = &info->comp;
0402 dmaengine_submit(tx);
0403
0404 init_completion(&info->comp);
0405
0406
0407 dma_async_issue_pending(info->dma);
0408
0409
0410 ret = omap_prefetch_enable(info->gpmc_cs,
0411 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
0412 if (ret)
0413
0414 goto out_copy_unmap;
0415
0416 wait_for_completion(&info->comp);
0417 tim = 0;
0418 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
0419
0420 do {
0421 cpu_relax();
0422 val = readl(info->reg.gpmc_prefetch_status);
0423 val = PREFETCH_STATUS_COUNT(val);
0424 } while (val && (tim++ < limit));
0425
0426
0427 omap_prefetch_reset(info->gpmc_cs, info);
0428
0429 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
0430 return 0;
0431
0432 out_copy_unmap:
0433 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
0434 out_copy:
0435 is_write == 0 ? omap_nand_data_in(chip, (void *)addr, len, false)
0436 : omap_nand_data_out(chip, addr, len, false);
0437
0438 return 0;
0439 }
0440
0441
0442
0443
0444 static void omap_nand_data_in_dma_pref(struct nand_chip *chip, void *buf,
0445 unsigned int len, bool force_8bit)
0446 {
0447 struct mtd_info *mtd = nand_to_mtd(chip);
0448
0449 if (force_8bit) {
0450 omap_nand_data_in(chip, buf, len, force_8bit);
0451 return;
0452 }
0453
0454 if (len <= mtd->oobsize)
0455 omap_nand_data_in_pref(chip, buf, len, false);
0456 else
0457
0458 omap_nand_dma_transfer(chip, buf, len, 0x0);
0459 }
0460
0461
0462
0463
0464 static void omap_nand_data_out_dma_pref(struct nand_chip *chip,
0465 const void *buf, unsigned int len,
0466 bool force_8bit)
0467 {
0468 struct mtd_info *mtd = nand_to_mtd(chip);
0469
0470 if (force_8bit) {
0471 omap_nand_data_out(chip, buf, len, force_8bit);
0472 return;
0473 }
0474
0475 if (len <= mtd->oobsize)
0476 omap_nand_data_out_pref(chip, buf, len, false);
0477 else
0478
0479 omap_nand_dma_transfer(chip, buf, len, 0x1);
0480 }
0481
0482
0483
0484
0485
0486
0487 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
0488 {
0489 struct omap_nand_info *info = (struct omap_nand_info *) dev;
0490 u32 bytes;
0491
0492 bytes = readl(info->reg.gpmc_prefetch_status);
0493 bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
0494 bytes = bytes & 0xFFFC;
0495 if (info->iomode == OMAP_NAND_IO_WRITE) {
0496 if (this_irq == info->gpmc_irq_count)
0497 goto done;
0498
0499 if (info->buf_len && (info->buf_len < bytes))
0500 bytes = info->buf_len;
0501 else if (!info->buf_len)
0502 bytes = 0;
0503 iowrite32_rep(info->fifo, (u32 *)info->buf,
0504 bytes >> 2);
0505 info->buf = info->buf + bytes;
0506 info->buf_len -= bytes;
0507
0508 } else {
0509 ioread32_rep(info->fifo, (u32 *)info->buf,
0510 bytes >> 2);
0511 info->buf = info->buf + bytes;
0512
0513 if (this_irq == info->gpmc_irq_count)
0514 goto done;
0515 }
0516
0517 return IRQ_HANDLED;
0518
0519 done:
0520 complete(&info->comp);
0521
0522 disable_irq_nosync(info->gpmc_irq_fifo);
0523 disable_irq_nosync(info->gpmc_irq_count);
0524
0525 return IRQ_HANDLED;
0526 }
0527
0528
0529
0530
0531 static void omap_nand_data_in_irq_pref(struct nand_chip *chip, void *buf,
0532 unsigned int len, bool force_8bit)
0533 {
0534 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
0535 struct mtd_info *mtd = nand_to_mtd(&info->nand);
0536 int ret = 0;
0537
0538 if (len <= mtd->oobsize || force_8bit) {
0539 omap_nand_data_in(chip, buf, len, force_8bit);
0540 return;
0541 }
0542
0543 info->iomode = OMAP_NAND_IO_READ;
0544 info->buf = buf;
0545 init_completion(&info->comp);
0546
0547
0548 ret = omap_prefetch_enable(info->gpmc_cs,
0549 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
0550 if (ret) {
0551
0552 omap_nand_data_in(chip, buf, len, false);
0553 return;
0554 }
0555
0556 info->buf_len = len;
0557
0558 enable_irq(info->gpmc_irq_count);
0559 enable_irq(info->gpmc_irq_fifo);
0560
0561
0562 wait_for_completion(&info->comp);
0563
0564
0565 omap_prefetch_reset(info->gpmc_cs, info);
0566 return;
0567 }
0568
0569
0570
0571
0572 static void omap_nand_data_out_irq_pref(struct nand_chip *chip,
0573 const void *buf, unsigned int len,
0574 bool force_8bit)
0575 {
0576 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
0577 struct mtd_info *mtd = nand_to_mtd(&info->nand);
0578 int ret = 0;
0579 unsigned long tim, limit;
0580 u32 val;
0581
0582 if (len <= mtd->oobsize || force_8bit) {
0583 omap_nand_data_out(chip, buf, len, force_8bit);
0584 return;
0585 }
0586
0587 info->iomode = OMAP_NAND_IO_WRITE;
0588 info->buf = (u_char *) buf;
0589 init_completion(&info->comp);
0590
0591
0592 ret = omap_prefetch_enable(info->gpmc_cs,
0593 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
0594 if (ret) {
0595
0596 omap_nand_data_out(chip, buf, len, false);
0597 return;
0598 }
0599
0600 info->buf_len = len;
0601
0602 enable_irq(info->gpmc_irq_count);
0603 enable_irq(info->gpmc_irq_fifo);
0604
0605
0606 wait_for_completion(&info->comp);
0607
0608
0609 tim = 0;
0610 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
0611 do {
0612 val = readl(info->reg.gpmc_prefetch_status);
0613 val = PREFETCH_STATUS_COUNT(val);
0614 cpu_relax();
0615 } while (val && (tim++ < limit));
0616
0617
0618 omap_prefetch_reset(info->gpmc_cs, info);
0619 return;
0620 }
0621
0622
0623
0624
0625
0626
0627
0628
0629 static void gen_true_ecc(u8 *ecc_buf)
0630 {
0631 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
0632 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
0633
0634 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
0635 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
0636 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
0637 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
0638 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
0639 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
0640 }
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653 static int omap_compare_ecc(u8 *ecc_data1,
0654 u8 *ecc_data2,
0655 u8 *page_data)
0656 {
0657 uint i;
0658 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
0659 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
0660 u8 ecc_bit[24];
0661 u8 ecc_sum = 0;
0662 u8 find_bit = 0;
0663 uint find_byte = 0;
0664 int isEccFF;
0665
0666 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
0667
0668 gen_true_ecc(ecc_data1);
