Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0+
0002 /*
0003  * Cadence NAND flash controller driver
0004  *
0005  * Copyright (C) 2019 Cadence
0006  *
0007  * Author: Piotr Sroka <piotrs@cadence.com>
0008  */
0009 
0010 #include <linux/bitfield.h>
0011 #include <linux/clk.h>
0012 #include <linux/dma-mapping.h>
0013 #include <linux/dmaengine.h>
0014 #include <linux/interrupt.h>
0015 #include <linux/module.h>
0016 #include <linux/mtd/mtd.h>
0017 #include <linux/mtd/rawnand.h>
0018 #include <linux/of_device.h>
0019 #include <linux/iopoll.h>
0020 #include <linux/slab.h>
0021 
0022 /*
0023  * HPNFC can work in 3 modes:
0024  * -  PIO - can work in master or slave DMA
0025  * -  CDMA - needs Master DMA for accessing command descriptors.
0026  * -  Generic mode - can use only slave DMA.
0027  * CDMA and PIO modes can be used to execute only base commands.
0028  * Generic mode can be used to execute any command
0029  * on NAND flash memory. Driver uses CDMA mode for
0030  * block erasing, page reading, page programing.
0031  * Generic mode is used for executing rest of commands.
0032  */
0033 
0034 #define MAX_ADDRESS_CYC     6
0035 #define MAX_ERASE_ADDRESS_CYC   3
0036 #define MAX_DATA_SIZE       0xFFFC
0037 #define DMA_DATA_SIZE_ALIGN 8
0038 
0039 /* Register definition. */
0040 /*
0041  * Command register 0.
0042  * Writing data to this register will initiate a new transaction
0043  * of the NF controller.
0044  */
0045 #define CMD_REG0            0x0000
0046 /* Command type field mask. */
0047 #define     CMD_REG0_CT     GENMASK(31, 30)
0048 /* Command type CDMA. */
0049 #define     CMD_REG0_CT_CDMA    0uL
0050 /* Command type generic. */
0051 #define     CMD_REG0_CT_GEN     3uL
0052 /* Command thread number field mask. */
0053 #define     CMD_REG0_TN     GENMASK(27, 24)
0054 
0055 /* Command register 2. */
0056 #define CMD_REG2            0x0008
0057 /* Command register 3. */
0058 #define CMD_REG3            0x000C
0059 /* Pointer register to select which thread status will be selected. */
0060 #define CMD_STATUS_PTR          0x0010
0061 /* Command status register for selected thread. */
0062 #define CMD_STATUS          0x0014
0063 
0064 /* Interrupt status register. */
0065 #define INTR_STATUS         0x0110
0066 #define     INTR_STATUS_SDMA_ERR    BIT(22)
0067 #define     INTR_STATUS_SDMA_TRIGG  BIT(21)
0068 #define     INTR_STATUS_UNSUPP_CMD  BIT(19)
0069 #define     INTR_STATUS_DDMA_TERR   BIT(18)
0070 #define     INTR_STATUS_CDMA_TERR   BIT(17)
0071 #define     INTR_STATUS_CDMA_IDL    BIT(16)
0072 
0073 /* Interrupt enable register. */
0074 #define INTR_ENABLE             0x0114
0075 #define     INTR_ENABLE_INTR_EN     BIT(31)
0076 #define     INTR_ENABLE_SDMA_ERR_EN     BIT(22)
0077 #define     INTR_ENABLE_SDMA_TRIGG_EN   BIT(21)
0078 #define     INTR_ENABLE_UNSUPP_CMD_EN   BIT(19)
0079 #define     INTR_ENABLE_DDMA_TERR_EN    BIT(18)
0080 #define     INTR_ENABLE_CDMA_TERR_EN    BIT(17)
0081 #define     INTR_ENABLE_CDMA_IDLE_EN    BIT(16)
0082 
0083 /* Controller internal state. */
0084 #define CTRL_STATUS             0x0118
0085 #define     CTRL_STATUS_INIT_COMP       BIT(9)
0086 #define     CTRL_STATUS_CTRL_BUSY       BIT(8)
0087 
0088 /* Command Engine threads state. */
0089 #define TRD_STATUS              0x0120
0090 
0091 /* Command Engine interrupt thread error status. */
0092 #define TRD_ERR_INT_STATUS          0x0128
0093 /* Command Engine interrupt thread error enable. */
0094 #define TRD_ERR_INT_STATUS_EN           0x0130
0095 /* Command Engine interrupt thread complete status. */
0096 #define TRD_COMP_INT_STATUS         0x0138
0097 
0098 /*
0099  * Transfer config 0 register.
0100  * Configures data transfer parameters.
0101  */
0102 #define TRAN_CFG_0              0x0400
0103 /* Offset value from the beginning of the page. */
0104 #define     TRAN_CFG_0_OFFSET       GENMASK(31, 16)
0105 /* Numbers of sectors to transfer within singlNF device's page. */
0106 #define     TRAN_CFG_0_SEC_CNT      GENMASK(7, 0)
0107 
0108 /*
0109  * Transfer config 1 register.
0110  * Configures data transfer parameters.
0111  */
0112 #define TRAN_CFG_1              0x0404
0113 /* Size of last data sector. */
0114 #define     TRAN_CFG_1_LAST_SEC_SIZE    GENMASK(31, 16)
0115 /* Size of not-last data sector. */
0116 #define     TRAN_CFG_1_SECTOR_SIZE      GENMASK(15, 0)
0117 
0118 /* ECC engine configuration register 0. */
0119 #define ECC_CONFIG_0                0x0428
0120 /* Correction strength. */
0121 #define     ECC_CONFIG_0_CORR_STR       GENMASK(10, 8)
0122 /* Enable erased pages detection mechanism. */
0123 #define     ECC_CONFIG_0_ERASE_DET_EN   BIT(1)
0124 /* Enable controller ECC check bits generation and correction. */
0125 #define     ECC_CONFIG_0_ECC_EN     BIT(0)
0126 
0127 /* ECC engine configuration register 1. */
0128 #define ECC_CONFIG_1                0x042C
0129 
0130 /* Multiplane settings register. */
0131 #define MULTIPLANE_CFG              0x0434
0132 /* Cache operation settings. */
0133 #define CACHE_CFG               0x0438
0134 
0135 /* DMA settings register. */
0136 #define DMA_SETINGS             0x043C
0137 /* Enable SDMA error report on access unprepared slave DMA interface. */
0138 #define     DMA_SETINGS_SDMA_ERR_RSP    BIT(17)
0139 
0140 /* Transferred data block size for the slave DMA module. */
0141 #define SDMA_SIZE               0x0440
0142 
0143 /* Thread number associated with transferred data block
0144  * for the slave DMA module.
0145  */
0146 #define SDMA_TRD_NUM                0x0444
0147 /* Thread number mask. */
0148 #define     SDMA_TRD_NUM_SDMA_TRD       GENMASK(2, 0)
0149 
0150 #define CONTROL_DATA_CTRL           0x0494
0151 /* Thread number mask. */
0152 #define     CONTROL_DATA_CTRL_SIZE      GENMASK(15, 0)
0153 
0154 #define CTRL_VERSION                0x800
0155 #define     CTRL_VERSION_REV        GENMASK(7, 0)
0156 
0157 /* Available hardware features of the controller. */
0158 #define CTRL_FEATURES               0x804
0159 /* Support for NV-DDR2/3 work mode. */
0160 #define     CTRL_FEATURES_NVDDR_2_3     BIT(28)
0161 /* Support for NV-DDR work mode. */
0162 #define     CTRL_FEATURES_NVDDR     BIT(27)
0163 /* Support for asynchronous work mode. */
0164 #define     CTRL_FEATURES_ASYNC     BIT(26)
0165 /* Support for asynchronous work mode. */
0166 #define     CTRL_FEATURES_N_BANKS       GENMASK(25, 24)
0167 /* Slave and Master DMA data width. */
0168 #define     CTRL_FEATURES_DMA_DWITH64   BIT(21)
0169 /* Availability of Control Data feature.*/
0170 #define     CTRL_FEATURES_CONTROL_DATA  BIT(10)
0171 
0172 /* BCH Engine identification register 0 - correction strengths. */
0173 #define BCH_CFG_0               0x838
0174 #define     BCH_CFG_0_CORR_CAP_0        GENMASK(7, 0)
0175 #define     BCH_CFG_0_CORR_CAP_1        GENMASK(15, 8)
0176 #define     BCH_CFG_0_CORR_CAP_2        GENMASK(23, 16)
0177 #define     BCH_CFG_0_CORR_CAP_3        GENMASK(31, 24)
0178 
0179 /* BCH Engine identification register 1 - correction strengths. */
0180 #define BCH_CFG_1               0x83C
0181 #define     BCH_CFG_1_CORR_CAP_4        GENMASK(7, 0)
0182 #define     BCH_CFG_1_CORR_CAP_5        GENMASK(15, 8)
0183 #define     BCH_CFG_1_CORR_CAP_6        GENMASK(23, 16)
0184 #define     BCH_CFG_1_CORR_CAP_7        GENMASK(31, 24)
0185 
0186 /* BCH Engine identification register 2 - sector sizes. */
0187 #define BCH_CFG_2               0x840
0188 #define     BCH_CFG_2_SECT_0        GENMASK(15, 0)
0189 #define     BCH_CFG_2_SECT_1        GENMASK(31, 16)
0190 
0191 /* BCH Engine identification register 3. */
0192 #define BCH_CFG_3               0x844
0193 #define     BCH_CFG_3_METADATA_SIZE     GENMASK(23, 16)
0194 
0195 /* Ready/Busy# line status. */
0196 #define RBN_SETINGS             0x1004
0197 
0198 /* Common settings. */
0199 #define COMMON_SET              0x1008
0200 /* 16 bit device connected to the NAND Flash interface. */
0201 #define     COMMON_SET_DEVICE_16BIT     BIT(8)
0202 
0203 /* Skip_bytes registers. */
0204 #define SKIP_BYTES_CONF             0x100C
0205 #define     SKIP_BYTES_MARKER_VALUE     GENMASK(31, 16)
0206 #define     SKIP_BYTES_NUM_OF_BYTES     GENMASK(7, 0)
0207 
0208 #define SKIP_BYTES_OFFSET           0x1010
0209 #define      SKIP_BYTES_OFFSET_VALUE    GENMASK(23, 0)
0210 
0211 /* Timings configuration. */
0212 #define ASYNC_TOGGLE_TIMINGS            0x101c
0213 #define     ASYNC_TOGGLE_TIMINGS_TRH    GENMASK(28, 24)
0214 #define     ASYNC_TOGGLE_TIMINGS_TRP    GENMASK(20, 16)
0215 #define     ASYNC_TOGGLE_TIMINGS_TWH    GENMASK(12, 8)
0216 #define     ASYNC_TOGGLE_TIMINGS_TWP    GENMASK(4, 0)
0217 
0218 #define TIMINGS0                0x1024
0219 #define     TIMINGS0_TADL           GENMASK(31, 24)
0220 #define     TIMINGS0_TCCS           GENMASK(23, 16)
0221 #define     TIMINGS0_TWHR           GENMASK(15, 8)
0222 #define     TIMINGS0_TRHW           GENMASK(7, 0)
0223 
0224 #define TIMINGS1                0x1028
0225 #define     TIMINGS1_TRHZ           GENMASK(31, 24)
0226 #define     TIMINGS1_TWB            GENMASK(23, 16)
0227 #define     TIMINGS1_TVDLY          GENMASK(7, 0)
0228 
0229 #define TIMINGS2                0x102c
0230 #define     TIMINGS2_TFEAT          GENMASK(25, 16)
0231 #define     TIMINGS2_CS_HOLD_TIME       GENMASK(13, 8)
0232 #define     TIMINGS2_CS_SETUP_TIME      GENMASK(5, 0)
0233 
0234 /* Configuration of the resynchronization of slave DLL of PHY. */
0235 #define DLL_PHY_CTRL                0x1034
0236 #define     DLL_PHY_CTRL_DLL_RST_N      BIT(24)
0237 #define     DLL_PHY_CTRL_EXTENDED_WR_MODE   BIT(17)
0238 #define     DLL_PHY_CTRL_EXTENDED_RD_MODE   BIT(16)
0239 #define     DLL_PHY_CTRL_RS_HIGH_WAIT_CNT   GENMASK(11, 8)
0240 #define     DLL_PHY_CTRL_RS_IDLE_CNT    GENMASK(7, 0)
0241 
0242 /* Register controlling DQ related timing. */
0243 #define PHY_DQ_TIMING               0x2000
0244 /* Register controlling DSQ related timing.  */
0245 #define PHY_DQS_TIMING              0x2004
0246 #define     PHY_DQS_TIMING_DQS_SEL_OE_END   GENMASK(3, 0)
0247 #define     PHY_DQS_TIMING_PHONY_DQS_SEL    BIT(16)
0248 #define     PHY_DQS_TIMING_USE_PHONY_DQS    BIT(20)
0249 
0250 /* Register controlling the gate and loopback control related timing. */
0251 #define PHY_GATE_LPBK_CTRL          0x2008
0252 #define     PHY_GATE_LPBK_CTRL_RDS      GENMASK(24, 19)
0253 
0254 /* Register holds the control for the master DLL logic. */
0255 #define PHY_DLL_MASTER_CTRL         0x200C
0256 #define     PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23)
0257 
0258 /* Register holds the control for the slave DLL logic. */
0259 #define PHY_DLL_SLAVE_CTRL          0x2010
0260 
0261 /* This register handles the global control settings for the PHY. */
0262 #define PHY_CTRL                0x2080
0263 #define     PHY_CTRL_SDR_DQS        BIT(14)
0264 #define     PHY_CTRL_PHONY_DQS      GENMASK(9, 4)
0265 
0266 /*
0267  * This register handles the global control settings
0268  * for the termination selects for reads.
