Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Common Flash Interface support:
0003  *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
0004  *
0005  * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
0006  * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
0007  * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
0008  *
0009  * 2_by_8 routines added by Simon Munton
0010  *
0011  * 4_by_16 work by Carolyn J. Smith
0012  *
0013  * XIP support hooks by Vitaly Wool (based on code for Intel flash
0014  * by Nicolas Pitre)
0015  *
0016  * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
0017  *
0018  * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
0019  *
0020  * This code is GPL
0021  */
0022 
0023 #include <linux/module.h>
0024 #include <linux/types.h>
0025 #include <linux/kernel.h>
0026 #include <linux/sched.h>
0027 #include <asm/io.h>
0028 #include <asm/byteorder.h>
0029 
0030 #include <linux/errno.h>
0031 #include <linux/slab.h>
0032 #include <linux/delay.h>
0033 #include <linux/interrupt.h>
0034 #include <linux/reboot.h>
0035 #include <linux/of.h>
0036 #include <linux/of_platform.h>
0037 #include <linux/mtd/map.h>
0038 #include <linux/mtd/mtd.h>
0039 #include <linux/mtd/cfi.h>
0040 #include <linux/mtd/xip.h>
0041 
0042 #define AMD_BOOTLOC_BUG
0043 #define FORCE_WORD_WRITE 0
0044 
0045 #define MAX_RETRIES 3
0046 
0047 #define SST49LF004B     0x0060
0048 #define SST49LF040B     0x0050
0049 #define SST49LF008A     0x005a
0050 #define AT49BV6416      0x00d6
0051 #define S29GL064N_MN12      0x0c01
0052 
0053 /*
0054  * Status Register bit description. Used by flash devices that don't
0055  * support DQ polling (e.g. HyperFlash)
0056  */
0057 #define CFI_SR_DRB      BIT(7)
0058 #define CFI_SR_ESB      BIT(5)
0059 #define CFI_SR_PSB      BIT(4)
0060 #define CFI_SR_WBASB        BIT(3)
0061 #define CFI_SR_SLSB     BIT(1)
0062 
0063 enum cfi_quirks {
0064     CFI_QUIRK_DQ_TRUE_DATA = BIT(0),
0065 };
0066 
0067 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
0068 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
0069 #if !FORCE_WORD_WRITE
0070 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
0071 #endif
0072 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
0073 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
0074 static void cfi_amdstd_sync (struct mtd_info *);
0075 static int cfi_amdstd_suspend (struct mtd_info *);
0076 static void cfi_amdstd_resume (struct mtd_info *);
0077 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
0078 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
0079                      size_t *, struct otp_info *);
0080 static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
0081                      size_t *, struct otp_info *);
0082 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
0083 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
0084                      size_t *, u_char *);
0085 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
0086                      size_t *, u_char *);
0087 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
0088                       size_t *, const u_char *);
0089 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
0090 
0091 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
0092                   size_t *retlen, const u_char *buf);
0093 
0094 static void cfi_amdstd_destroy(struct mtd_info *);
0095 
0096 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
0097 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
0098 
0099 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
0100 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
0101 #include "fwh_lock.h"
0102 
0103 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
0104 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
0105 
0106 static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
0107 static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
0108 static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
0109 
0110 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
0111     .probe      = NULL, /* Not usable directly */
0112     .destroy    = cfi_amdstd_destroy,
0113     .name       = "cfi_cmdset_0002",
0114     .module     = THIS_MODULE
0115 };
0116 
0117 /*
0118  * Use status register to poll for Erase/write completion when DQ is not
0119  * supported. This is indicated by Bit[1:0] of SoftwareFeatures field in
0120  * CFI Primary Vendor-Specific Extended Query table 1.5
0121  */
0122 static int cfi_use_status_reg(struct cfi_private *cfi)
0123 {
0124     struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
0125     u8 poll_mask = CFI_POLL_STATUS_REG | CFI_POLL_DQ;
0126 
0127     return extp && extp->MinorVersion >= '5' &&