0669 gen_true_ecc(ecc_data2);
0670
0671 for (i = 0; i <= 2; i++) {
0672 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
0673 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
0674 }
0675
0676 for (i = 0; i < 8; i++) {
0677 tmp0_bit[i] = *ecc_data1 % 2;
0678 *ecc_data1 = *ecc_data1 / 2;
0679 }
0680
0681 for (i = 0; i < 8; i++) {
0682 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
0683 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
0684 }
0685
0686 for (i = 0; i < 8; i++) {
0687 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
0688 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
0689 }
0690
0691 for (i = 0; i < 8; i++) {
0692 comp0_bit[i] = *ecc_data2 % 2;
0693 *ecc_data2 = *ecc_data2 / 2;
0694 }
0695
0696 for (i = 0; i < 8; i++) {
0697 comp1_bit[i] = *(ecc_data2 + 1) % 2;
0698 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
0699 }
0700
0701 for (i = 0; i < 8; i++) {
0702 comp2_bit[i] = *(ecc_data2 + 2) % 2;
0703 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
0704 }
0705
0706 for (i = 0; i < 6; i++)
0707 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
0708
0709 for (i = 0; i < 8; i++)
0710 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
0711
0712 for (i = 0; i < 8; i++)
0713 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
0714
0715 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
0716 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
0717
0718 for (i = 0; i < 24; i++)
0719 ecc_sum += ecc_bit[i];
0720
0721 switch (ecc_sum) {
0722 case 0:
0723
0724
0725
0726 return 0;
0727
0728 case 1:
0729
0730 pr_debug("ECC UNCORRECTED_ERROR 1\n");
0731 return -EBADMSG;
0732
0733 case 11:
0734
0735 pr_debug("ECC UNCORRECTED_ERROR B\n");
0736 return -EBADMSG;
0737
0738 case 12:
0739
0740 find_byte = (ecc_bit[23] << 8) +
0741 (ecc_bit[21] << 7) +
0742 (ecc_bit[19] << 6) +
0743 (ecc_bit[17] << 5) +
0744 (ecc_bit[15] << 4) +
0745 (ecc_bit[13] << 3) +
0746 (ecc_bit[11] << 2) +
0747 (ecc_bit[9] << 1) +
0748 ecc_bit[7];
0749
0750 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
0751
0752 pr_debug("Correcting single bit ECC error at offset: "
0753 "%d, bit: %d\n", find_byte, find_bit);
0754
0755 page_data[find_byte] ^= (1 << find_bit);
0756
0757 return 1;
0758 default:
0759 if (isEccFF) {
0760 if (ecc_data2[0] == 0 &&
0761 ecc_data2[1] == 0 &&
0762 ecc_data2[2] == 0)
0763 return 0;
0764 }
0765 pr_debug("UNCORRECTED_ERROR default\n");
0766 return -EBADMSG;
0767 }
0768 }
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784 static int omap_correct_data(struct nand_chip *chip, u_char *dat,
0785 u_char *read_ecc, u_char *calc_ecc)
0786 {
0787 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
0788 int blockCnt = 0, i = 0, ret = 0;
0789 int stat = 0;
0790
0791
0792 if (info->nand.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST &&
0793 info->nand.ecc.size == 2048)
0794 blockCnt = 4;
0795 else
0796 blockCnt = 1;
0797
0798 for (i = 0; i < blockCnt; i++) {
0799 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
0800 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
0801 if (ret < 0)
0802 return ret;
0803
0804 stat += ret;
0805 }
0806 read_ecc += 3;
0807 calc_ecc += 3;
0808 dat += 512;
0809 }
0810 return stat;
0811 }
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825 static int omap_calculate_ecc(struct nand_chip *chip, const u_char *dat,
0826 u_char *ecc_code)
0827 {
0828 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
0829 u32 val;
0830
0831 val = readl(info->reg.gpmc_ecc_config);
0832 if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
0833 return -EINVAL;
0834
0835
0836 val = readl(info->reg.gpmc_ecc1_result);
0837 *ecc_code++ = val;
0838 *ecc_code++ = val >> 16;
0839
0840 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
0841
0842 return 0;
0843 }
0844
0845
0846
0847
0848
0849
0850 static void omap_enable_hwecc(struct nand_chip *chip, int mode)
0851 {
0852 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
0853 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
0854 u32 val;
0855
0856
0857 val = ECCCLEAR | ECC1;
0858 writel(val, info->reg.gpmc_ecc_control);
0859
0860
0861 val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
0862 ECC1RESULTSIZE);
0863 writel(val, info->reg.gpmc_ecc_size_config);
0864
0865 switch (mode) {
0866 case NAND_ECC_READ:
0867 case NAND_ECC_WRITE:
0868 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
0869 break;
0870 case NAND_ECC_READSYN:
0871 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
0872 break;
0873 default:
0874 dev_info(&info->pdev->dev,
0875 "error: unrecognized Mode[%d]!\n", mode);
0876 break;
0877 }
0878
0879
0880 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
0881 writel(val, info->reg.gpmc_ecc_config);
0882 }
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895 static void __maybe_unused omap_enable_hwecc_bch(struct nand_chip *chip,
0896 int mode)
0897 {
0898 unsigned int bch_type;
0899 unsigned int dev_width, nsectors;
0900 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
0901 enum omap_ecc ecc_opt = info->ecc_opt;
0902 u32 val, wr_mode;
0903 unsigned int ecc_size1, ecc_size0;
0904
0905
0906 switch (ecc_opt) {
0907 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
0908 bch_type = 0;
0909 nsectors = 1;
0910 wr_mode = BCH_WRAPMODE_6;
0911 ecc_size0 = BCH_ECC_SIZE0;
0912 ecc_size1 = BCH_ECC_SIZE1;
0913 break;
0914 case OMAP_ECC_BCH4_CODE_HW:
0915 bch_type = 0;
0916 nsectors = chip->ecc.steps;
0917 if (mode == NAND_ECC_READ) {
0918 wr_mode = BCH_WRAPMODE_1;
0919 ecc_size0 = BCH4R_ECC_SIZE0;
0920 ecc_size1 = BCH4R_ECC_SIZE1;
0921 } else {
0922 wr_mode = BCH_WRAPMODE_6;
0923 ecc_size0 = BCH_ECC_SIZE0;
0924 ecc_size1 = BCH_ECC_SIZE1;
0925 }
0926 break;
0927 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
0928 bch_type = 1;
0929 nsectors = 1;
0930 wr_mode = BCH_WRAPMODE_6;
0931 ecc_size0 = BCH_ECC_SIZE0;
0932 ecc_size1 = BCH_ECC_SIZE1;
0933 break;
0934 case OMAP_ECC_BCH8_CODE_HW:
0935 bch_type = 1;
0936 nsectors = chip->ecc.steps;
0937 if (mode == NAND_ECC_READ) {
0938 wr_mode = BCH_WRAPMODE_1;
0939 ecc_size0 = BCH8R_ECC_SIZE0;
0940 ecc_size1 = BCH8R_ECC_SIZE1;
0941 } else {
0942 wr_mode = BCH_WRAPMODE_6;
0943 ecc_size0 = BCH_ECC_SIZE0;
