Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Marvell NAND flash controller driver
0004  *
0005  * Copyright (C) 2017 Marvell
0006  * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
0007  *
0008  *
0009  * This NAND controller driver handles two versions of the hardware,
0010  * one is called NFCv1 and is available on PXA SoCs and the other is
0011  * called NFCv2 and is available on Armada SoCs.
0012  *
0013  * The main visible difference is that NFCv1 only has Hamming ECC
0014  * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA
0015  * is not used with NFCv2.
0016  *
0017  * The ECC layouts are depicted in details in Marvell AN-379, but here
0018  * is a brief description.
0019  *
0020  * When using Hamming, the data is split in 512B chunks (either 1, 2
0021  * or 4) and each chunk will have its own ECC "digest" of 6B at the
0022  * beginning of the OOB area and eventually the remaining free OOB
0023  * bytes (also called "spare" bytes in the driver). This engine
0024  * corrects up to 1 bit per chunk and detects reliably an error if
0025  * there are at most 2 bitflips. Here is the page layout used by the
0026  * controller when Hamming is chosen:
0027  *
0028  * +-------------------------------------------------------------+
0029  * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes |
0030  * +-------------------------------------------------------------+
0031  *
0032  * When using the BCH engine, there are N identical (data + free OOB +
0033  * ECC) sections and potentially an extra one to deal with
0034  * configurations where the chosen (data + free OOB + ECC) sizes do
0035  * not align with the page (data + OOB) size. ECC bytes are always
0036  * 30B per ECC chunk. Here is the page layout used by the controller
0037  * when BCH is chosen:
0038  *
0039  * +-----------------------------------------
0040  * | Data 1 | Free OOB bytes 1 | ECC 1 | ...
0041  * +-----------------------------------------
0042  *
0043  *      -------------------------------------------
0044  *       ... | Data N | Free OOB bytes N | ECC N |
0045  *      -------------------------------------------
0046  *
0047  *           --------------------------------------------+
0048  *            Last Data | Last Free OOB bytes | Last ECC |
0049  *           --------------------------------------------+
0050  *
0051  * In both cases, the layout seen by the user is always: all data
0052  * first, then all free OOB bytes and finally all ECC bytes. With BCH,
0053  * ECC bytes are 30B long and are padded with 0xFF to align on 32
0054  * bytes.
0055  *
0056  * The controller has certain limitations that are handled by the
0057  * driver:
0058  *   - It can only read 2k at a time. To overcome this limitation, the
0059  *     driver issues data cycles on the bus, without issuing new
0060  *     CMD + ADDR cycles. The Marvell term is "naked" operations.
0061  *   - The ECC strength in BCH mode cannot be tuned. It is fixed 16
0062  *     bits. What can be tuned is the ECC block size as long as it
0063  *     stays between 512B and 2kiB. It's usually chosen based on the
0064  *     chip ECC requirements. For instance, using 2kiB ECC chunks
0065  *     provides 4b/512B correctability.
0066  *   - The controller will always treat data bytes, free OOB bytes
0067  *     and ECC bytes in that order, no matter what the real layout is
0068  *     (which is usually all data then all OOB bytes). The
0069  *     marvell_nfc_layouts array below contains the currently
0070  *     supported layouts.
0071  *   - Because of these weird layouts, the Bad Block Markers can be
0072  *     located in data section. In this case, the NAND_BBT_NO_OOB_BBM
0073  *     option must be set to prevent scanning/writing bad block
0074  *     markers.
0075  */
0076 
0077 #include <linux/module.h>
0078 #include <linux/clk.h>
0079 #include <linux/mtd/rawnand.h>
0080 #include <linux/of_platform.h>
0081 #include <linux/iopoll.h>
0082 #include <linux/interrupt.h>
0083 #include <linux/slab.h>
0084 #include <linux/mfd/syscon.h>
0085 #include <linux/regmap.h>
0086 #include <asm/unaligned.h>
0087 
0088 #include <linux/dmaengine.h>
0089 #include <linux/dma-mapping.h>
0090 #include <linux/dma/pxa-dma.h>
0091 #include <linux/platform_data/mtd-nand-pxa3xx.h>
0092 
0093 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
0094 #define FIFO_DEPTH      8
0095 #define FIFO_REP(x)     (x / sizeof(u32))
0096 #define BCH_SEQ_READS       (32 / FIFO_DEPTH)
0097 /* NFC does not support transfers of larger chunks at a time */
0098 #define MAX_CHUNK_SIZE      2112
0099 /* NFCv1 cannot read more that 7 bytes of ID */
0100 #define NFCV1_READID_LEN    7
0101 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
0102 #define POLL_PERIOD     0
0103 #define POLL_TIMEOUT        100000
0104 /* Interrupt maximum wait period in ms */
0105 #define IRQ_TIMEOUT     1000
0106 /* Latency in clock cycles between SoC pins and NFC logic */
0107 #define MIN_RD_DEL_CNT      3
0108 /* Maximum number of contiguous address cycles */
0109 #define MAX_ADDRESS_CYC_NFCV1   5
0110 #define MAX_ADDRESS_CYC_NFCV2   7
0111 /* System control registers/bits to enable the NAND controller on some SoCs */
0112 #define GENCONF_SOC_DEVICE_MUX  0x208
0113 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
0114 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
0115 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
0116 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
0117 #define GENCONF_CLK_GATING_CTRL 0x220
0118 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
0119 #define GENCONF_ND_CLK_CTRL 0x700
0120 #define GENCONF_ND_CLK_CTRL_EN  BIT(0)
0121 
0122 /* NAND controller data flash control register */
0123 #define NDCR            0x00
0124 #define NDCR_ALL_INT        GENMASK(11, 0)
0125 #define NDCR_CS1_CMDDM      BIT(7)
0126 #define NDCR_CS0_CMDDM      BIT(8)
0127 #define NDCR_RDYM       BIT(11)
0128 #define NDCR_ND_ARB_EN      BIT(12)
0129 #define NDCR_RA_START       BIT(15)
0130 #define NDCR_RD_ID_CNT(x)   (min_t(unsigned int, x, 0x7) << 16)
0131 #define NDCR_PAGE_SZ(x)     (x >= 2048 ? BIT(24) : 0)
0132 #define NDCR_DWIDTH_M       BIT(26)
0133 #define NDCR_DWIDTH_C       BIT(27)
0134 #define NDCR_ND_RUN     BIT(28)
0135 #define NDCR_DMA_EN     BIT(29)
0136 #define NDCR_ECC_EN     BIT(30)
0137 #define NDCR_SPARE_EN       BIT(31)
0138 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
0139                     NDCR_DWIDTH_M | NDCR_DWIDTH_C))
0140 
0141 /* NAND interface timing parameter 0 register */
0142 #define NDTR0           0x04
0143 #define NDTR0_TRP(x)        ((min_t(unsigned int, x, 0xF) & 0x7) << 0)
0144 #define NDTR0_TRH(x)        (min_t(unsigned int, x, 0x7) << 3)
0145 #define NDTR0_ETRP(x)       ((min_t(unsigned int, x, 0xF) & 0x8) << 3)
0146 #define NDTR0_SEL_NRE_EDGE  BIT(7)
0147 #define NDTR0_TWP(x)        (min_t(unsigned int, x, 0x7) << 8)
0148 #define NDTR0_TWH(x)        (min_t(unsigned int, x, 0x7) << 11)
0149 #define NDTR0_TCS(x)        (min_t(unsigned int, x, 0x7) << 16)
0150 #define NDTR0_TCH(x)        (min_t(unsigned int, x, 0x7) << 19)
0151 #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22)
0152 #define NDTR0_SELCNTR       BIT(26)
0153 #define NDTR0_TADL(x)       (min_t(unsigned int, x, 0x1F) << 27)
0154 
0155 /* NAND interface timing parameter 1 register */
0156 #define NDTR1           0x0C
0157 #define NDTR1_TAR(x)        (min_t(unsigned int, x, 0xF) << 0)
0158 #define NDTR1_TWHR(x)       (min_t(unsigned int, x, 0xF) << 4)
0159 #define NDTR1_TRHW(x)       (min_t(unsigned int, x / 16, 0x3) << 8)
0160 #define NDTR1_PRESCALE      BIT(14)
0161 #define NDTR1_WAIT_MODE     BIT(15)
0162 #define NDTR1_TR(x)     (min_t(unsigned int, x, 0xFFFF) << 16)
0163 
0164 /* NAND controller status register */
0165 #define NDSR            0x14
0166 #define NDSR_WRCMDREQ       BIT(0)
0167 #define NDSR_RDDREQ     BIT(1)
0168 #define NDSR_WRDREQ     BIT(2)
0169 #define NDSR_CORERR     BIT(3)
0170 #define NDSR_UNCERR     BIT(4)
0171 #define NDSR_CMDD(cs)       BIT(8 - cs)
0172 #define NDSR_RDY(rb)        BIT(11 + rb)
0173 #define NDSR_ERRCNT(x)      ((x >> 16) & 0x1F)
0174 
0175 /* NAND ECC control register */
0176 #define NDECCCTRL       0x28
0177 #define NDECCCTRL_BCH_EN    BIT(0)
0178 
0179 /* NAND controller data buffer register */
0180 #define NDDB            0x40
0181 
0182 /* NAND controller command buffer 0 register */
0183 #define NDCB0           0x48
0184 #define NDCB0_CMD1(x)       ((x & 0xFF) << 0)
0185 #define NDCB0_CMD2(x)       ((x & 0xFF) << 8)
0186 #define NDCB0_ADDR_CYC(x)   ((x & 0x7) << 16)
0187 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
0188 #define NDCB0_DBC       BIT(19)
0189 #define NDCB0_CMD_TYPE(x)   ((x & 0x7) << 21)
0190 #define NDCB0_CSEL      BIT(24)
0191 #define NDCB0_RDY_BYP       BIT(27)
0192 #define NDCB0_LEN_OVRD      BIT(28)
0193 #define NDCB0_CMD_XTYPE(x)  ((x & 0x7) << 29)
0194 
0195 /* NAND controller command buffer 1 register */
0196 #define NDCB1           0x4C
0197 #define NDCB1_COLS(x)       ((x & 0xFFFF) << 0)
0198 #define NDCB1_ADDRS_PAGE(x) (x << 16)
0199 
0200 /* NAND controller command buffer 2 register */
0201 #define NDCB2           0x50
0202 #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0)
0203 #define NDCB2_ADDR5_CYC(x)  ((x & 0xFF) << 0)
0204 
0205 /* NAND controller command buffer 3 register */
0206 #define NDCB3           0x54
0207 #define NDCB3_ADDR6_CYC(x)  ((x & 0xFF) << 16)
0208 #define NDCB3_ADDR7_CYC(x)  ((x & 0xFF) << 24)
0209 
0210 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */
0211 #define TYPE_READ       0
0212 #define TYPE_WRITE      1
0213 #define TYPE_ERASE      2
0214 #define TYPE_READ_ID        3
0215 #define TYPE_STATUS     4
0216 #define TYPE_RESET      5
0217 #define TYPE_NAKED_CMD      6
0218 #define TYPE_NAKED_ADDR     7
0219 #define TYPE_MASK       7
0220 #define XTYPE_MONOLITHIC_RW 0
0221 #define XTYPE_LAST_NAKED_RW 1
0222 #define XTYPE_FINAL_COMMAND 3
0223 #define XTYPE_READ      4
0224 #define XTYPE_WRITE_DISPATCH    4
0225 #define XTYPE_NAKED_RW      5
0226 #define XTYPE_COMMAND_DISPATCH  6
0227 #define XTYPE_MASK      7
0228 
0229 /**
0230  * struct marvell_hw_ecc_layout - layout of Marvell ECC
0231  *
0232  * Marvell ECC engine works differently than the others, in order to limit the
0233  * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
0234  * per subpage, and depending on a the desired strength needed by the NAND chip,
0235  * a particular layout mixing data/spare/ecc is defined, with a possible last
0236  * chunk smaller that the others.
0237  *
0238  * @writesize:      Full page size on which the layout applies
0239  * @chunk:      Desired ECC chunk size on which the layout applies
0240  * @strength:       Desired ECC strength (per chunk size bytes) on which the
0241  *          layout applies
0242  * @nchunks:        Total number of chunks
0243  * @full_chunk_cnt: Number of full-sized chunks, which is the number of
0244  *          repetitions of the pattern:
0245  *          (data_bytes + spare_bytes + ecc_bytes).