0128         (extp->SoftwareFeatures & poll_mask) == CFI_POLL_STATUS_REG;
0129 }
0130 
0131 static int cfi_check_err_status(struct map_info *map, struct flchip *chip,
0132                 unsigned long adr)
0133 {
0134     struct cfi_private *cfi = map->fldrv_priv;
0135     map_word status;
0136 
0137     if (!cfi_use_status_reg(cfi))
0138         return 0;
0139 
0140     cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
0141              cfi->device_type, NULL);
0142     status = map_read(map, adr);
0143 
0144     /* The error bits are invalid while the chip's busy */
0145     if (!map_word_bitsset(map, status, CMD(CFI_SR_DRB)))
0146         return 0;
0147 
0148     if (map_word_bitsset(map, status, CMD(0x3a))) {
0149         unsigned long chipstatus = MERGESTATUS(status);
0150 
0151         if (chipstatus & CFI_SR_ESB)
0152             pr_err("%s erase operation failed, status %lx\n",
0153                    map->name, chipstatus);
0154         if (chipstatus & CFI_SR_PSB)
0155             pr_err("%s program operation failed, status %lx\n",
0156                    map->name, chipstatus);
0157         if (chipstatus & CFI_SR_WBASB)
0158             pr_err("%s buffer program command aborted, status %lx\n",
0159                    map->name, chipstatus);
0160         if (chipstatus & CFI_SR_SLSB)
0161             pr_err("%s sector write protected, status %lx\n",
0162                    map->name, chipstatus);
0163 
0164         /* Erase/Program status bits are set on the operation failure */
0165         if (chipstatus & (CFI_SR_ESB | CFI_SR_PSB))
0166             return 1;
0167     }
0168     return 0;
0169 }
0170 
0171 /* #define DEBUG_CFI_FEATURES */
0172 
0173 
0174 #ifdef DEBUG_CFI_FEATURES
0175 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
0176 {
0177     const char* erase_suspend[3] = {
0178         "Not supported", "Read only", "Read/write"
0179     };
0180     const char* top_bottom[6] = {
0181         "No WP", "8x8KiB sectors at top & bottom, no WP",
0182         "Bottom boot", "Top boot",
0183         "Uniform, Bottom WP", "Uniform, Top WP"
0184     };
0185 
0186     printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
0187     printk("  Address sensitive unlock: %s\n",
0188            (extp->SiliconRevision & 1) ? "Not required" : "Required");
0189 
0190     if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
0191         printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
0192     else
0193         printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
0194 
0195     if (extp->BlkProt == 0)
0196         printk("  Block protection: Not supported\n");
0197     else
0198         printk("  Block protection: %d sectors per group\n", extp->BlkProt);
0199 
0200 
0201     printk("  Temporary block unprotect: %s\n",
0202            extp->TmpBlkUnprotect ? "Supported" : "Not supported");
0203     printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
0204     printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
0205     printk("  Burst mode: %s\n",
0206            extp->BurstMode ? "Supported" : "Not supported");
0207     if (extp->PageMode == 0)
0208         printk("  Page mode: Not supported\n");
0209     else
0210         printk("  Page mode: %d word page\n", extp->PageMode << 2);
0211 
0212     printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
0213            extp->VppMin >> 4, extp->VppMin & 0xf);
0214     printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
0215            extp->VppMax >> 4, extp->VppMax & 0xf);
0216 
0217     if (extp->TopBottom < ARRAY_SIZE(top_bottom))
0218         printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
0219     else
0220         printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
0221 }
0222 #endif
0223 
0224 #ifdef AMD_BOOTLOC_BUG
0225 /* Wheee. Bring me the head of someone at AMD. */
0226 static void fixup_amd_bootblock(struct mtd_info *mtd)
0227 {
0228     struct map_info *map = mtd->priv;
0229     struct cfi_private *cfi = map->fldrv_priv;
0230     struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
0231     __u8 major = extp->MajorVersion;
0232     __u8 minor = extp->MinorVersion;
0233 
0234     if (((major << 8) | minor) < 0x3131) {
0235         /* CFI version 1.0 => don't trust bootloc */
0236 
0237         pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
0238             map->name, cfi->mfr, cfi->id);
0239 
0240         /* AFAICS all 29LV400 with a bottom boot block have a device ID
0241          * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
0242          * These were badly detected as they have the 0x80 bit set
0243          * so treat them as a special case.