0944 ecc_size1 = BCH_ECC_SIZE1;
0945 }
0946 break;
0947 case OMAP_ECC_BCH16_CODE_HW:
0948 bch_type = 0x2;
0949 nsectors = chip->ecc.steps;
0950 if (mode == NAND_ECC_READ) {
0951 wr_mode = 0x01;
0952 ecc_size0 = 52;
0953 ecc_size1 = 0;
0954 } else {
0955 wr_mode = 0x01;
0956 ecc_size0 = 0;
0957 ecc_size1 = 52;
0958 }
0959 break;
0960 default:
0961 return;
0962 }
0963
0964 writel(ECC1, info->reg.gpmc_ecc_control);
0965
0966
0967 val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
0968 writel(val, info->reg.gpmc_ecc_size_config);
0969
0970 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
0971
0972
0973 val = ((1 << 16) |
0974 (bch_type << 12) |
0975 (wr_mode << 8) |
0976 (dev_width << 7) |
0977 (((nsectors-1) & 0x7) << 4) |
0978 (info->gpmc_cs << 1) |
0979 (0x1));
0980
0981 writel(val, info->reg.gpmc_ecc_config);
0982
0983
0984 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
0985 }
0986
0987 static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
0988 static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
0989 0x97, 0x79, 0xe5, 0x24, 0xb5};
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001 static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
1002 const u_char *dat, u_char *ecc_calc, int i)
1003 {
1004 struct omap_nand_info *info = mtd_to_omap(mtd);
1005 int eccbytes = info->nand.ecc.bytes;
1006 struct gpmc_nand_regs *gpmc_regs = &info->reg;
1007 u8 *ecc_code;
1008 unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
1009 u32 val;
1010 int j;
1011
1012 ecc_code = ecc_calc;
1013 switch (info->ecc_opt) {
1014 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1015 case OMAP_ECC_BCH8_CODE_HW:
1016 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1017 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1018 bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1019 bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1020 *ecc_code++ = (bch_val4 & 0xFF);
1021 *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1022 *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1023 *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1024 *ecc_code++ = (bch_val3 & 0xFF);
1025 *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1026 *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1027 *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1028 *ecc_code++ = (bch_val2 & 0xFF);
1029 *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1030 *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1031 *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1032 *ecc_code++ = (bch_val1 & 0xFF);
1033 break;
1034 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1035 case OMAP_ECC_BCH4_CODE_HW:
1036 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1037 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1038 *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1039 *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1040 *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1041 ((bch_val1 >> 28) & 0xF);
1042 *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1043 *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1044 *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1045 *ecc_code++ = ((bch_val1 & 0xF) << 4);
1046 break;
1047 case OMAP_ECC_BCH16_CODE_HW:
1048 val = readl(gpmc_regs->gpmc_bch_result6[i]);
1049 ecc_code[0] = ((val >> 8) & 0xFF);
1050 ecc_code[1] = ((val >> 0) & 0xFF);
1051 val = readl(gpmc_regs->gpmc_bch_result5[i]);
1052 ecc_code[2] = ((val >> 24) & 0xFF);
1053 ecc_code[3] = ((val >> 16) & 0xFF);
1054 ecc_code[4] = ((val >> 8) & 0xFF);
1055 ecc_code[5] = ((val >> 0) & 0xFF);
1056 val = readl(gpmc_regs->gpmc_bch_result4[i]);
1057 ecc_code[6] = ((val >> 24) & 0xFF);
1058 ecc_code[7] = ((val >> 16) & 0xFF);
1059 ecc_code[8] = ((val >> 8) & 0xFF);
1060 ecc_code[9] = ((val >> 0) & 0xFF);
1061 val = readl(gpmc_regs->gpmc_bch_result3[i]);
1062 ecc_code[10] = ((val >> 24) & 0xFF);
1063 ecc_code[11] = ((val >> 16) & 0xFF);
1064 ecc_code[12] = ((val >> 8) & 0xFF);
1065 ecc_code[13] = ((val >> 0) & 0xFF);
1066 val = readl(gpmc_regs->gpmc_bch_result2[i]);
1067 ecc_code[14] = ((val >> 24) & 0xFF);
1068 ecc_code[15] = ((val >> 16) & 0xFF);
1069 ecc_code[16] = ((val >> 8) & 0xFF);
1070 ecc_code[17] = ((val >> 0) & 0xFF);
1071 val = readl(gpmc_regs->gpmc_bch_result1[i]);
1072 ecc_code[18] = ((val >> 24) & 0xFF);
1073 ecc_code[19] = ((val >> 16) & 0xFF);
1074 ecc_code[20] = ((val >> 8) & 0xFF);
1075 ecc_code[21] = ((val >> 0) & 0xFF);
1076 val = readl(gpmc_regs->gpmc_bch_result0[i]);
1077 ecc_code[22] = ((val >> 24) & 0xFF);
1078 ecc_code[23] = ((val >> 16) & 0xFF);
1079 ecc_code[24] = ((val >> 8) & 0xFF);
1080 ecc_code[25] = ((val >> 0) & 0xFF);
1081 break;
1082 default:
1083 return -EINVAL;
1084 }
1085
1086
1087 switch (info->ecc_opt) {
1088 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1089
1090
1091
1092 for (j = 0; j < eccbytes; j++)
1093 ecc_calc[j] ^= bch4_polynomial[j];
1094 break;
1095 case OMAP_ECC_BCH4_CODE_HW:
1096
1097 ecc_calc[eccbytes - 1] = 0x0;
1098 break;
1099 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1100
1101
1102
1103 for (j = 0; j < eccbytes; j++)
1104 ecc_calc[j] ^= bch8_polynomial[j];
1105 break;
1106 case OMAP_ECC_BCH8_CODE_HW:
1107
1108 ecc_calc[eccbytes - 1] = 0x0;
1109 break;
1110 case OMAP_ECC_BCH16_CODE_HW:
1111 break;
1112 default:
1113 return -EINVAL;
1114 }
1115
1116 return 0;
1117 }
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129 static int omap_calculate_ecc_bch_sw(struct nand_chip *chip,
1130 const u_char *dat, u_char *ecc_calc)
1131 {
1132 return _omap_calculate_ecc_bch(nand_to_mtd(chip), dat, ecc_calc, 0);
1133 }
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143 static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
1144 const u_char *dat, u_char *ecc_calc)
1145 {
1146 struct omap_nand_info *info = mtd_to_omap(mtd);
1147 int eccbytes = info->nand.ecc.bytes;
1148 unsigned long nsectors;
1149 int i, ret;
1150
1151 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1152 for (i = 0; i < nsectors; i++) {
1153 ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
1154 if (ret)
1155 return ret;
1156
1157 ecc_calc += eccbytes;
1158 }
1159
1160 return 0;
1161 }