0269  */
0270 #define PHY_TSEL                0x2084
0271 
0272 /* Generic command layout. */
0273 #define GCMD_LAY_CS         GENMASK_ULL(11, 8)
0274 /*
0275  * This bit informs the minicotroller if it has to wait for tWB
0276  * after sending the last CMD/ADDR/DATA in the sequence.
0277  */
0278 #define GCMD_LAY_TWB            BIT_ULL(6)
0279 /* Type of generic instruction. */
0280 #define GCMD_LAY_INSTR          GENMASK_ULL(5, 0)
0281 
0282 /* Generic CMD sequence type. */
0283 #define     GCMD_LAY_INSTR_CMD  0
0284 /* Generic ADDR sequence type. */
0285 #define     GCMD_LAY_INSTR_ADDR 1
0286 /* Generic data transfer sequence type. */
0287 #define     GCMD_LAY_INSTR_DATA 2
0288 
0289 /* Input part of generic command type of input is command. */
0290 #define GCMD_LAY_INPUT_CMD      GENMASK_ULL(23, 16)
0291 
0292 /* Generic command address sequence - address fields. */
0293 #define GCMD_LAY_INPUT_ADDR     GENMASK_ULL(63, 16)
0294 /* Generic command address sequence - address size. */
0295 #define GCMD_LAY_INPUT_ADDR_SIZE    GENMASK_ULL(13, 11)
0296 
0297 /* Transfer direction field of generic command data sequence. */
0298 #define GCMD_DIR            BIT_ULL(11)
0299 /* Read transfer direction of generic command data sequence. */
0300 #define     GCMD_DIR_READ       0
0301 /* Write transfer direction of generic command data sequence. */
0302 #define     GCMD_DIR_WRITE      1
0303 
0304 /* ECC enabled flag of generic command data sequence - ECC enabled. */
0305 #define GCMD_ECC_EN         BIT_ULL(12)
0306 /* Generic command data sequence - sector size. */
0307 #define GCMD_SECT_SIZE          GENMASK_ULL(31, 16)
0308 /* Generic command data sequence - sector count. */
0309 #define GCMD_SECT_CNT           GENMASK_ULL(39, 32)
0310 /* Generic command data sequence - last sector size. */
0311 #define GCMD_LAST_SIZE          GENMASK_ULL(55, 40)
0312 
0313 /* CDMA descriptor fields. */
0314 /* Erase command type of CDMA descriptor. */
0315 #define CDMA_CT_ERASE       0x1000
0316 /* Program page command type of CDMA descriptor. */
0317 #define CDMA_CT_WR      0x2100
0318 /* Read page command type of CDMA descriptor. */
0319 #define CDMA_CT_RD      0x2200
0320 
0321 /* Flash pointer memory shift. */
0322 #define CDMA_CFPTR_MEM_SHIFT    24
0323 /* Flash pointer memory mask. */
0324 #define CDMA_CFPTR_MEM      GENMASK(26, 24)
0325 
0326 /*
0327  * Command DMA descriptor flags. If set causes issue interrupt after
0328  * the completion of descriptor processing.
0329  */
0330 #define CDMA_CF_INT     BIT(8)
0331 /*
0332  * Command DMA descriptor flags - the next descriptor
0333  * address field is valid and descriptor processing should continue.
0334  */
0335 #define CDMA_CF_CONT        BIT(9)
0336 /* DMA master flag of command DMA descriptor. */
0337 #define CDMA_CF_DMA_MASTER  BIT(10)
0338 
0339 /* Operation complete status of command descriptor. */
0340 #define CDMA_CS_COMP        BIT(15)
0341 /* Operation complete status of command descriptor. */
0342 /* Command descriptor status - operation fail. */
0343 #define CDMA_CS_FAIL        BIT(14)
0344 /* Command descriptor status - page erased. */
0345 #define CDMA_CS_ERP     BIT(11)
0346 /* Command descriptor status - timeout occurred. */
0347 #define CDMA_CS_TOUT        BIT(10)
0348 /*
0349  * Maximum amount of correction applied to one ECC sector.
0350  * It is part of command descriptor status.
0351  */
0352 #define CDMA_CS_MAXERR      GENMASK(9, 2)
0353 /* Command descriptor status - uncorrectable ECC error. */
0354 #define CDMA_CS_UNCE        BIT(1)
0355 /* Command descriptor status - descriptor error. */
0356 #define CDMA_CS_ERR     BIT(0)
0357 
0358 /* Status of operation - OK. */
0359 #define STAT_OK         0
0360 /* Status of operation - FAIL. */
0361 #define STAT_FAIL       2
0362 /* Status of operation - uncorrectable ECC error. */
0363 #define STAT_ECC_UNCORR     3
0364 /* Status of operation - page erased. */
0365 #define STAT_ERASED     5
0366 /* Status of operation - correctable ECC error. */
0367 #define STAT_ECC_CORR       6
0368 /* Status of operation - unsuspected state. */
0369 #define STAT_UNKNOWN        7
0370 /* Status of operation - operation is not completed yet. */
0371 #define STAT_BUSY       0xFF
0372 
0373 #define BCH_MAX_NUM_CORR_CAPS       8
0374 #define BCH_MAX_NUM_SECTOR_SIZES    2
0375 
0376 struct cadence_nand_timings {
0377     u32 async_toggle_timings;
0378     u32 timings0;
0379     u32 timings1;
0380     u32 timings2;
0381     u32 dll_phy_ctrl;
0382     u32 phy_ctrl;
0383     u32 phy_dqs_timing;
0384     u32 phy_gate_lpbk_ctrl;
0385 };
0386 
0387 /* Command DMA descriptor. */
0388 struct cadence_nand_cdma_desc {
0389     /* Next descriptor address. */
0390     u64 next_pointer;
0391 
0392     /* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */
0393     u32 flash_pointer;
0394     /*field appears in HPNFC version 13*/
0395     u16 bank;
0396     u16 rsvd0;
0397 
0398     /* Operation the controller needs to perform. */
0399     u16 command_type;
0400     u16 rsvd1;
0401     /* Flags for operation of this command. */
0402     u16 command_flags;
0403     u16 rsvd2;
0404 
0405     /* System/host memory address required for data DMA commands. */
0406     u64 memory_pointer;
0407 
0408     /* Status of operation. */
0409     u32 status;
0410     u32 rsvd3;
0411 
0412     /* Address pointer to sync buffer location. */
0413     u64 sync_flag_pointer;
0414 
0415     /* Controls the buffer sync mechanism. */
0416     u32 sync_arguments;
0417     u32 rsvd4;
0418 
0419     /* Control data pointer. */
0420     u64 ctrl_data_ptr;
0421 };
0422 
0423 /* Interrupt status. */
0424 struct cadence_nand_irq_status {
0425     /* Thread operation complete status. */
0426     u32 trd_status;
0427     /* Thread operation error. */
0428     u32 trd_error;
0429     /* Controller status. */
0430     u32 status;
0431 };
0432 
0433 /* Cadence NAND flash controller capabilities get from driver data. */
0434 struct cadence_nand_dt_devdata {
0435     /* Skew value of the output signals of the NAND Flash interface. */
0436     u32 if_skew;
0437     /* It informs if slave DMA interface is connected to DMA engine. */
0438     unsigned int has_dma:1;
0439 };
0440 
0441 /* Cadence NAND flash controller capabilities read from registers. */
0442 struct cdns_nand_caps {
0443     /* Maximum number of banks supported by hardware. */
0444     u8 max_banks;
0445     /* Slave and Master DMA data width in bytes (4 or 8). */
0446     u8 data_dma_width;
0447     /* Control Data feature supported. */
0448     bool data_control_supp;
0449     /* Is PHY type DLL. */
0450     bool is_phy_type_dll;
0451 };
0452 
0453 struct cdns_nand_ctrl {
0454     struct device *dev;
0455     struct nand_controller controller;
0456     struct cadence_nand_cdma_desc *cdma_desc;
0457     /* IP capability. */
0458     const struct cadence_nand_dt_devdata *caps1;
0459     struct cdns_nand_caps caps2;
0460     u8 ctrl_rev;
0461     dma_addr_t dma_cdma_desc;
0462     u8 *buf;
0463     u32 buf_size;
0464     u8 curr_corr_str_idx;
0465 
0466     /* Register interface. */
0467     void __iomem *reg;
0468 
0469     struct {
0470         void __iomem *virt;
0471         dma_addr_t dma;
0472     } io;
0473 
0474     int irq;
0475     /* Interrupts that have happened. */
0476     struct cadence_nand_irq_status irq_status;
0477     /* Interrupts we are waiting for. */
0478     struct cadence_nand_irq_status irq_mask;
0479     struct completion complete;
0480     /* Protect irq_mask and irq_status. */
0481     spinlock_t irq_lock;
0482 
0483     int ecc_strengths[BCH_MAX_NUM_CORR_CAPS];
0484     struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES];
0485     struct nand_ecc_caps ecc_caps;
0486 
0487     int curr_trans_type;
0488 
0489     struct dma_chan *dmac;
0490 
0491     u32 nf_clk_rate;
0492     /*
0493      * Estimated Board delay. The value includes the total
0494      * round trip delay for the signals and is used for deciding on values
0495      * associated with data read capture.
0496      */
0497     u32 board_delay;
0498 
0499     struct nand_chip *selected_chip;
0500 
0501     unsigned long assigned_cs;
0502     struct list_head chips;
0503     u8 bch_metadata_size;
0504 };
0505 
0506 struct cdns_nand_chip {
0507     struct cadence_nand_timings timings;
0508     struct nand_chip chip;
0509     u8 nsels;
0510     struct list_head node;
0511 
0512     /*
0513      * part of oob area of NAND flash memory page.
0514      * This part is available for user to read or write.
