0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013 #include <linux/bch.h>
0014 #include <linux/bitfield.h>
0015 #include <linux/clk.h>
0016 #include <linux/delay.h>
0017 #include <linux/dma-mapping.h>
0018 #include <linux/gpio/consumer.h>
0019 #include <linux/interrupt.h>
0020 #include <linux/iopoll.h>
0021 #include <linux/module.h>
0022 #include <linux/mtd/mtd.h>
0023 #include <linux/mtd/partitions.h>
0024 #include <linux/mtd/rawnand.h>
0025 #include <linux/of.h>
0026 #include <linux/platform_device.h>
0027 #include <linux/slab.h>
0028
0029 #define PKT_REG 0x00
0030 #define PKT_SIZE(x) FIELD_PREP(GENMASK(10, 0), (x))
0031 #define PKT_STEPS(x) FIELD_PREP(GENMASK(23, 12), (x))
0032
0033 #define MEM_ADDR1_REG 0x04
0034
0035 #define MEM_ADDR2_REG 0x08
0036 #define ADDR2_STRENGTH(x) FIELD_PREP(GENMASK(27, 25), (x))
0037 #define ADDR2_CS(x) FIELD_PREP(GENMASK(31, 30), (x))
0038
0039 #define CMD_REG 0x0C
0040 #define CMD_1(x) FIELD_PREP(GENMASK(7, 0), (x))
0041 #define CMD_2(x) FIELD_PREP(GENMASK(15, 8), (x))
0042 #define CMD_PAGE_SIZE(x) FIELD_PREP(GENMASK(25, 23), (x))
0043 #define CMD_DMA_ENABLE BIT(27)
0044 #define CMD_NADDRS(x) FIELD_PREP(GENMASK(30, 28), (x))
0045 #define CMD_ECC_ENABLE BIT(31)
0046
0047 #define PROG_REG 0x10
0048 #define PROG_PGRD BIT(0)
0049 #define PROG_ERASE BIT(2)
0050 #define PROG_STATUS BIT(3)
0051 #define PROG_PGPROG BIT(4)
0052 #define PROG_RDID BIT(6)
0053 #define PROG_RDPARAM BIT(7)
0054 #define PROG_RST BIT(8)
0055 #define PROG_GET_FEATURE BIT(9)
0056 #define PROG_SET_FEATURE BIT(10)
0057 #define PROG_CHG_RD_COL_ENH BIT(14)
0058
0059 #define INTR_STS_EN_REG 0x14
0060 #define INTR_SIG_EN_REG 0x18
0061 #define INTR_STS_REG 0x1C
0062 #define WRITE_READY BIT(0)
0063 #define READ_READY BIT(1)
0064 #define XFER_COMPLETE BIT(2)
0065 #define DMA_BOUNDARY BIT(6)
0066 #define EVENT_MASK GENMASK(7, 0)
0067
0068 #define READY_STS_REG 0x20
0069
0070 #define DMA_ADDR0_REG 0x50
0071 #define DMA_ADDR1_REG 0x24
0072
0073 #define FLASH_STS_REG 0x28
0074
0075 #define TIMING_REG 0x2C
0076 #define TCCS_TIME_500NS 0
0077 #define TCCS_TIME_300NS 3
0078 #define TCCS_TIME_200NS 2
0079 #define TCCS_TIME_100NS 1
0080 #define FAST_TCAD BIT(2)
0081 #define DQS_BUFF_SEL_IN(x) FIELD_PREP(GENMASK(6, 3), (x))
0082 #define DQS_BUFF_SEL_OUT(x) FIELD_PREP(GENMASK(18, 15), (x))
0083
0084 #define DATA_PORT_REG 0x30
0085
0086 #define ECC_CONF_REG 0x34
0087 #define ECC_CONF_COL(x) FIELD_PREP(GENMASK(15, 0), (x))
0088 #define ECC_CONF_LEN(x) FIELD_PREP(GENMASK(26, 16), (x))
0089 #define ECC_CONF_BCH_EN BIT(27)
0090
0091 #define ECC_ERR_CNT_REG 0x38
0092 #define GET_PKT_ERR_CNT(x) FIELD_GET(GENMASK(7, 0), (x))
0093 #define GET_PAGE_ERR_CNT(x) FIELD_GET(GENMASK(16, 8), (x))
0094
0095 #define ECC_SP_REG 0x3C
0096 #define ECC_SP_CMD1(x) FIELD_PREP(GENMASK(7, 0), (x))
0097 #define ECC_SP_CMD2(x) FIELD_PREP(GENMASK(15, 8), (x))
0098 #define ECC_SP_ADDRS(x) FIELD_PREP(GENMASK(30, 28), (x))
0099
0100 #define ECC_1ERR_CNT_REG 0x40
0101 #define ECC_2ERR_CNT_REG 0x44
0102
0103 #define DATA_INTERFACE_REG 0x6C
0104 #define DIFACE_SDR_MODE(x) FIELD_PREP(GENMASK(2, 0), (x))
0105 #define DIFACE_DDR_MODE(x) FIELD_PREP(GENMASK(5, 3), (x))
0106 #define DIFACE_SDR 0
0107 #define DIFACE_NVDDR BIT(9)
0108
0109 #define ANFC_MAX_CS 2
0110 #define ANFC_DFLT_TIMEOUT_US 1000000
0111 #define ANFC_MAX_CHUNK_SIZE SZ_1M
0112 #define ANFC_MAX_PARAM_SIZE SZ_4K
0113 #define ANFC_MAX_STEPS SZ_2K
0114 #define ANFC_MAX_PKT_SIZE (SZ_2K - 1)
0115 #define ANFC_MAX_ADDR_CYC 5U
0116 #define ANFC_RSVD_ECC_BYTES 21
0117
0118 #define ANFC_XLNX_SDR_DFLT_CORE_CLK 100000000
0119 #define ANFC_XLNX_SDR_HS_CORE_CLK 80000000
0120
0121 static struct gpio_desc *anfc_default_cs_array[2] = {NULL, NULL};
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136 struct anfc_op {
0137 u32 pkt_reg;
0138 u32 addr1_reg;
0139 u32 addr2_reg;
0140 u32 cmd_reg;
0141 u32 prog_reg;
0142 int steps;
0143 unsigned int rdy_timeout_ms;
0144 unsigned int len;
0145 bool read;
0146 u8 *buf;
0147 };
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171 struct anand {
0172 struct list_head node;
0173 struct nand_chip chip;
0174 unsigned int rb;
0175 unsigned int page_sz;
0176 unsigned long clk;
0177 u32 data_iface;
0178 u32 timings;
0179 u32 ecc_conf;
0180 u32 strength;
0181 u16 raddr_cycles;
0182 u16 caddr_cycles;
0183 unsigned int ecc_bits;
0184 unsigned int ecc_total;
0185 unsigned int *errloc;
0186 u8 *hw_ecc;
0187 struct bch_control *bch;
0188 int *cs_idx;
0189 int ncs_idx;
0190 };
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209 struct arasan_nfc {
0210 struct device *dev;
0211 void __iomem *base;
0212 struct clk *controller_clk;
0213 struct clk *bus_clk;
0214 struct nand_controller controller;
0215 struct list_head chips;
0216 unsigned int cur_clk;