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173 static int erased_sector_bitflips(u_char *data, u_char *oob,
1174 struct omap_nand_info *info)
1175 {
1176 int flip_bits = 0, i;
1177
1178 for (i = 0; i < info->nand.ecc.size; i++) {
1179 flip_bits += hweight8(~data[i]);
1180 if (flip_bits > info->nand.ecc.strength)
1181 return 0;
1182 }
1183
1184 for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1185 flip_bits += hweight8(~oob[i]);
1186 if (flip_bits > info->nand.ecc.strength)
1187 return 0;
1188 }
1189
1190
1191
1192
1193
1194 if (flip_bits) {
1195 memset(data, 0xFF, info->nand.ecc.size);
1196 memset(oob, 0xFF, info->nand.ecc.bytes);
1197 }
1198
1199 return flip_bits;
1200 }
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213 static int omap_elm_correct_data(struct nand_chip *chip, u_char *data,
1214 u_char *read_ecc, u_char *calc_ecc)
1215 {
1216 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1217 struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1218 int eccsteps = info->nsteps_per_eccpg;
1219 int i , j, stat = 0;
1220 int eccflag, actual_eccbytes;
1221 struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1222 u_char *ecc_vec = calc_ecc;
1223 u_char *spare_ecc = read_ecc;
1224 u_char *erased_ecc_vec;
1225 u_char *buf;
1226 int bitflip_count;
1227 bool is_error_reported = false;
1228 u32 bit_pos, byte_pos, error_max, pos;
1229 int err;
1230
1231 switch (info->ecc_opt) {
1232 case OMAP_ECC_BCH4_CODE_HW:
1233
1234 actual_eccbytes = ecc->bytes - 1;
1235 erased_ecc_vec = bch4_vector;
1236 break;
1237 case OMAP_ECC_BCH8_CODE_HW:
1238
1239 actual_eccbytes = ecc->bytes - 1;
1240 erased_ecc_vec = bch8_vector;
1241 break;
1242 case OMAP_ECC_BCH16_CODE_HW:
1243 actual_eccbytes = ecc->bytes;
1244 erased_ecc_vec = bch16_vector;
1245 break;
1246 default:
1247 dev_err(&info->pdev->dev, "invalid driver configuration\n");
1248 return -EINVAL;
1249 }
1250
1251
1252 memset(err_vec, 0, sizeof(err_vec));
1253
1254 for (i = 0; i < eccsteps ; i++) {
1255 eccflag = 0;
1256
1257
1258
1259
1260
1261 for (j = 0; j < actual_eccbytes; j++) {
1262 if (calc_ecc[j] != 0) {
1263 eccflag = 1;
1264 break;
1265 }
1266 }
1267
1268 if (eccflag == 1) {
1269 if (memcmp(calc_ecc, erased_ecc_vec,
1270 actual_eccbytes) == 0) {
1271
1272
1273
1274
1275 } else {
1276 buf = &data[info->nand.ecc.size * i];
1277
1278
1279
1280
1281
1282 bitflip_count = erased_sector_bitflips(
1283 buf, read_ecc, info);
1284 if (bitflip_count) {
1285
1286
1287
1288
1289 stat += bitflip_count;
1290 } else {
1291
1292
1293
1294
1295
1296
1297 err_vec[i].error_reported = true;
1298 is_error_reported = true;
1299 }
1300 }
1301 }
1302
1303
1304 calc_ecc += ecc->bytes;
1305 read_ecc += ecc->bytes;
1306 }
1307
1308
1309 if (!is_error_reported)
1310 return stat;
1311
1312
1313 elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1314
1315 err = 0;
1316 for (i = 0; i < eccsteps; i++) {
1317 if (err_vec[i].error_uncorrectable) {
1318 dev_err(&info->pdev->dev,
1319 "uncorrectable bit-flips found\n");
1320 err = -EBADMSG;
1321 } else if (err_vec[i].error_reported) {
1322 for (j = 0; j < err_vec[i].error_count; j++) {
1323 switch (info->ecc_opt) {
1324 case OMAP_ECC_BCH4_CODE_HW:
1325
1326 pos = err_vec[i].error_loc[j] +
1327 BCH4_BIT_PAD;
1328 break;
1329 case OMAP_ECC_BCH8_CODE_HW:
1330 case OMAP_ECC_BCH16_CODE_HW:
1331 pos = err_vec[i].error_loc[j];
1332 break;
1333 default:
1334 return -EINVAL;
1335 }
1336 error_max = (ecc->size + actual_eccbytes) * 8;
1337
1338 bit_pos = pos % 8;
1339
1340
1341 byte_pos = (error_max - pos - 1) / 8;
1342
1343 if (pos < error_max) {
1344 if (byte_pos < 512) {
1345 pr_debug("bitflip@dat[%d]=%x\n",
1346 byte_pos, data[byte_pos]);
1347 data[byte_pos] ^= 1 << bit_pos;
1348 } else {
1349 pr_debug("bitflip@oob[%d]=%x\n",
1350 (byte_pos - 512),
1351 spare_ecc[byte_pos - 512]);
1352 spare_ecc[byte_pos - 512] ^=
1353 1 << bit_pos;
1354 }
1355 } else {
1356 dev_err(&info->pdev->dev,
1357 "invalid bit-flip @ %d:%d\n",
1358 byte_pos, bit_pos);
1359 err = -EBADMSG;
1360 }
1361 }
1362 }
1363
1364
1365 stat = max_t(unsigned int, stat, err_vec[i].error_count);
1366
1367
1368 data += ecc->size;
1369 spare_ecc += ecc->bytes;
1370 }
1371
1372 return (err) ? err : stat;
1373 }
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384 static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf,
1385 int oob_required, int page)
1386 {
1387 struct mtd_info *mtd = nand_to_mtd(chip);
1388 struct omap_nand_info *info = mtd_to_omap(mtd);
1389 uint8_t *ecc_calc = chip->ecc.calc_buf;
1390 unsigned int eccpg;
1391 int ret;
1392
1393 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1394 if (ret)
1395 return ret;
1396
1397 for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
1398
1399 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1400
1401
1402 info->data_out(chip, buf + (eccpg * info->eccpg_size),
1403 info->eccpg_size, false);
1404
1405
1406 ret = omap_calculate_ecc_bch_multi(mtd,
1407 buf + (eccpg * info->eccpg_size),
1408 ecc_calc);
1409 if (ret)
1410 return ret;
1411
1412 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc,
1413 chip->oob_poi,
1414 eccpg * info->eccpg_bytes,
1415 info->eccpg_bytes);
1416 if (ret)
1417 return ret;
1418 }
1419
1420
1421 info->data_out(chip, chip->oob_poi, mtd->oobsize, false);
1422
1423 return nand_prog_page_end_op(chip);
1424 }
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437 static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset,
1438 u32 data_len, const u8 *buf,
1439 int oob_required, int page)
1440 {
1441 struct mtd_info *mtd = nand_to_mtd(chip);
1442 struct omap_nand_info *info = mtd_to_omap(mtd);
1443 u8 *ecc_calc = chip->ecc.calc_buf;
1444 int ecc_size = chip->ecc.size;
1445 int ecc_bytes = chip->ecc.bytes;
1446 u32 start_step = offset / ecc_size;
1447 u32 end_step = (offset + data_len - 1) / ecc_size;
1448 unsigned int eccpg;
1449 int step, ret = 0;
1450
1451
1452
1453
1454
1455
1456
1457 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1458 if (ret)
1459 return ret;
1460
1461 for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
1462
1463 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1464
1465
1466 info->data_out(chip, buf + (eccpg * info->eccpg_size),