0246  * @data_bytes:     Number of data bytes per chunk
0247  * @spare_bytes:    Number of spare bytes per chunk
0248  * @ecc_bytes:      Number of ecc bytes per chunk
0249  * @last_data_bytes:    Number of data bytes in the last chunk
0250  * @last_spare_bytes:   Number of spare bytes in the last chunk
0251  * @last_ecc_bytes: Number of ecc bytes in the last chunk
0252  */
0253 struct marvell_hw_ecc_layout {
0254     /* Constraints */
0255     int writesize;
0256     int chunk;
0257     int strength;
0258     /* Corresponding layout */
0259     int nchunks;
0260     int full_chunk_cnt;
0261     int data_bytes;
0262     int spare_bytes;
0263     int ecc_bytes;
0264     int last_data_bytes;
0265     int last_spare_bytes;
0266     int last_ecc_bytes;
0267 };
0268 
0269 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb)  \
0270     {                               \
0271         .writesize = ws,                    \
0272         .chunk = dc,                        \
0273         .strength = ds,                     \
0274         .nchunks = nc,                      \
0275         .full_chunk_cnt = fcc,                  \
0276         .data_bytes = db,                   \
0277         .spare_bytes = sb,                  \
0278         .ecc_bytes = eb,                    \
0279         .last_data_bytes = ldb,                 \
0280         .last_spare_bytes = lsb,                \
0281         .last_ecc_bytes = leb,                  \
0282     }
0283 
0284 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
0285 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
0286     MARVELL_LAYOUT(  512,   512,  1,  1,  1,  512,  8,  8,  0,  0,  0),
0287     MARVELL_LAYOUT( 2048,   512,  1,  1,  1, 2048, 40, 24,  0,  0,  0),
0288     MARVELL_LAYOUT( 2048,   512,  4,  1,  1, 2048, 32, 30,  0,  0,  0),
0289     MARVELL_LAYOUT( 2048,   512,  8,  2,  1, 1024,  0, 30,1024,32, 30),
0290     MARVELL_LAYOUT( 4096,   512,  4,  2,  2, 2048, 32, 30,  0,  0,  0),
0291     MARVELL_LAYOUT( 4096,   512,  8,  5,  4, 1024,  0, 30,  0, 64, 30),
0292     MARVELL_LAYOUT( 8192,   512,  4,  4,  4, 2048,  0, 30,  0,  0,  0),
0293     MARVELL_LAYOUT( 8192,   512,  8,  9,  8, 1024,  0, 30,  0, 160, 30),
0294 };
0295 
0296 /**
0297  * struct marvell_nand_chip_sel - CS line description
0298  *
0299  * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
0300  * is made by a field in NDCB0 register, and in another field in NDCB2 register.
0301  * The datasheet describes the logic with an error: ADDR5 field is once
0302  * declared at the beginning of NDCB2, and another time at its end. Because the
0303  * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
0304  * to use the last bit of this field instead of the first ones.
0305  *
0306  * @cs:         Wanted CE lane.
0307  * @ndcb0_csel:     Value of the NDCB0 register with or without the flag
0308  *          selecting the wanted CE lane. This is set once when
0309  *          the Device Tree is probed.
0310  * @rb:         Ready/Busy pin for the flash chip
0311  */
0312 struct marvell_nand_chip_sel {
0313     unsigned int cs;
0314     u32 ndcb0_csel;
0315     unsigned int rb;
0316 };
0317 
0318 /**
0319  * struct marvell_nand_chip - stores NAND chip device related information
0320  *
0321  * @chip:       Base NAND chip structure
0322  * @node:       Used to store NAND chips into a list
0323  * @layout:     NAND layout when using hardware ECC
0324  * @ndcr:       Controller register value for this NAND chip
0325  * @ndtr0:      Timing registers 0 value for this NAND chip
0326  * @ndtr1:      Timing registers 1 value for this NAND chip
0327  * @addr_cyc:       Amount of cycles needed to pass column address
0328  * @selected_die:   Current active CS
0329  * @nsels:      Number of CS lines required by the NAND chip
0330  * @sels:       Array of CS lines descriptions
0331  */
0332 struct marvell_nand_chip {
0333     struct nand_chip chip;
0334     struct list_head node;
0335     const struct marvell_hw_ecc_layout *layout;
0336     u32 ndcr;
0337     u32 ndtr0;
0338     u32 ndtr1;
0339     int addr_cyc;
0340     int selected_die;
0341     unsigned int nsels;
0342     struct marvell_nand_chip_sel sels[];
0343 };
0344 
0345 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
0346 {
0347     return container_of(chip, struct marvell_nand_chip, chip);
0348 }
0349 
0350 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
0351                             *nand)
0352 {
0353     return &nand->sels[nand->selected_die];
0354 }
0355 
0356 /**
0357  * struct marvell_nfc_caps - NAND controller capabilities for distinction
0358  *                           between compatible strings
0359  *
0360  * @max_cs_nb:      Number of Chip Select lines available
0361  * @max_rb_nb:      Number of Ready/Busy lines available
0362  * @need_system_controller: Indicates if the SoC needs to have access to the
0363  *                      system controller (ie. to enable the NAND controller)
0364  * @legacy_of_bindings: Indicates if DT parsing must be done using the old
0365  *          fashion way
0366  * @is_nfcv2:       NFCv2 has numerous enhancements compared to NFCv1, ie.
0367  *          BCH error detection and correction algorithm,
0368  *          NDCB3 register has been added
0369  * @use_dma:        Use dma for data transfers
0370  */
0371 struct marvell_nfc_caps {
0372     unsigned int max_cs_nb;
0373     unsigned int max_rb_nb;
0374     bool need_system_controller;
0375     bool legacy_of_bindings;
0376     bool is_nfcv2;
0377     bool use_dma;
0378 };
0379 
0380 /**
0381  * struct marvell_nfc - stores Marvell NAND controller information
0382  *
0383  * @controller:     Base controller structure
0384  * @dev:        Parent device (used to print error messages)
0385  * @regs:       NAND controller registers
0386  * @core_clk:       Core clock
0387  * @reg_clk:        Registers clock
0388  * @complete:       Completion object to wait for NAND controller events
0389  * @assigned_cs:    Bitmask describing already assigned CS lines
0390  * @chips:      List containing all the NAND chips attached to
0391  *          this NAND controller
0392  * @selected_chip:  Currently selected target chip
0393  * @caps:       NAND controller capabilities for each compatible string
0394  * @use_dma:        Whetner DMA is used
0395  * @dma_chan:       DMA channel (NFCv1 only)
0396  * @dma_buf:        32-bit aligned buffer for DMA transfers (NFCv1 only)
0397  */
0398 struct marvell_nfc {
0399     struct nand_controller controller;
0400     struct device *dev;
0401     void __iomem *regs;
0402     struct clk *core_clk;
0403     struct clk *reg_clk;
0404     struct completion complete;
0405     unsigned long assigned_cs;
0406     struct list_head chips;
0407     struct nand_chip *selected_chip;
0408     const struct marvell_nfc_caps *caps;
0409 
0410     /* DMA (NFCv1 only) */
0411     bool use_dma;
0412     struct dma_chan *dma_chan;
0413     u8 *dma_buf;
0414 };
0415 
0416 static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl)
0417 {
0418     return container_of(ctrl, struct marvell_nfc, controller);
0419 }
0420 
0421 /**
0422  * struct marvell_nfc_timings - NAND controller timings expressed in NAND
0423  *                              Controller clock cycles
0424  *
0425  * @tRP:        ND_nRE pulse width
0426  * @tRH:        ND_nRE high duration
0427  * @tWP:        ND_nWE pulse time
0428  * @tWH:        ND_nWE high duration
0429  * @tCS:        Enable signal setup time
0430  * @tCH:        Enable signal hold time
0431  * @tADL:       Address to write data delay
0432  * @tAR:        ND_ALE low to ND_nRE low delay
0433  * @tWHR:       ND_nWE high to ND_nRE low for status read
0434  * @tRHW:       ND_nRE high duration, read to write delay
0435  * @tR:         ND_nWE high to ND_nRE low for read
0436  */
0437 struct marvell_nfc_timings {
0438     /* NDTR0 fields */
0439     unsigned int tRP;
0440     unsigned int tRH;
0441     unsigned int tWP;
0442     unsigned int tWH;
0443     unsigned int tCS;
0444     unsigned int tCH;
0445     unsigned int tADL;
0446     /* NDTR1 fields */
0447     unsigned int tAR;
0448     unsigned int tWHR;
0449     unsigned int tRHW;
0450     unsigned int tR;
0451 };
0452 
0453 /**
0454  * TO_CYCLES() - Derives a duration in numbers of clock cycles.
0455  *
0456  * @ps: Duration in pico-seconds
0457  * @period_ns:  Clock period in nano-seconds
0458  *
0459  * Convert the duration in nano-seconds, then divide by the period and
0460  * return the number of clock periods.
0461  */
0462 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
0463 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
0464                              period_ns))
0465 
0466 /**
0467  * struct marvell_nfc_op - filled during the parsing of the ->exec_op()
0468  *                         subop subset of instructions.
0469  *
0470  * @ndcb:       Array of values written to NDCBx registers
0471  * @cle_ale_delay_ns:   Optional delay after the last CMD or ADDR cycle
0472  * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
0473  * @rdy_delay_ns:   Optional delay after waiting for the RB pin
0474  * @data_delay_ns:  Optional delay after the data xfer
0475  * @data_instr_idx: Index of the data instruction in the subop
0476  * @data_instr:     Pointer to the data instruction in the subop
0477  */
0478 struct marvell_nfc_op {
0479     u32 ndcb[4];
0480     unsigned int cle_ale_delay_ns;
0481     unsigned int rdy_timeout_ms;
0482     unsigned int rdy_delay_ns;
0483     unsigned int data_delay_ns;
0484     unsigned int data_instr_idx;
0485     const struct nand_op_instr *data_instr;
0486 };
0487 
0488 /*
0489  * Internal helper to conditionnally apply a delay (from the above structure,
0490  * most of the time).
0491  */
0492 static void cond_delay(unsigned int ns)
0493 {
0494     if (!ns)
0495         return;
0496 
0497     if (ns < 10000)
0498         ndelay(ns);
0499     else
0500         udelay(DIV_ROUND_UP(ns, 1000));
0501 }
0502 
0503 /*
0504  * The controller has many flags that could generate interrupts, most of them
0505  * are disabled and polling is used. For the very slow signals, using interrupts
0506  * may relax the CPU charge.
0507  */
0508 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
0509 {
0510     u32 reg;
0511 
0512     /* Writing 1 disables the interrupt */
0513     reg = readl_relaxed(nfc->regs + NDCR);
0514     writel_relaxed(reg | int_mask, nfc->regs + NDCR);
0515 }
0516 
0517 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
0518 {
0519     u32 reg;
0520 
0521     /* Writing 0 enables the interrupt */
0522     reg = readl_relaxed(nfc->regs + NDCR);
0523     writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
0524 }
0525 
0526 static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
0527 {
0528     u32 reg;
0529 
0530     reg = readl_relaxed(nfc->regs + NDSR);
0531     writel_relaxed(int_mask, nfc->regs + NDSR);
0532 
0533     return reg & int_mask;
0534 }
0535 
0536 static void marvell_nfc_force_byte_access(struct nand_chip *chip,
0537                       bool force_8bit)
0538 {
0539     struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
0540     u32 ndcr;
0541 
0542     /*
0543      * Callers of this function do not verify if the NAND is using a 16-bit
0544      * an 8-bit bus for normal operations, so we need to take care of that
0545      * here by leaving the configuration unchanged if the NAND does not have
0546      * the NAND_BUSWIDTH_16 flag set.
0547      */
0548     if (!(chip->options & NAND_BUSWIDTH_16))
0549         return;
0550 
0551     ndcr = readl_relaxed(nfc->regs + NDCR);
0552 
0553     if (force_8bit)
0554         ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
0555     else
0556         ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
0557 
0558     writel_relaxed(ndcr, nfc->regs + NDCR);
0559 }
0560 
0561 static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
0562 {
0563     struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
0564     u32 val;
0565     int ret;
0566 
0567     /*
0568      * The command is being processed, wait for the ND_RUN bit to be
0569      * cleared by the NFC. If not, we must clear it by hand.
0570      */
0571     ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
0572                      (val & NDCR_ND_RUN) == 0,
0573                      POLL_PERIOD, POLL_TIMEOUT);
0574     if (ret) {
0575         dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
0576         writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
0577                    nfc->regs + NDCR);
0578         return ret;
0579     }
0580 
0581     return 0;
0582 }
0583 
0584 /*
0585  * Any time a command has to be sent to the controller, the following sequence
0586  * has to be followed:
0587  * - call marvell_nfc_prepare_cmd()
0588  *      -> activate the ND_RUN bit that will kind of 'start a job'
0589  *      -> wait the signal indicating the NFC is waiting for a command
0590  * - send the command (cmd and address cycles)
0591  * - enventually send or receive the data
0592  * - call marvell_nfc_end_cmd() with the corresponding flag
0593  *      -> wait the flag to be triggered or cancel the job with a timeout
0594  *
0595  * The following helpers are here to factorize the code a bit so that
0596  * specialized functions responsible for executing the actual NAND
0597  * operations do not have to replicate the same code blocks.