0515      */
0516     u32 avail_oob_size;
0517 
0518     /* Sector size. There are few sectors per mtd->writesize */
0519     u32 sector_size;
0520     u32 sector_count;
0521 
0522     /* Offset of BBM. */
0523     u8 bbm_offs;
0524     /* Number of bytes reserved for BBM. */
0525     u8 bbm_len;
0526     /* ECC strength index. */
0527     u8 corr_str_idx;
0528 
0529     u8 cs[];
0530 };
0531 
0532 struct ecc_info {
0533     int (*calc_ecc_bytes)(int step_size, int strength);
0534     int max_step_size;
0535 };
0536 
0537 static inline struct
0538 cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip)
0539 {
0540     return container_of(chip, struct cdns_nand_chip, chip);
0541 }
0542 
0543 static inline struct
0544 cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller)
0545 {
0546     return container_of(controller, struct cdns_nand_ctrl, controller);
0547 }
0548 
0549 static bool
0550 cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf,
0551             u32 buf_len)
0552 {
0553     u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
0554 
0555     return buf && virt_addr_valid(buf) &&
0556         likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
0557         likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN));
0558 }
0559 
0560 static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl,
0561                        u32 reg_offset, u32 timeout_us,
0562                        u32 mask, bool is_clear)
0563 {
0564     u32 val;
0565     int ret;
0566 
0567     ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset,
0568                      val, !(val & mask) == is_clear,
0569                      10, timeout_us);
0570 
0571     if (ret < 0) {
0572         dev_err(cdns_ctrl->dev,
0573             "Timeout while waiting for reg %x with mask %x is clear %d\n",
0574             reg_offset, mask, is_clear);
0575     }
0576 
0577     return ret;
0578 }
0579 
0580 static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl,
0581                        bool enable)
0582 {
0583     u32 reg;
0584 
0585     if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
0586                     1000000,
0587                     CTRL_STATUS_CTRL_BUSY, true))
0588         return -ETIMEDOUT;
0589 
0590     reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
0591 
0592     if (enable)
0593         reg |= ECC_CONFIG_0_ECC_EN;
0594     else
0595         reg &= ~ECC_CONFIG_0_ECC_EN;
0596 
0597     writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
0598 
0599     return 0;
0600 }
0601 
0602 static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl,
0603                       u8 corr_str_idx)
0604 {
0605     u32 reg;
0606 
0607     if (cdns_ctrl->curr_corr_str_idx == corr_str_idx)
0608         return;
0609 
0610     reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
0611     reg &= ~ECC_CONFIG_0_CORR_STR;
0612     reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
0613     writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
0614 
0615     cdns_ctrl->curr_corr_str_idx = corr_str_idx;
0616 }
0617 
0618 static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl,
0619                          u8 strength)
0620 {
0621     int i, corr_str_idx = -1;
0622 
0623     for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
0624         if (cdns_ctrl->ecc_strengths[i] == strength) {
0625             corr_str_idx = i;
0626             break;
0627         }
0628     }
0629 
0630     return corr_str_idx;
0631 }
0632 
0633 static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl,
0634                         u16 marker_value)
0635 {
0636     u32 reg;
0637 
0638     if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
0639                     1000000,
0640                     CTRL_STATUS_CTRL_BUSY, true))
0641         return -ETIMEDOUT;
0642 
0643     reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
0644     reg &= ~SKIP_BYTES_MARKER_VALUE;
0645     reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
0646               marker_value);
0647 
0648     writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
0649 
0650     return 0;
0651 }
0652 
0653 static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl,
0654                         u8 num_of_bytes,
0655                         u32 offset_value,
0656                         int enable)
0657 {
0658     u32 reg, skip_bytes_offset;
0659 
0660     if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
0661                     1000000,
0662                     CTRL_STATUS_CTRL_BUSY, true))
0663         return -ETIMEDOUT;
0664 
0665     if (!enable) {
0666         num_of_bytes = 0;
0667         offset_value = 0;
0668     }
0669 
0670     reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
0671     reg &= ~SKIP_BYTES_NUM_OF_BYTES;
0672     reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
0673               num_of_bytes);
0674     skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
0675                        offset_value);
0676 
0677     writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
0678     writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET);
0679 
0680     return 0;
0681 }
0682 
0683 /* Functions enables/disables hardware detection of erased data */
0684 static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl,
0685                          bool enable,
0686                          u8 bitflips_threshold)
0687 {
0688     u32 reg;
0689 
0690     reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
0691 
0692     if (enable)
0693         reg |= ECC_CONFIG_0_ERASE_DET_EN;
0694     else
0695         reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
0696 
0697     writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
0698     writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1);
0699 }
0700 
0701 static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl,
0702                        bool bit_bus16)
0703 {
0704     u32 reg;
0705 
0706     if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
0707                     1000000,
0708                     CTRL_STATUS_CTRL_BUSY, true))
0709         return -ETIMEDOUT;
0710 
0711     reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET);
0712 
0713     if (!bit_bus16)
0714         reg &= ~COMMON_SET_DEVICE_16BIT;
0715     else
0716         reg |= COMMON_SET_DEVICE_16BIT;
0717     writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET);
0718 
0719     return 0;
0720 }
0721 
0722 static void
0723 cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl,
0724                  struct cadence_nand_irq_status *irq_status)
0725 {
0726     writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS);
0727     writel_relaxed(irq_status->trd_status,
0728                cdns_ctrl->reg + TRD_COMP_INT_STATUS);
0729     writel_relaxed(irq_status->trd_error,
0730                cdns_ctrl->reg + TRD_ERR_INT_STATUS);
0731 }
0732 
0733 static void
0734 cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl,
0735                  struct cadence_nand_irq_status *irq_status)
0736 {
0737     irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS);
0738     irq_status->trd_status = readl_relaxed(cdns_ctrl->reg
0739                            + TRD_COMP_INT_STATUS);
0740     irq_status->trd_error = readl_relaxed(cdns_ctrl->reg
0741                           + TRD_ERR_INT_STATUS);
0742 }
0743 
0744 static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl,
0745             struct cadence_nand_irq_status *irq_status)
0746 {
0747     cadence_nand_read_int_status(cdns_ctrl, irq_status);
0748 
0749     return irq_status->status || irq_status->trd_status ||
0750         irq_status->trd_error;
0751 }
0752 
0753 static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl)
0754 {
0755     unsigned long flags;
0756 
0757     spin_lock_irqsave(&cdns_ctrl->irq_lock, flags);
0758     memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status));
0759     memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask));
0760     spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags);
0761 }
0762 
0763 /*
0764  * This is the interrupt service routine. It handles all interrupts
0765  * sent to this device.
0766  */
0767 static irqreturn_t cadence_nand_isr(int irq, void *dev_id)
0768 {
0769     struct cdns_nand_ctrl *cdns_ctrl = dev_id;
0770     struct cadence_nand_irq_status irq_status;
0771     irqreturn_t result = IRQ_NONE;
0772 
0773     spin_lock(&cdns_ctrl->irq_lock);
0774 
0775     if (irq_detected(cdns_ctrl, &irq_status)) {
0776         /* Handle interrupt. */
0777         /* First acknowledge it. */
0778         cadence_nand_clear_interrupt(cdns_ctrl, &irq_status);
0779         /* Status in the device context for someone to read. */
0780         cdns_ctrl->irq_status.status |= irq_status.status;
0781         cdns_ctrl->irq_status.trd_status |= irq_status.trd_status;
0782         cdns_ctrl->irq_status.trd_error |= irq_status.trd_error;
0783         /* Notify anyone who cares that it happened. */
0784         complete(&cdns_ctrl->complete);
0785         /* Tell the OS that we've handled this. */
0786         result = IRQ_HANDLED;
0787     }
0788     spin_unlock(&cdns_ctrl->irq_lock);
0789 
0790     return result;
0791 }
0792 
0793 static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl,
0794                       struct cadence_nand_irq_status *irq_mask)
0795 {
0796     writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status,
0797                cdns_ctrl->reg + INTR_ENABLE);
0798 
0799     writel_relaxed(irq_mask->trd_error,
0800                cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN);
0801 }
0802 
0803 static void
0804 cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl,
0805               struct cadence_nand_irq_status *irq_mask,
0806               struct cadence_nand_irq_status *irq_status)
0807 {
0808     unsigned long timeout = msecs_to_jiffies(10000);
0809     unsigned long time_left;
0810 
0811     time_left = wait_for_completion_timeout(&cdns_ctrl->complete,
0812                         timeout);
0813 
0814     *irq_status = cdns_ctrl->irq_status;
0815     if (time_left == 0) {
0816         /* Timeout error. */
0817         dev_err(cdns_ctrl->dev, "timeout occurred:\n");
0818         dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n",
0819             irq_status->status, irq_mask->status);
0820         dev_err(cdns_ctrl->dev,
0821             "\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
0822             irq_status->trd_status, irq_mask->trd_status);
0823         dev_err(cdns_ctrl->dev,
0824             "\t trd_error = 0x%x, trd_error mask = 0x%x\n",
0825             irq_status->trd_error, irq_mask->trd_error);
0826     }
0827 }
0828 
0829 /* Execute generic command on NAND controller. */
0830 static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl,
0831                      u8 chip_nr,
0832                      u64 mini_ctrl_cmd)
0833 {
0834     u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg;
0835 
0836     mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr);
0837     mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
0838     mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
0839 
0840     if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
0841                     1000000,
0842                     CTRL_STATUS_CTRL_BUSY, true))
0843         return -ETIMEDOUT;
0844 
0845     cadence_nand_reset_irq(cdns_ctrl);
0846 
0847     writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2);
0848     writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3);
0849 
0850     /* Select generic command. */
0851     reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
0852     /* Thread number. */
0853     reg |= FIELD_PREP(CMD_REG0_TN, 0);
0854 
0855     /* Issue command. */
0856     writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
0857 
0858     return 0;
0859 }
0860 
0861 /* Wait for data on slave DMA interface. */
0862 static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl,
0863                      u8 *out_sdma_trd,
0864                      u32 *out_sdma_size)
0865 {
0866     struct cadence_nand_irq_status irq_mask, irq_status;
0867 
0868     irq_mask.trd_status = 0;
0869     irq_mask.trd_error = 0;
0870     irq_mask.status = INTR_STATUS_SDMA_TRIGG
0871         | INTR_STATUS_SDMA_ERR
0872         | INTR_STATUS_UNSUPP_CMD;
0873 
0874     cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
0875     cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
0876     if (irq_status.status == 0) {
0877         dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n");
0878         return -ETIMEDOUT;
0879     }
0880 
0881     if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
0882         *out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE);
0883         *out_sdma_trd  = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM);
0884         *out_sdma_trd =
0885             FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
0886     } else {
0887         dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n",
0888             irq_status.status);
0889         return -EIO;
0890     }
0891 
0892     return 0;
0893 }
0894 
0895 static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl)
0896 {
0897     u32  reg;
0898 
0899     reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES);
0900 
0901     cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
0902 
0903     if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
0904         cdns_ctrl->caps2.data_dma_width = 8;
0905     else
0906         cdns_ctrl->caps2.data_dma_width = 4;
0907 
0908     if (reg & CTRL_FEATURES_CONTROL_DATA)
0909         cdns_ctrl->caps2.data_control_supp = true;
0910 
0911     if (reg & (CTRL_FEATURES_NVDDR_2_3
0912            | CTRL_FEATURES_NVDDR))
0913         cdns_ctrl->caps2.is_phy_type_dll = true;
0914 }
0915 
0916 /* Prepare CDMA descriptor. */
0917 static void
0918 cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl,
0919                    char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr,
0920                    dma_addr_t ctrl_data_ptr, u16 ctype)
0921 {
0922     struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc;
0923 
0924     memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
0925 
0926     /* Set fields for one descriptor. */
0927     cdma_desc->flash_pointer = flash_ptr;
0928     if (cdns_ctrl->ctrl_rev >= 13)
0929         cdma_desc->bank = nf_mem;
0930     else
0931         cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT);
0932 
0933     cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
0934     cdma_desc->command_flags  |= CDMA_CF_INT;
0935 
0936     cdma_desc->memory_pointer = mem_ptr;
0937     cdma_desc->status = 0;
0938     cdma_desc->sync_flag_pointer = 0;
0939     cdma_desc->sync_arguments = 0;
0940 
0941     cdma_desc->command_type = ctype;
0942     cdma_desc->ctrl_data_ptr = ctrl_data_ptr;
0943 }
0944 
0945 static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl,
0946                     u32 desc_status)
0947 {
0948     if (desc_status & CDMA_CS_ERP)
0949         return STAT_ERASED;
0950 
0951     if (desc_status & CDMA_CS_UNCE)
0952         return STAT_ECC_UNCORR;
0953 
0954     if (desc_status & CDMA_CS_ERR) {
0955         dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n");
0956         return STAT_FAIL;
0957     }
0958 
0959     if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
0960         return STAT_ECC_CORR;
0961 
0962     return STAT_FAIL;
0963 }
0964 
0965 static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl)
0966 {
0967     struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc;
0968     u8 status = STAT_BUSY;
0969 
0970     if (desc_ptr->status & CDMA_CS_FAIL) {
0971         status = cadence_nand_check_desc_error(cdns_ctrl,
0972                                desc_ptr->status);
0973         dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status);
0974     } else if (desc_ptr->status & CDMA_CS_COMP) {
0975         /* Descriptor finished with no errors. */
0976         if (desc_ptr->command_flags & CDMA_CF_CONT) {
0977             dev_info(cdns_ctrl->dev, "DMA unsupported flag is set");
0978             status = STAT_UNKNOWN;
0979         } else {
0980             /* Last descriptor.  */
0981             status = STAT_OK;
0982         }
0983     }
0984 
0985     return status;
0986 }
0987 
0988 static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl,
0989                   u8 thread)
0990 {
0991     u32 reg;
0992     int status;
0993 
0994     /* Wait for thread ready. */
0995     status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS,
0996                          1000000,
0997                          BIT(thread), true);
0998     if (status)
0999         return status;
1000 
1001     cadence_nand_reset_irq(cdns_ctrl);
1002     reinit_completion(&cdns_ctrl->complete);
1003 
1004     writel_relaxed((u32)cdns_ctrl->dma_cdma_desc,
1005                cdns_ctrl->reg + CMD_REG2);
1006     writel_relaxed(0, cdns_ctrl->reg + CMD_REG3);
1007 
1008     /* Select CDMA mode. */
1009     reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
1010     /* Thread number. */
1011     reg |= FIELD_PREP(CMD_REG0_TN, thread);
1012     /* Issue command. */
1013     writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
1014 
1015     return 0;
1016 }
1017 
1018 /* Send SDMA command and wait for finish. */
1019 static u32
1020 cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl,
1021                 u8 thread)
1022 {
1023     struct cadence_nand_irq_status irq_mask, irq_status = {0};
1024     int status;
1025 
1026     irq_mask.trd_status = BIT(thread);
1027     irq_mask.trd_error = BIT(thread);
1028     irq_mask.status = INTR_STATUS_CDMA_TERR;
1029 
1030     cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
1031 
1032     status = cadence_nand_cdma_send(cdns_ctrl, thread);
1033     if (status)
1034         return status;
1035 
1036     cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
1037 
1038     if (irq_status.status == 0 && irq_status.trd_status == 0 &&
1039         irq_status.trd_error == 0) {
1040         dev_err(cdns_ctrl->dev, "CDMA command timeout\n");
1041         return -ETIMEDOUT;
1042     }
1043     if (irq_status.status & irq_mask.status) {
1044         dev_err(cdns_ctrl->dev, "CDMA command failed\n");
1045         return -EIO;
1046     }
1047 
1048     return 0;
1049 }
1050 
1051 /*
1052  * ECC size depends on configured ECC strength and on maximum supported
1053  * ECC step size.