1467 info->eccpg_size, false);
1468
1469 for (step = 0; step < info->nsteps_per_eccpg; step++) {
1470 unsigned int base_step = eccpg * info->nsteps_per_eccpg;
1471 const u8 *bufoffs = buf + (eccpg * info->eccpg_size);
1472
1473
1474 if ((step + base_step) < start_step ||
1475 (step + base_step) > end_step)
1476 memset(ecc_calc + (step * ecc_bytes), 0xff,
1477 ecc_bytes);
1478 else
1479 ret = _omap_calculate_ecc_bch(mtd,
1480 bufoffs + (step * ecc_size),
1481 ecc_calc + (step * ecc_bytes),
1482 step);
1483
1484 if (ret)
1485 return ret;
1486 }
1487
1488
1489
1490
1491
1492 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi,
1493 eccpg * info->eccpg_bytes,
1494 info->eccpg_bytes);
1495 if (ret)
1496 return ret;
1497 }
1498
1499
1500 info->data_out(chip, chip->oob_poi, mtd->oobsize, false);
1501
1502 return nand_prog_page_end_op(chip);
1503 }
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519 static int omap_read_page_bch(struct nand_chip *chip, uint8_t *buf,
1520 int oob_required, int page)
1521 {
1522 struct mtd_info *mtd = nand_to_mtd(chip);
1523 struct omap_nand_info *info = mtd_to_omap(mtd);
1524 uint8_t *ecc_calc = chip->ecc.calc_buf;
1525 uint8_t *ecc_code = chip->ecc.code_buf;
1526 unsigned int max_bitflips = 0, eccpg;
1527 int stat, ret;
1528
1529 ret = nand_read_page_op(chip, page, 0, NULL, 0);
1530 if (ret)
1531 return ret;
1532
1533 for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
1534
1535 chip->ecc.hwctl(chip, NAND_ECC_READ);
1536
1537
1538 ret = nand_change_read_column_op(chip, eccpg * info->eccpg_size,
1539 buf + (eccpg * info->eccpg_size),
1540 info->eccpg_size, false);
1541 if (ret)
1542 return ret;
1543
1544
1545 ret = nand_change_read_column_op(chip,
1546 mtd->writesize + BBM_LEN +
1547 (eccpg * info->eccpg_bytes),
1548 chip->oob_poi + BBM_LEN +
1549 (eccpg * info->eccpg_bytes),
1550 info->eccpg_bytes, false);
1551 if (ret)
1552 return ret;
1553
1554
1555 ret = omap_calculate_ecc_bch_multi(mtd,
1556 buf + (eccpg * info->eccpg_size),
1557 ecc_calc);
1558 if (ret)
1559 return ret;
1560
1561 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code,
1562 chip->oob_poi,
1563 eccpg * info->eccpg_bytes,
1564 info->eccpg_bytes);
1565 if (ret)
1566 return ret;
1567
1568 stat = chip->ecc.correct(chip,
1569 buf + (eccpg * info->eccpg_size),
1570 ecc_code, ecc_calc);
1571 if (stat < 0) {
1572 mtd->ecc_stats.failed++;
1573 } else {
1574 mtd->ecc_stats.corrected += stat;
1575 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1576 }
1577 }
1578
1579 return max_bitflips;
1580 }
1581
1582
1583
1584
1585
1586
1587 static bool is_elm_present(struct omap_nand_info *info,
1588 struct device_node *elm_node)
1589 {
1590 struct platform_device *pdev;
1591
1592
1593 if (!elm_node) {
1594 dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1595 return false;
1596 }
1597 pdev = of_find_device_by_node(elm_node);
1598
1599 if (!pdev) {
1600 dev_err(&info->pdev->dev, "ELM device not found\n");
1601 return false;
1602 }
1603
1604 info->elm_dev = &pdev->dev;
1605 return true;
1606 }
1607
1608 static bool omap2_nand_ecc_check(struct omap_nand_info *info)
1609 {
1610 bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1611
1612 switch (info->ecc_opt) {
1613 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1614 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1615 ecc_needs_omap_bch = false;
1616 ecc_needs_bch = true;
1617 ecc_needs_elm = false;
1618 break;
1619 case OMAP_ECC_BCH4_CODE_HW:
1620 case OMAP_ECC_BCH8_CODE_HW:
1621 case OMAP_ECC_BCH16_CODE_HW:
1622 ecc_needs_omap_bch = true;
1623 ecc_needs_bch = false;
1624 ecc_needs_elm = true;
1625 break;
1626 default:
1627 ecc_needs_omap_bch = false;
1628 ecc_needs_bch = false;
1629 ecc_needs_elm = false;
1630 break;
1631 }
1632
1633 if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
1634 dev_err(&info->pdev->dev,
1635 "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
1636 return false;
1637 }
1638 if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1639 dev_err(&info->pdev->dev,
1640 "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1641 return false;
1642 }
1643 if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
1644 dev_err(&info->pdev->dev, "ELM not available\n");
1645 return false;
1646 }
1647
1648 return true;
1649 }
1650
1651 static const char * const nand_xfer_types[] = {
1652 [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
1653 [NAND_OMAP_POLLED] = "polled",
1654 [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
1655 [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
1656 };
1657
1658 static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
1659 {
1660 struct device_node *child = dev->of_node;
1661 int i;
1662 const char *s;
1663 u32 cs;
1664
1665 if (of_property_read_u32(child, "reg", &cs) < 0) {
1666 dev_err(dev, "reg not found in DT\n");
1667 return -EINVAL;
1668 }
1669
1670 info->gpmc_cs = cs;
1671
1672
1673 info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
1674 if (!info->elm_of_node) {
1675 info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
1676 if (!info->elm_of_node)
1677 dev_dbg(dev, "ti,elm-id not in DT\n");
1678 }
1679
1680
1681 if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
1682 dev_err(dev, "ti,nand-ecc-opt not found\n");
1683 return -EINVAL;
1684 }
1685
1686 if (!strcmp(s, "sw")) {
1687 info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
1688 } else if (!strcmp(s, "ham1") ||
1689 !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
1690 info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
1691 } else if (!strcmp(s, "bch4")) {
1692 if (info->elm_of_node)
1693 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
1694 else
1695 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
1696 } else if (!strcmp(s, "bch8")) {
1697 if (info->elm_of_node)
1698 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
1699 else
1700 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1701 } else if (!strcmp(s, "bch16")) {
1702 info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
1703 } else {
1704 dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
1705 return -EINVAL;
1706 }
1707
1708
1709 if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