0598  */
0599 static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
0600 {
0601     struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
0602     u32 ndcr, val;
0603     int ret;
0604 
0605     /* Poll ND_RUN and clear NDSR before issuing any command */
0606     ret = marvell_nfc_wait_ndrun(chip);
0607     if (ret) {
0608         dev_err(nfc->dev, "Last operation did not succeed\n");
0609         return ret;
0610     }
0611 
0612     ndcr = readl_relaxed(nfc->regs + NDCR);
0613     writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
0614 
0615     /* Assert ND_RUN bit and wait the NFC to be ready */
0616     writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
0617     ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
0618                      val & NDSR_WRCMDREQ,
0619                      POLL_PERIOD, POLL_TIMEOUT);
0620     if (ret) {
0621         dev_err(nfc->dev, "Timeout on WRCMDRE\n");
0622         return -ETIMEDOUT;
0623     }
0624 
0625     /* Command may be written, clear WRCMDREQ status bit */
0626     writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
0627 
0628     return 0;
0629 }
0630 
0631 static void marvell_nfc_send_cmd(struct nand_chip *chip,
0632                  struct marvell_nfc_op *nfc_op)
0633 {
0634     struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
0635     struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
0636 
0637     dev_dbg(nfc->dev, "\nNDCR:  0x%08x\n"
0638         "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
0639         (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
0640         nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
0641 
0642     writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
0643                nfc->regs + NDCB0);
0644     writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
0645     writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
0646 
0647     /*
0648      * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
0649      * fields are used (only available on NFCv2).
0650      */
0651     if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
0652         NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
0653         if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
0654             writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
0655     }
0656 }
0657 
0658 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
0659                    const char *label)
0660 {
0661     struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
0662     u32 val;
0663     int ret;
0664 
0665     ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
0666                      val & flag,
0667                      POLL_PERIOD, POLL_TIMEOUT);
0668 
0669     if (ret) {
0670         dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
0671             label, val);
0672         if (nfc->dma_chan)
0673             dmaengine_terminate_all(nfc->dma_chan);
0674         return ret;
0675     }
0676 
0677     /*
0678      * DMA function uses this helper to poll on CMDD bits without wanting
0679      * them to be cleared.
0680      */
0681     if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
0682         return 0;
0683 
0684     writel_relaxed(flag, nfc->regs + NDSR);
0685 
0686     return 0;
0687 }
0688 
0689 static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
0690 {
0691     struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
0692     int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
0693 
0694     return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
0695 }
0696 
0697 static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask,
0698                    u32 expected_val, unsigned long timeout_ms)
0699 {
0700     unsigned long limit;
0701     u32 st;
0702 
0703     limit = jiffies + msecs_to_jiffies(timeout_ms);
0704     do {
0705         st = readl_relaxed(nfc->regs + NDSR);
0706         if (st & NDSR_RDY(1))
0707             st |= NDSR_RDY(0);
0708 
0709         if ((st & mask) == expected_val)
0710             return 0;
0711 
0712         cpu_relax();
0713     } while (time_after(limit, jiffies));
0714 
0715     return -ETIMEDOUT;
0716 }
0717 
0718 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
0719 {
0720     struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
0721     struct mtd_info *mtd = nand_to_mtd(chip);
0722     u32 pending;
0723     int ret;
0724 
0725     /* Timeout is expressed in ms */
0726     if (!timeout_ms)
0727         timeout_ms = IRQ_TIMEOUT;
0728 
0729     if (mtd->oops_panic_write) {
0730         ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0),
0731                           NDSR_RDY(0),
0732                           timeout_ms);
0733     } else {
0734         init_completion(&nfc->complete);
0735 
0736         marvell_nfc_enable_int(nfc, NDCR_RDYM);
0737         ret = wait_for_completion_timeout(&nfc->complete,
0738                           msecs_to_jiffies(timeout_ms));
0739         marvell_nfc_disable_int(nfc, NDCR_RDYM);
0740     }
0741     pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
0742 
0743     /*
0744      * In case the interrupt was not served in the required time frame,
0745      * check if the ISR was not served or if something went actually wrong.
0746      */
0747     if (!ret && !pending) {
0748         dev_err(nfc->dev, "Timeout waiting for RB signal\n");
0749         return -ETIMEDOUT;
0750     }
0751 
0752     return 0;
0753 }
0754 
0755 static void marvell_nfc_select_target(struct nand_chip *chip,
0756                       unsigned int die_nr)
0757 {
0758     struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
0759     struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
0760     u32 ndcr_generic;
0761 
0762     /*
0763      * Reset the NDCR register to a clean state for this particular chip,
0764      * also clear ND_RUN bit.
0765      */
0766     ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
0767                NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
0768     writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
0769 
0770     /* Also reset the interrupt status register */
0771     marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
0772 
0773     if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
0774         return;
0775 
0776     writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
0777     writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
0778 
0779     nfc->selected_chip = chip;
0780     marvell_nand->selected_die = die_nr;
0781 }
0782 
0783 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
0784 {
0785     struct marvell_nfc *nfc = dev_id;
0786     u32 st = readl_relaxed(nfc->regs + NDSR);
0787     u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
0788 
0789     /*
0790      * RDY interrupt mask is one bit in NDCR while there are two status
0791      * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
0792      */
0793     if (st & NDSR_RDY(1))
0794         st |= NDSR_RDY(0);
0795 
0796     if (!(st & ien))
0797         return IRQ_NONE;
0798 
0799     marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
0800 
0801     if (st & (NDSR_RDY(0) | NDSR_RDY(1)))
0802         complete(&nfc->complete);
0803 
0804     return IRQ_HANDLED;
0805 }
0806 
0807 /* HW ECC related functions */
0808 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
0809 {
0810     struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
0811     u32 ndcr = readl_relaxed(nfc->regs + NDCR);
0812 
0813     if (!(ndcr & NDCR_ECC_EN)) {
0814         writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
0815 
0816         /*
0817          * When enabling BCH, set threshold to 0 to always know the
0818          * number of corrected bitflips.
0819          */
0820         if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
0821             writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
0822     }
0823 }
0824 
0825 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
0826 {
0827     struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
0828     u32 ndcr = readl_relaxed(nfc->regs + NDCR);
0829 
0830     if (ndcr & NDCR_ECC_EN) {
0831         writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
0832         if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
0833             writel_relaxed(0, nfc->regs + NDECCCTRL);
0834     }
0835 }
0836 
0837 /* DMA related helpers */
0838 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
0839 {
0840     u32 reg;
0841 
0842     reg = readl_relaxed(nfc->regs + NDCR);
0843     writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
0844 }
0845 
0846 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
0847 {
0848     u32 reg;
0849 
0850     reg = readl_relaxed(nfc->regs + NDCR);
0851     writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
0852 }
0853 
0854 /* Read/write PIO/DMA accessors */
0855 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
0856                      enum dma_data_direction direction,
0857                      unsigned int len)
0858 {
0859     unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
0860     struct dma_async_tx_descriptor *tx;
0861     struct scatterlist sg;
0862     dma_cookie_t cookie;
0863     int ret;
0864 
0865     marvell_nfc_enable_dma(nfc);
0866     /* Prepare the DMA transfer */
0867     sg_init_one(&sg, nfc->dma_buf, dma_len);
0868     dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
0869     tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
0870                      direction == DMA_FROM_DEVICE ?
0871                      DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
0872                      DMA_PREP_INTERRUPT);
0873     if (!tx) {
0874         dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
0875         return -ENXIO;
0876     }
0877 
0878     /* Do the task and wait for it to finish */
0879     cookie = dmaengine_submit(tx);
0880     ret = dma_submit_error(cookie);
0881     if (ret)
0882         return -EIO;
0883 
0884     dma_async_issue_pending(nfc->dma_chan);
0885     ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
0886     dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
0887     marvell_nfc_disable_dma(nfc);
0888     if (ret) {
0889         dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
0890             dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
0891         dmaengine_terminate_all(nfc->dma_chan);
0892         return -ETIMEDOUT;
0893     }
0894 
0895     return 0;
0896 }
0897 
0898 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
0899                     unsigned int len)
0900 {
0901     unsigned int last_len = len % FIFO_DEPTH;
0902     unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
0903     int i;
0904 
0905     for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
0906         ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
0907 
0908     if (last_len) {
0909         u8 tmp_buf[FIFO_DEPTH];
0910 
0911         ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
0912         memcpy(in + last_full_offset, tmp_buf, last_len);
0913     }
0914 
0915     return 0;
0916 }
0917 
0918 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
0919                      unsigned int len)
0920 {
0921     unsigned int last_len = len % FIFO_DEPTH;
0922     unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
0923     int i;
0924 
0925     for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
0926         iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
0927 
0928     if (last_len) {
0929         u8 tmp_buf[FIFO_DEPTH];
0930 
0931         memcpy(tmp_buf, out + last_full_offset, last_len);
0932         iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
0933     }
0934 
0935     return 0;
0936 }
0937 
0938 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
0939                       u8 *data, int data_len,
0940                       u8 *spare, int spare_len,
0941                       u8 *ecc, int ecc_len,
0942                       unsigned int *max_bitflips)
0943 {
0944     struct mtd_info *mtd = nand_to_mtd(chip);
0945     int bf;
0946 
0947     /*
0948      * Blank pages (all 0xFF) that have not been written may be recognized
0949      * as bad if bitflips occur, so whenever an uncorrectable error occurs,
0950      * check if the entire page (with ECC bytes) is actually blank or not.
0951      */
0952     if (!data)
0953         data_len = 0;
0954     if (!spare)
0955         spare_len = 0;
0956     if (!ecc)
0957         ecc_len = 0;
0958 
0959     bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
0960                      spare, spare_len, chip->ecc.strength);
0961     if (bf < 0) {
0962         mtd->ecc_stats.failed++;
0963         return;
0964     }
0965 
0966     /* Update the stats and max_bitflips */
0967     mtd->ecc_stats.corrected += bf;
0968     *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
0969 }
0970 
0971 /*
0972  * Check if a chunk is correct or not according to the hardware ECC engine.
0973  * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
0974  * mtd->ecc_stats.failure is not, the function will instead return a non-zero
0975  * value indicating that a check on the emptyness of the subpage must be
0976  * performed before actually declaring the subpage as "corrupted".
0977  */
0978 static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip,
0979                          unsigned int *max_bitflips)
0980 {
0981     struct mtd_info *mtd = nand_to_mtd(chip);
0982     struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
0983     int bf = 0;
0984     u32 ndsr;
0985 
0986     ndsr = readl_relaxed(nfc->regs + NDSR);
0987 
0988     /* Check uncorrectable error flag */
0989     if (ndsr & NDSR_UNCERR) {
0990         writel_relaxed(ndsr, nfc->regs + NDSR);
0991 
0992         /*
0993          * Do not increment ->ecc_stats.failed now, instead, return a
0994          * non-zero value to indicate that this chunk was apparently
0995          * bad, and it should be check to see if it empty or not. If
0996          * the chunk (with ECC bytes) is not declared empty, the calling
0997          * function must increment the failure count.
0998          */
0999         return -EBADMSG;
1000     }
1001 
1002     /* Check correctable error flag */
1003     if (ndsr & NDSR_CORERR) {
1004         writel_relaxed(ndsr, nfc->regs + NDSR);
1005 
1006         if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
1007             bf = NDSR_ERRCNT(ndsr);
1008         else
1009             bf = 1;
1010     }
1011 
1012     /* Update the stats and max_bitflips */
1013     mtd->ecc_stats.corrected += bf;
1014     *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
1015 
1016     return 0;
1017 }
1018 
1019 /* Hamming read helpers */
1020 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
1021                            u8 *data_buf, u8 *oob_buf,
1022                            bool raw, int page)
1023 {
1024     struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1025     struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1026     const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1027     struct marvell_nfc_op nfc_op = {
1028         .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1029                NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1030                NDCB0_DBC |
1031                NDCB0_CMD1(NAND_CMD_READ0) |
1032                NDCB0_CMD2(NAND_CMD_READSTART),
1033         .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1034         .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1035     };
1036     unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1037     int ret;
1038 
1039     /* NFCv2 needs more information about the operation being executed */
1040     if (nfc->caps->is_nfcv2)
1041         nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1042 
1043     ret = marvell_nfc_prepare_cmd(chip);
1044     if (ret)
1045         return ret;
1046 
1047     marvell_nfc_send_cmd(chip, &nfc_op);
1048     ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1049                   "RDDREQ while draining FIFO (data/oob)");
1050     if (ret)
1051         return ret;
1052 
1053     /*
1054      * Read the page then the OOB area. Unlike what is shown in current
1055      * documentation, spare bytes are protected by the ECC engine, and must
1056      * be at the beginning of the OOB area or running this driver on legacy
1057      * systems will prevent the discovery of the BBM/BBT.
1058      */
1059     if (nfc->use_dma) {
1060         marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
1061                       lt->data_bytes + oob_bytes);
1062         memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
1063         memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
1064     } else {
1065         marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
1066         marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
1067     }
1068 
1069     ret = marvell_nfc_wait_cmdd(chip);
1070     return ret;
1071 }
1072 
1073 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf,
1074                         int oob_required, int page)
1075 {
1076     marvell_nfc_select_target(chip, chip->cur_cs);
1077     return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1078                            true, page);
1079 }
1080 
1081 static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf,
1082                         int oob_required, int page)
1083 {
1084     const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1085     unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1086     int max_bitflips = 0, ret;
1087     u8 *raw_buf;
1088 
1089     marvell_nfc_select_target(chip, chip->cur_cs);
1090     marvell_nfc_enable_hw_ecc(chip);
1091     marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
1092                         page);
1093     ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips);
1094     marvell_nfc_disable_hw_ecc(chip);
1095 
1096     if (!ret)
1097         return max_bitflips;
1098 
1099     /*
1100      * When ECC failures are detected, check if the full page has been
1101      * written or not. Ignore the failure if it is actually empty.