1054  */
1055 static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
1056 {
1057     int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8);
1058 
1059     return ALIGN(nbytes, 2);
1060 }
1061 
1062 #define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \
1063     static int \
1064     cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \
1065                             int strength)\
1066     {\
1067         return cadence_nand_calc_ecc_bytes(max_step_size, strength);\
1068     }
1069 
1070 CADENCE_NAND_CALC_ECC_BYTES(256)
1071 CADENCE_NAND_CALC_ECC_BYTES(512)
1072 CADENCE_NAND_CALC_ECC_BYTES(1024)
1073 CADENCE_NAND_CALC_ECC_BYTES(2048)
1074 CADENCE_NAND_CALC_ECC_BYTES(4096)
1075 
1076 /* Function reads BCH capabilities. */
1077 static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl)
1078 {
1079     struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps;
1080     int max_step_size = 0, nstrengths, i;
1081     u32 reg;
1082 
1083     reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_3);
1084     cdns_ctrl->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg);
1085     if (cdns_ctrl->bch_metadata_size < 4) {
1086         dev_err(cdns_ctrl->dev,
1087             "Driver needs at least 4 bytes of BCH meta data\n");
1088         return -EIO;
1089     }
1090 
1091     reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0);
1092     cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
1093     cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
1094     cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
1095     cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
1096 
1097     reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1);
1098     cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
1099     cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
1100     cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
1101     cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
1102 
1103     reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2);
1104     cdns_ctrl->ecc_stepinfos[0].stepsize =
1105         FIELD_GET(BCH_CFG_2_SECT_0, reg);
1106 
1107     cdns_ctrl->ecc_stepinfos[1].stepsize =
1108         FIELD_GET(BCH_CFG_2_SECT_1, reg);
1109 
1110     nstrengths = 0;
1111     for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
1112         if (cdns_ctrl->ecc_strengths[i] != 0)
1113             nstrengths++;
1114     }
1115 
1116     ecc_caps->nstepinfos = 0;
1117     for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
1118         /* ECC strengths are common for all step infos. */
1119         cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths;
1120         cdns_ctrl->ecc_stepinfos[i].strengths =
1121             cdns_ctrl->ecc_strengths;
1122 
1123         if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0)
1124             ecc_caps->nstepinfos++;
1125 
1126         if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size)
1127             max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize;
1128     }
1129     ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0];
1130 
1131     switch (max_step_size) {
1132     case 256:
1133         ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
1134         break;
1135     case 512:
1136         ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
1137         break;
1138     case 1024:
1139         ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
1140         break;
1141     case 2048:
1142         ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
1143         break;
1144     case 4096:
1145         ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
1146         break;
1147     default:
1148         dev_err(cdns_ctrl->dev,
1149             "Unsupported sector size(ecc step size) %d\n",
1150             max_step_size);
1151         return -EIO;
1152     }
1153 
1154     return 0;
1155 }
1156 
1157 /* Hardware initialization. */
1158 static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl)
1159 {
1160     int status;
1161     u32 reg;
1162 
1163     status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1164                          1000000,
1165                          CTRL_STATUS_INIT_COMP, false);
1166     if (status)
1167         return status;
1168 
1169     reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION);
1170     cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg);
1171 
1172     dev_info(cdns_ctrl->dev,
1173          "%s: cadence nand controller version reg %x\n",
1174          __func__, reg);
1175 
1176     /* Disable cache and multiplane. */
1177     writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG);
1178     writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG);
1179 
1180     /* Clear all interrupts. */
1181     writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS);
1182 
1183     cadence_nand_get_caps(cdns_ctrl);
1184     if (cadence_nand_read_bch_caps(cdns_ctrl))
1185         return -EIO;
1186 
1187     /*
1188      * Set IO width access to 8.
1189      * It is because during SW device discovering width access
1190      * is expected to be 8.
1191      */
1192     status = cadence_nand_set_access_width16(cdns_ctrl, false);
1193 
1194     return status;
1195 }
1196 
1197 #define TT_MAIN_OOB_AREAS   2
1198 #define TT_RAW_PAGE     3
1199 #define TT_BBM          4
1200 #define TT_MAIN_OOB_AREA_EXT    5
1201 
1202 /* Prepare size of data to transfer. */
1203 static void
1204 cadence_nand_prepare_data_size(struct nand_chip *chip,
1205                    int transfer_type)
1206 {
1207     struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1208     struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1209     struct mtd_info *mtd = nand_to_mtd(chip);
1210     u32 sec_size = 0, offset = 0, sec_cnt = 1;
1211     u32 last_sec_size = cdns_chip->sector_size;
1212     u32 data_ctrl_size = 0;
1213     u32 reg = 0;
1214 
1215     if (cdns_ctrl->curr_trans_type == transfer_type)
1216         return;
1217 
1218     switch (transfer_type) {
1219     case TT_MAIN_OOB_AREA_EXT:
1220         sec_cnt = cdns_chip->sector_count;
1221         sec_size = cdns_chip->sector_size;
1222         data_ctrl_size = cdns_chip->avail_oob_size;
1223         break;
1224     case TT_MAIN_OOB_AREAS:
1225         sec_cnt = cdns_chip->sector_count;
1226         last_sec_size = cdns_chip->sector_size
1227             + cdns_chip->avail_oob_size;
1228         sec_size = cdns_chip->sector_size;
1229         break;
1230     case TT_RAW_PAGE:
1231         last_sec_size = mtd->writesize + mtd->oobsize;
1232         break;
1233     case TT_BBM:
1234         offset = mtd->writesize + cdns_chip->bbm_offs;
1235         last_sec_size = 8;
1236         break;
1237     }
1238 
1239     reg = 0;
1240     reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
1241     reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
1242     writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0);
1243 
1244     reg = 0;
1245     reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
1246     reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
1247     writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1);
1248 
1249     if (cdns_ctrl->caps2.data_control_supp) {
1250         reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL);
1251         reg &= ~CONTROL_DATA_CTRL_SIZE;
1252         reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
1253         writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL);
1254     }
1255 
1256     cdns_ctrl->curr_trans_type = transfer_type;
1257 }
1258 
1259 static int
1260 cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr,
1261                int page, void *buf, void *ctrl_dat, u32 buf_size,
1262                u32 ctrl_dat_size, enum dma_data_direction dir,
1263                bool with_ecc)
1264 {
1265     dma_addr_t dma_buf, dma_ctrl_dat = 0;
1266     u8 thread_nr = chip_nr;
1267     int status;
1268     u16 ctype;
1269 
1270     if (dir == DMA_FROM_DEVICE)
1271         ctype = CDMA_CT_RD;
1272     else
1273         ctype = CDMA_CT_WR;
1274 
1275     cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc);
1276 
1277     dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir);
1278     if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) {
1279         dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1280         return -EIO;
1281     }
1282 
1283     if (ctrl_dat && ctrl_dat_size) {
1284         dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat,
1285                           ctrl_dat_size, dir);
1286         if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) {
1287             dma_unmap_single(cdns_ctrl->dev, dma_buf,
1288                      buf_size, dir);
1289             dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1290             return -EIO;
1291         }
1292     }
1293 
1294     cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page,
1295                        dma_buf, dma_ctrl_dat, ctype);
1296 
1297     status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
1298 
1299     dma_unmap_single(cdns_ctrl->dev, dma_buf,
1300              buf_size, dir);
1301 
1302     if (ctrl_dat && ctrl_dat_size)
1303         dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat,
1304                  ctrl_dat_size, dir);
1305     if (status)
1306         return status;
1307 
1308     return cadence_nand_cdma_finish(cdns_ctrl);
1309 }
1310 
1311 static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl,
1312                      struct cadence_nand_timings *t)
1313 {
1314     writel_relaxed(t->async_toggle_timings,
1315                cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS);
1316     writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0);
1317     writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1);
1318     writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2);
1319 
1320     if (cdns_ctrl->caps2.is_phy_type_dll)
1321         writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL);
1322 
1323     writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL);
1324 
1325     if (cdns_ctrl->caps2.is_phy_type_dll) {
1326         writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL);
1327         writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING);
1328         writel_relaxed(t->phy_dqs_timing,
1329                    cdns_ctrl->reg + PHY_DQS_TIMING);
1330         writel_relaxed(t->phy_gate_lpbk_ctrl,
1331                    cdns_ctrl->reg + PHY_GATE_LPBK_CTRL);
1332         writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
1333                    cdns_ctrl->reg + PHY_DLL_MASTER_CTRL);
1334         writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL);
1335     }
1336 }
1337 
1338 static int cadence_nand_select_target(struct nand_chip *chip)
1339 {
1340     struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1341     struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1342 
1343     if (chip == cdns_ctrl->selected_chip)
1344         return 0;
1345 
1346     if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1347                     1000000,
1348                     CTRL_STATUS_CTRL_BUSY, true))
1349         return -ETIMEDOUT;
1350 
1351     cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings);
1352 
1353     cadence_nand_set_ecc_strength(cdns_ctrl,
1354                       cdns_chip->corr_str_idx);
1355 
1356     cadence_nand_set_erase_detection(cdns_ctrl, true,
1357                      chip->ecc.strength);
1358 
1359     cdns_ctrl->curr_trans_type = -1;
1360     cdns_ctrl->selected_chip = chip;
1361 
1362     return 0;
1363 }
1364 
1365 static int cadence_nand_erase(struct nand_chip *chip, u32 page)
1366 {
1367     struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1368     struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1369     int status;
1370     u8 thread_nr = cdns_chip->cs[chip->cur_cs];
1371 
1372     cadence_nand_cdma_desc_prepare(cdns_ctrl,
1373                        cdns_chip->cs[chip->cur_cs],
1374                        page, 0, 0,
1375                        CDMA_CT_ERASE);
1376     status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
1377     if (status) {
1378         dev_err(cdns_ctrl->dev, "erase operation failed\n");
1379         return -EIO;
1380     }
1381 
1382     status = cadence_nand_cdma_finish(cdns_ctrl);
1383     if (status)
1384         return status;
1385 
1386     return 0;
1387 }
1388 
1389 static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf)
1390 {
1391     int status;
1392     struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1393     struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1394     struct mtd_info *mtd = nand_to_mtd(chip);
1395 
1396     cadence_nand_prepare_data_size(chip, TT_BBM);
1397 
1398     cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1399 
1400     /*
1401      * Read only bad block marker from offset
1402      * defined by a memory manufacturer.