1710 for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
1711 if (!strcasecmp(s, nand_xfer_types[i])) {
1712 info->xfer_type = i;
1713 return 0;
1714 }
1715 }
1716
1717 dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
1718 return -EINVAL;
1719 }
1720
1721 return 0;
1722 }
1723
1724 static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
1725 struct mtd_oob_region *oobregion)
1726 {
1727 struct omap_nand_info *info = mtd_to_omap(mtd);
1728 struct nand_chip *chip = &info->nand;
1729 int off = BBM_LEN;
1730
1731 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1732 !(chip->options & NAND_BUSWIDTH_16))
1733 off = 1;
1734
1735 if (section)
1736 return -ERANGE;
1737
1738 oobregion->offset = off;
1739 oobregion->length = chip->ecc.total;
1740
1741 return 0;
1742 }
1743
1744 static int omap_ooblayout_free(struct mtd_info *mtd, int section,
1745 struct mtd_oob_region *oobregion)
1746 {
1747 struct omap_nand_info *info = mtd_to_omap(mtd);
1748 struct nand_chip *chip = &info->nand;
1749 int off = BBM_LEN;
1750
1751 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1752 !(chip->options & NAND_BUSWIDTH_16))
1753 off = 1;
1754
1755 if (section)
1756 return -ERANGE;
1757
1758 off += chip->ecc.total;
1759 if (off >= mtd->oobsize)
1760 return -ERANGE;
1761
1762 oobregion->offset = off;
1763 oobregion->length = mtd->oobsize - off;
1764
1765 return 0;
1766 }
1767
1768 static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
1769 .ecc = omap_ooblayout_ecc,
1770 .free = omap_ooblayout_free,
1771 };
1772
1773 static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
1774 struct mtd_oob_region *oobregion)
1775 {
1776 struct nand_device *nand = mtd_to_nanddev(mtd);
1777 unsigned int nsteps = nanddev_get_ecc_nsteps(nand);
1778 unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand);
1779 int off = BBM_LEN;
1780
1781 if (section >= nsteps)
1782 return -ERANGE;
1783
1784
1785
1786
1787
1788 oobregion->offset = off + (section * (ecc_bytes + 1));
1789 oobregion->length = ecc_bytes;
1790
1791 return 0;
1792 }
1793
1794 static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
1795 struct mtd_oob_region *oobregion)
1796 {
1797 struct nand_device *nand = mtd_to_nanddev(mtd);
1798 unsigned int nsteps = nanddev_get_ecc_nsteps(nand);
1799 unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand);
1800 int off = BBM_LEN;
1801
1802 if (section)
1803 return -ERANGE;
1804
1805
1806
1807
1808
1809 off += ((ecc_bytes + 1) * nsteps);
1810 if (off >= mtd->oobsize)
1811 return -ERANGE;
1812
1813 oobregion->offset = off;
1814 oobregion->length = mtd->oobsize - off;
1815
1816 return 0;
1817 }
1818
1819 static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
1820 .ecc = omap_sw_ooblayout_ecc,
1821 .free = omap_sw_ooblayout_free,
1822 };
1823
1824 static int omap_nand_attach_chip(struct nand_chip *chip)
1825 {
1826 struct mtd_info *mtd = nand_to_mtd(chip);
1827 struct omap_nand_info *info = mtd_to_omap(mtd);
1828 struct device *dev = &info->pdev->dev;
1829 int min_oobbytes = BBM_LEN;
1830 int elm_bch_strength = -1;
1831 int oobbytes_per_step;
1832 dma_cap_mask_t mask;
1833 int err;
1834
1835 if (chip->bbt_options & NAND_BBT_USE_FLASH)
1836 chip->bbt_options |= NAND_BBT_NO_OOB;
1837 else
1838 chip->options |= NAND_SKIP_BBTSCAN;
1839
1840
1841 switch (info->xfer_type) {
1842 case NAND_OMAP_PREFETCH_POLLED:
1843 info->data_in = omap_nand_data_in_pref;
1844 info->data_out = omap_nand_data_out_pref;
1845 break;
1846
1847 case NAND_OMAP_POLLED:
1848
1849 break;
1850
1851 case NAND_OMAP_PREFETCH_DMA:
1852 dma_cap_zero(mask);
1853 dma_cap_set(DMA_SLAVE, mask);
1854 info->dma = dma_request_chan(dev->parent, "rxtx");
1855
1856 if (IS_ERR(info->dma)) {
1857 dev_err(dev, "DMA engine request failed\n");
1858 return PTR_ERR(info->dma);
1859 } else {
1860 struct dma_slave_config cfg;
1861
1862 memset(&cfg, 0, sizeof(cfg));
1863 cfg.src_addr = info->phys_base;
1864 cfg.dst_addr = info->phys_base;
1865 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1866 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1867 cfg.src_maxburst = 16;
1868 cfg.dst_maxburst = 16;
1869 err = dmaengine_slave_config(info->dma, &cfg);
1870 if (err) {
1871 dev_err(dev,
1872 "DMA engine slave config failed: %d\n",
1873 err);
1874 return err;
1875 }
1876
1877 info->data_in = omap_nand_data_in_dma_pref;
1878 info->data_out = omap_nand_data_out_dma_pref;
1879 }
1880 break;
1881
1882 case NAND_OMAP_PREFETCH_IRQ:
1883 info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0);
1884 if (info->gpmc_irq_fifo <= 0)
1885 return -ENODEV;
1886 err = devm_request_irq(dev, info->gpmc_irq_fifo,
1887 omap_nand_irq, IRQF_SHARED,
1888 "gpmc-nand-fifo", info);
1889 if (err) {
1890 dev_err(dev, "Requesting IRQ %d, error %d\n",
1891 info->gpmc_irq_fifo, err);
1892 info->gpmc_irq_fifo = 0;
1893 return err;
1894 }
1895
1896 info->gpmc_irq_count = platform_get_irq(info->pdev, 1);
1897 if (info->gpmc_irq_count <= 0)
1898 return -ENODEV;
1899 err = devm_request_irq(dev, info->gpmc_irq_count,
1900 omap_nand_irq, IRQF_SHARED,
1901 "gpmc-nand-count", info);
1902 if (err) {
1903 dev_err(dev, "Requesting IRQ %d, error %d\n",
1904 info->gpmc_irq_count, err);
1905 info->gpmc_irq_count = 0;
1906 return err;
1907 }
1908
1909 info->data_in = omap_nand_data_in_irq_pref;
1910 info->data_out = omap_nand_data_out_irq_pref;
1911 break;
1912
1913 default:
1914 dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type);
1915 return -EINVAL;
1916 }
1917
1918 if (!omap2_nand_ecc_check(info))
1919 return -EINVAL;
1920
1921
1922
1923
1924
1925 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
1926 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
1927 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
1928 return 0;
1929 }
1930
1931
1932 switch (info->ecc_opt) {
1933 case OMAP_ECC_HAM1_CODE_HW:
1934 dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n");
1935 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1936 chip->ecc.bytes = 3;
1937 chip->ecc.size = 512;
1938 chip->ecc.strength = 1;
1939 chip->ecc.calculate = omap_calculate_ecc;
1940 chip->ecc.hwctl = omap_enable_hwecc;
1941 chip->ecc.correct = omap_correct_data;
1942 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