0217 struct gpio_desc **cs_array;
0218 unsigned int ncs;
0219 int cur_cs;
0220 unsigned int native_cs;
0221 unsigned int spare_cs;
0222 };
0223
0224 static struct anand *to_anand(struct nand_chip *nand)
0225 {
0226 return container_of(nand, struct anand, chip);
0227 }
0228
0229 static struct arasan_nfc *to_anfc(struct nand_controller *ctrl)
0230 {
0231 return container_of(ctrl, struct arasan_nfc, controller);
0232 }
0233
0234 static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event)
0235 {
0236 u32 val;
0237 int ret;
0238
0239 ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val,
0240 val & event, 0,
0241 ANFC_DFLT_TIMEOUT_US);
0242 if (ret) {
0243 dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event);
0244 return -ETIMEDOUT;
0245 }
0246
0247 writel_relaxed(event, nfc->base + INTR_STS_REG);
0248
0249 return 0;
0250 }
0251
0252 static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip,
0253 unsigned int timeout_ms)
0254 {
0255 struct anand *anand = to_anand(chip);
0256 u32 val;
0257 int ret;
0258
0259
0260 ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val,
0261 val & BIT(anand->rb),
0262 1, timeout_ms * 1000);
0263 if (ret) {
0264 dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n",
0265 readl_relaxed(nfc->base + READY_STS_REG));
0266 return -ETIMEDOUT;
0267 }
0268
0269 return 0;
0270 }
0271
0272 static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
0273 {
0274 writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG);
0275 writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG);
0276 writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG);
0277 writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG);
0278 writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG);
0279 }
0280
0281 static int anfc_pkt_len_config(unsigned int len, unsigned int *steps,
0282 unsigned int *pktsize)
0283 {
0284 unsigned int nb, sz;
0285
0286 for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) {
0287 sz = len / nb;
0288 if (sz <= ANFC_MAX_PKT_SIZE)
0289 break;
0290 }
0291
0292 if (sz * nb != len)
0293 return -ENOTSUPP;
0294
0295 if (steps)
0296 *steps = nb;
0297
0298 if (pktsize)
0299 *pktsize = sz;
0300
0301 return 0;
0302 }
0303
0304 static bool anfc_is_gpio_cs(struct arasan_nfc *nfc, int nfc_cs)
0305 {
0306 return nfc_cs >= 0 && nfc->cs_array[nfc_cs];
0307 }
0308
0309 static int anfc_relative_to_absolute_cs(struct anand *anand, int num)
0310 {
0311 return anand->cs_idx[num];
0312 }
0313
0314 static void anfc_assert_cs(struct arasan_nfc *nfc, unsigned int nfc_cs_idx)
0315 {
0316
0317 if (nfc->cur_cs == nfc_cs_idx)
0318 return;
0319
0320
0321 if (anfc_is_gpio_cs(nfc, nfc->cur_cs))
0322 gpiod_set_value_cansleep(nfc->cs_array[nfc->cur_cs], 1);
0323
0324
0325 if (anfc_is_gpio_cs(nfc, nfc_cs_idx)) {
0326 nfc->native_cs = nfc->spare_cs;
0327 gpiod_set_value_cansleep(nfc->cs_array[nfc_cs_idx], 0);
0328 } else {
0329 nfc->native_cs = nfc_cs_idx;
0330 }
0331
0332 nfc->cur_cs = nfc_cs_idx;
0333 }
0334
0335 static int anfc_select_target(struct nand_chip *chip, int target)
0336 {
0337 struct anand *anand = to_anand(chip);
0338 struct arasan_nfc *nfc = to_anfc(chip->controller);
0339 unsigned int nfc_cs_idx = anfc_relative_to_absolute_cs(anand, target);
0340 int ret;
0341
0342 anfc_assert_cs(nfc, nfc_cs_idx);
0343
0344
0345 writel_relaxed(anand->data_iface, nfc->base + DATA_INTERFACE_REG);
0346 writel_relaxed(anand->timings, nfc->base + TIMING_REG);
0347
0348
0349 if (nfc->cur_clk != anand->clk) {
0350 clk_disable_unprepare(nfc->bus_clk);
0351 ret = clk_set_rate(nfc->bus_clk, anand->clk);
0352 if (ret) {
0353 dev_err(nfc->dev, "Failed to change clock rate\n");
0354 return ret;
0355 }
0356
0357 ret = clk_prepare_enable(nfc->bus_clk);
0358 if (ret) {
0359 dev_err(nfc->dev,
0360 "Failed to re-enable the bus clock\n");
0361 return ret;
0362 }
0363
0364 nfc->cur_clk = anand->clk;
0365 }
0366
0367 return 0;
0368 }
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392 static int anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
0393 int oob_required, int page)
0394 {
0395 struct arasan_nfc *nfc = to_anfc(chip->controller);
0396 struct mtd_info *mtd = nand_to_mtd(chip);
0397 struct anand *anand = to_anand(chip);
0398 unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
0399 unsigned int max_bitflips = 0;
0400 dma_addr_t dma_addr;
0401 int step, ret;
0402 struct anfc_op nfc_op = {
0403 .pkt_reg =
0404 PKT_SIZE(chip->ecc.size) |
0405 PKT_STEPS(chip->ecc.steps),
0406 .addr1_reg =
0407 (page & 0xFF) << (8 * (anand->caddr_cycles)) |
0408 (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
0409 .addr2_reg =
0410 ((page >> 16) & 0xFF) |
0411 ADDR2_STRENGTH(anand->strength) |
0412 ADDR2_CS(nfc->native_cs),
0413 .cmd_reg =
0414 CMD_1(NAND_CMD_READ0) |
0415 CMD_2(NAND_CMD_READSTART) |