0244          */
0245         if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
0246 
0247             /* Macronix added CFI to their 2nd generation
0248              * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
0249              * Fujitsu, Spansion, EON, ESI and older Macronix)
0250              * has CFI.
0251              *
0252              * Therefore also check the manufacturer.
0253              * This reduces the risk of false detection due to
0254              * the 8-bit device ID.
0255              */
0256             (cfi->mfr == CFI_MFR_MACRONIX)) {
0257             pr_debug("%s: Macronix MX29LV400C with bottom boot block"
0258                 " detected\n", map->name);
0259             extp->TopBottom = 2;    /* bottom boot */
0260         } else
0261         if (cfi->id & 0x80) {
0262             printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
0263             extp->TopBottom = 3;    /* top boot */
0264         } else {
0265             extp->TopBottom = 2;    /* bottom boot */
0266         }
0267 
0268         pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
0269             " deduced %s from Device ID\n", map->name, major, minor,
0270             extp->TopBottom == 2 ? "bottom" : "top");
0271     }
0272 }
0273 #endif
0274 
0275 #if !FORCE_WORD_WRITE
0276 static void fixup_use_write_buffers(struct mtd_info *mtd)
0277 {
0278     struct map_info *map = mtd->priv;
0279     struct cfi_private *cfi = map->fldrv_priv;
0280 
0281     if (cfi->mfr == CFI_MFR_AMD && cfi->id == 0x2201)
0282         return;
0283 
0284     if (cfi->cfiq->BufWriteTimeoutTyp) {
0285         pr_debug("Using buffer write method\n");
0286         mtd->_write = cfi_amdstd_write_buffers;
0287     }
0288 }
0289 #endif /* !FORCE_WORD_WRITE */
0290 
0291 /* Atmel chips don't use the same PRI format as AMD chips */
0292 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
0293 {
0294     struct map_info *map = mtd->priv;
0295     struct cfi_private *cfi = map->fldrv_priv;
0296     struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
0297     struct cfi_pri_atmel atmel_pri;
0298 
0299     memcpy(&atmel_pri, extp, sizeof(atmel_pri));
0300     memset((char *)extp + 5, 0, sizeof(*extp) - 5);
0301 
0302     if (atmel_pri.Features & 0x02)
0303         extp->EraseSuspend = 2;
0304 
0305     /* Some chips got it backwards... */
0306     if (cfi->id == AT49BV6416) {
0307         if (atmel_pri.BottomBoot)
0308             extp->TopBottom = 3;
0309         else
0310             extp->TopBottom = 2;
0311     } else {
0312         if (atmel_pri.BottomBoot)
0313             extp->TopBottom = 2;
0314         else
0315             extp->TopBottom = 3;
0316     }
0317 
0318     /* burst write mode not supported */
0319     cfi->cfiq->BufWriteTimeoutTyp = 0;
0320     cfi->cfiq->BufWriteTimeoutMax = 0;
0321 }
0322 
0323 static void fixup_use_secsi(struct mtd_info *mtd)
0324 {
0325     /* Setup for chips with a secsi area */
0326     mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
0327     mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
0328 }
0329 
0330 static void fixup_use_erase_chip(struct mtd_info *mtd)
0331 {
0332     struct map_info *map = mtd->priv;
0333     struct cfi_private *cfi = map->fldrv_priv;
0334     if ((cfi->cfiq->NumEraseRegions == 1) &&
0335         ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
0336         mtd->_erase = cfi_amdstd_erase_chip;
0337     }
0338 
0339 }
0340 
0341 /*
0342  * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
0343  * locked by default.