1943 oobbytes_per_step = chip->ecc.bytes;
1944
1945 if (!(chip->options & NAND_BUSWIDTH_16))
1946 min_oobbytes = 1;
1947
1948 break;
1949
1950 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1951 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
1952 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1953 chip->ecc.size = 512;
1954 chip->ecc.bytes = 7;
1955 chip->ecc.strength = 4;
1956 chip->ecc.hwctl = omap_enable_hwecc_bch;
1957 chip->ecc.correct = rawnand_sw_bch_correct;
1958 chip->ecc.calculate = omap_calculate_ecc_bch_sw;
1959 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
1960
1961 oobbytes_per_step = chip->ecc.bytes + 1;
1962
1963 err = rawnand_sw_bch_init(chip);
1964 if (err) {
1965 dev_err(dev, "Unable to use BCH library\n");
1966 return err;
1967 }
1968 break;
1969
1970 case OMAP_ECC_BCH4_CODE_HW:
1971 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
1972 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1973 chip->ecc.size = 512;
1974
1975 chip->ecc.bytes = 7 + 1;
1976 chip->ecc.strength = 4;
1977 chip->ecc.hwctl = omap_enable_hwecc_bch;
1978 chip->ecc.correct = omap_elm_correct_data;
1979 chip->ecc.read_page = omap_read_page_bch;
1980 chip->ecc.write_page = omap_write_page_bch;
1981 chip->ecc.write_subpage = omap_write_subpage_bch;
1982 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
1983 oobbytes_per_step = chip->ecc.bytes;
1984 elm_bch_strength = BCH4_ECC;
1985 break;
1986
1987 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1988 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
1989 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1990 chip->ecc.size = 512;
1991 chip->ecc.bytes = 13;
1992 chip->ecc.strength = 8;
1993 chip->ecc.hwctl = omap_enable_hwecc_bch;
1994 chip->ecc.correct = rawnand_sw_bch_correct;
1995 chip->ecc.calculate = omap_calculate_ecc_bch_sw;
1996 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
1997
1998 oobbytes_per_step = chip->ecc.bytes + 1;
1999
2000 err = rawnand_sw_bch_init(chip);
2001 if (err) {
2002 dev_err(dev, "unable to use BCH library\n");
2003 return err;
2004 }
2005 break;
2006
2007 case OMAP_ECC_BCH8_CODE_HW:
2008 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2009 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2010 chip->ecc.size = 512;
2011
2012 chip->ecc.bytes = 13 + 1;
2013 chip->ecc.strength = 8;
2014 chip->ecc.hwctl = omap_enable_hwecc_bch;
2015 chip->ecc.correct = omap_elm_correct_data;
2016 chip->ecc.read_page = omap_read_page_bch;
2017 chip->ecc.write_page = omap_write_page_bch;
2018 chip->ecc.write_subpage = omap_write_subpage_bch;
2019 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2020 oobbytes_per_step = chip->ecc.bytes;
2021 elm_bch_strength = BCH8_ECC;
2022 break;
2023
2024 case OMAP_ECC_BCH16_CODE_HW:
2025 pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2026 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2027 chip->ecc.size = 512;
2028 chip->ecc.bytes = 26;
2029 chip->ecc.strength = 16;
2030 chip->ecc.hwctl = omap_enable_hwecc_bch;
2031 chip->ecc.correct = omap_elm_correct_data;
2032 chip->ecc.read_page = omap_read_page_bch;
2033 chip->ecc.write_page = omap_write_page_bch;
2034 chip->ecc.write_subpage = omap_write_subpage_bch;
2035 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2036 oobbytes_per_step = chip->ecc.bytes;
2037 elm_bch_strength = BCH16_ECC;
2038 break;
2039 default:
2040 dev_err(dev, "Invalid or unsupported ECC scheme\n");
2041 return -EINVAL;
2042 }
2043
2044 if (elm_bch_strength >= 0) {
2045 chip->ecc.steps = mtd->writesize / chip->ecc.size;
2046 info->neccpg = chip->ecc.steps / ERROR_VECTOR_MAX;
2047 if (info->neccpg) {
2048 info->nsteps_per_eccpg = ERROR_VECTOR_MAX;
2049 } else {
2050 info->neccpg = 1;
2051 info->nsteps_per_eccpg = chip->ecc.steps;
2052 }
2053 info->eccpg_size = info->nsteps_per_eccpg * chip->ecc.size;
2054 info->eccpg_bytes = info->nsteps_per_eccpg * chip->ecc.bytes;
2055
2056 err = elm_config(info->elm_dev, elm_bch_strength,
2057 info->nsteps_per_eccpg, chip->ecc.size,
2058 chip->ecc.bytes);
2059 if (err < 0)
2060 return err;
2061 }
2062
2063
2064 min_oobbytes += (oobbytes_per_step *
2065 (mtd->writesize / chip->ecc.size));
2066 if (mtd->oobsize < min_oobbytes) {
2067 dev_err(dev,
2068 "Not enough OOB bytes: required = %d, available=%d\n",
2069 min_oobbytes, mtd->oobsize);
2070 return -EINVAL;
2071 }
2072
2073 return 0;
2074 }
2075
2076 static void omap_nand_data_in(struct nand_chip *chip, void *buf,
2077 unsigned int len, bool force_8bit)
2078 {
2079 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
2080 u32 alignment = ((uintptr_t)buf | len) & 3;
2081
2082 if (force_8bit || (alignment & 1))
2083 ioread8_rep(info->fifo, buf, len);
2084 else if (alignment & 3)
2085 ioread16_rep(info->fifo, buf, len >> 1);
2086 else
2087 ioread32_rep(info->fifo, buf, len >> 2);
2088 }
2089
2090 static void omap_nand_data_out(struct nand_chip *chip,
2091 const void *buf, unsigned int len,
2092 bool force_8bit)
2093 {
2094 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
2095 u32 alignment = ((uintptr_t)buf | len) & 3;
2096
2097 if (force_8bit || (alignment & 1))
2098 iowrite8_rep(info->fifo, buf, len);
2099 else if (alignment & 3)
2100 iowrite16_rep(info->fifo, buf, len >> 1);
2101 else
2102 iowrite32_rep(info->fifo, buf, len >> 2);
2103 }
2104
2105 static int omap_nand_exec_instr(struct nand_chip *chip,
2106 const struct nand_op_instr *instr)
2107 {
2108 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
2109 unsigned int i;
2110 int ret;
2111
2112 switch (instr->type) {
2113 case NAND_OP_CMD_INSTR:
2114 iowrite8(instr->ctx.cmd.opcode,
2115 info->reg.gpmc_nand_command);
2116 break;
2117
2118 case NAND_OP_ADDR_INSTR:
2119 for (i = 0; i < instr->ctx.addr.naddrs; i++) {
2120 iowrite8(instr->ctx.addr.addrs[i],
2121 info->reg.gpmc_nand_address);
2122 }
2123 break;
2124
2125 case NAND_OP_DATA_IN_INSTR:
2126 info->data_in(chip, instr->ctx.data.buf.in,
2127 instr->ctx.data.len,
2128 instr->ctx.data.force_8bit);
2129 break;
2130
2131 case NAND_OP_DATA_OUT_INSTR:
2132 info->data_out(chip, instr->ctx.data.buf.out,
2133 instr->ctx.data.len,
2134 instr->ctx.data.force_8bit);
2135 break;
2136
2137 case NAND_OP_WAITRDY_INSTR:
2138 ret = info->ready_gpiod ?