0416 CMD_PAGE_SIZE(anand->page_sz) |
0417 CMD_DMA_ENABLE |
0418 CMD_NADDRS(anand->caddr_cycles +
0419 anand->raddr_cycles),
0420 .prog_reg = PROG_PGRD,
0421 };
0422
0423 dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_FROM_DEVICE);
0424 if (dma_mapping_error(nfc->dev, dma_addr)) {
0425 dev_err(nfc->dev, "Buffer mapping error");
0426 return -EIO;
0427 }
0428
0429 writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
0430 writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
0431
0432 anfc_trigger_op(nfc, &nfc_op);
0433
0434 ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
0435 dma_unmap_single(nfc->dev, dma_addr, len, DMA_FROM_DEVICE);
0436 if (ret) {
0437 dev_err(nfc->dev, "Error reading page %d\n", page);
0438 return ret;
0439 }
0440
0441
0442 ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi,
0443 mtd->oobsize, 0);
0444 if (ret)
0445 return ret;
0446
0447
0448
0449
0450
0451
0452 for (step = 0; step < chip->ecc.steps; step++) {
0453 u8 *raw_buf = &buf[step * chip->ecc.size];
0454 unsigned int bit, byte;
0455 int bf, i;
0456
0457
0458 memset(anand->hw_ecc, 0, chip->ecc.bytes);
0459 nand_extract_bits(anand->hw_ecc, 0,
0460 &chip->oob_poi[mtd->oobsize - anand->ecc_total],
0461 anand->ecc_bits * step, anand->ecc_bits);
0462
0463 bf = bch_decode(anand->bch, raw_buf, chip->ecc.size,
0464 anand->hw_ecc, NULL, NULL, anand->errloc);
0465 if (!bf) {
0466 continue;
0467 } else if (bf > 0) {
0468 for (i = 0; i < bf; i++) {
0469
0470 if (anand->errloc[i] < (chip->ecc.size * 8)) {
0471 bit = BIT(anand->errloc[i] & 7);
0472 byte = anand->errloc[i] >> 3;
0473 raw_buf[byte] ^= bit;
0474 }
0475 }
0476
0477 mtd->ecc_stats.corrected += bf;
0478 max_bitflips = max_t(unsigned int, max_bitflips, bf);
0479
0480 continue;
0481 }
0482
0483 bf = nand_check_erased_ecc_chunk(raw_buf, chip->ecc.size,
0484 NULL, 0, NULL, 0,
0485 chip->ecc.strength);
0486 if (bf > 0) {
0487 mtd->ecc_stats.corrected += bf;
0488 max_bitflips = max_t(unsigned int, max_bitflips, bf);
0489 memset(raw_buf, 0xFF, chip->ecc.size);
0490 } else if (bf < 0) {
0491 mtd->ecc_stats.failed++;
0492 }
0493 }
0494
0495 return 0;
0496 }
0497
0498 static int anfc_sel_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
0499 int oob_required, int page)
0500 {
0501 int ret;
0502
0503 ret = anfc_select_target(chip, chip->cur_cs);
0504 if (ret)
0505 return ret;
0506
0507 return anfc_read_page_hw_ecc(chip, buf, oob_required, page);
0508 };
0509
0510 static int anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
0511 int oob_required, int page)
0512 {
0513 struct anand *anand = to_anand(chip);
0514 struct arasan_nfc *nfc = to_anfc(chip->controller);
0515 struct mtd_info *mtd = nand_to_mtd(chip);
0516 unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
0517 dma_addr_t dma_addr;
0518 int ret;
0519 struct anfc_op nfc_op = {
0520 .pkt_reg =
0521 PKT_SIZE(chip->ecc.size) |
0522 PKT_STEPS(chip->ecc.steps),
0523 .addr1_reg =
0524 (page & 0xFF) << (8 * (anand->caddr_cycles)) |
0525 (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
0526 .addr2_reg =
0527 ((page >> 16) & 0xFF) |
0528 ADDR2_STRENGTH(anand->strength) |
0529 ADDR2_CS(nfc->native_cs),
0530 .cmd_reg =
0531 CMD_1(NAND_CMD_SEQIN) |
0532 CMD_2(NAND_CMD_PAGEPROG) |
0533 CMD_PAGE_SIZE(anand->page_sz) |
0534 CMD_DMA_ENABLE |
0535 CMD_NADDRS(anand->caddr_cycles +
0536 anand->raddr_cycles) |
0537 CMD_ECC_ENABLE,
0538 .prog_reg = PROG_PGPROG,
0539 };
0540
0541 writel_relaxed(anand->ecc_conf, nfc->base + ECC_CONF_REG);
0542 writel_relaxed(ECC_SP_CMD1(NAND_CMD_RNDIN) |
0543 ECC_SP_ADDRS(anand->caddr_cycles),
0544 nfc->base + ECC_SP_REG);
0545
0546 dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE);
0547 if (dma_mapping_error(nfc->dev, dma_addr)) {
0548 dev_err(nfc->dev, "Buffer mapping error");
0549 return -EIO;
0550 }
0551
0552 writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
0553 writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
0554
0555 anfc_trigger_op(nfc, &nfc_op);
0556 ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
0557 dma_unmap_single(nfc->dev, dma_addr, len, DMA_TO_DEVICE);
0558 if (ret) {
0559 dev_err(nfc->dev, "Error writing page %d\n", page);
0560 return ret;
0561 }
0562
0563
0564 if (oob_required)
0565 ret = nand_write_oob_std(chip, page);
0566
0567 return ret;
0568 }
0569
0570 static int anfc_sel_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
0571 int oob_required, int page)
0572 {
0573 int ret;
0574
0575 ret = anfc_select_target(chip, chip->cur_cs);
0576 if (ret)
0577 return ret;
0578
0579 return anfc_write_page_hw_ecc(chip, buf, oob_required, page);
0580 };
0581
0582
0583 static int anfc_parse_instructions(struct nand_chip *chip,
0584 const struct nand_subop *subop,
0585 struct anfc_op *nfc_op)
0586 {