0344  */
0345 static void fixup_use_atmel_lock(struct mtd_info *mtd)
0346 {
0347     mtd->_lock = cfi_atmel_lock;
0348     mtd->_unlock = cfi_atmel_unlock;
0349     mtd->flags |= MTD_POWERUP_LOCK;
0350 }
0351 
0352 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
0353 {
0354     struct map_info *map = mtd->priv;
0355     struct cfi_private *cfi = map->fldrv_priv;
0356 
0357     /*
0358      * These flashes report two separate eraseblock regions based on the
0359      * sector_erase-size and block_erase-size, although they both operate on the
0360      * same memory. This is not allowed according to CFI, so we just pick the
0361      * sector_erase-size.
0362      */
0363     cfi->cfiq->NumEraseRegions = 1;
0364 }
0365 
0366 static void fixup_sst39vf(struct mtd_info *mtd)
0367 {
0368     struct map_info *map = mtd->priv;
0369     struct cfi_private *cfi = map->fldrv_priv;
0370 
0371     fixup_old_sst_eraseregion(mtd);
0372 
0373     cfi->addr_unlock1 = 0x5555;
0374     cfi->addr_unlock2 = 0x2AAA;
0375 }
0376 
0377 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
0378 {
0379     struct map_info *map = mtd->priv;
0380     struct cfi_private *cfi = map->fldrv_priv;
0381 
0382     fixup_old_sst_eraseregion(mtd);
0383 
0384     cfi->addr_unlock1 = 0x555;
0385     cfi->addr_unlock2 = 0x2AA;
0386 
0387     cfi->sector_erase_cmd = CMD(0x50);
0388 }
0389 
0390 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
0391 {
0392     struct map_info *map = mtd->priv;
0393     struct cfi_private *cfi = map->fldrv_priv;
0394 
0395     fixup_sst39vf_rev_b(mtd);
0396 
0397     /*
0398      * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
0399      * it should report a size of 8KBytes (0x0020*256).
0400      */
0401     cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
0402     pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n",
0403         mtd->name);
0404 }
0405 
0406 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
0407 {
0408     struct map_info *map = mtd->priv;
0409     struct cfi_private *cfi = map->fldrv_priv;
0410 
0411     if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
0412         cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
0413         pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n",
0414             mtd->name);
0415     }
0416 }
0417 
0418 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
0419 {
0420     struct map_info *map = mtd->priv;
0421     struct cfi_private *cfi = map->fldrv_priv;
0422 
0423     if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
0424         cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
0425         pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n",
0426             mtd->name);
0427     }
0428 }
0429 
0430 static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
0431 {
0432     struct map_info *map = mtd->priv;
0433     struct cfi_private *cfi = map->fldrv_priv;
0434 
0435     /*
0436      *  S29NS512P flash uses more than 8bits to report number of sectors,
0437      * which is not permitted by CFI.