1102      */
1103     raw_buf = kmalloc(full_sz, GFP_KERNEL);
1104     if (!raw_buf)
1105         return -ENOMEM;
1106 
1107     marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
1108                         lt->data_bytes, true, page);
1109     marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
1110                       &max_bitflips);
1111     kfree(raw_buf);
1112 
1113     return max_bitflips;
1114 }
1115 
1116 /*
1117  * Spare area in Hamming layouts is not protected by the ECC engine (even if
1118  * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1119  * also stands for ->read_oob().
1120  */
1121 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page)
1122 {
1123     u8 *buf = nand_get_data_buf(chip);
1124 
1125     marvell_nfc_select_target(chip, chip->cur_cs);
1126     return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1127                            true, page);
1128 }
1129 
1130 /* Hamming write helpers */
1131 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
1132                         const u8 *data_buf,
1133                         const u8 *oob_buf, bool raw,
1134                         int page)
1135 {
1136     const struct nand_sdr_timings *sdr =
1137         nand_get_sdr_timings(nand_get_interface_config(chip));
1138     struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1139     struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1140     const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1141     struct marvell_nfc_op nfc_op = {
1142         .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
1143                NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1144                NDCB0_CMD1(NAND_CMD_SEQIN) |
1145                NDCB0_CMD2(NAND_CMD_PAGEPROG) |
1146                NDCB0_DBC,
1147         .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1148         .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1149     };
1150     unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1151     int ret;
1152 
1153     /* NFCv2 needs more information about the operation being executed */
1154     if (nfc->caps->is_nfcv2)
1155         nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1156 
1157     ret = marvell_nfc_prepare_cmd(chip);
1158     if (ret)
1159         return ret;
1160 
1161     marvell_nfc_send_cmd(chip, &nfc_op);
1162     ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1163                   "WRDREQ while loading FIFO (data)");
1164     if (ret)
1165         return ret;
1166 
1167     /* Write the page then the OOB area */
1168     if (nfc->use_dma) {
1169         memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
1170         memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
1171         marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
1172                       lt->ecc_bytes + lt->spare_bytes);
1173     } else {
1174         marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
1175         marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
1176     }
1177 
1178     ret = marvell_nfc_wait_cmdd(chip);
1179     if (ret)
1180         return ret;
1181 
1182     ret = marvell_nfc_wait_op(chip,
1183                   PSEC_TO_MSEC(sdr->tPROG_max));
1184     return ret;
1185 }
1186 
1187 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip,
1188                          const u8 *buf,
1189                          int oob_required, int page)
1190 {
1191     marvell_nfc_select_target(chip, chip->cur_cs);
1192     return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1193                             true, page);
1194 }
1195 
1196 static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip,
1197                          const u8 *buf,
1198                          int oob_required, int page)
1199 {
1200     int ret;
1201 
1202     marvell_nfc_select_target(chip, chip->cur_cs);
1203     marvell_nfc_enable_hw_ecc(chip);
1204     ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1205                            false, page);
1206     marvell_nfc_disable_hw_ecc(chip);
1207 
1208     return ret;
1209 }
1210 
1211 /*
1212  * Spare area in Hamming layouts is not protected by the ECC engine (even if
1213  * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1214  * also stands for ->write_oob().
1215  */
1216 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip,
1217                         int page)
1218 {
1219     struct mtd_info *mtd = nand_to_mtd(chip);
1220     u8 *buf = nand_get_data_buf(chip);
1221 
1222     memset(buf, 0xFF, mtd->writesize);
1223 
1224     marvell_nfc_select_target(chip, chip->cur_cs);
1225     return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1226                             true, page);
1227 }
1228 
1229 /* BCH read helpers */
1230 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf,
1231                         int oob_required, int page)
1232 {
1233     struct mtd_info *mtd = nand_to_mtd(chip);
1234     const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1235     u8 *oob = chip->oob_poi;
1236     int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1237     int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1238         lt->last_spare_bytes;
1239     int data_len = lt->data_bytes;
1240     int spare_len = lt->spare_bytes;
1241     int ecc_len = lt->ecc_bytes;
1242     int chunk;
1243 
1244     marvell_nfc_select_target(chip, chip->cur_cs);
1245 
1246     if (oob_required)
1247         memset(chip->oob_poi, 0xFF, mtd->oobsize);
1248 
1249     nand_read_page_op(chip, page, 0, NULL, 0);
1250 
1251     for (chunk = 0; chunk < lt->nchunks; chunk++) {
1252         /* Update last chunk length */
1253         if (chunk >= lt->full_chunk_cnt) {
1254             data_len = lt->last_data_bytes;
1255             spare_len = lt->last_spare_bytes;
1256             ecc_len = lt->last_ecc_bytes;
1257         }
1258 
1259         /* Read data bytes*/
1260         nand_change_read_column_op(chip, chunk * chunk_size,
1261                        buf + (lt->data_bytes * chunk),
1262                        data_len, false);
1263 
1264         /* Read spare bytes */
1265         nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
1266                   spare_len, false, false);
1267 
1268         /* Read ECC bytes */
1269         nand_read_data_op(chip, oob + ecc_offset +
1270                   (ALIGN(lt->ecc_bytes, 32) * chunk),
1271                   ecc_len, false, false);
1272     }
1273 
1274     return 0;
1275 }
1276 
1277 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
1278                           u8 *data, unsigned int data_len,
1279                           u8 *spare, unsigned int spare_len,
1280                           int page)
1281 {
1282     struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1283     struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1284     const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1285     int i, ret;
1286     struct marvell_nfc_op nfc_op = {
1287         .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1288                NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1289                NDCB0_LEN_OVRD,
1290         .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1291         .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1292         .ndcb[3] = data_len + spare_len,
1293     };
1294 
1295     ret = marvell_nfc_prepare_cmd(chip);
1296     if (ret)
1297         return;
1298 
1299     if (chunk == 0)
1300         nfc_op.ndcb[0] |= NDCB0_DBC |
1301                   NDCB0_CMD1(NAND_CMD_READ0) |
1302                   NDCB0_CMD2(NAND_CMD_READSTART);
1303 
1304     /*
1305      * Trigger the monolithic read on the first chunk, then naked read on
1306      * intermediate chunks and finally a last naked read on the last chunk.
1307      */
1308     if (chunk == 0)
1309         nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1310     else if (chunk < lt->nchunks - 1)
1311         nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1312     else
1313         nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1314 
1315     marvell_nfc_send_cmd(chip, &nfc_op);
1316 
1317     /*
1318      * According to the datasheet, when reading from NDDB
1319      * with BCH enabled, after each 32 bytes reads, we
1320      * have to make sure that the NDSR.RDDREQ bit is set.
1321      *
1322      * Drain the FIFO, 8 32-bit reads at a time, and skip
1323      * the polling on the last read.
1324      *
1325      * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1326      */
1327     for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1328         marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1329                     "RDDREQ while draining FIFO (data)");
1330         marvell_nfc_xfer_data_in_pio(nfc, data,
1331                          FIFO_DEPTH * BCH_SEQ_READS);
1332         data += FIFO_DEPTH * BCH_SEQ_READS;
1333     }
1334 
1335     for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1336         marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1337                     "RDDREQ while draining FIFO (OOB)");
1338         marvell_nfc_xfer_data_in_pio(nfc, spare,
1339                          FIFO_DEPTH * BCH_SEQ_READS);
1340         spare += FIFO_DEPTH * BCH_SEQ_READS;
1341     }
1342 }
1343 
1344 static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip,
1345                         u8 *buf, int oob_required,
1346                         int page)
1347 {
1348     struct mtd_info *mtd = nand_to_mtd(chip);
1349     const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1350     int data_len = lt->data_bytes, spare_len = lt->spare_bytes;
1351     u8 *data = buf, *spare = chip->oob_poi;
1352     int max_bitflips = 0;
1353     u32 failure_mask = 0;
1354     int chunk, ret;
1355 
1356     marvell_nfc_select_target(chip, chip->cur_cs);
1357 
1358     /*
1359      * With BCH, OOB is not fully used (and thus not read entirely), not
1360      * expected bytes could show up at the end of the OOB buffer if not
1361      * explicitly erased.
1362      */
1363     if (oob_required)
1364         memset(chip->oob_poi, 0xFF, mtd->oobsize);
1365 
1366     marvell_nfc_enable_hw_ecc(chip);
1367 
1368     for (chunk = 0; chunk < lt->nchunks; chunk++) {
1369         /* Update length for the last chunk */
1370         if (chunk >= lt->full_chunk_cnt) {
1371             data_len = lt->last_data_bytes;
1372             spare_len = lt->last_spare_bytes;
1373         }
1374 
1375         /* Read the chunk and detect number of bitflips */
1376         marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
1377                           spare, spare_len, page);
1378         ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips);
1379         if (ret)
1380             failure_mask |= BIT(chunk);
1381 
1382         data += data_len;
1383         spare += spare_len;
1384     }
1385 
1386     marvell_nfc_disable_hw_ecc(chip);
1387 
1388     if (!failure_mask)
1389         return max_bitflips;
1390 
1391     /*
1392      * Please note that dumping the ECC bytes during a normal read with OOB
1393      * area would add a significant overhead as ECC bytes are "consumed" by
1394      * the controller in normal mode and must be re-read in raw mode. To
1395      * avoid dropping the performances, we prefer not to include them. The
1396      * user should re-read the page in raw mode if ECC bytes are required.
1397      */
1398 
1399     /*
1400      * In case there is any subpage read error, we usually re-read only ECC
1401      * bytes in raw mode and check if the whole page is empty. In this case,
1402      * it is normal that the ECC check failed and we just ignore the error.
1403      *
1404      * However, it has been empirically observed that for some layouts (e.g
1405      * 2k page, 8b strength per 512B chunk), the controller tries to correct
1406      * bits and may create itself bitflips in the erased area. To overcome
1407      * this strange behavior, the whole page is re-read in raw mode, not
1408      * only the ECC bytes.
1409      */
1410     for (chunk = 0; chunk < lt->nchunks; chunk++) {
1411         int data_off_in_page, spare_off_in_page, ecc_off_in_page;
1412         int data_off, spare_off, ecc_off;
1413         int data_len, spare_len, ecc_len;
1414 
1415         /* No failure reported for this chunk, move to the next one */
1416         if (!(failure_mask & BIT(chunk)))
1417             continue;
1418 
1419         data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes +
1420                         lt->ecc_bytes);
1421         spare_off_in_page = data_off_in_page +
1422             (chunk < lt->full_chunk_cnt ? lt->data_bytes :
1423                               lt->last_data_bytes);
1424         ecc_off_in_page = spare_off_in_page +
1425             (chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1426                               lt->last_spare_bytes);
1427 
1428         data_off = chunk * lt->data_bytes;
1429         spare_off = chunk * lt->spare_bytes;
1430         ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) +
1431               lt->last_spare_bytes +
1432               (chunk * (lt->ecc_bytes + 2));
1433 
1434         data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes :
1435                             lt->last_data_bytes;
1436         spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1437                              lt->last_spare_bytes;
1438         ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes :
1439                                lt->last_ecc_bytes;
1440 
1441         /*
1442          * Only re-read the ECC bytes, unless we are using the 2k/8b
1443          * layout which is buggy in the sense that the ECC engine will
1444          * try to correct data bytes anyway, creating bitflips. In this
1445          * case, re-read the entire page.