0587 struct arasan_nfc *nfc = to_anfc(chip->controller);
0588 struct anand *anand = to_anand(chip);
0589 const struct nand_op_instr *instr = NULL;
0590 bool first_cmd = true;
0591 unsigned int op_id;
0592 int ret, i;
0593
0594 memset(nfc_op, 0, sizeof(*nfc_op));
0595 nfc_op->addr2_reg = ADDR2_CS(nfc->native_cs);
0596 nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz);
0597
0598 for (op_id = 0; op_id < subop->ninstrs; op_id++) {
0599 unsigned int offset, naddrs, pktsize;
0600 const u8 *addrs;
0601 u8 *buf;
0602
0603 instr = &subop->instrs[op_id];
0604
0605 switch (instr->type) {
0606 case NAND_OP_CMD_INSTR:
0607 if (first_cmd)
0608 nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode);
0609 else
0610 nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode);
0611
0612 first_cmd = false;
0613 break;
0614
0615 case NAND_OP_ADDR_INSTR:
0616 offset = nand_subop_get_addr_start_off(subop, op_id);
0617 naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
0618 addrs = &instr->ctx.addr.addrs[offset];
0619 nfc_op->cmd_reg |= CMD_NADDRS(naddrs);
0620
0621 for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) {
0622 if (i < 4)
0623 nfc_op->addr1_reg |= (u32)addrs[i] << i * 8;
0624 else
0625 nfc_op->addr2_reg |= addrs[i];
0626 }
0627
0628 break;
0629 case NAND_OP_DATA_IN_INSTR:
0630 nfc_op->read = true;
0631 fallthrough;
0632 case NAND_OP_DATA_OUT_INSTR:
0633 offset = nand_subop_get_data_start_off(subop, op_id);
0634 buf = instr->ctx.data.buf.in;
0635 nfc_op->buf = &buf[offset];
0636 nfc_op->len = nand_subop_get_data_len(subop, op_id);
0637 ret = anfc_pkt_len_config(nfc_op->len, &nfc_op->steps,
0638 &pktsize);
0639 if (ret)
0640 return ret;
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656 nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) |
0657 PKT_STEPS(nfc_op->steps);
0658 break;
0659 case NAND_OP_WAITRDY_INSTR:
0660 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
0661 break;
0662 }
0663 }
0664
0665 return 0;
0666 }
0667
0668 static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
0669 {
0670 unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps;
0671 unsigned int last_len = nfc_op->len % 4;
0672 unsigned int offset, dir;
0673 u8 *buf = nfc_op->buf;
0674 int ret, i;
0675
0676 for (i = 0; i < nfc_op->steps; i++) {
0677 dir = nfc_op->read ? READ_READY : WRITE_READY;
0678 ret = anfc_wait_for_event(nfc, dir);
0679 if (ret) {
0680 dev_err(nfc->dev, "PIO %s ready signal not received\n",
0681 nfc_op->read ? "Read" : "Write");
0682 return ret;
0683 }
0684
0685 offset = i * (dwords * 4);
0686 if (nfc_op->read)
0687 ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
0688 dwords);
0689 else
0690 iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
0691 dwords);
0692 }
0693
0694 if (last_len) {
0695 u32 remainder;
0696
0697 offset = nfc_op->len - last_len;
0698
0699 if (nfc_op->read) {
0700 remainder = readl_relaxed(nfc->base + DATA_PORT_REG);
0701 memcpy(&buf[offset], &remainder, last_len);
0702 } else {
0703 memcpy(&remainder, &buf[offset], last_len);
0704 writel_relaxed(remainder, nfc->base + DATA_PORT_REG);
0705 }
0706 }
0707
0708 return anfc_wait_for_event(nfc, XFER_COMPLETE);
0709 }
0710
0711 static int anfc_misc_data_type_exec(struct nand_chip *chip,
0712 const struct nand_subop *subop,
0713 u32 prog_reg)
0714 {
0715 struct arasan_nfc *nfc = to_anfc(chip->controller);
0716 struct anfc_op nfc_op = {};
0717 int ret;
0718
0719 ret = anfc_parse_instructions(chip, subop, &nfc_op);
0720 if (ret)
0721 return ret;
0722
0723 nfc_op.prog_reg = prog_reg;
0724 anfc_trigger_op(nfc, &nfc_op);
0725
0726 if (nfc_op.rdy_timeout_ms) {
0727 ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
0728 if (ret)
0729 return ret;
0730 }
0731
0732 return anfc_rw_pio_op(nfc, &nfc_op);
0733 }
0734
0735 static int anfc_param_read_type_exec(struct nand_chip *chip,
0736 const struct nand_subop *subop)
0737 {
0738 return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM);
0739 }
0740
0741 static int anfc_data_read_type_exec(struct nand_chip *chip,
0742 const struct nand_subop *subop)
0743 {
0744 u32 prog_reg = PROG_PGRD;
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756 if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_RNDOUT &&
0757 subop->instrs[2].ctx.cmd.opcode == NAND_CMD_RNDOUTSTART)
0758 prog_reg = PROG_CHG_RD_COL_ENH;
0759
0760 return anfc_misc_data_type_exec(chip, subop, prog_reg);
0761 }
0762
0763 static int anfc_param_write_type_exec(struct nand_chip *chip,
0764 const struct nand_subop *subop)
0765 {
0766 return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE);
0767 }
0768
0769 static int anfc_data_write_type_exec(struct nand_chip *chip,
0770 const struct nand_subop *subop)
0771 {
0772 return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG);
0773 }
0774