0438      */
0439     cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
0440     pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n",
0441         mtd->name);
0442 }
0443 
0444 static void fixup_quirks(struct mtd_info *mtd)
0445 {
0446     struct map_info *map = mtd->priv;
0447     struct cfi_private *cfi = map->fldrv_priv;
0448 
0449     if (cfi->mfr == CFI_MFR_AMD && cfi->id == S29GL064N_MN12)
0450         cfi->quirks |= CFI_QUIRK_DQ_TRUE_DATA;
0451 }
0452 
0453 /* Used to fix CFI-Tables of chips without Extended Query Tables */
0454 static struct cfi_fixup cfi_nopri_fixup_table[] = {
0455     { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
0456     { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
0457     { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
0458     { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
0459     { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
0460     { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
0461     { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
0462     { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
0463     { 0, 0, NULL }
0464 };
0465 
0466 static struct cfi_fixup cfi_fixup_table[] = {
0467     { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
0468 #ifdef AMD_BOOTLOC_BUG
0469     { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
0470     { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
0471     { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
0472 #endif
0473     { CFI_MFR_AMD, 0x0050, fixup_use_secsi },
0474     { CFI_MFR_AMD, 0x0053, fixup_use_secsi },
0475     { CFI_MFR_AMD, 0x0055, fixup_use_secsi },
0476     { CFI_MFR_AMD, 0x0056, fixup_use_secsi },
0477     { CFI_MFR_AMD, 0x005C, fixup_use_secsi },
0478     { CFI_MFR_AMD, 0x005F, fixup_use_secsi },
0479     { CFI_MFR_AMD, S29GL064N_MN12, fixup_s29gl064n_sectors },
0480     { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
0481     { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
0482     { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
0483     { CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
0484     { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
0485     { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
0486     { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
0487     { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
0488 #if !FORCE_WORD_WRITE
0489     { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
0490 #endif
0491     { CFI_MFR_ANY, CFI_ID_ANY, fixup_quirks },
0492     { 0, 0, NULL }
0493 };
0494 static struct cfi_fixup jedec_fixup_table[] = {
0495     { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
0496     { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
0497     { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
0498     { 0, 0, NULL }
0499 };
0500 
0501 static struct cfi_fixup fixup_table[] = {
0502     /* The CFI vendor ids and the JEDEC vendor IDs appear
0503      * to be common.  It is like the devices id's are as
0504      * well.  This table is to pick all cases where
0505      * we know that is the case.
0506      */
0507     { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
0508     { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
0509     { 0, 0, NULL }
0510 };
0511 
0512 
0513 static void cfi_fixup_major_minor(struct cfi_private *cfi,
0514                   struct cfi_pri_amdstd *extp)
0515 {
0516     if (cfi->mfr == CFI_MFR_SAMSUNG) {
0517         if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
0518             (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
0519             /*
0520              * Samsung K8P2815UQB and K8D6x16UxM chips
0521              * report major=0 / minor=0.
0522              * K8D3x16UxC chips report major=3 / minor=3.
0523              */
0524             printk(KERN_NOTICE "  Fixing Samsung's Amd/Fujitsu"
0525                    " Extended Query version to 1.%c\n",
0526                    extp->MinorVersion);
0527             extp->MajorVersion = '1';
0528         }
0529     }
0530 
0531     /*
0532      * SST 38VF640x chips report major=0xFF / minor=0xFF.
0533      */
0534     if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
0535         extp->MajorVersion = '1';
0536         extp->MinorVersion = '0';
0537     }
0538 }
0539 
0540 static int is_m29ew(struct cfi_private *cfi)
0541 {
0542     if (cfi->mfr == CFI_MFR_INTEL &&
0543         ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
0544          (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
0545         return 1;
0546     return 0;
0547 }
0548 
0549 /*
0550  * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
0551  * Some revisions of the M29EW suffer from erase suspend hang ups. In
0552  * particular, it can occur when the sequence
0553  * Erase Confirm -> Suspend -> Program -> Resume
0554  * causes a lockup due to internal timing issues. The consequence is that the
0555  * erase cannot be resumed without inserting a dummy command after programming
0556  * and prior to resuming. [...] The work-around is to issue a dummy write cycle
0557  * that writes an F0 command code before the RESUME command.
0558  */
0559 static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
0560                       unsigned long adr)
0561 {
0562     struct cfi_private *cfi = map->fldrv_priv;
0563     /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
0564     if (is_m29ew(cfi))
0565         map_write(map, CMD(0xF0), adr);
0566 }
0567 
0568 /*
0569  * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
0570  *
0571  * Some revisions of the M29EW (for example, A1 and A2 step revisions)
0572  * are affected by a problem that could cause a hang up when an ERASE SUSPEND
0573  * command is issued after an ERASE RESUME operation without waiting for a
0574  * minimum delay.  The result is that once the ERASE seems to be completed
0575  * (no bits are toggling), the contents of the Flash memory block on which
0576  * the erase was ongoing could be inconsistent with the expected values
0577  * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
0578  * values), causing a consequent failure of the ERASE operation.