1446          */
1447         if (lt->writesize == 2048 && lt->strength == 8) {
1448             nand_change_read_column_op(chip, data_off_in_page,
1449                            buf + data_off, data_len,
1450                            false);
1451             nand_change_read_column_op(chip, spare_off_in_page,
1452                            chip->oob_poi + spare_off, spare_len,
1453                            false);
1454         }
1455 
1456         nand_change_read_column_op(chip, ecc_off_in_page,
1457                        chip->oob_poi + ecc_off, ecc_len,
1458                        false);
1459 
1460         /* Check the entire chunk (data + spare + ecc) for emptyness */
1461         marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len,
1462                           chip->oob_poi + spare_off, spare_len,
1463                           chip->oob_poi + ecc_off, ecc_len,
1464                           &max_bitflips);
1465     }
1466 
1467     return max_bitflips;
1468 }
1469 
1470 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page)
1471 {
1472     u8 *buf = nand_get_data_buf(chip);
1473 
1474     return chip->ecc.read_page_raw(chip, buf, true, page);
1475 }
1476 
1477 static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page)
1478 {
1479     u8 *buf = nand_get_data_buf(chip);
1480 
1481     return chip->ecc.read_page(chip, buf, true, page);
1482 }
1483 
1484 /* BCH write helpers */
1485 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip,
1486                          const u8 *buf,
1487                          int oob_required, int page)
1488 {
1489     const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1490     int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1491     int data_len = lt->data_bytes;
1492     int spare_len = lt->spare_bytes;
1493     int ecc_len = lt->ecc_bytes;
1494     int spare_offset = 0;
1495     int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1496         lt->last_spare_bytes;
1497     int chunk;
1498 
1499     marvell_nfc_select_target(chip, chip->cur_cs);
1500 
1501     nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1502 
1503     for (chunk = 0; chunk < lt->nchunks; chunk++) {
1504         if (chunk >= lt->full_chunk_cnt) {
1505             data_len = lt->last_data_bytes;
1506             spare_len = lt->last_spare_bytes;
1507             ecc_len = lt->last_ecc_bytes;
1508         }
1509 
1510         /* Point to the column of the next chunk */
1511         nand_change_write_column_op(chip, chunk * full_chunk_size,
1512                         NULL, 0, false);
1513 
1514         /* Write the data */
1515         nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
1516                    data_len, false);
1517 
1518         if (!oob_required)
1519             continue;
1520 
1521         /* Write the spare bytes */
1522         if (spare_len)
1523             nand_write_data_op(chip, chip->oob_poi + spare_offset,
1524                        spare_len, false);
1525 
1526         /* Write the ECC bytes */
1527         if (ecc_len)
1528             nand_write_data_op(chip, chip->oob_poi + ecc_offset,
1529                        ecc_len, false);
1530 
1531         spare_offset += spare_len;
1532         ecc_offset += ALIGN(ecc_len, 32);
1533     }
1534 
1535     return nand_prog_page_end_op(chip);
1536 }
1537 
1538 static int
1539 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
1540                    const u8 *data, unsigned int data_len,
1541                    const u8 *spare, unsigned int spare_len,
1542                    int page)
1543 {
1544     struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1545     struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1546     const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1547     u32 xtype;
1548     int ret;
1549     struct marvell_nfc_op nfc_op = {
1550         .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
1551         .ndcb[3] = data_len + spare_len,
1552     };
1553 
1554     /*
1555      * First operation dispatches the CMD_SEQIN command, issue the address
1556      * cycles and asks for the first chunk of data.
1557      * All operations in the middle (if any) will issue a naked write and
1558      * also ask for data.
1559      * Last operation (if any) asks for the last chunk of data through a
1560      * last naked write.
1561      */
1562     if (chunk == 0) {
1563         if (lt->nchunks == 1)
1564             xtype = XTYPE_MONOLITHIC_RW;
1565         else
1566             xtype = XTYPE_WRITE_DISPATCH;
1567 
1568         nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
1569                   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1570                   NDCB0_CMD1(NAND_CMD_SEQIN);
1571         nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
1572         nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
1573     } else if (chunk < lt->nchunks - 1) {
1574         nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1575     } else {
1576         nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1577     }
1578 
1579     /* Always dispatch the PAGEPROG command on the last chunk */
1580     if (chunk == lt->nchunks - 1)
1581         nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
1582 
1583     ret = marvell_nfc_prepare_cmd(chip);
1584     if (ret)
1585         return ret;
1586 
1587     marvell_nfc_send_cmd(chip, &nfc_op);
1588     ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1589                   "WRDREQ while loading FIFO (data)");
1590     if (ret)
1591         return ret;
1592 
1593     /* Transfer the contents */
1594     iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
1595     iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
1596 
1597     return 0;
1598 }
1599 
1600 static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip,
1601                          const u8 *buf,
1602                          int oob_required, int page)
1603 {
1604     const struct nand_sdr_timings *sdr =
1605         nand_get_sdr_timings(nand_get_interface_config(chip));
1606     struct mtd_info *mtd = nand_to_mtd(chip);
1607     const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1608     const u8 *data = buf;
1609     const u8 *spare = chip->oob_poi;
1610     int data_len = lt->data_bytes;
1611     int spare_len = lt->spare_bytes;
1612     int chunk, ret;
1613 
1614     marvell_nfc_select_target(chip, chip->cur_cs);
1615 
1616     /* Spare data will be written anyway, so clear it to avoid garbage */
1617     if (!oob_required)
1618         memset(chip->oob_poi, 0xFF, mtd->oobsize);
1619 
1620     marvell_nfc_enable_hw_ecc(chip);
1621 
1622     for (chunk = 0; chunk < lt->nchunks; chunk++) {
1623         if (chunk >= lt->full_chunk_cnt) {
1624             data_len = lt->last_data_bytes;
1625             spare_len = lt->last_spare_bytes;
1626         }
1627 
1628         marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
1629                            spare, spare_len, page);
1630         data += data_len;
1631         spare += spare_len;
1632 
1633         /*
1634          * Waiting only for CMDD or PAGED is not enough, ECC are
1635          * partially written. No flag is set once the operation is
1636          * really finished but the ND_RUN bit is cleared, so wait for it
1637          * before stepping into the next command.
1638          */
1639         marvell_nfc_wait_ndrun(chip);
1640     }
1641 
1642     ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max));
1643 
1644     marvell_nfc_disable_hw_ecc(chip);
1645 
1646     if (ret)
1647         return ret;
1648 
1649     return 0;
1650 }
1651 
1652 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip,
1653                         int page)
1654 {
1655     struct mtd_info *mtd = nand_to_mtd(chip);
1656     u8 *buf = nand_get_data_buf(chip);
1657 
1658     memset(buf, 0xFF, mtd->writesize);
1659 
1660     return chip->ecc.write_page_raw(chip, buf, true, page);
1661 }
1662 
1663 static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page)
1664 {
1665     struct mtd_info *mtd = nand_to_mtd(chip);
1666     u8 *buf = nand_get_data_buf(chip);
1667 
1668     memset(buf, 0xFF, mtd->writesize);
1669 
1670     return chip->ecc.write_page(chip, buf, true, page);
1671 }
1672 
1673 /* NAND framework ->exec_op() hooks and related helpers */
1674 static void marvell_nfc_parse_instructions(struct nand_chip *chip,
1675                        const struct nand_subop *subop,
1676                        struct marvell_nfc_op *nfc_op)
1677 {
1678     const struct nand_op_instr *instr = NULL;
1679     struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1680     bool first_cmd = true;
1681     unsigned int op_id;
1682     int i;
1683 
1684     /* Reset the input structure as most of its fields will be OR'ed */
1685     memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
1686 
1687     for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1688         unsigned int offset, naddrs;
1689         const u8 *addrs;
1690         int len;
1691 
1692         instr = &subop->instrs[op_id];
1693 
1694         switch (instr->type) {
1695         case NAND_OP_CMD_INSTR:
1696             if (first_cmd)
1697                 nfc_op->ndcb[0] |=
1698                     NDCB0_CMD1(instr->ctx.cmd.opcode);
1699             else
1700                 nfc_op->ndcb[0] |=
1701                     NDCB0_CMD2(instr->ctx.cmd.opcode) |
1702                     NDCB0_DBC;
1703 
1704             nfc_op->cle_ale_delay_ns = instr->delay_ns;
1705             first_cmd = false;
1706             break;
1707 
1708         case NAND_OP_ADDR_INSTR:
1709             offset = nand_subop_get_addr_start_off(subop, op_id);
1710             naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1711             addrs = &instr->ctx.addr.addrs[offset];
1712 
1713             nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
1714 
1715             for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1716                 nfc_op->ndcb[1] |= addrs[i] << (8 * i);
1717 
1718             if (naddrs >= 5)
1719                 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
1720             if (naddrs >= 6)
1721                 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
1722             if (naddrs == 7)
1723                 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
1724 
1725             nfc_op->cle_ale_delay_ns = instr->delay_ns;
1726             break;
1727 
1728         case NAND_OP_DATA_IN_INSTR:
1729             nfc_op->data_instr = instr;
1730             nfc_op->data_instr_idx = op_id;
1731             nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
1732             if (nfc->caps->is_nfcv2) {
1733                 nfc_op->ndcb[0] |=
1734                     NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1735                     NDCB0_LEN_OVRD;
1736                 len = nand_subop_get_data_len(subop, op_id);
1737                 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1738             }
1739             nfc_op->data_delay_ns = instr->delay_ns;
1740             break;
1741 
1742         case NAND_OP_DATA_OUT_INSTR:
1743             nfc_op->data_instr = instr;
1744             nfc_op->data_instr_idx = op_id;
1745             nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
1746             if (nfc->caps->is_nfcv2) {
1747                 nfc_op->ndcb[0] |=
1748                     NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1749                     NDCB0_LEN_OVRD;
1750                 len = nand_subop_get_data_len(subop, op_id);
1751                 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1752             }
1753             nfc_op->data_delay_ns = instr->delay_ns;
1754             break;
1755 
1756         case NAND_OP_WAITRDY_INSTR:
1757             nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1758             nfc_op->rdy_delay_ns = instr->delay_ns;
1759             break;
1760         }
1761     }
1762 }
1763 
1764 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
1765                      const struct nand_subop *subop,
1766                      struct marvell_nfc_op *nfc_op)
1767 {
1768     struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1769     const struct nand_op_instr *instr = nfc_op->data_instr;
1770     unsigned int op_id = nfc_op->data_instr_idx;
1771     unsigned int len = nand_subop_get_data_len(subop, op_id);
1772     unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
1773     bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
1774     int ret;
1775 
1776     if (instr->ctx.data.force_8bit)
1777         marvell_nfc_force_byte_access(chip, true);
1778 
1779     if (reading) {
1780         u8 *in = instr->ctx.data.buf.in + offset;
1781 
1782         ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
1783     } else {
1784         const u8 *out = instr->ctx.data.buf.out + offset;
1785 
1786         ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
1787     }
1788 
1789     if (instr->ctx.data.force_8bit)
1790         marvell_nfc_force_byte_access(chip, false);
1791 
1792     return ret;
1793 }
1794 
1795 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
1796                           const struct nand_subop *subop)
1797 {
1798     struct marvell_nfc_op nfc_op;
1799     bool reading;
1800     int ret;
1801 
1802     marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1803     reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
1804 
1805     ret = marvell_nfc_prepare_cmd(chip);
1806     if (ret)
1807         return ret;
1808 
1809     marvell_nfc_send_cmd(chip, &nfc_op);
1810     ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1811                   "RDDREQ/WRDREQ while draining raw data");
1812     if (ret)
1813         return ret;
1814 
1815     cond_delay(nfc_op.cle_ale_delay_ns);
1816 
1817     if (reading) {
1818         if (nfc_op.rdy_timeout_ms) {
1819             ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1820             if (ret)
1821                 return ret;
1822         }
1823 
1824         cond_delay(nfc_op.rdy_delay_ns);
1825     }
1826 
1827     marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1828     ret = marvell_nfc_wait_cmdd(chip);
1829     if (ret)
1830         return ret;
1831 
1832     cond_delay(nfc_op.data_delay_ns);
1833 
1834     if (!reading) {
1835         if (nfc_op.rdy_timeout_ms) {
1836             ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1837             if (ret)
1838                 return ret;
1839         }
1840 
1841         cond_delay(nfc_op.rdy_delay_ns);
1842     }
1843 
1844     /*
1845      * NDCR ND_RUN bit should be cleared automatically at the end of each
1846      * operation but experience shows that the behavior is buggy when it
1847      * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1848      */
1849     if (!reading) {
1850         struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1851 
1852         writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1853                    nfc->regs + NDCR);
1854     }
1855 
1856     return 0;
1857 }
1858 
1859 static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
1860                      const struct nand_subop *subop)
1861 {
1862     struct marvell_nfc_op nfc_op;
1863     int ret;
1864 
1865     marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1866 
1867     /*
1868      * Naked access are different in that they need to be flagged as naked
1869      * by the controller. Reset the controller registers fields that inform
1870      * on the type and refill them according to the ongoing operation.