0775 static int anfc_misc_zerolen_type_exec(struct nand_chip *chip,
0776 const struct nand_subop *subop,
0777 u32 prog_reg)
0778 {
0779 struct arasan_nfc *nfc = to_anfc(chip->controller);
0780 struct anfc_op nfc_op = {};
0781 int ret;
0782
0783 ret = anfc_parse_instructions(chip, subop, &nfc_op);
0784 if (ret)
0785 return ret;
0786
0787 nfc_op.prog_reg = prog_reg;
0788 anfc_trigger_op(nfc, &nfc_op);
0789
0790 ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
0791 if (ret)
0792 return ret;
0793
0794 if (nfc_op.rdy_timeout_ms)
0795 ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
0796
0797 return ret;
0798 }
0799
0800 static int anfc_status_type_exec(struct nand_chip *chip,
0801 const struct nand_subop *subop)
0802 {
0803 struct arasan_nfc *nfc = to_anfc(chip->controller);
0804 u32 tmp;
0805 int ret;
0806
0807
0808 if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS)
0809 return -ENOTSUPP;
0810
0811 ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS);
0812 if (ret)
0813 return ret;
0814
0815 tmp = readl_relaxed(nfc->base + FLASH_STS_REG);
0816 memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1);
0817
0818 return 0;
0819 }
0820
0821 static int anfc_reset_type_exec(struct nand_chip *chip,
0822 const struct nand_subop *subop)
0823 {
0824 return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST);
0825 }
0826
0827 static int anfc_erase_type_exec(struct nand_chip *chip,
0828 const struct nand_subop *subop)
0829 {
0830 return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE);
0831 }
0832
0833 static int anfc_wait_type_exec(struct nand_chip *chip,
0834 const struct nand_subop *subop)
0835 {
0836 struct arasan_nfc *nfc = to_anfc(chip->controller);
0837 struct anfc_op nfc_op = {};
0838 int ret;
0839
0840 ret = anfc_parse_instructions(chip, subop, &nfc_op);
0841 if (ret)
0842 return ret;
0843
0844 return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
0845 }
0846
0847 static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER(
0848 NAND_OP_PARSER_PATTERN(
0849 anfc_param_read_type_exec,
0850 NAND_OP_PARSER_PAT_CMD_ELEM(false),
0851 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
0852 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
0853 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
0854 NAND_OP_PARSER_PATTERN(
0855 anfc_param_write_type_exec,
0856 NAND_OP_PARSER_PAT_CMD_ELEM(false),
0857 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
0858 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)),
0859 NAND_OP_PARSER_PATTERN(
0860 anfc_data_read_type_exec,
0861 NAND_OP_PARSER_PAT_CMD_ELEM(false),
0862 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
0863 NAND_OP_PARSER_PAT_CMD_ELEM(false),
0864 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
0865 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)),
0866 NAND_OP_PARSER_PATTERN(
0867 anfc_data_write_type_exec,
0868 NAND_OP_PARSER_PAT_CMD_ELEM(false),
0869 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
0870 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE),
0871 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
0872 NAND_OP_PARSER_PATTERN(
0873 anfc_reset_type_exec,
0874 NAND_OP_PARSER_PAT_CMD_ELEM(false),
0875 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
0876 NAND_OP_PARSER_PATTERN(
0877 anfc_erase_type_exec,
0878 NAND_OP_PARSER_PAT_CMD_ELEM(false),
0879 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
0880 NAND_OP_PARSER_PAT_CMD_ELEM(false),
0881 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
0882 NAND_OP_PARSER_PATTERN(
0883 anfc_status_type_exec,
0884 NAND_OP_PARSER_PAT_CMD_ELEM(false),
0885 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
0886 NAND_OP_PARSER_PATTERN(
0887 anfc_wait_type_exec,
0888 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
0889 );
0890
0891 static int anfc_check_op(struct nand_chip *chip,
0892 const struct nand_operation *op)
0893 {
0894 const struct nand_op_instr *instr;
0895 int op_id;
0896
0897
0898
0899
0900
0901
0902
0903
0904 for (op_id = 0; op_id < op->ninstrs; op_id++) {
0905 instr = &op->instrs[op_id];
0906
0907 switch (instr->type) {
0908 case NAND_OP_ADDR_INSTR:
0909 if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC)
0910 return -ENOTSUPP;
0911
0912 break;
0913 case NAND_OP_DATA_IN_INSTR:
0914 case NAND_OP_DATA_OUT_INSTR:
0915 if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE)
0916 return -ENOTSUPP;
0917
0918 if (anfc_pkt_len_config(instr->ctx.data.len, 0, 0))
0919 return -ENOTSUPP;
0920
0921 break;
0922 default:
0923 break;
0924 }
0925 }
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937 if (op->ninstrs == 2 &&
0938 op->instrs[0].type == NAND_OP_CMD_INSTR &&
0939 op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS &&
0940 op->instrs[1].type == NAND_OP_DATA_IN_INSTR)