1403      */
1404     status = cadence_nand_cdma_transfer(cdns_ctrl,
1405                         cdns_chip->cs[chip->cur_cs],
1406                         page, cdns_ctrl->buf, NULL,
1407                         mtd->oobsize,
1408                         0, DMA_FROM_DEVICE, false);
1409     if (status) {
1410         dev_err(cdns_ctrl->dev, "read BBM failed\n");
1411         return -EIO;
1412     }
1413 
1414     memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len);
1415 
1416     return 0;
1417 }
1418 
1419 static int cadence_nand_write_page(struct nand_chip *chip,
1420                    const u8 *buf, int oob_required,
1421                    int page)
1422 {
1423     struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1424     struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1425     struct mtd_info *mtd = nand_to_mtd(chip);
1426     int status;
1427     u16 marker_val = 0xFFFF;
1428 
1429     status = cadence_nand_select_target(chip);
1430     if (status)
1431         return status;
1432 
1433     cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
1434                      mtd->writesize
1435                      + cdns_chip->bbm_offs,
1436                      1);
1437 
1438     if (oob_required) {
1439         marker_val = *(u16 *)(chip->oob_poi
1440                       + cdns_chip->bbm_offs);
1441     } else {
1442         /* Set oob data to 0xFF. */
1443         memset(cdns_ctrl->buf + mtd->writesize, 0xFF,
1444                cdns_chip->avail_oob_size);
1445     }
1446 
1447     cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val);
1448 
1449     cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
1450 
1451     if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
1452         cdns_ctrl->caps2.data_control_supp) {
1453         u8 *oob;
1454 
1455         if (oob_required)
1456             oob = chip->oob_poi;
1457         else
1458             oob = cdns_ctrl->buf + mtd->writesize;
1459 
1460         status = cadence_nand_cdma_transfer(cdns_ctrl,
1461                             cdns_chip->cs[chip->cur_cs],
1462                             page, (void *)buf, oob,
1463                             mtd->writesize,
1464                             cdns_chip->avail_oob_size,
1465                             DMA_TO_DEVICE, true);
1466         if (status) {
1467             dev_err(cdns_ctrl->dev, "write page failed\n");
1468             return -EIO;
1469         }
1470 
1471         return 0;
1472     }
1473 
1474     if (oob_required) {
1475         /* Transfer the data to the oob area. */
1476         memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi,
1477                cdns_chip->avail_oob_size);
1478     }
1479 
1480     memcpy(cdns_ctrl->buf, buf, mtd->writesize);
1481 
1482     cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
1483 
1484     return cadence_nand_cdma_transfer(cdns_ctrl,
1485                       cdns_chip->cs[chip->cur_cs],
1486                       page, cdns_ctrl->buf, NULL,
1487                       mtd->writesize
1488                       + cdns_chip->avail_oob_size,
1489                       0, DMA_TO_DEVICE, true);
1490 }
1491 
1492 static int cadence_nand_write_oob(struct nand_chip *chip, int page)
1493 {
1494     struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1495     struct mtd_info *mtd = nand_to_mtd(chip);
1496 
1497     memset(cdns_ctrl->buf, 0xFF, mtd->writesize);
1498 
1499     return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page);
1500 }
1501 
1502 static int cadence_nand_write_page_raw(struct nand_chip *chip,
1503                        const u8 *buf, int oob_required,
1504                        int page)
1505 {
1506     struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1507     struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1508     struct mtd_info *mtd = nand_to_mtd(chip);
1509     int writesize = mtd->writesize;
1510     int oobsize = mtd->oobsize;
1511     int ecc_steps = chip->ecc.steps;
1512     int ecc_size = chip->ecc.size;
1513     int ecc_bytes = chip->ecc.bytes;
1514     void *tmp_buf = cdns_ctrl->buf;
1515     int oob_skip = cdns_chip->bbm_len;
1516     size_t size = writesize + oobsize;
1517     int i, pos, len;
1518     int status = 0;
1519 
1520     status = cadence_nand_select_target(chip);
1521     if (status)
1522         return status;
1523 
1524     /*
1525      * Fill the buffer with 0xff first except the full page transfer.
1526      * This simplifies the logic.
1527      */
1528     if (!buf || !oob_required)
1529         memset(tmp_buf, 0xff, size);
1530 
1531     cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1532 
1533     /* Arrange the buffer for syndrome payload/ecc layout. */
1534     if (buf) {
1535         for (i = 0; i < ecc_steps; i++) {
1536             pos = i * (ecc_size + ecc_bytes);
1537             len = ecc_size;
1538 
1539             if (pos >= writesize)
1540                 pos += oob_skip;
1541             else if (pos + len > writesize)
1542                 len = writesize - pos;
1543 
1544             memcpy(tmp_buf + pos, buf, len);
1545             buf += len;
1546             if (len < ecc_size) {
1547                 len = ecc_size - len;
1548                 memcpy(tmp_buf + writesize + oob_skip, buf,
1549                        len);
1550                 buf += len;
1551             }
1552         }
1553     }
1554 
1555     if (oob_required) {
1556         const u8 *oob = chip->oob_poi;
1557         u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1558             (cdns_chip->sector_size + chip->ecc.bytes)
1559             + cdns_chip->sector_size + oob_skip;
1560 
1561         /* BBM at the beginning of the OOB area. */
1562         memcpy(tmp_buf + writesize, oob, oob_skip);
1563 
1564         /* OOB free. */
1565         memcpy(tmp_buf + oob_data_offset, oob,
1566                cdns_chip->avail_oob_size);
1567         oob += cdns_chip->avail_oob_size;
1568 
1569         /* OOB ECC. */
1570         for (i = 0; i < ecc_steps; i++) {
1571             pos = ecc_size + i * (ecc_size + ecc_bytes);
1572             if (i == (ecc_steps - 1))
1573                 pos += cdns_chip->avail_oob_size;
1574 
1575             len = ecc_bytes;
1576 
1577             if (pos >= writesize)
1578                 pos += oob_skip;
1579             else if (pos + len > writesize)
1580                 len = writesize - pos;
1581 
1582             memcpy(tmp_buf + pos, oob, len);
1583             oob += len;
1584             if (len < ecc_bytes) {
1585                 len = ecc_bytes - len;
1586                 memcpy(tmp_buf + writesize + oob_skip, oob,
1587                        len);
1588                 oob += len;
1589             }
1590         }
1591     }
1592 
1593     cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
1594 
1595     return cadence_nand_cdma_transfer(cdns_ctrl,
1596                       cdns_chip->cs[chip->cur_cs],
1597                       page, cdns_ctrl->buf, NULL,
1598                       mtd->writesize +
1599                       mtd->oobsize,
1600                       0, DMA_TO_DEVICE, false);
1601 }
1602 
1603 static int cadence_nand_write_oob_raw(struct nand_chip *chip,
1604                       int page)
1605 {
1606     return cadence_nand_write_page_raw(chip, NULL, true, page);
1607 }
1608 
1609 static int cadence_nand_read_page(struct nand_chip *chip,
1610                   u8 *buf, int oob_required, int page)
1611 {
1612     struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1613     struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1614     struct mtd_info *mtd = nand_to_mtd(chip);
1615     int status = 0;
1616     int ecc_err_count = 0;
1617 
1618     status = cadence_nand_select_target(chip);
1619     if (status)
1620         return status;
1621 
1622     cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
1623                      mtd->writesize
1624                      + cdns_chip->bbm_offs, 1);
1625 
1626     /*
1627      * If data buffer can be accessed by DMA and data_control feature
1628      * is supported then transfer data and oob directly.
1629      */
1630     if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
1631         cdns_ctrl->caps2.data_control_supp) {
1632         u8 *oob;
1633 
1634         if (oob_required)
1635             oob = chip->oob_poi;
1636         else
1637             oob = cdns_ctrl->buf + mtd->writesize;
1638 
1639         cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
1640         status = cadence_nand_cdma_transfer(cdns_ctrl,
1641                             cdns_chip->cs[chip->cur_cs],
1642                             page, buf, oob,
1643                             mtd->writesize,
1644                             cdns_chip->avail_oob_size,
1645                             DMA_FROM_DEVICE, true);
1646     /* Otherwise use bounce buffer. */
1647     } else {
1648         cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
1649         status = cadence_nand_cdma_transfer(cdns_ctrl,
1650                             cdns_chip->cs[chip->cur_cs],
1651                             page, cdns_ctrl->buf,
1652                             NULL, mtd->writesize
1653                             + cdns_chip->avail_oob_size,
1654                             0, DMA_FROM_DEVICE, true);
1655 
1656         memcpy(buf, cdns_ctrl->buf, mtd->writesize);
1657         if (oob_required)
1658             memcpy(chip->oob_poi,
1659                    cdns_ctrl->buf + mtd->writesize,
1660                    mtd->oobsize);
1661     }
1662 
1663     switch (status) {
1664     case STAT_ECC_UNCORR:
1665         mtd->ecc_stats.failed++;
1666         ecc_err_count++;
1667         break;
1668     case STAT_ECC_CORR:
1669         ecc_err_count = FIELD_GET(CDMA_CS_MAXERR,
1670                       cdns_ctrl->cdma_desc->status);
1671         mtd->ecc_stats.corrected += ecc_err_count;
1672         break;
1673     case STAT_ERASED:
1674     case STAT_OK:
1675         break;
1676     default:
1677         dev_err(cdns_ctrl->dev, "read page failed\n");
1678         return -EIO;
1679     }
1680 
1681     if (oob_required)
1682         if (cadence_nand_read_bbm(chip, page, chip->oob_poi))
1683             return -EIO;
1684 
1685     return ecc_err_count;
1686 }
1687 
1688 /* Reads OOB data from the device. */
1689 static int cadence_nand_read_oob(struct nand_chip *chip, int page)
1690 {
1691     struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1692 
1693     return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page);
1694 }
1695 
1696 static int cadence_nand_read_page_raw(struct nand_chip *chip,
1697                       u8 *buf, int oob_required, int page)
1698 {
1699     struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1700     struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1701     struct mtd_info *mtd = nand_to_mtd(chip);
1702     int oob_skip = cdns_chip->bbm_len;
1703     int writesize = mtd->writesize;
1704     int ecc_steps = chip->ecc.steps;
1705     int ecc_size = chip->ecc.size;
1706     int ecc_bytes = chip->ecc.bytes;
1707     void *tmp_buf = cdns_ctrl->buf;
1708     int i, pos, len;
1709     int status = 0;
1710 
1711     status = cadence_nand_select_target(chip);
1712     if (status)
1713         return status;
1714 
1715     cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1716 
1717     cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
1718     status = cadence_nand_cdma_transfer(cdns_ctrl,
1719                         cdns_chip->cs[chip->cur_cs],
1720                         page, cdns_ctrl->buf, NULL,
1721                         mtd->writesize
1722                         + mtd->oobsize,
1723                         0, DMA_FROM_DEVICE, false);
1724 
1725     switch (status) {
1726     case STAT_ERASED:
1727     case STAT_OK:
1728         break;
1729     default:
1730         dev_err(cdns_ctrl->dev, "read raw page failed\n");
1731         return -EIO;
1732     }
1733 
1734     /* Arrange the buffer for syndrome payload/ecc layout. */
1735     if (buf) {
1736         for (i = 0; i < ecc_steps; i++) {
1737             pos = i * (ecc_size + ecc_bytes);
1738             len = ecc_size;
1739 
1740             if (pos >= writesize)
1741                 pos += oob_skip;
1742             else if (pos + len > writesize)
1743                 len = writesize - pos;
1744 
1745             memcpy(buf, tmp_buf + pos, len);
1746             buf += len;
1747             if (len < ecc_size) {
1748                 len = ecc_size - len;
1749                 memcpy(buf, tmp_buf + writesize + oob_skip,
1750                        len);
1751                 buf += len;
1752             }
1753         }
1754     }
1755 
1756     if (oob_required) {
1757         u8 *oob = chip->oob_poi;
1758         u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1759             (cdns_chip->sector_size + chip->ecc.bytes)
1760             + cdns_chip->sector_size + oob_skip;
1761 
1762         /* OOB free. */
1763         memcpy(oob, tmp_buf + oob_data_offset,
1764                cdns_chip->avail_oob_size);
1765 
1766         /* BBM at the beginning of the OOB area. */
1767         memcpy(oob, tmp_buf + writesize, oob_skip);
1768 
1769         oob += cdns_chip->avail_oob_size;
1770 
1771         /* OOB ECC */
1772         for (i = 0; i < ecc_steps; i++) {
1773             pos = ecc_size + i * (ecc_size + ecc_bytes);
1774             len = ecc_bytes;
1775 
1776             if (i == (ecc_steps - 1))
1777                 pos += cdns_chip->avail_oob_size;
1778 
1779             if (pos >= writesize)
1780                 pos += oob_skip;
1781             else if (pos + len > writesize)
1782                 len = writesize - pos;
1783 
1784             memcpy(oob, tmp_buf + pos, len);
1785             oob += len;
1786             if (len < ecc_bytes) {
1787                 len = ecc_bytes - len;
1788                 memcpy(oob, tmp_buf + writesize + oob_skip,
1789                        len);
1790                 oob += len;
1791             }
1792         }
1793     }
1794 
1795     return 0;
1796 }
1797 
1798 static int cadence_nand_read_oob_raw(struct nand_chip *chip,
1799                      int page)
1800 {
1801     return cadence_nand_read_page_raw(chip, NULL, true, page);
1802 }
1803 
1804 static void cadence_nand_slave_dma_transfer_finished(void *data)
1805 {
1806     struct completion *finished = data;
1807 
1808     complete(finished);
1809 }
1810 
1811 static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl,
1812                        void *buf,
1813                        dma_addr_t dev_dma, size_t len,
1814                        enum dma_data_direction dir)
1815 {
1816     DECLARE_COMPLETION_ONSTACK(finished);
1817     struct dma_chan *chan;
1818     struct dma_device *dma_dev;
1819     dma_addr_t src_dma, dst_dma, buf_dma;
1820     struct dma_async_tx_descriptor *tx;
1821     dma_cookie_t cookie;
1822 
1823     chan = cdns_ctrl->dmac;
1824     dma_dev = chan->device;
1825 
1826     buf_dma = dma_map_single(dma_dev->dev, buf, len, dir);
1827     if (dma_mapping_error(dma_dev->dev, buf_dma)) {
1828         dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1829         goto err;
1830     }
1831 
1832     if (dir == DMA_FROM_DEVICE) {
1833         src_dma = cdns_ctrl->io.dma;
1834         dst_dma = buf_dma;
1835     } else {
1836         src_dma = buf_dma;
1837         dst_dma = cdns_ctrl->io.dma;
1838     }
1839 
1840     tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len,
1841                        DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
1842     if (!tx) {
1843         dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n");
1844         goto err_unmap;
1845     }
1846 
1847     tx->callback = cadence_nand_slave_dma_transfer_finished;
1848     tx->callback_param = &finished;
1849 
1850     cookie = dmaengine_submit(tx);
1851     if (dma_submit_error(cookie)) {
1852         dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n");
1853         goto err_unmap;
1854     }
1855 
1856     dma_async_issue_pending(cdns_ctrl->dmac);
1857     wait_for_completion(&finished);
1858 
1859     dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
1860 
1861     return 0;
1862 
1863 err_unmap:
1864     dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
1865 
1866 err:
1867     dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n");
1868 
1869     return -EIO;
1870 }
1871 
1872 static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl,
1873                  u8 *buf, int len)
1874 {
1875     u8 thread_nr = 0;
1876     u32 sdma_size;
1877     int status;
1878 
1879     /* Wait until slave DMA interface is ready to data transfer. */
1880     status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
1881     if (status)