1871      */
1872     nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
1873                 NDCB0_CMD_XTYPE(XTYPE_MASK));
1874     switch (subop->instrs[0].type) {
1875     case NAND_OP_CMD_INSTR:
1876         nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
1877         break;
1878     case NAND_OP_ADDR_INSTR:
1879         nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
1880         break;
1881     case NAND_OP_DATA_IN_INSTR:
1882         nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
1883                   NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1884         break;
1885     case NAND_OP_DATA_OUT_INSTR:
1886         nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
1887                   NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1888         break;
1889     default:
1890         /* This should never happen */
1891         break;
1892     }
1893 
1894     ret = marvell_nfc_prepare_cmd(chip);
1895     if (ret)
1896         return ret;
1897 
1898     marvell_nfc_send_cmd(chip, &nfc_op);
1899 
1900     if (!nfc_op.data_instr) {
1901         ret = marvell_nfc_wait_cmdd(chip);
1902         cond_delay(nfc_op.cle_ale_delay_ns);
1903         return ret;
1904     }
1905 
1906     ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1907                   "RDDREQ/WRDREQ while draining raw data");
1908     if (ret)
1909         return ret;
1910 
1911     marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1912     ret = marvell_nfc_wait_cmdd(chip);
1913     if (ret)
1914         return ret;
1915 
1916     /*
1917      * NDCR ND_RUN bit should be cleared automatically at the end of each
1918      * operation but experience shows that the behavior is buggy when it
1919      * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1920      */
1921     if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
1922         struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1923 
1924         writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1925                    nfc->regs + NDCR);
1926     }
1927 
1928     return 0;
1929 }
1930 
1931 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
1932                       const struct nand_subop *subop)
1933 {
1934     struct marvell_nfc_op nfc_op;
1935     int ret;
1936 
1937     marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1938 
1939     ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1940     cond_delay(nfc_op.rdy_delay_ns);
1941 
1942     return ret;
1943 }
1944 
1945 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
1946                      const struct nand_subop *subop)
1947 {
1948     struct marvell_nfc_op nfc_op;
1949     int ret;
1950 
1951     marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1952     nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1953     nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
1954 
1955     ret = marvell_nfc_prepare_cmd(chip);
1956     if (ret)
1957         return ret;
1958 
1959     marvell_nfc_send_cmd(chip, &nfc_op);
1960     ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1961                   "RDDREQ while reading ID");
1962     if (ret)
1963         return ret;
1964 
1965     cond_delay(nfc_op.cle_ale_delay_ns);
1966 
1967     if (nfc_op.rdy_timeout_ms) {
1968         ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1969         if (ret)
1970             return ret;
1971     }
1972 
1973     cond_delay(nfc_op.rdy_delay_ns);
1974 
1975     marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1976     ret = marvell_nfc_wait_cmdd(chip);
1977     if (ret)
1978         return ret;
1979 
1980     cond_delay(nfc_op.data_delay_ns);
1981 
1982     return 0;
1983 }
1984 
1985 static int marvell_nfc_read_status_exec(struct nand_chip *chip,
1986                     const struct nand_subop *subop)
1987 {
1988     struct marvell_nfc_op nfc_op;
1989     int ret;
1990 
1991     marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1992     nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1993     nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
1994 
1995     ret = marvell_nfc_prepare_cmd(chip);
1996     if (ret)
1997         return ret;
1998 
1999     marvell_nfc_send_cmd(chip, &nfc_op);
2000     ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
2001                   "RDDREQ while reading status");
2002     if (ret)
2003         return ret;
2004 
2005     cond_delay(nfc_op.cle_ale_delay_ns);
2006 
2007     if (nfc_op.rdy_timeout_ms) {
2008         ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2009         if (ret)
2010             return ret;
2011     }
2012 
2013     cond_delay(nfc_op.rdy_delay_ns);
2014 
2015     marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
2016     ret = marvell_nfc_wait_cmdd(chip);
2017     if (ret)
2018         return ret;
2019 
2020     cond_delay(nfc_op.data_delay_ns);
2021 
2022     return 0;
2023 }
2024 
2025 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
2026                        const struct nand_subop *subop)
2027 {
2028     struct marvell_nfc_op nfc_op;
2029     int ret;
2030 
2031     marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2032     nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
2033 
2034     ret = marvell_nfc_prepare_cmd(chip);
2035     if (ret)
2036         return ret;
2037 
2038     marvell_nfc_send_cmd(chip, &nfc_op);
2039     ret = marvell_nfc_wait_cmdd(chip);
2040     if (ret)
2041         return ret;
2042 
2043     cond_delay(nfc_op.cle_ale_delay_ns);
2044 
2045     ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2046     if (ret)
2047         return ret;
2048 
2049     cond_delay(nfc_op.rdy_delay_ns);
2050 
2051     return 0;
2052 }
2053 
2054 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
2055                        const struct nand_subop *subop)
2056 {
2057     struct marvell_nfc_op nfc_op;
2058     int ret;
2059 
2060     marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2061     nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
2062 
2063     ret = marvell_nfc_prepare_cmd(chip);
2064     if (ret)
2065         return ret;
2066 
2067     marvell_nfc_send_cmd(chip, &nfc_op);
2068     ret = marvell_nfc_wait_cmdd(chip);
2069     if (ret)
2070         return ret;
2071 
2072     cond_delay(nfc_op.cle_ale_delay_ns);
2073 
2074     ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2075     if (ret)
2076         return ret;
2077 
2078     cond_delay(nfc_op.rdy_delay_ns);
2079 
2080     return 0;
2081 }
2082 
2083 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
2084     /* Monolithic reads/writes */
2085     NAND_OP_PARSER_PATTERN(
2086         marvell_nfc_monolithic_access_exec,
2087         NAND_OP_PARSER_PAT_CMD_ELEM(false),
2088         NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
2089         NAND_OP_PARSER_PAT_CMD_ELEM(true),
2090         NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
2091         NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2092     NAND_OP_PARSER_PATTERN(
2093         marvell_nfc_monolithic_access_exec,
2094         NAND_OP_PARSER_PAT_CMD_ELEM(false),
2095         NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
2096         NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
2097         NAND_OP_PARSER_PAT_CMD_ELEM(true),
2098         NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
2099     /* Naked commands */
2100     NAND_OP_PARSER_PATTERN(
2101         marvell_nfc_naked_access_exec,
2102         NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2103     NAND_OP_PARSER_PATTERN(
2104         marvell_nfc_naked_access_exec,
2105         NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
2106     NAND_OP_PARSER_PATTERN(
2107         marvell_nfc_naked_access_exec,
2108         NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2109     NAND_OP_PARSER_PATTERN(
2110         marvell_nfc_naked_access_exec,
2111         NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
2112     NAND_OP_PARSER_PATTERN(
2113         marvell_nfc_naked_waitrdy_exec,
2114         NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2115     );
2116 
2117 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
2118     /* Naked commands not supported, use a function for each pattern */
2119     NAND_OP_PARSER_PATTERN(
2120         marvell_nfc_read_id_type_exec,
2121         NAND_OP_PARSER_PAT_CMD_ELEM(false),
2122         NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2123         NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
2124     NAND_OP_PARSER_PATTERN(
2125         marvell_nfc_erase_cmd_type_exec,
2126         NAND_OP_PARSER_PAT_CMD_ELEM(false),
2127         NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2128         NAND_OP_PARSER_PAT_CMD_ELEM(false),
2129         NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2130     NAND_OP_PARSER_PATTERN(
2131         marvell_nfc_read_status_exec,
2132         NAND_OP_PARSER_PAT_CMD_ELEM(false),
2133         NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
2134     NAND_OP_PARSER_PATTERN(
2135         marvell_nfc_reset_cmd_type_exec,
2136         NAND_OP_PARSER_PAT_CMD_ELEM(false),
2137         NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2138     NAND_OP_PARSER_PATTERN(
2139         marvell_nfc_naked_waitrdy_exec,
2140         NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2141     );
2142 
2143 static int marvell_nfc_exec_op(struct nand_chip *chip,
2144                    const struct nand_operation *op,
2145                    bool check_only)
2146 {
2147     struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2148 
2149     if (!check_only)
2150         marvell_nfc_select_target(chip, op->cs);
2151 
2152     if (nfc->caps->is_nfcv2)
2153         return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
2154                           op, check_only);
2155     else
2156         return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
2157                           op, check_only);
2158 }
2159 
2160 /*
2161  * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2162  * usable.
2163  */
2164 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2165                       struct mtd_oob_region *oobregion)
2166 {
2167     struct nand_chip *chip = mtd_to_nand(mtd);
2168     const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2169 
2170     if (section)
2171         return -ERANGE;
2172 
2173     oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
2174                 lt->last_ecc_bytes;
2175     oobregion->offset = mtd->oobsize - oobregion->length;
2176 
2177     return 0;
2178 }
2179 
2180 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
2181                        struct mtd_oob_region *oobregion)
2182 {
2183     struct nand_chip *chip = mtd_to_nand(mtd);
2184     const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2185 
2186     if (section)
2187         return -ERANGE;
2188 
2189     /*
2190      * Bootrom looks in bytes 0 & 5 for bad blocks for the
2191      * 4KB page / 4bit BCH combination.
2192      */
2193     if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
2194         oobregion->offset = 6;
2195     else
2196         oobregion->offset = 2;
2197 
2198     oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
2199                 lt->last_spare_bytes - oobregion->offset;
2200 
2201     return 0;
2202 }
2203 
2204 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
2205     .ecc = marvell_nand_ooblayout_ecc,
2206     .free = marvell_nand_ooblayout_free,
2207 };
2208 
2209 static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd,
2210                            struct nand_ecc_ctrl *ecc)
2211 {
2212     struct nand_chip *chip = mtd_to_nand(mtd);
2213     struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2214     const struct marvell_hw_ecc_layout *l;
2215     int i;
2216 
2217     if (!nfc->caps->is_nfcv2 &&
2218         (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
2219         dev_err(nfc->dev,
2220             "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2221             mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
2222         return -ENOTSUPP;
2223     }
2224 
2225     to_marvell_nand(chip)->layout = NULL;
2226     for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
2227         l = &marvell_nfc_layouts[i];
2228         if (mtd->writesize == l->writesize &&
2229             ecc->size == l->chunk && ecc->strength == l->strength) {
2230             to_marvell_nand(chip)->layout = l;
2231             break;
2232         }
2233     }
2234 
2235     if (!to_marvell_nand(chip)->layout ||
2236         (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
2237         dev_err(nfc->dev,
2238             "ECC strength %d at page size %d is not supported\n",
2239             ecc->strength, mtd->writesize);
2240         return -ENOTSUPP;
2241     }
2242 
2243     /* Special care for the layout 2k/8-bit/512B  */
2244     if (l->writesize == 2048 && l->strength == 8) {
2245         if (mtd->oobsize < 128) {
2246             dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n");
2247             return -ENOTSUPP;
2248         } else {
2249             chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2250         }
2251     }
2252 
2253     mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
2254     ecc->steps = l->nchunks;
2255     ecc->size = l->data_bytes;
2256 
2257     if (ecc->strength == 1) {
2258         chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2259         ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
2260         ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
2261         ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
2262         ecc->read_oob = ecc->read_oob_raw;
2263         ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
2264         ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
2265         ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
2266         ecc->write_oob = ecc->write_oob_raw;
2267     } else {
2268         chip->ecc.algo = NAND_ECC_ALGO_BCH;
2269         ecc->strength = 16;
2270         ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
2271         ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
2272         ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
2273         ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
2274         ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
2275         ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
2276         ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
2277         ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
2278     }
2279 
2280     return 0;
2281 }
2282 
2283 static int marvell_nand_ecc_init(struct mtd_info *mtd,
2284                  struct nand_ecc_ctrl *ecc)
2285 {
2286     struct nand_chip *chip = mtd_to_nand(mtd);
2287     const struct nand_ecc_props *requirements =
2288         nanddev_get_ecc_requirements(&chip->base);
2289     struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2290     int ret;
2291 
2292     if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
2293         (!ecc->size || !ecc->strength)) {
2294         if (requirements->step_size && requirements->strength) {
2295             ecc->size = requirements->step_size;
2296             ecc->strength = requirements->strength;
2297         } else {
2298             dev_info(nfc->dev,
2299                  "No minimum ECC strength, using 1b/512B\n");
2300             ecc->size = 512;
2301             ecc->strength = 1;
2302         }
2303     }
2304 
2305     switch (ecc->engine_type) {
2306     case NAND_ECC_ENGINE_TYPE_ON_HOST:
2307         ret = marvell_nand_hw_ecc_controller_init(mtd, ecc);
2308         if (ret)
2309             return ret;
2310         break;
2311     case NAND_ECC_ENGINE_TYPE_NONE:
2312     case NAND_ECC_ENGINE_TYPE_SOFT:
2313     case NAND_ECC_ENGINE_TYPE_ON_DIE:
2314         if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
2315             mtd->writesize != SZ_2K) {
2316             dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
2317                 mtd->writesize);
2318             return -EINVAL;
2319         }
2320         break;
2321     default:
2322         return -EINVAL;
2323     }
2324 
2325     return 0;
2326 }
2327 
2328 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
2329 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
2330 
2331 static struct nand_bbt_descr bbt_main_descr = {
2332     .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2333            NAND_BBT_2BIT | NAND_BBT_VERSION,
2334     .offs = 8,
2335     .len = 6,
2336     .veroffs = 14,
2337     .maxblocks = 8, /* Last 8 blocks in each chip */
2338     .pattern = bbt_pattern
2339 };
2340 
2341 static struct nand_bbt_descr bbt_mirror_descr = {
2342     .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2343            NAND_BBT_2BIT | NAND_BBT_VERSION,
2344     .offs = 8,
2345     .len = 6,
2346     .veroffs = 14,
2347     .maxblocks = 8, /* Last 8 blocks in each chip */
2348     .pattern = bbt_mirror_pattern
2349 };
2350 
2351 static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr,
2352                        const struct nand_interface_config *conf)
2353 {
2354     struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2355     struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2356     unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
2357     const struct nand_sdr_timings *sdr;
2358     struct marvell_nfc_timings nfc_tmg;
2359     int read_delay;
2360 
2361     sdr = nand_get_sdr_timings(conf);
2362     if (IS_ERR(sdr))
2363         return PTR_ERR(sdr);
2364 
2365     /*
2366      * SDR timings are given in pico-seconds while NFC timings must be
2367      * expressed in NAND controller clock cycles, which is half of the
2368      * frequency of the accessible ECC clock retrieved by clk_get_rate().