0941 return -ENOTSUPP;
0942
0943 return nand_op_parser_exec_op(chip, &anfc_op_parser, op, true);
0944 }
0945
0946 static int anfc_exec_op(struct nand_chip *chip,
0947 const struct nand_operation *op,
0948 bool check_only)
0949 {
0950 int ret;
0951
0952 if (check_only)
0953 return anfc_check_op(chip, op);
0954
0955 ret = anfc_select_target(chip, op->cs);
0956 if (ret)
0957 return ret;
0958
0959 return nand_op_parser_exec_op(chip, &anfc_op_parser, op, check_only);
0960 }
0961
0962 static int anfc_setup_interface(struct nand_chip *chip, int target,
0963 const struct nand_interface_config *conf)
0964 {
0965 struct anand *anand = to_anand(chip);
0966 struct arasan_nfc *nfc = to_anfc(chip->controller);
0967 struct device_node *np = nfc->dev->of_node;
0968 const struct nand_sdr_timings *sdr;
0969 const struct nand_nvddr_timings *nvddr;
0970 unsigned int tccs_min, dqs_mode, fast_tcad;
0971
0972 if (nand_interface_is_nvddr(conf)) {
0973 nvddr = nand_get_nvddr_timings(conf);
0974 if (IS_ERR(nvddr))
0975 return PTR_ERR(nvddr);
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT)
0990 return -ENOTSUPP;
0991 } else {
0992 sdr = nand_get_sdr_timings(conf);
0993 if (IS_ERR(sdr))
0994 return PTR_ERR(sdr);
0995 }
0996
0997 if (target < 0)
0998 return 0;
0999
1000 if (nand_interface_is_sdr(conf)) {
1001 anand->data_iface = DIFACE_SDR |
1002 DIFACE_SDR_MODE(conf->timings.mode);
1003 anand->timings = 0;
1004 } else {
1005 anand->data_iface = DIFACE_NVDDR |
1006 DIFACE_DDR_MODE(conf->timings.mode);
1007
1008 if (conf->timings.nvddr.tCCS_min <= 100000)
1009 tccs_min = TCCS_TIME_100NS;
1010 else if (conf->timings.nvddr.tCCS_min <= 200000)
1011 tccs_min = TCCS_TIME_200NS;
1012 else if (conf->timings.nvddr.tCCS_min <= 300000)
1013 tccs_min = TCCS_TIME_300NS;
1014 else
1015 tccs_min = TCCS_TIME_500NS;
1016
1017 fast_tcad = 0;
1018 if (conf->timings.nvddr.tCAD_min < 45000)
1019 fast_tcad = FAST_TCAD;
1020
1021 switch (conf->timings.mode) {
1022 case 5:
1023 case 4:
1024 dqs_mode = 2;
1025 break;
1026 case 3:
1027 dqs_mode = 3;
1028 break;
1029 case 2:
1030 dqs_mode = 4;
1031 break;
1032 case 1:
1033 dqs_mode = 5;
1034 break;
1035 case 0:
1036 default:
1037 dqs_mode = 6;
1038 break;
1039 }
1040
1041 anand->timings = tccs_min | fast_tcad |
1042 DQS_BUFF_SEL_IN(dqs_mode) |
1043 DQS_BUFF_SEL_OUT(dqs_mode);
1044 }
1045
1046 if (nand_interface_is_sdr(conf)) {
1047 anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK;
1048 } else {
1049
1050 anand->clk = div_u64((u64)NSEC_PER_SEC * 1000,
1051 conf->timings.nvddr.tCK_min);
1052 }
1053
1054
1055
1056
1057
1058
1059
1060 if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") &&
1061 nand_interface_is_sdr(conf) && conf->timings.mode >= 2)
1062 anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK;
1063
1064 return 0;
1065 }
1066
1067 static int anfc_calc_hw_ecc_bytes(int step_size, int strength)
1068 {
1069 unsigned int bch_gf_mag, ecc_bits;
1070
1071 switch (step_size) {
1072 case SZ_512:
1073 bch_gf_mag = 13;
1074 break;
1075 case SZ_1K:
1076 bch_gf_mag = 14;
1077 break;
1078 default:
1079 return -EINVAL;
1080 }
1081
1082 ecc_bits = bch_gf_mag * strength;
1083
1084 return DIV_ROUND_UP(ecc_bits, 8);
1085 }
1086
1087 static const int anfc_hw_ecc_512_strengths[] = {4, 8, 12};
1088
1089 static const int anfc_hw_ecc_1024_strengths[] = {24};
1090
1091 static const struct nand_ecc_step_info anfc_hw_ecc_step_infos[] = {
1092 {
1093 .stepsize = SZ_512,
1094 .strengths = anfc_hw_ecc_512_strengths,
1095 .nstrengths = ARRAY_SIZE(anfc_hw_ecc_512_strengths),
1096 },
1097 {
1098 .stepsize = SZ_1K,
1099 .strengths = anfc_hw_ecc_1024_strengths,
1100 .nstrengths = ARRAY_SIZE(anfc_hw_ecc_1024_strengths),
1101 },
1102 };
1103
1104 static const struct nand_ecc_caps anfc_hw_ecc_caps = {
1105 .stepinfos = anfc_hw_ecc_step_infos,
1106 .nstepinfos = ARRAY_SIZE(anfc_hw_ecc_step_infos),
1107 .calc_ecc_bytes = anfc_calc_hw_ecc_bytes,
1108 };
1109
1110 static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc,
1111 struct nand_chip *chip)
1112 {
1113 struct anand *anand = to_anand(chip);
1114 struct mtd_info *mtd = nand_to_mtd(chip);
1115 struct nand_ecc_ctrl *ecc = &chip->ecc;
1116 unsigned int bch_prim_poly = 0, bch_gf_mag = 0, ecc_offset;
1117 int ret;
1118
1119 switch (mtd->writesize) {
1120 case SZ_512:
1121 case SZ_2K:
1122 case SZ_4K:
1123 case SZ_8K:
1124 case SZ_16K:
1125 break;
1126 default:
1127 dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize);
1128 return -EINVAL;
1129 }
1130
1131 ret = nand_ecc_choose_conf(chip, &anfc_hw_ecc_caps, mtd->oobsize);
1132 if (ret)
1133 return ret;
1134
1135 switch (ecc->strength) {
1136 case 12:
1137 anand->strength = 0x1;
1138 break;
1139 case 8:
1140 anand->strength = 0x2;
1141 break;
1142 case 4:
1143 anand->strength = 0x3;
1144 break;