1882         return status;
1883 
1884     if (!cdns_ctrl->caps1->has_dma) {
1885         int len_in_words = len >> 2;
1886 
1887         /* read alingment data */
1888         ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words);
1889         if (sdma_size > len) {
1890             /* read rest data from slave DMA interface if any */
1891             ioread32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf,
1892                      sdma_size / 4 - len_in_words);
1893             /* copy rest of data */
1894             memcpy(buf + (len_in_words << 2), cdns_ctrl->buf,
1895                    len - (len_in_words << 2));
1896         }
1897         return 0;
1898     }
1899 
1900     if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
1901         status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf,
1902                              cdns_ctrl->io.dma,
1903                              len, DMA_FROM_DEVICE);
1904         if (status == 0)
1905             return 0;
1906 
1907         dev_warn(cdns_ctrl->dev,
1908              "Slave DMA transfer failed. Try again using bounce buffer.");
1909     }
1910 
1911     /* If DMA transfer is not possible or failed then use bounce buffer. */
1912     status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
1913                          cdns_ctrl->io.dma,
1914                          sdma_size, DMA_FROM_DEVICE);
1915 
1916     if (status) {
1917         dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
1918         return status;
1919     }
1920 
1921     memcpy(buf, cdns_ctrl->buf, len);
1922 
1923     return 0;
1924 }
1925 
1926 static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl,
1927                   const u8 *buf, int len)
1928 {
1929     u8 thread_nr = 0;
1930     u32 sdma_size;
1931     int status;
1932 
1933     /* Wait until slave DMA interface is ready to data transfer. */
1934     status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
1935     if (status)
1936         return status;
1937 
1938     if (!cdns_ctrl->caps1->has_dma) {
1939         int len_in_words = len >> 2;
1940 
1941         iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words);
1942         if (sdma_size > len) {
1943             /* copy rest of data */
1944             memcpy(cdns_ctrl->buf, buf + (len_in_words << 2),
1945                    len - (len_in_words << 2));
1946             /* write all expected by nand controller data */
1947             iowrite32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf,
1948                       sdma_size / 4 - len_in_words);
1949         }
1950 
1951         return 0;
1952     }
1953 
1954     if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
1955         status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf,
1956                              cdns_ctrl->io.dma,
1957                              len, DMA_TO_DEVICE);
1958         if (status == 0)
1959             return 0;
1960 
1961         dev_warn(cdns_ctrl->dev,
1962              "Slave DMA transfer failed. Try again using bounce buffer.");
1963     }
1964 
1965     /* If DMA transfer is not possible or failed then use bounce buffer. */
1966     memcpy(cdns_ctrl->buf, buf, len);
1967 
1968     status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
1969                          cdns_ctrl->io.dma,
1970                          sdma_size, DMA_TO_DEVICE);
1971 
1972     if (status)
1973         dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
1974 
1975     return status;
1976 }
1977 
1978 static int cadence_nand_force_byte_access(struct nand_chip *chip,
1979                       bool force_8bit)
1980 {
1981     struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1982     int status;
1983 
1984     /*
1985      * Callers of this function do not verify if the NAND is using a 16-bit
1986      * an 8-bit bus for normal operations, so we need to take care of that
1987      * here by leaving the configuration unchanged if the NAND does not have
1988      * the NAND_BUSWIDTH_16 flag set.
1989      */
1990     if (!(chip->options & NAND_BUSWIDTH_16))
1991         return 0;
1992 
1993     status = cadence_nand_set_access_width16(cdns_ctrl, !force_8bit);
1994 
1995     return status;
1996 }
1997 
1998 static int cadence_nand_cmd_opcode(struct nand_chip *chip,
1999                    const struct nand_subop *subop)
2000 {
2001     struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2002     struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2003     const struct nand_op_instr *instr;
2004     unsigned int op_id = 0;
2005     u64 mini_ctrl_cmd = 0;
2006     int ret;
2007 
2008     instr = &subop->instrs[op_id];
2009 
2010     if (instr->delay_ns > 0)
2011         mini_ctrl_cmd |= GCMD_LAY_TWB;
2012 
2013     mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2014                     GCMD_LAY_INSTR_CMD);
2015     mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD,
2016                     instr->ctx.cmd.opcode);
2017 
2018     ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2019                         cdns_chip->cs[chip->cur_cs],
2020                         mini_ctrl_cmd);
2021     if (ret)
2022         dev_err(cdns_ctrl->dev, "send cmd %x failed\n",
2023             instr->ctx.cmd.opcode);
2024 
2025     return ret;
2026 }
2027 
2028 static int cadence_nand_cmd_address(struct nand_chip *chip,
2029                     const struct nand_subop *subop)
2030 {
2031     struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2032     struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2033     const struct nand_op_instr *instr;
2034     unsigned int op_id = 0;
2035     u64 mini_ctrl_cmd = 0;
2036     unsigned int offset, naddrs;
2037     u64 address = 0;
2038     const u8 *addrs;
2039     int ret;
2040     int i;
2041 
2042     instr = &subop->instrs[op_id];
2043 
2044     if (instr->delay_ns > 0)
2045         mini_ctrl_cmd |= GCMD_LAY_TWB;
2046 
2047     mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2048                     GCMD_LAY_INSTR_ADDR);
2049 
2050     offset = nand_subop_get_addr_start_off(subop, op_id);
2051     naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
2052     addrs = &instr->ctx.addr.addrs[offset];
2053 
2054     for (i = 0; i < naddrs; i++)
2055         address |= (u64)addrs[i] << (8 * i);
2056 
2057     mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
2058                     address);
2059     mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
2060                     naddrs - 1);
2061 
2062     ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2063                         cdns_chip->cs[chip->cur_cs],
2064                         mini_ctrl_cmd);
2065     if (ret)
2066         dev_err(cdns_ctrl->dev, "send address %llx failed\n", address);
2067 
2068     return ret;
2069 }
2070 
2071 static int cadence_nand_cmd_erase(struct nand_chip *chip,
2072                   const struct nand_subop *subop)
2073 {
2074     unsigned int op_id;
2075 
2076     if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) {
2077         int i;
2078         const struct nand_op_instr *instr = NULL;
2079         unsigned int offset, naddrs;
2080         const u8 *addrs;
2081         u32 page = 0;
2082 
2083         instr = &subop->instrs[1];
2084         offset = nand_subop_get_addr_start_off(subop, 1);
2085         naddrs = nand_subop_get_num_addr_cyc(subop, 1);
2086         addrs = &instr->ctx.addr.addrs[offset];
2087 
2088         for (i = 0; i < naddrs; i++)
2089             page |= (u32)addrs[i] << (8 * i);
2090 
2091         return cadence_nand_erase(chip, page);
2092     }
2093 
2094     /*
2095      * If it is not an erase operation then handle operation
2096      * by calling exec_op function.
2097      */
2098     for (op_id = 0; op_id < subop->ninstrs; op_id++) {
2099         int ret;
2100         const struct nand_operation nand_op = {
2101             .cs = chip->cur_cs,
2102             .instrs =  &subop->instrs[op_id],
2103             .ninstrs = 1};
2104         ret = chip->controller->ops->exec_op(chip, &nand_op, false);
2105         if (ret)
2106             return ret;
2107     }
2108 
2109     return 0;
2110 }
2111 
2112 static int cadence_nand_cmd_data(struct nand_chip *chip,
2113                  const struct nand_subop *subop)
2114 {
2115     struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2116     struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2117     const struct nand_op_instr *instr;
2118     unsigned int offset, op_id = 0;
2119     u64 mini_ctrl_cmd = 0;
2120     int len = 0;
2121     int ret;
2122 
2123     instr = &subop->instrs[op_id];
2124 
2125     if (instr->delay_ns > 0)
2126         mini_ctrl_cmd |= GCMD_LAY_TWB;
2127 
2128     mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2129                     GCMD_LAY_INSTR_DATA);
2130 
2131     if (instr->type == NAND_OP_DATA_OUT_INSTR)
2132         mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR,
2133                         GCMD_DIR_WRITE);
2134 
2135     len = nand_subop_get_data_len(subop, op_id);
2136     offset = nand_subop_get_data_start_off(subop, op_id);
2137     mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
2138     mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
2139     if (instr->ctx.data.force_8bit) {
2140         ret = cadence_nand_force_byte_access(chip, true);
2141         if (ret) {
2142             dev_err(cdns_ctrl->dev,
2143                 "cannot change byte access generic data cmd failed\n");
2144             return ret;
2145         }
2146     }
2147 
2148     ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2149                         cdns_chip->cs[chip->cur_cs],
2150                         mini_ctrl_cmd);
2151     if (ret) {
2152         dev_err(cdns_ctrl->dev, "send generic data cmd failed\n");
2153         return ret;
2154     }
2155 
2156     if (instr->type == NAND_OP_DATA_IN_INSTR) {
2157         void *buf = instr->ctx.data.buf.in + offset;
2158 
2159         ret = cadence_nand_read_buf(cdns_ctrl, buf, len);
2160     } else {
2161         const void *buf = instr->ctx.data.buf.out + offset;
2162 
2163         ret = cadence_nand_write_buf(cdns_ctrl, buf, len);
2164     }
2165 
2166     if (ret) {
2167         dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n");
2168         return ret;
2169     }
2170 
2171     if (instr->ctx.data.force_8bit) {
2172         ret = cadence_nand_force_byte_access(chip, false);
2173         if (ret) {
2174             dev_err(cdns_ctrl->dev,
2175                 "cannot change byte access generic data cmd failed\n");
2176         }
2177     }
2178 
2179     return ret;
2180 }
2181 
2182 static int cadence_nand_cmd_waitrdy(struct nand_chip *chip,
2183                     const struct nand_subop *subop)
2184 {
2185     int status;
2186     unsigned int op_id = 0;
2187     struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2188     struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2189     const struct nand_op_instr *instr = &subop->instrs[op_id];
2190     u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
2191 
2192     status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS,
2193                          timeout_us,
2194                          BIT(cdns_chip->cs[chip->cur_cs]),
2195                          false);
2196     return status;
2197 }
2198 
2199 static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER(
2200     NAND_OP_PARSER_PATTERN(
2201         cadence_nand_cmd_erase,
2202         NAND_OP_PARSER_PAT_CMD_ELEM(false),
2203         NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC),
2204         NAND_OP_PARSER_PAT_CMD_ELEM(false),
2205         NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2206     NAND_OP_PARSER_PATTERN(
2207         cadence_nand_cmd_opcode,
2208         NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2209     NAND_OP_PARSER_PATTERN(
2210         cadence_nand_cmd_address,
2211         NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)),
2212     NAND_OP_PARSER_PATTERN(
2213         cadence_nand_cmd_data,
2214         NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)),
2215     NAND_OP_PARSER_PATTERN(
2216         cadence_nand_cmd_data,
2217         NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)),
2218     NAND_OP_PARSER_PATTERN(
2219         cadence_nand_cmd_waitrdy,
2220         NAND_OP_PARSER_PAT_WAITRDY_ELEM(false))
2221     );
2222 
2223 static int cadence_nand_exec_op(struct nand_chip *chip,
2224                 const struct nand_operation *op,
2225                 bool check_only)
2226 {
2227     if (!check_only) {
2228         int status = cadence_nand_select_target(chip);
2229 
2230         if (status)
2231             return status;
2232     }
2233 
2234     return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op,
2235                       check_only);
2236 }
2237 
2238 static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
2239                        struct mtd_oob_region *oobregion)
2240 {
2241     struct nand_chip *chip = mtd_to_nand(mtd);
2242     struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2243 
2244     if (section)
2245         return -ERANGE;
2246 
2247     oobregion->offset = cdns_chip->bbm_len;
2248     oobregion->length = cdns_chip->avail_oob_size
2249         - cdns_chip->bbm_len;
2250 
2251     return 0;
2252 }
2253 
2254 static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2255                       struct mtd_oob_region *oobregion)
2256 {
2257     struct nand_chip *chip = mtd_to_nand(mtd);
2258     struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2259 
2260     if (section)
2261         return -ERANGE;
2262 
2263     oobregion->offset = cdns_chip->avail_oob_size;
2264     oobregion->length = chip->ecc.total;
2265 
2266     return 0;
2267 }
2268 
2269 static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
2270     .free = cadence_nand_ooblayout_free,
2271     .ecc = cadence_nand_ooblayout_ecc,
2272 };
2273 
2274 static int calc_cycl(u32 timing, u32 clock)
2275 {
2276     if (timing == 0 || clock == 0)
2277         return 0;
2278 
2279     if ((timing % clock) > 0)
2280         return timing / clock;
2281     else
2282         return timing / clock - 1;
2283 }
2284 
2285 /* Calculate max data valid window. */
2286 static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
2287                 u32 board_delay_skew_min, u32 ext_mode)
2288 {
2289     if (ext_mode == 0)
2290         clk_period /= 2;
2291 
2292     return (trp_cnt + 1) * clk_period + trhoh_min +
2293         board_delay_skew_min;
2294 }
2295 
2296 /* Calculate data valid window. */
2297 static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
2298                 u32 trea_max, u32 ext_mode)
2299 {
2300     if (ext_mode == 0)
2301         clk_period /= 2;
2302 
2303     return (trp_cnt + 1) * clk_period + trhoh_min - trea_max;
2304 }
2305 
2306 static int
2307 cadence_nand_setup_interface(struct nand_chip *chip, int chipnr,
2308                  const struct nand_interface_config *conf)
2309 {
2310     const struct nand_sdr_timings *sdr;
2311     struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2312     struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2313     struct cadence_nand_timings *t = &cdns_chip->timings;
2314     u32 reg;
2315     u32 board_delay = cdns_ctrl->board_delay;
2316     u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
2317                         cdns_ctrl->nf_clk_rate);
2318     u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
2319     u32 tfeat_cnt, trhz_cnt, tvdly_cnt;
2320     u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt;
2321     u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0;
2322     u32 if_skew = cdns_ctrl->caps1->if_skew;
2323     u32 board_delay_skew_min = board_delay - if_skew;
2324     u32 board_delay_skew_max = board_delay + if_skew;
2325     u32 dqs_sampl_res, phony_dqs_mod;
2326     u32 tdvw, tdvw_min, tdvw_max;
2327     u32 ext_rd_mode, ext_wr_mode;
2328     u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
2329     u32 sampling_point;
2330 
2331     sdr = nand_get_sdr_timings(conf);
2332     if (IS_ERR(sdr))
2333         return PTR_ERR(sdr);
2334 
2335     memset(t, 0, sizeof(*t));
2336     /* Sampling point calculation. */
2337 
2338     if (cdns_ctrl->caps2.is_phy_type_dll)
2339         phony_dqs_mod = 2;
2340     else
2341         phony_dqs_mod = 1;
2342 
2343     dqs_sampl_res = clk_period / phony_dqs_mod;
2344 
2345     tdvw_min = sdr->tREA_max + board_delay_skew_max;
2346     /*
2347      * The idea of those calculation is to get the optimum value
2348      * for tRP and tRH timings. If it is NOT possible to sample data
2349      * with optimal tRP/tRH settings, the parameters will be extended.