2369      * This is not written anywhere in the datasheet but was observed
2370      * with an oscilloscope.
2371      *
2372      * NFC datasheet gives equations from which thoses calculations
2373      * are derived, they tend to be slightly more restrictives than the
2374      * given core timings and may improve the overall speed.
2375      */
2376     nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
2377     nfc_tmg.tRH = nfc_tmg.tRP;
2378     nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
2379     nfc_tmg.tWH = nfc_tmg.tWP;
2380     nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
2381     nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
2382     nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
2383     /*
2384      * Read delay is the time of propagation from SoC pins to NFC internal
2385      * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2386      * EDO mode, an additional delay of tRH must be taken into account so
2387      * the data is sampled on the falling edge instead of the rising edge.
2388      */
2389     read_delay = sdr->tRC_min >= 30000 ?
2390         MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
2391 
2392     nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
2393     /*
2394      * tWHR and tRHW are supposed to be read to write delays (and vice
2395      * versa) but in some cases, ie. when doing a change column, they must
2396      * be greater than that to be sure tCCS delay is respected.
2397      */
2398     nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
2399                  period_ns) - 2;
2400     nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
2401                  period_ns);
2402 
2403     /*
2404      * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
2405      * NFCv1: No WAIT_MODE, tR must be maximal.
2406      */
2407     if (nfc->caps->is_nfcv2) {
2408         nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
2409     } else {
2410         nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
2411                      period_ns);
2412         if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
2413             nfc_tmg.tR = nfc_tmg.tCH - 3;
2414         else
2415             nfc_tmg.tR = 0;
2416     }
2417 
2418     if (chipnr < 0)
2419         return 0;
2420 
2421     marvell_nand->ndtr0 =
2422         NDTR0_TRP(nfc_tmg.tRP) |
2423         NDTR0_TRH(nfc_tmg.tRH) |
2424         NDTR0_ETRP(nfc_tmg.tRP) |
2425         NDTR0_TWP(nfc_tmg.tWP) |
2426         NDTR0_TWH(nfc_tmg.tWH) |
2427         NDTR0_TCS(nfc_tmg.tCS) |
2428         NDTR0_TCH(nfc_tmg.tCH);
2429 
2430     marvell_nand->ndtr1 =
2431         NDTR1_TAR(nfc_tmg.tAR) |
2432         NDTR1_TWHR(nfc_tmg.tWHR) |
2433         NDTR1_TR(nfc_tmg.tR);
2434 
2435     if (nfc->caps->is_nfcv2) {
2436         marvell_nand->ndtr0 |=
2437             NDTR0_RD_CNT_DEL(read_delay) |
2438             NDTR0_SELCNTR |
2439             NDTR0_TADL(nfc_tmg.tADL);
2440 
2441         marvell_nand->ndtr1 |=
2442             NDTR1_TRHW(nfc_tmg.tRHW) |
2443             NDTR1_WAIT_MODE;
2444     }
2445 
2446     return 0;
2447 }
2448 
2449 static int marvell_nand_attach_chip(struct nand_chip *chip)
2450 {
2451     struct mtd_info *mtd = nand_to_mtd(chip);
2452     struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2453     struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2454     struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev);
2455     int ret;
2456 
2457     if (pdata && pdata->flash_bbt)
2458         chip->bbt_options |= NAND_BBT_USE_FLASH;
2459 
2460     if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2461         /*
2462          * We'll use a bad block table stored in-flash and don't
2463          * allow writing the bad block marker to the flash.
2464          */
2465         chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2466         chip->bbt_td = &bbt_main_descr;
2467         chip->bbt_md = &bbt_mirror_descr;
2468     }
2469 
2470     /* Save the chip-specific fields of NDCR */
2471     marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
2472     if (chip->options & NAND_BUSWIDTH_16)
2473         marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
2474 
2475     /*
2476      * On small page NANDs, only one cycle is needed to pass the
2477      * column address.
2478      */
2479     if (mtd->writesize <= 512) {
2480         marvell_nand->addr_cyc = 1;
2481     } else {
2482         marvell_nand->addr_cyc = 2;
2483         marvell_nand->ndcr |= NDCR_RA_START;
2484     }
2485 
2486     /*
2487      * Now add the number of cycles needed to pass the row
2488      * address.
2489      *
2490      * Addressing a chip using CS 2 or 3 should also need the third row
2491      * cycle but due to inconsistance in the documentation and lack of
2492      * hardware to test this situation, this case is not supported.
2493      */
2494     if (chip->options & NAND_ROW_ADDR_3)
2495         marvell_nand->addr_cyc += 3;
2496     else
2497         marvell_nand->addr_cyc += 2;
2498 
2499     if (pdata) {
2500         chip->ecc.size = pdata->ecc_step_size;
2501         chip->ecc.strength = pdata->ecc_strength;
2502     }
2503 
2504     ret = marvell_nand_ecc_init(mtd, &chip->ecc);
2505     if (ret) {
2506         dev_err(nfc->dev, "ECC init failed: %d\n", ret);
2507         return ret;
2508     }
2509 
2510     if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
2511         /*
2512          * Subpage write not available with hardware ECC, prohibit also
2513          * subpage read as in userspace subpage access would still be
2514          * allowed and subpage write, if used, would lead to numerous
2515          * uncorrectable ECC errors.
2516          */
2517         chip->options |= NAND_NO_SUBPAGE_WRITE;
2518     }
2519 
2520     if (pdata || nfc->caps->legacy_of_bindings) {
2521         /*
2522          * We keep the MTD name unchanged to avoid breaking platforms
2523          * where the MTD cmdline parser is used and the bootloader
2524          * has not been updated to use the new naming scheme.
2525          */
2526         mtd->name = "pxa3xx_nand-0";
2527     } else if (!mtd->name) {
2528         /*
2529          * If the new bindings are used and the bootloader has not been
2530          * updated to pass a new mtdparts parameter on the cmdline, you
2531          * should define the following property in your NAND node, ie:
2532          *
2533          *  label = "main-storage";
2534          *
2535          * This way, mtd->name will be set by the core when
2536          * nand_set_flash_node() is called.
2537          */
2538         mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
2539                        "%s:nand.%d", dev_name(nfc->dev),
2540                        marvell_nand->sels[0].cs);
2541         if (!mtd->name) {
2542             dev_err(nfc->dev, "Failed to allocate mtd->name\n");
2543             return -ENOMEM;
2544         }
2545     }
2546 
2547     return 0;
2548 }
2549 
2550 static const struct nand_controller_ops marvell_nand_controller_ops = {
2551     .attach_chip = marvell_nand_attach_chip,
2552     .exec_op = marvell_nfc_exec_op,
2553     .setup_interface = marvell_nfc_setup_interface,
2554 };
2555 
2556 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
2557                   struct device_node *np)
2558 {
2559     struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
2560     struct marvell_nand_chip *marvell_nand;
2561     struct mtd_info *mtd;
2562     struct nand_chip *chip;
2563     int nsels, ret, i;
2564     u32 cs, rb;
2565 
2566     /*
2567      * The legacy "num-cs" property indicates the number of CS on the only
2568      * chip connected to the controller (legacy bindings does not support
2569      * more than one chip). The CS and RB pins are always the #0.
2570      *
2571      * When not using legacy bindings, a couple of "reg" and "nand-rb"
2572      * properties must be filled. For each chip, expressed as a subnode,
2573      * "reg" points to the CS lines and "nand-rb" to the RB line.
2574      */
2575     if (pdata || nfc->caps->legacy_of_bindings) {
2576         nsels = 1;
2577     } else {
2578         nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2579         if (nsels <= 0) {
2580             dev_err(dev, "missing/invalid reg property\n");
2581             return -EINVAL;
2582         }
2583     }
2584 
2585     /* Alloc the nand chip structure */
2586     marvell_nand = devm_kzalloc(dev,
2587                     struct_size(marvell_nand, sels, nsels),
2588                     GFP_KERNEL);
2589     if (!marvell_nand) {
2590         dev_err(dev, "could not allocate chip structure\n");
2591         return -ENOMEM;
2592     }
2593 
2594     marvell_nand->nsels = nsels;
2595     marvell_nand->selected_die = -1;
2596 
2597     for (i = 0; i < nsels; i++) {
2598         if (pdata || nfc->caps->legacy_of_bindings) {
2599             /*
2600              * Legacy bindings use the CS lines in natural
2601              * order (0, 1, ...)
2602              */
2603             cs = i;
2604         } else {
2605             /* Retrieve CS id */
2606             ret = of_property_read_u32_index(np, "reg", i, &cs);
2607             if (ret) {
2608                 dev_err(dev, "could not retrieve reg property: %d\n",
2609                     ret);
2610                 return ret;
2611             }
2612         }
2613 
2614         if (cs >= nfc->caps->max_cs_nb) {
2615             dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
2616                 cs, nfc->caps->max_cs_nb);
2617             return -EINVAL;
2618         }
2619 
2620         if (test_and_set_bit(cs, &nfc->assigned_cs)) {
2621             dev_err(dev, "CS %d already assigned\n", cs);
2622             return -EINVAL;
2623         }
2624 
2625         /*
2626          * The cs variable represents the chip select id, which must be
2627          * converted in bit fields for NDCB0 and NDCB2 to select the
2628          * right chip. Unfortunately, due to a lack of information on
2629          * the subject and incoherent documentation, the user should not
2630          * use CS1 and CS3 at all as asserting them is not supported in
2631          * a reliable way (due to multiplexing inside ADDR5 field).
2632          */
2633         marvell_nand->sels[i].cs = cs;
2634         switch (cs) {
2635         case 0:
2636         case 2:
2637             marvell_nand->sels[i].ndcb0_csel = 0;
2638             break;
2639         case 1:
2640         case 3:
2641             marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
2642             break;
2643         default:
2644             return -EINVAL;
2645         }
2646 
2647         /* Retrieve RB id */
2648         if (pdata || nfc->caps->legacy_of_bindings) {
2649             /* Legacy bindings always use RB #0 */
2650             rb = 0;
2651         } else {
2652             ret = of_property_read_u32_index(np, "nand-rb", i,
2653                              &rb);
2654             if (ret) {
2655                 dev_err(dev,
2656                     "could not retrieve RB property: %d\n",
2657                     ret);
2658                 return ret;
2659             }
2660         }
2661 
2662         if (rb >= nfc->caps->max_rb_nb) {
2663             dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
2664                 rb, nfc->caps->max_rb_nb);
2665             return -EINVAL;
2666         }
2667 
2668         marvell_nand->sels[i].rb = rb;
2669     }
2670 
2671     chip = &marvell_nand->chip;
2672     chip->controller = &nfc->controller;
2673     nand_set_flash_node(chip, np);
2674 
2675     if (!of_property_read_bool(np, "marvell,nand-keep-config"))
2676         chip->options |= NAND_KEEP_TIMINGS;
2677 
2678     mtd = nand_to_mtd(chip);
2679     mtd->dev.parent = dev;
2680 
2681     /*
2682      * Save a reference value for timing registers before
2683      * ->setup_interface() is called.
2684      */
2685     marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
2686     marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
2687 
2688     chip->options |= NAND_BUSWIDTH_AUTO;
2689 
2690     ret = nand_scan(chip, marvell_nand->nsels);
2691     if (ret) {
2692         dev_err(dev, "could not scan the nand chip\n");
2693         return ret;
2694     }
2695 
2696     if (pdata)
2697         /* Legacy bindings support only one chip */
2698         ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2699     else
2700         ret = mtd_device_register(mtd, NULL, 0);
2701     if (ret) {
2702         dev_err(dev, "failed to register mtd device: %d\n", ret);
2703         nand_cleanup(chip);
2704         return ret;
2705     }
2706 
2707     list_add_tail(&marvell_nand->node, &nfc->chips);
2708 
2709     return 0;
2710 }
2711 
2712 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
2713 {
2714     struct marvell_nand_chip *entry, *temp;
2715     struct nand_chip *chip;
2716     int ret;
2717 
2718     list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
2719         chip = &entry->chip;
2720         ret = mtd_device_unregister(nand_to_mtd(chip));
2721         WARN_ON(ret);
2722         nand_cleanup(chip);
2723         list_del(&entry->node);
2724     }
2725 }
2726 
2727 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
2728 {
2729     struct device_node *np = dev->of_node;
2730     struct device_node *nand_np;
2731     int max_cs = nfc->caps->max_cs_nb;
2732     int nchips;
2733     int ret;
2734 
2735     if (!np)
2736         nchips = 1;
2737     else
2738         nchips = of_get_child_count(np);
2739 
2740     if (nchips > max_cs) {
2741         dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
2742             max_cs);
2743         return -EINVAL;
2744     }
2745 
2746     /*
2747      * Legacy bindings do not use child nodes to exhibit NAND chip
2748      * properties and layout. Instead, NAND properties are mixed with the
2749      * controller ones, and partitions are defined as direct subnodes of the
2750      * NAND controller node.