1145 case 24:
1146 anand->strength = 0x4;
1147 break;
1148 default:
1149 dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength);
1150 return -EINVAL;
1151 }
1152
1153 switch (ecc->size) {
1154 case SZ_512:
1155 bch_gf_mag = 13;
1156 bch_prim_poly = 0x201b;
1157 break;
1158 case SZ_1K:
1159 bch_gf_mag = 14;
1160 bch_prim_poly = 0x4443;
1161 break;
1162 default:
1163 dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength);
1164 return -EINVAL;
1165 }
1166
1167 mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
1168
1169 ecc->steps = mtd->writesize / ecc->size;
1170 ecc->algo = NAND_ECC_ALGO_BCH;
1171 anand->ecc_bits = bch_gf_mag * ecc->strength;
1172 ecc->bytes = DIV_ROUND_UP(anand->ecc_bits, 8);
1173 anand->ecc_total = DIV_ROUND_UP(anand->ecc_bits * ecc->steps, 8);
1174 ecc_offset = mtd->writesize + mtd->oobsize - anand->ecc_total;
1175 anand->ecc_conf = ECC_CONF_COL(ecc_offset) |
1176 ECC_CONF_LEN(anand->ecc_total) |
1177 ECC_CONF_BCH_EN;
1178
1179 anand->errloc = devm_kmalloc_array(nfc->dev, ecc->strength,
1180 sizeof(*anand->errloc), GFP_KERNEL);
1181 if (!anand->errloc)
1182 return -ENOMEM;
1183
1184 anand->hw_ecc = devm_kmalloc(nfc->dev, ecc->bytes, GFP_KERNEL);
1185 if (!anand->hw_ecc)
1186 return -ENOMEM;
1187
1188
1189 anand->bch = bch_init(bch_gf_mag, ecc->strength, bch_prim_poly, true);
1190 if (!anand->bch)
1191 return -EINVAL;
1192
1193 ecc->read_page = anfc_sel_read_page_hw_ecc;
1194 ecc->write_page = anfc_sel_write_page_hw_ecc;
1195
1196 return 0;
1197 }
1198
1199 static int anfc_attach_chip(struct nand_chip *chip)
1200 {
1201 struct anand *anand = to_anand(chip);
1202 struct arasan_nfc *nfc = to_anfc(chip->controller);
1203 struct mtd_info *mtd = nand_to_mtd(chip);
1204 int ret = 0;
1205
1206 if (mtd->writesize <= SZ_512)
1207 anand->caddr_cycles = 1;
1208 else
1209 anand->caddr_cycles = 2;
1210
1211 if (chip->options & NAND_ROW_ADDR_3)
1212 anand->raddr_cycles = 3;
1213 else
1214 anand->raddr_cycles = 2;
1215
1216 switch (mtd->writesize) {
1217 case 512:
1218 anand->page_sz = 0;
1219 break;
1220 case 1024:
1221 anand->page_sz = 5;
1222 break;
1223 case 2048:
1224 anand->page_sz = 1;
1225 break;
1226 case 4096:
1227 anand->page_sz = 2;
1228 break;
1229 case 8192:
1230 anand->page_sz = 3;
1231 break;
1232 case 16384:
1233 anand->page_sz = 4;
1234 break;
1235 default:
1236 return -EINVAL;
1237 }
1238
1239
1240 chip->ecc.read_page_raw = nand_monolithic_read_page_raw;
1241 chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
1242
1243 switch (chip->ecc.engine_type) {
1244 case NAND_ECC_ENGINE_TYPE_NONE:
1245 case NAND_ECC_ENGINE_TYPE_SOFT:
1246 case NAND_ECC_ENGINE_TYPE_ON_DIE:
1247 break;
1248 case NAND_ECC_ENGINE_TYPE_ON_HOST:
1249 ret = anfc_init_hw_ecc_controller(nfc, chip);
1250 break;
1251 default:
1252 dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
1253 chip->ecc.engine_type);
1254 return -EINVAL;
1255 }
1256
1257 return ret;
1258 }
1259
1260 static void anfc_detach_chip(struct nand_chip *chip)
1261 {
1262 struct anand *anand = to_anand(chip);
1263
1264 if (anand->bch)
1265 bch_free(anand->bch);
1266 }
1267
1268 static const struct nand_controller_ops anfc_ops = {
1269 .exec_op = anfc_exec_op,
1270 .setup_interface = anfc_setup_interface,
1271 .attach_chip = anfc_attach_chip,
1272 .detach_chip = anfc_detach_chip,
1273 };
1274
1275 static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np)
1276 {
1277 struct anand *anand;
1278 struct nand_chip *chip;
1279 struct mtd_info *mtd;
1280 int rb, ret, i;
1281
1282 anand = devm_kzalloc(nfc->dev, sizeof(*anand), GFP_KERNEL);
1283 if (!anand)
1284 return -ENOMEM;
1285
1286
1287 anand->ncs_idx = of_property_count_elems_of_size(np, "reg", sizeof(u32));
1288 if (anand->ncs_idx <= 0 || anand->ncs_idx > nfc->ncs) {
1289 dev_err(nfc->dev, "Invalid reg property\n");
1290 return -EINVAL;
1291 }
1292
1293 anand->cs_idx = devm_kcalloc(nfc->dev, anand->ncs_idx,
1294 sizeof(*anand->cs_idx), GFP_KERNEL);
1295 if (!anand->cs_idx)
1296 return -ENOMEM;
1297
1298 for (i = 0; i < anand->ncs_idx; i++) {
1299 ret = of_property_read_u32_index(np, "reg", i,
1300 &anand->cs_idx[i]);
1301 if (ret) {
1302 dev_err(nfc->dev, "invalid CS property: %d\n", ret);
1303 return ret;
1304 }
1305 }
1306
1307
1308 ret = of_property_read_u32(np, "nand-rb", &rb);
1309 if (ret)
1310 return ret;
1311
1312 if (rb >= ANFC_MAX_CS) {
1313 dev_err(nfc->dev, "Wrong RB %d\n", rb);
1314 return -EINVAL;
1315 }
1316
1317 anand->rb = rb;
1318
1319 chip = &anand->chip;
1320 mtd = nand_to_mtd(chip);
1321 mtd->dev.parent = nfc->dev;
1322 chip->controller = &nfc->controller;
1323 chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
1324 NAND_USES_DMA;
1325
1326 nand_set_flash_node(chip, np);
1327 if (!mtd->name) {
1328 dev_err(nfc->dev, "NAND label property is mandatory\n");