2350      * If clk_period is 50ns (the lowest value) this condition is met
2351      * for SDR timing modes 1, 2, 3, 4 and 5.
2352      * If clk_period is 20ns the condition is met only for SDR timing
2353      * mode 5.
2354      */
2355     if (sdr->tRC_min <= clk_period &&
2356         sdr->tRP_min <= (clk_period / 2) &&
2357         sdr->tREH_min <= (clk_period / 2)) {
2358         /* Performance mode. */
2359         ext_rd_mode = 0;
2360         tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
2361                  sdr->tREA_max, ext_rd_mode);
2362         tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min,
2363                      board_delay_skew_min,
2364                      ext_rd_mode);
2365         /*
2366          * Check if data valid window and sampling point can be found
2367          * and is not on the edge (ie. we have hold margin).
2368          * If not extend the tRP timings.
2369          */
2370         if (tdvw > 0) {
2371             if (tdvw_max <= tdvw_min ||
2372                 (tdvw_max % dqs_sampl_res) == 0) {
2373                 /*
2374                  * No valid sampling point so the RE pulse need
2375                  * to be widen widening by half clock cycle.
2376                  */
2377                 ext_rd_mode = 1;
2378             }
2379         } else {
2380             /*
2381              * There is no valid window
2382              * to be able to sample data the tRP need to be widen.
2383              * Very safe calculations are performed here.
2384              */
2385             trp_cnt = (sdr->tREA_max + board_delay_skew_max
2386                    + dqs_sampl_res) / clk_period;
2387             ext_rd_mode = 1;
2388         }
2389 
2390     } else {
2391         /* Extended read mode. */
2392         u32 trh;
2393 
2394         ext_rd_mode = 1;
2395         trp_cnt = calc_cycl(sdr->tRP_min, clk_period);
2396         trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period);
2397         if (sdr->tREH_min >= trh)
2398             trh_cnt = calc_cycl(sdr->tREH_min, clk_period);
2399         else
2400             trh_cnt = calc_cycl(trh, clk_period);
2401 
2402         tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
2403                  sdr->tREA_max, ext_rd_mode);
2404         /*
2405          * Check if data valid window and sampling point can be found
2406          * or if it is at the edge check if previous is valid
2407          * - if not extend the tRP timings.
2408          */
2409         if (tdvw > 0) {
2410             tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
2411                          sdr->tRHOH_min,
2412                          board_delay_skew_min,
2413                          ext_rd_mode);
2414 
2415             if ((((tdvw_max / dqs_sampl_res)
2416                   * dqs_sampl_res) <= tdvw_min) ||
2417                 (((tdvw_max % dqs_sampl_res) == 0) &&
2418                  (((tdvw_max / dqs_sampl_res - 1)
2419                    * dqs_sampl_res) <= tdvw_min))) {
2420                 /*
2421                  * Data valid window width is lower than
2422                  * sampling resolution and do not hit any
2423                  * sampling point to be sure the sampling point
2424                  * will be found the RE low pulse width will be
2425                  *  extended by one clock cycle.
2426                  */
2427                 trp_cnt = trp_cnt + 1;
2428             }
2429         } else {
2430             /*
2431              * There is no valid window to be able to sample data.
2432              * The tRP need to be widen.
2433              * Very safe calculations are performed here.
2434              */
2435             trp_cnt = (sdr->tREA_max + board_delay_skew_max
2436                    + dqs_sampl_res) / clk_period;
2437         }
2438     }
2439 
2440     tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
2441                  sdr->tRHOH_min,
2442                  board_delay_skew_min, ext_rd_mode);
2443 
2444     if (sdr->tWC_min <= clk_period &&
2445         (sdr->tWP_min + if_skew) <= (clk_period / 2) &&
2446         (sdr->tWH_min + if_skew) <= (clk_period / 2)) {
2447         ext_wr_mode = 0;
2448     } else {
2449         u32 twh;
2450 
2451         ext_wr_mode = 1;
2452         twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period);
2453         if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew))
2454             twp_cnt = calc_cycl(sdr->tALS_min + if_skew,
2455                         clk_period);
2456 
2457         twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period);
2458         if (sdr->tWH_min >= twh)
2459             twh = sdr->tWH_min;
2460 
2461         twh_cnt = calc_cycl(twh + if_skew, clk_period);
2462     }
2463 
2464     reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
2465     reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
2466     reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
2467     reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
2468     t->async_toggle_timings = reg;
2469     dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
2470 
2471     tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period);
2472     tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period);
2473     twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period);
2474     trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period);
2475     reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
2476 
2477     /*
2478      * If timing exceeds delay field in timing register
2479      * then use maximum value.
2480      */
2481     if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
2482         reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
2483     else
2484         reg |= TIMINGS0_TCCS;
2485 
2486     reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
2487     reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
2488     t->timings0 = reg;
2489     dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg);
2490 
2491     /* The following is related to single signal so skew is not needed. */
2492     trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period);
2493     trhz_cnt = trhz_cnt + 1;
2494     twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period);
2495     /*
2496      * Because of the two stage syncflop the value must be increased by 3
2497      * first value is related with sync, second value is related
2498      * with output if delay.
2499      */
2500     twb_cnt = twb_cnt + 3 + 5;
2501     /*
2502      * The following is related to the we edge of the random data input
2503      * sequence so skew is not needed.
2504      */
2505     tvdly_cnt = calc_cycl(500000 + if_skew, clk_period);
2506     reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
2507     reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
2508     reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
2509     t->timings1 = reg;
2510     dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg);
2511 
2512     tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period);
2513     if (tfeat_cnt < twb_cnt)
2514         tfeat_cnt = twb_cnt;
2515 
2516     tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period);
2517     tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period);
2518 
2519     reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
2520     reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
2521     reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
2522     t->timings2 = reg;
2523     dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg);
2524 
2525     if (cdns_ctrl->caps2.is_phy_type_dll) {
2526         reg = DLL_PHY_CTRL_DLL_RST_N;
2527         if (ext_wr_mode)
2528             reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
2529         if (ext_rd_mode)
2530             reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
2531 
2532         reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
2533         reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
2534         t->dll_phy_ctrl = reg;
2535         dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
2536     }
2537 
2538     /* Sampling point calculation. */
2539     if ((tdvw_max % dqs_sampl_res) > 0)
2540         sampling_point = tdvw_max / dqs_sampl_res;
2541     else
2542         sampling_point = (tdvw_max / dqs_sampl_res - 1);
2543 
2544     if (sampling_point * dqs_sampl_res > tdvw_min) {
2545         dll_phy_dqs_timing =
2546             FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4);
2547         dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS;
2548         phony_dqs_timing = sampling_point / phony_dqs_mod;
2549 
2550         if ((sampling_point % 2) > 0) {
2551             dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL;
2552             if ((tdvw_max % dqs_sampl_res) == 0)
2553                 /*
2554                  * Calculation for sampling point at the edge
2555                  * of data and being odd number.