2751      */
2752     if (nfc->caps->legacy_of_bindings) {
2753         ret = marvell_nand_chip_init(dev, nfc, np);
2754         return ret;
2755     }
2756 
2757     for_each_child_of_node(np, nand_np) {
2758         ret = marvell_nand_chip_init(dev, nfc, nand_np);
2759         if (ret) {
2760             of_node_put(nand_np);
2761             goto cleanup_chips;
2762         }
2763     }
2764 
2765     return 0;
2766 
2767 cleanup_chips:
2768     marvell_nand_chips_cleanup(nfc);
2769 
2770     return ret;
2771 }
2772 
2773 static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
2774 {
2775     struct platform_device *pdev = container_of(nfc->dev,
2776                             struct platform_device,
2777                             dev);
2778     struct dma_slave_config config = {};
2779     struct resource *r;
2780     int ret;
2781 
2782     if (!IS_ENABLED(CONFIG_PXA_DMA)) {
2783         dev_warn(nfc->dev,
2784              "DMA not enabled in configuration\n");
2785         return -ENOTSUPP;
2786     }
2787 
2788     ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
2789     if (ret)
2790         return ret;
2791 
2792     nfc->dma_chan = dma_request_chan(nfc->dev, "data");
2793     if (IS_ERR(nfc->dma_chan)) {
2794         ret = PTR_ERR(nfc->dma_chan);
2795         nfc->dma_chan = NULL;
2796         return dev_err_probe(nfc->dev, ret, "DMA channel request failed\n");
2797     }
2798 
2799     r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2800     if (!r) {
2801         ret = -ENXIO;
2802         goto release_channel;
2803     }
2804 
2805     config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2806     config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2807     config.src_addr = r->start + NDDB;
2808     config.dst_addr = r->start + NDDB;
2809     config.src_maxburst = 32;
2810     config.dst_maxburst = 32;
2811     ret = dmaengine_slave_config(nfc->dma_chan, &config);
2812     if (ret < 0) {
2813         dev_err(nfc->dev, "Failed to configure DMA channel\n");
2814         goto release_channel;
2815     }
2816 
2817     /*
2818      * DMA must act on length multiple of 32 and this length may be
2819      * bigger than the destination buffer. Use this buffer instead
2820      * for DMA transfers and then copy the desired amount of data to
2821      * the provided buffer.
2822      */
2823     nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
2824     if (!nfc->dma_buf) {
2825         ret = -ENOMEM;
2826         goto release_channel;
2827     }
2828 
2829     nfc->use_dma = true;
2830 
2831     return 0;
2832 
2833 release_channel:
2834     dma_release_channel(nfc->dma_chan);
2835     nfc->dma_chan = NULL;
2836 
2837     return ret;
2838 }
2839 
2840 static void marvell_nfc_reset(struct marvell_nfc *nfc)
2841 {
2842     /*
2843      * ECC operations and interruptions are only enabled when specifically
2844      * needed. ECC shall not be activated in the early stages (fails probe).
2845      * Arbiter flag, even if marked as "reserved", must be set (empirical).
2846      * SPARE_EN bit must always be set or ECC bytes will not be at the same
2847      * offset in the read page and this will fail the protection.
2848      */
2849     writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
2850                NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
2851     writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
2852     writel_relaxed(0, nfc->regs + NDECCCTRL);
2853 }
2854 
2855 static int marvell_nfc_init(struct marvell_nfc *nfc)
2856 {
2857     struct device_node *np = nfc->dev->of_node;
2858 
2859     /*
2860      * Some SoCs like A7k/A8k need to enable manually the NAND
2861      * controller, gated clocks and reset bits to avoid being bootloader
2862      * dependent. This is done through the use of the System Functions
2863      * registers.
2864      */
2865     if (nfc->caps->need_system_controller) {
2866         struct regmap *sysctrl_base =
2867             syscon_regmap_lookup_by_phandle(np,
2868                             "marvell,system-controller");
2869 
2870         if (IS_ERR(sysctrl_base))
2871             return PTR_ERR(sysctrl_base);
2872 
2873         regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX,
2874                  GENCONF_SOC_DEVICE_MUX_NFC_EN |
2875                  GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
2876                  GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
2877                  GENCONF_SOC_DEVICE_MUX_NFC_INT_EN);
2878 
2879         regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL,
2880                    GENCONF_CLK_GATING_CTRL_ND_GATE,
2881                    GENCONF_CLK_GATING_CTRL_ND_GATE);
2882 
2883         regmap_update_bits(sysctrl_base, GENCONF_ND_CLK_CTRL,
2884                    GENCONF_ND_CLK_CTRL_EN,
2885                    GENCONF_ND_CLK_CTRL_EN);
2886     }
2887 
2888     /* Configure the DMA if appropriate */
2889     if (!nfc->caps->is_nfcv2)
2890         marvell_nfc_init_dma(nfc);
2891 
2892     marvell_nfc_reset(nfc);
2893 
2894     return 0;
2895 }
2896 
2897 static int marvell_nfc_probe(struct platform_device *pdev)
2898 {
2899     struct device *dev = &pdev->dev;
2900     struct marvell_nfc *nfc;
2901     int ret;
2902     int irq;
2903 
2904     nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
2905                GFP_KERNEL);
2906     if (!nfc)
2907         return -ENOMEM;
2908 
2909     nfc->dev = dev;
2910     nand_controller_init(&nfc->controller);
2911     nfc->controller.ops = &marvell_nand_controller_ops;
2912     INIT_LIST_HEAD(&nfc->chips);
2913 
2914     nfc->regs = devm_platform_ioremap_resource(pdev, 0);
2915     if (IS_ERR(nfc->regs))
2916         return PTR_ERR(nfc->regs);
2917 
2918     irq = platform_get_irq(pdev, 0);
2919     if (irq < 0)
2920         return irq;
2921 
2922     nfc->core_clk = devm_clk_get(&pdev->dev, "core");
2923 
2924     /* Managed the legacy case (when the first clock was not named) */
2925     if (nfc->core_clk == ERR_PTR(-ENOENT))
2926         nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
2927 
2928     if (IS_ERR(nfc->core_clk))
2929         return PTR_ERR(nfc->core_clk);
2930 
2931     ret = clk_prepare_enable(nfc->core_clk);
2932     if (ret)
2933         return ret;
2934 
2935     nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
2936     if (IS_ERR(nfc->reg_clk)) {
2937         if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
2938             ret = PTR_ERR(nfc->reg_clk);
2939             goto unprepare_core_clk;
2940         }
2941 
2942         nfc->reg_clk = NULL;
2943     }
2944 
2945     ret = clk_prepare_enable(nfc->reg_clk);
2946     if (ret)
2947         goto unprepare_core_clk;
2948 
2949     marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
2950     marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
2951     ret = devm_request_irq(dev, irq, marvell_nfc_isr,
2952                    0, "marvell-nfc", nfc);
2953     if (ret)
2954         goto unprepare_reg_clk;
2955 
2956     /* Get NAND controller capabilities */
2957     if (pdev->id_entry)
2958         nfc->caps = (void *)pdev->id_entry->driver_data;
2959     else
2960         nfc->caps = of_device_get_match_data(&pdev->dev);
2961 
2962     if (!nfc->caps) {
2963         dev_err(dev, "Could not retrieve NFC caps\n");
2964         ret = -EINVAL;
2965         goto unprepare_reg_clk;
2966     }
2967 
2968     /* Init the controller and then probe the chips */
2969     ret = marvell_nfc_init(nfc);
2970     if (ret)
2971         goto unprepare_reg_clk;
2972 
2973     platform_set_drvdata(pdev, nfc);
2974 
2975     ret = marvell_nand_chips_init(dev, nfc);
2976     if (ret)
2977         goto release_dma;
2978 
2979     return 0;
2980 
2981 release_dma:
2982     if (nfc->use_dma)
2983         dma_release_channel(nfc->dma_chan);
2984 unprepare_reg_clk:
2985     clk_disable_unprepare(nfc->reg_clk);
2986 unprepare_core_clk:
2987     clk_disable_unprepare(nfc->core_clk);
2988 
2989     return ret;
2990 }
2991 
2992 static int marvell_nfc_remove(struct platform_device *pdev)
2993 {
2994     struct marvell_nfc *nfc = platform_get_drvdata(pdev);
2995 
2996     marvell_nand_chips_cleanup(nfc);
2997 
2998     if (nfc->use_dma) {
2999         dmaengine_terminate_all(nfc->dma_chan);
3000         dma_release_channel(nfc->dma_chan);
3001     }
3002 
3003     clk_disable_unprepare(nfc->reg_clk);
3004     clk_disable_unprepare(nfc->core_clk);
3005 
3006     return 0;
3007 }
3008 
3009 static int __maybe_unused marvell_nfc_suspend(struct device *dev)
3010 {
3011     struct marvell_nfc *nfc = dev_get_drvdata(dev);
3012     struct marvell_nand_chip *chip;
3013 
3014     list_for_each_entry(chip, &nfc->chips, node)
3015         marvell_nfc_wait_ndrun(&chip->chip);
3016 
3017     clk_disable_unprepare(nfc->reg_clk);
3018     clk_disable_unprepare(nfc->core_clk);
3019 
3020     return 0;
3021 }
3022 
3023 static int __maybe_unused marvell_nfc_resume(struct device *dev)
3024 {
3025     struct marvell_nfc *nfc = dev_get_drvdata(dev);
3026     int ret;
3027 
3028     ret = clk_prepare_enable(nfc->core_clk);
3029     if (ret < 0)
3030         return ret;
3031 
3032     ret = clk_prepare_enable(nfc->reg_clk);
3033     if (ret < 0) {
3034         clk_disable_unprepare(nfc->core_clk);
3035         return ret;
3036     }
3037 
3038     /*
3039      * Reset nfc->selected_chip so the next command will cause the timing
3040      * registers to be restored in marvell_nfc_select_target().
3041      */
3042     nfc->selected_chip = NULL;
3043 
3044     /* Reset registers that have lost their contents */
3045     marvell_nfc_reset(nfc);
3046 
3047     return 0;
3048 }
3049 
3050 static const struct dev_pm_ops marvell_nfc_pm_ops = {
3051     SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume)
3052 };
3053 
3054 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
3055     .max_cs_nb = 4,
3056     .max_rb_nb = 2,
3057     .need_system_controller = true,
3058     .is_nfcv2 = true,
3059 };
3060 
3061 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
3062     .max_cs_nb = 4,
3063     .max_rb_nb = 2,
3064     .is_nfcv2 = true,
3065 };
3066 
3067 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
3068     .max_cs_nb = 2,
3069     .max_rb_nb = 1,
3070     .use_dma = true,
3071 };
3072 
3073 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
3074     .max_cs_nb = 4,
3075     .max_rb_nb = 2,
3076     .need_system_controller = true,
3077     .legacy_of_bindings = true,
3078     .is_nfcv2 = true,
3079 };
3080 
3081 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
3082     .max_cs_nb = 4,
3083     .max_rb_nb = 2,
3084     .legacy_of_bindings = true,
3085     .is_nfcv2 = true,
3086 };
3087 
3088 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
3089     .max_cs_nb = 2,
3090     .max_rb_nb = 1,
3091     .legacy_of_bindings = true,
3092     .use_dma = true,
3093 };
3094 
3095 static const struct platform_device_id marvell_nfc_platform_ids[] = {
3096     {
3097         .name = "pxa3xx-nand",
3098         .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
3099     },
3100     { /* sentinel */ },
3101 };
3102 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
3103 
3104 static const struct of_device_id marvell_nfc_of_ids[] = {
3105     {
3106         .compatible = "marvell,armada-8k-nand-controller",
3107         .data = &marvell_armada_8k_nfc_caps,
3108     },
3109     {
3110         .compatible = "marvell,armada370-nand-controller",
3111         .data = &marvell_armada370_nfc_caps,
3112     },
3113     {
3114         .compatible = "marvell,pxa3xx-nand-controller",
3115         .data = &marvell_pxa3xx_nfc_caps,
3116     },
3117     /* Support for old/deprecated bindings: */
3118     {
3119         .compatible = "marvell,armada-8k-nand",
3120         .data = &marvell_armada_8k_nfc_legacy_caps,
3121     },
3122     {
3123         .compatible = "marvell,armada370-nand",
3124         .data = &marvell_armada370_nfc_legacy_caps,
3125     },
3126     {
3127         .compatible = "marvell,pxa3xx-nand",
3128         .data = &marvell_pxa3xx_nfc_legacy_caps,
3129     },
3130     { /* sentinel */ },
3131 };
3132 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
3133 
3134 static struct platform_driver marvell_nfc_driver = {
3135     .driver = {
3136         .name       = "marvell-nfc",
3137         .of_match_table = marvell_nfc_of_ids,
3138         .pm     = &marvell_nfc_pm_ops,
3139     },
3140     .id_table = marvell_nfc_platform_ids,
3141     .probe = marvell_nfc_probe,
3142     .remove = marvell_nfc_remove,
3143 };
3144 module_platform_driver(marvell_nfc_driver);
3145 
3146 MODULE_LICENSE("GPL");
3147 MODULE_DESCRIPTION("Marvell NAND controller driver");