2139 nand_gpio_waitrdy(chip, info->ready_gpiod, instr->ctx.waitrdy.timeout_ms) :
2140 nand_soft_waitrdy(chip, instr->ctx.waitrdy.timeout_ms);
2141 if (ret)
2142 return ret;
2143 break;
2144 }
2145
2146 if (instr->delay_ns)
2147 ndelay(instr->delay_ns);
2148
2149 return 0;
2150 }
2151
2152 static int omap_nand_exec_op(struct nand_chip *chip,
2153 const struct nand_operation *op,
2154 bool check_only)
2155 {
2156 unsigned int i;
2157
2158 if (check_only)
2159 return 0;
2160
2161 for (i = 0; i < op->ninstrs; i++) {
2162 int ret;
2163
2164 ret = omap_nand_exec_instr(chip, &op->instrs[i]);
2165 if (ret)
2166 return ret;
2167 }
2168
2169 return 0;
2170 }
2171
2172 static const struct nand_controller_ops omap_nand_controller_ops = {
2173 .attach_chip = omap_nand_attach_chip,
2174 .exec_op = omap_nand_exec_op,
2175 };
2176
2177
2178 static struct nand_controller omap_gpmc_controller;
2179 static bool omap_gpmc_controller_initialized;
2180
2181 static int omap_nand_probe(struct platform_device *pdev)
2182 {
2183 struct omap_nand_info *info;
2184 struct mtd_info *mtd;
2185 struct nand_chip *nand_chip;
2186 int err;
2187 struct resource *res;
2188 struct device *dev = &pdev->dev;
2189 void __iomem *vaddr;
2190
2191 info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
2192 GFP_KERNEL);
2193 if (!info)
2194 return -ENOMEM;
2195
2196 info->pdev = pdev;
2197
2198 err = omap_get_dt_info(dev, info);
2199 if (err)
2200 return err;
2201
2202 info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
2203 if (!info->ops) {
2204 dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
2205 return -ENODEV;
2206 }
2207
2208 nand_chip = &info->nand;
2209 mtd = nand_to_mtd(nand_chip);
2210 mtd->dev.parent = &pdev->dev;
2211 nand_set_flash_node(nand_chip, dev->of_node);
2212
2213 if (!mtd->name) {
2214 mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
2215 "omap2-nand.%d", info->gpmc_cs);
2216 if (!mtd->name) {
2217 dev_err(&pdev->dev, "Failed to set MTD name\n");
2218 return -ENOMEM;
2219 }
2220 }
2221
2222 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2223 vaddr = devm_ioremap_resource(&pdev->dev, res);
2224 if (IS_ERR(vaddr))
2225 return PTR_ERR(vaddr);
2226
2227 info->fifo = vaddr;
2228 info->phys_base = res->start;
2229
2230 if (!omap_gpmc_controller_initialized) {
2231 omap_gpmc_controller.ops = &omap_nand_controller_ops;
2232 nand_controller_init(&omap_gpmc_controller);
2233 omap_gpmc_controller_initialized = true;
2234 }
2235
2236 nand_chip->controller = &omap_gpmc_controller;
2237
2238 info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
2239 GPIOD_IN);
2240 if (IS_ERR(info->ready_gpiod)) {
2241 dev_err(dev, "failed to get ready gpio\n");
2242 return PTR_ERR(info->ready_gpiod);
2243 }
2244
2245 if (info->flash_bbt)
2246 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2247
2248
2249 info->data_in = omap_nand_data_in;
2250 info->data_out = omap_nand_data_out;
2251
2252 err = nand_scan(nand_chip, 1);
2253 if (err)
2254 goto return_error;
2255
2256 err = mtd_device_register(mtd, NULL, 0);
2257 if (err)
2258 goto cleanup_nand;
2259
2260 platform_set_drvdata(pdev, mtd);
2261
2262 return 0;
2263
2264 cleanup_nand:
2265 nand_cleanup(nand_chip);
2266
2267 return_error:
2268 if (!IS_ERR_OR_NULL(info->dma))
2269 dma_release_channel(info->dma);
2270
2271 rawnand_sw_bch_cleanup(nand_chip);
2272
2273 return err;
2274 }
2275
2276 static int omap_nand_remove(struct platform_device *pdev)
2277 {
2278 struct mtd_info *mtd = platform_get_drvdata(pdev);
2279 struct nand_chip *nand_chip = mtd_to_nand(mtd);
2280 struct omap_nand_info *info = mtd_to_omap(mtd);
2281
2282 rawnand_sw_bch_cleanup(nand_chip);
2283
2284 if (info->dma)
2285 dma_release_channel(info->dma);
2286 WARN_ON(mtd_device_unregister(mtd));
2287 nand_cleanup(nand_chip);
2288 return 0;
2289 }
2290
2291
2292 MODULE_DEVICE_TABLE(of, omap_nand_ids);
2293
2294 static struct platform_driver omap_nand_driver = {
2295 .probe = omap_nand_probe,
2296 .remove = omap_nand_remove,
2297 .driver = {
2298 .name = DRIVER_NAME,
2299 .of_match_table = omap_nand_ids,
2300 },
2301 };
2302
2303 module_platform_driver(omap_nand_driver);
2304
2305 MODULE_ALIAS("platform:" DRIVER_NAME);
2306 MODULE_LICENSE("GPL");
2307 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");