2556                  */
2557                 phony_dqs_timing = (tdvw_max / dqs_sampl_res)
2558                     / phony_dqs_mod - 1;
2559 
2560             if (!cdns_ctrl->caps2.is_phy_type_dll)
2561                 phony_dqs_timing--;
2562 
2563         } else {
2564             phony_dqs_timing--;
2565         }
2566         rd_del_sel = phony_dqs_timing + 3;
2567     } else {
2568         dev_warn(cdns_ctrl->dev,
2569              "ERROR : cannot find valid sampling point\n");
2570     }
2571 
2572     reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
2573     if (cdns_ctrl->caps2.is_phy_type_dll)
2574         reg  |= PHY_CTRL_SDR_DQS;
2575     t->phy_ctrl = reg;
2576     dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
2577 
2578     if (cdns_ctrl->caps2.is_phy_type_dll) {
2579         dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
2580         dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
2581         dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
2582             dll_phy_dqs_timing);
2583         t->phy_dqs_timing = dll_phy_dqs_timing;
2584 
2585         reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
2586         dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
2587             reg);
2588         t->phy_gate_lpbk_ctrl = reg;
2589 
2590         dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
2591             PHY_DLL_MASTER_CTRL_BYPASS_MODE);
2592         dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
2593     }
2594 
2595     return 0;
2596 }
2597 
2598 static int cadence_nand_attach_chip(struct nand_chip *chip)
2599 {
2600     struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2601     struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2602     u32 ecc_size;
2603     struct mtd_info *mtd = nand_to_mtd(chip);
2604     int ret;
2605 
2606     if (chip->options & NAND_BUSWIDTH_16) {
2607         ret = cadence_nand_set_access_width16(cdns_ctrl, true);
2608         if (ret)
2609             return ret;
2610     }
2611 
2612     chip->bbt_options |= NAND_BBT_USE_FLASH;
2613     chip->bbt_options |= NAND_BBT_NO_OOB;
2614     chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2615 
2616     chip->options |= NAND_NO_SUBPAGE_WRITE;
2617 
2618     cdns_chip->bbm_offs = chip->badblockpos;
2619     cdns_chip->bbm_offs &= ~0x01;
2620     /* this value should be even number */
2621     cdns_chip->bbm_len = 2;
2622 
2623     ret = nand_ecc_choose_conf(chip,
2624                    &cdns_ctrl->ecc_caps,
2625                    mtd->oobsize - cdns_chip->bbm_len);
2626     if (ret) {
2627         dev_err(cdns_ctrl->dev, "ECC configuration failed\n");
2628         return ret;
2629     }
2630 
2631     dev_dbg(cdns_ctrl->dev,
2632         "chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
2633         chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
2634 
2635     /* Error correction configuration. */
2636     cdns_chip->sector_size = chip->ecc.size;
2637     cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
2638     ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
2639 
2640     cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
2641 
2642     if (cdns_chip->avail_oob_size > cdns_ctrl->bch_metadata_size)
2643         cdns_chip->avail_oob_size = cdns_ctrl->bch_metadata_size;
2644 
2645     if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
2646         > mtd->oobsize)
2647         cdns_chip->avail_oob_size -= 4;
2648 
2649     ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength);
2650     if (ret < 0)
2651         return -EINVAL;
2652 
2653     cdns_chip->corr_str_idx = (u8)ret;
2654 
2655     if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
2656                     1000000,
2657                     CTRL_STATUS_CTRL_BUSY, true))
2658         return -ETIMEDOUT;
2659 
2660     cadence_nand_set_ecc_strength(cdns_ctrl,
2661                       cdns_chip->corr_str_idx);
2662 
2663     cadence_nand_set_erase_detection(cdns_ctrl, true,
2664                      chip->ecc.strength);
2665 
2666     /* Override the default read operations. */
2667     chip->ecc.read_page = cadence_nand_read_page;
2668     chip->ecc.read_page_raw = cadence_nand_read_page_raw;
2669     chip->ecc.write_page = cadence_nand_write_page;
2670     chip->ecc.write_page_raw = cadence_nand_write_page_raw;
2671     chip->ecc.read_oob = cadence_nand_read_oob;
2672     chip->ecc.write_oob = cadence_nand_write_oob;
2673     chip->ecc.read_oob_raw = cadence_nand_read_oob_raw;
2674     chip->ecc.write_oob_raw = cadence_nand_write_oob_raw;
2675 
2676     if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size)
2677         cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize;
2678 
2679     /* Is 32-bit DMA supported? */
2680     ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32));
2681     if (ret) {
2682         dev_err(cdns_ctrl->dev, "no usable DMA configuration\n");
2683         return ret;
2684     }
2685 
2686     mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
2687 
2688     return 0;
2689 }
2690 
2691 static const struct nand_controller_ops cadence_nand_controller_ops = {
2692     .attach_chip = cadence_nand_attach_chip,
2693     .exec_op = cadence_nand_exec_op,
2694     .setup_interface = cadence_nand_setup_interface,
2695 };
2696 
2697 static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl,
2698                   struct device_node *np)
2699 {
2700     struct cdns_nand_chip *cdns_chip;
2701     struct mtd_info *mtd;
2702     struct nand_chip *chip;
2703     int nsels, ret, i;
2704     u32 cs;
2705 
2706     nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2707     if (nsels <= 0) {
2708         dev_err(cdns_ctrl->dev, "missing/invalid reg property\n");
2709         return -EINVAL;
2710     }
2711 
2712     /* Allocate the nand chip structure. */
2713     cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) +
2714                  (nsels * sizeof(u8)),
2715                  GFP_KERNEL);
2716     if (!cdns_chip) {
2717         dev_err(cdns_ctrl->dev, "could not allocate chip structure\n");
2718         return -ENOMEM;
2719     }
2720 
2721     cdns_chip->nsels = nsels;
2722 
2723     for (i = 0; i < nsels; i++) {
2724         /* Retrieve CS id. */
2725         ret = of_property_read_u32_index(np, "reg", i, &cs);
2726         if (ret) {
2727             dev_err(cdns_ctrl->dev,
2728                 "could not retrieve reg property: %d\n",
2729                 ret);
2730             return ret;
2731         }
2732 
2733         if (cs >= cdns_ctrl->caps2.max_banks) {
2734             dev_err(cdns_ctrl->dev,
2735                 "invalid reg value: %u (max CS = %d)\n",
2736                 cs, cdns_ctrl->caps2.max_banks);
2737             return -EINVAL;
2738         }
2739 
2740         if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) {
2741             dev_err(cdns_ctrl->dev,
2742                 "CS %d already assigned\n", cs);
2743             return -EINVAL;
2744         }
2745 
2746         cdns_chip->cs[i] = cs;
2747     }
2748 
2749     chip = &cdns_chip->chip;
2750     chip->controller = &cdns_ctrl->controller;
2751     nand_set_flash_node(chip, np);
2752 
2753     mtd = nand_to_mtd(chip);
2754     mtd->dev.parent = cdns_ctrl->dev;
2755 
2756     /*
2757      * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2758      * in the DT node, this entry will be overwritten in nand_scan_ident().
2759      */
2760     chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2761 
2762     ret = nand_scan(chip, cdns_chip->nsels);
2763     if (ret) {
2764         dev_err(cdns_ctrl->dev, "could not scan the nand chip\n");
2765         return ret;
2766     }
2767 
2768     ret = mtd_device_register(mtd, NULL, 0);
2769     if (ret) {
2770         dev_err(cdns_ctrl->dev,
2771             "failed to register mtd device: %d\n", ret);
2772         nand_cleanup(chip);
2773         return ret;
2774     }
2775 
2776     list_add_tail(&cdns_chip->node, &cdns_ctrl->chips);
2777 
2778     return 0;
2779 }
2780 
2781 static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl)
2782 {
2783     struct cdns_nand_chip *entry, *temp;
2784     struct nand_chip *chip;
2785     int ret;
2786 
2787     list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) {
2788         chip = &entry->chip;
2789         ret = mtd_device_unregister(nand_to_mtd(chip));
2790         WARN_ON(ret);
2791         nand_cleanup(chip);
2792         list_del(&entry->node);
2793     }
2794 }
2795 
2796 static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl)
2797 {
2798     struct device_node *np = cdns_ctrl->dev->of_node;
2799     struct device_node *nand_np;
2800     int max_cs = cdns_ctrl->caps2.max_banks;
2801     int nchips, ret;
2802 
2803     nchips = of_get_child_count(np);
2804 
2805     if (nchips > max_cs) {
2806         dev_err(cdns_ctrl->dev,
2807             "too many NAND chips: %d (max = %d CS)\n",
2808             nchips, max_cs);
2809         return -EINVAL;
2810     }
2811 
2812     for_each_child_of_node(np, nand_np) {
2813         ret = cadence_nand_chip_init(cdns_ctrl, nand_np);
2814         if (ret) {
2815             of_node_put(nand_np);
2816             cadence_nand_chips_cleanup(cdns_ctrl);
2817             return ret;
2818         }
2819     }
2820 
2821     return 0;
2822 }
2823 
2824 static void
2825 cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl)
2826 {
2827     /* Disable interrupts. */
2828     writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE);
2829 }
2830 
2831 static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl)
2832 {
2833     dma_cap_mask_t mask;
2834     int ret;
2835 
2836     cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev,
2837                           sizeof(*cdns_ctrl->cdma_desc),
2838                           &cdns_ctrl->dma_cdma_desc,
2839                           GFP_KERNEL);
2840     if (!cdns_ctrl->dma_cdma_desc)
2841         return -ENOMEM;
2842 
2843     cdns_ctrl->buf_size = SZ_16K;
2844     cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL);
2845     if (!cdns_ctrl->buf) {
2846         ret = -ENOMEM;
2847         goto free_buf_desc;
2848     }
2849 
2850     if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr,
2851                  IRQF_SHARED, "cadence-nand-controller",
2852                  cdns_ctrl)) {
2853         dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n");
2854         ret = -ENODEV;
2855         goto free_buf;
2856     }
2857 
2858     spin_lock_init(&cdns_ctrl->irq_lock);
2859     init_completion(&cdns_ctrl->complete);
2860 
2861     ret = cadence_nand_hw_init(cdns_ctrl);
2862     if (ret)
2863         goto disable_irq;
2864 
2865     dma_cap_zero(mask);
2866     dma_cap_set(DMA_MEMCPY, mask);
2867 
2868     if (cdns_ctrl->caps1->has_dma) {
2869         cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL);
2870         if (!cdns_ctrl->dmac) {
2871             dev_err(cdns_ctrl->dev,
2872                 "Unable to get a DMA channel\n");
2873             ret = -EBUSY;
2874             goto disable_irq;
2875         }
2876     }
2877 
2878     nand_controller_init(&cdns_ctrl->controller);
2879     INIT_LIST_HEAD(&cdns_ctrl->chips);
2880 
2881     cdns_ctrl->controller.ops = &cadence_nand_controller_ops;
2882     cdns_ctrl->curr_corr_str_idx = 0xFF;
2883 
2884     ret = cadence_nand_chips_init(cdns_ctrl);
2885     if (ret) {
2886         dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n",
2887             ret);
2888         goto dma_release_chnl;
2889     }
2890 
2891     kfree(cdns_ctrl->buf);
2892     cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL);
2893     if (!cdns_ctrl->buf) {
2894         ret = -ENOMEM;
2895         goto dma_release_chnl;
2896     }
2897 
2898     return 0;
2899 
2900 dma_release_chnl:
2901     if (cdns_ctrl->dmac)
2902         dma_release_channel(cdns_ctrl->dmac);
2903 
2904 disable_irq:
2905     cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
2906 
2907 free_buf:
2908     kfree(cdns_ctrl->buf);
2909 
2910 free_buf_desc:
2911     dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
2912               cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
2913 
2914     return ret;
2915 }
2916 
2917 /* Driver exit point. */
2918 static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl)
2919 {
2920     cadence_nand_chips_cleanup(cdns_ctrl);
2921     cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
2922     kfree(cdns_ctrl->buf);
2923     dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
2924               cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
2925 
2926     if (cdns_ctrl->dmac)
2927         dma_release_channel(cdns_ctrl->dmac);
2928 }
2929 
2930 struct cadence_nand_dt {
2931     struct cdns_nand_ctrl cdns_ctrl;
2932     struct clk *clk;
2933 };
2934 
2935 static const struct cadence_nand_dt_devdata cadence_nand_default = {
2936     .if_skew = 0,
2937     .has_dma = 1,
2938 };
2939 
2940 static const struct of_device_id cadence_nand_dt_ids[] = {
2941     {
2942         .compatible = "cdns,hp-nfc",
2943         .data = &cadence_nand_default
2944     }, {}
2945 };
2946 
2947 MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids);
2948 
2949 static int cadence_nand_dt_probe(struct platform_device *ofdev)
2950 {
2951     struct resource *res;
2952     struct cadence_nand_dt *dt;
2953     struct cdns_nand_ctrl *cdns_ctrl;
2954     int ret;
2955     const struct of_device_id *of_id;
2956     const struct cadence_nand_dt_devdata *devdata;
2957     u32 val;
2958 
2959     of_id = of_match_device(cadence_nand_dt_ids, &ofdev->dev);
2960     if (of_id) {
2961         ofdev->id_entry = of_id->data;
2962         devdata = of_id->data;
2963     } else {
2964         pr_err("Failed to find the right device id.\n");
2965         return -ENOMEM;
2966     }
2967 
2968     dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL);
2969     if (!dt)
2970         return -ENOMEM;
2971 
2972     cdns_ctrl = &dt->cdns_ctrl;
2973     cdns_ctrl->caps1 = devdata;
2974 
2975     cdns_ctrl->dev = &ofdev->dev;
2976     cdns_ctrl->irq = platform_get_irq(ofdev, 0);
2977     if (cdns_ctrl->irq < 0)
2978         return cdns_ctrl->irq;
2979 
2980     dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq);
2981 
2982     cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0);
2983     if (IS_ERR(cdns_ctrl->reg))
2984         return PTR_ERR(cdns_ctrl->reg);
2985 
2986     cdns_ctrl->io.virt = devm_platform_get_and_ioremap_resource(ofdev, 1, &res);
2987     if (IS_ERR(cdns_ctrl->io.virt))
2988         return PTR_ERR(cdns_ctrl->io.virt);
2989     cdns_ctrl->io.dma = res->start;
2990 
2991     dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk");
2992     if (IS_ERR(dt->clk))
2993         return PTR_ERR(dt->clk);
2994 
2995     cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk);
2996 
2997     ret = of_property_read_u32(ofdev->dev.of_node,
2998                    "cdns,board-delay-ps", &val);
2999     if (ret) {
3000         val = 4830;
3001         dev_info(cdns_ctrl->dev,
3002              "missing cdns,board-delay-ps property, %d was set\n",
3003              val);
3004     }
3005     cdns_ctrl->board_delay = val;
3006 
3007     ret = cadence_nand_init(cdns_ctrl);
3008     if (ret)
3009         return ret;
3010 
3011     platform_set_drvdata(ofdev, dt);
3012     return 0;
3013 }
3014 
3015 static int cadence_nand_dt_remove(struct platform_device *ofdev)
3016 {
3017     struct cadence_nand_dt *dt = platform_get_drvdata(ofdev);
3018 
3019     cadence_nand_remove(&dt->cdns_ctrl);
3020 
3021     return 0;
3022 }
3023 
3024 static struct platform_driver cadence_nand_dt_driver = {
3025     .probe      = cadence_nand_dt_probe,
3026     .remove     = cadence_nand_dt_remove,
3027     .driver     = {
3028         .name   = "cadence-nand-controller",
3029         .of_match_table = cadence_nand_dt_ids,
3030     },
3031 };
3032 
3033 module_platform_driver(cadence_nand_dt_driver);
3034 
3035 MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>");
3036 MODULE_LICENSE("GPL v2");
3037 MODULE_DESCRIPTION("Driver for Cadence NAND flash controller");
3038