1329 return -EINVAL;
1330 }
1331
1332 ret = nand_scan(chip, anand->ncs_idx);
1333 if (ret) {
1334 dev_err(nfc->dev, "Scan operation failed\n");
1335 return ret;
1336 }
1337
1338 ret = mtd_device_register(mtd, NULL, 0);
1339 if (ret) {
1340 nand_cleanup(chip);
1341 return ret;
1342 }
1343
1344 list_add_tail(&anand->node, &nfc->chips);
1345
1346 return 0;
1347 }
1348
1349 static void anfc_chips_cleanup(struct arasan_nfc *nfc)
1350 {
1351 struct anand *anand, *tmp;
1352 struct nand_chip *chip;
1353 int ret;
1354
1355 list_for_each_entry_safe(anand, tmp, &nfc->chips, node) {
1356 chip = &anand->chip;
1357 ret = mtd_device_unregister(nand_to_mtd(chip));
1358 WARN_ON(ret);
1359 nand_cleanup(chip);
1360 list_del(&anand->node);
1361 }
1362 }
1363
1364 static int anfc_chips_init(struct arasan_nfc *nfc)
1365 {
1366 struct device_node *np = nfc->dev->of_node, *nand_np;
1367 int nchips = of_get_child_count(np);
1368 int ret;
1369
1370 if (!nchips) {
1371 dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
1372 nchips);
1373 return -EINVAL;
1374 }
1375
1376 for_each_child_of_node(np, nand_np) {
1377 ret = anfc_chip_init(nfc, nand_np);
1378 if (ret) {
1379 of_node_put(nand_np);
1380 anfc_chips_cleanup(nfc);
1381 break;
1382 }
1383 }
1384
1385 return ret;
1386 }
1387
1388 static void anfc_reset(struct arasan_nfc *nfc)
1389 {
1390
1391 writel_relaxed(0, nfc->base + INTR_SIG_EN_REG);
1392
1393
1394 writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG);
1395
1396 nfc->cur_cs = -1;
1397 }
1398
1399 static int anfc_parse_cs(struct arasan_nfc *nfc)
1400 {
1401 int ret;
1402
1403
1404 ret = rawnand_dt_parse_gpio_cs(nfc->dev, &nfc->cs_array, &nfc->ncs);
1405 if (ret)
1406 return ret;
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416 if (nfc->cs_array && nfc->ncs > 2) {
1417 if (!nfc->cs_array[0] && !nfc->cs_array[1]) {
1418 dev_err(nfc->dev,
1419 "Assign a single native CS when using GPIOs\n");
1420 return -EINVAL;
1421 }
1422
1423 if (nfc->cs_array[0])
1424 nfc->spare_cs = 0;
1425 else
1426 nfc->spare_cs = 1;
1427 }
1428
1429 if (!nfc->cs_array) {
1430 nfc->cs_array = anfc_default_cs_array;
1431 nfc->ncs = ANFC_MAX_CS;
1432 return 0;
1433 }
1434
1435 return 0;
1436 }
1437
1438 static int anfc_probe(struct platform_device *pdev)
1439 {
1440 struct arasan_nfc *nfc;
1441 int ret;
1442
1443 nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
1444 if (!nfc)
1445 return -ENOMEM;
1446
1447 nfc->dev = &pdev->dev;
1448 nand_controller_init(&nfc->controller);
1449 nfc->controller.ops = &anfc_ops;
1450 INIT_LIST_HEAD(&nfc->chips);
1451
1452 nfc->base = devm_platform_ioremap_resource(pdev, 0);
1453 if (IS_ERR(nfc->base))
1454 return PTR_ERR(nfc->base);
1455
1456 anfc_reset(nfc);
1457
1458 nfc->controller_clk = devm_clk_get(&pdev->dev, "controller");
1459 if (IS_ERR(nfc->controller_clk))
1460 return PTR_ERR(nfc->controller_clk);
1461
1462 nfc->bus_clk = devm_clk_get(&pdev->dev, "bus");
1463 if (IS_ERR(nfc->bus_clk))
1464 return PTR_ERR(nfc->bus_clk);
1465
1466 ret = clk_prepare_enable(nfc->controller_clk);
1467 if (ret)
1468 return ret;
1469
1470 ret = clk_prepare_enable(nfc->bus_clk);
1471 if (ret)
1472 goto disable_controller_clk;
1473
1474 ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1475 if (ret)
1476 goto disable_bus_clk;
1477
1478 ret = anfc_parse_cs(nfc);
1479 if (ret)
1480 goto disable_bus_clk;
1481
1482 ret = anfc_chips_init(nfc);
1483 if (ret)
1484 goto disable_bus_clk;
1485
1486 platform_set_drvdata(pdev, nfc);
1487
1488 return 0;
1489
1490 disable_bus_clk:
1491 clk_disable_unprepare(nfc->bus_clk);
1492
1493 disable_controller_clk:
1494 clk_disable_unprepare(nfc->controller_clk);
1495
1496 return ret;
1497 }
1498
1499 static int anfc_remove(struct platform_device *pdev)
1500 {
1501 struct arasan_nfc *nfc = platform_get_drvdata(pdev);
1502
1503 anfc_chips_cleanup(nfc);
1504
1505 clk_disable_unprepare(nfc->bus_clk);
1506 clk_disable_unprepare(nfc->controller_clk);
1507
1508 return 0;
1509 }
1510
1511 static const struct of_device_id anfc_ids[] = {
1512 {
1513 .compatible = "xlnx,zynqmp-nand-controller",
1514 },
1515 {
1516 .compatible = "arasan,nfc-v3p10",
1517 },
1518 {}
1519 };
1520 MODULE_DEVICE_TABLE(of, anfc_ids);
1521
1522 static struct platform_driver anfc_driver = {
1523 .driver = {
1524 .name = "arasan-nand-controller",
1525 .of_match_table = anfc_ids,
1526 },
1527 .probe = anfc_probe,
1528 .remove = anfc_remove,
1529 };
1530 module_platform_driver(anfc_driver);
1531
1532 MODULE_LICENSE("GPL v2");
1533 MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xilinx.com>");
1534 MODULE_AUTHOR("Naga Sureshkumar Relli <nagasure@xilinx.com>");
1535 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
1536 MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");