0579  * The occurrence of this issue could be high, especially when file system
0580  * operations on the Flash are intensive.  As a result, it is recommended
0581  * that a patch be applied.  Intensive file system operations can cause many
0582  * calls to the garbage routine to free Flash space (also by erasing physical
0583  * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
0584  * commands can occur.  The problem disappears when a delay is inserted after
0585  * the RESUME command by using the udelay() function available in Linux.
0586  * The DELAY value must be tuned based on the customer's platform.
0587  * The maximum value that fixes the problem in all cases is 500us.
0588  * But, in our experience, a delay of 30 µs to 50 µs is sufficient
0589  * in most cases.
0590  * We have chosen 500µs because this latency is acceptable.
0591  */
0592 static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
0593 {
0594     /*
0595      * Resolving the Delay After Resume Issue see Micron TN-13-07
0596      * Worst case delay must be 500µs but 30-50µs should be ok as well
0597      */
0598     if (is_m29ew(cfi))
0599         cfi_udelay(500);
0600 }
0601 
0602 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
0603 {
0604     struct cfi_private *cfi = map->fldrv_priv;
0605     struct device_node __maybe_unused *np = map->device_node;
0606     struct mtd_info *mtd;
0607     int i;
0608 
0609     mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
0610     if (!mtd)
0611         return NULL;
0612     mtd->priv = map;
0613     mtd->type = MTD_NORFLASH;
0614 
0615     /* Fill in the default mtd operations */
0616     mtd->_erase   = cfi_amdstd_erase_varsize;
0617     mtd->_write   = cfi_amdstd_write_words;
0618     mtd->_read    = cfi_amdstd_read;
0619     mtd->_sync    = cfi_amdstd_sync;
0620     mtd->_suspend = cfi_amdstd_suspend;
0621     mtd->_resume  = cfi_amdstd_resume;
0622     mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
0623     mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
0624     mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
0625     mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
0626     mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
0627     mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
0628     mtd->flags   = MTD_CAP_NORFLASH;
0629     mtd->name    = map->name;
0630     mtd->writesize = 1;
0631     mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
0632 
0633     pr_debug("MTD %s(): write buffer size %d\n", __func__,
0634             mtd->writebufsize);
0635 
0636     mtd->_panic_write = cfi_amdstd_panic_write;
0637     mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
0638 
0639     if (cfi->cfi_mode==CFI_MODE_CFI){
0640         unsigned char bootloc;
0641         __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
0642         struct cfi_pri_amdstd *extp;
0643 
0644         extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
0645         if (extp) {
0646             /*
0647              * It's a real CFI chip, not one for which the probe
0648              * routine faked a CFI structure.
0649              */
0650             cfi_fixup_major_minor(cfi, extp);
0651 
0652             /*
0653              * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
0654              * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19 
0655              *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
0656              *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
0657              *      http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
0658              */
0659             if (extp->MajorVersion != '1' ||
0660                 (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
0661                 printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
0662                        "version %c.%c (%#02x/%#02x).\n",
0663                        extp->MajorVersion, extp->MinorVersion,
0664                        extp->MajorVersion, extp->MinorVersion);
0665                 kfree(extp);
0666                 kfree(mtd);
0667                 return NULL;
0668             }
0669 
0670             printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
0671                    extp->MajorVersion, extp->MinorVersion);
0672 
0673             /* Install our own private info structure */
0674             cfi->cmdset_priv = extp;
0675 
0676             /* Apply cfi device specific fixups */
0677             cfi_fixup(mtd, cfi_fixup_table);
0678 
0679 #ifdef DEBUG_CFI_FEATURES
0680             /* Tell the user about it in lots of lovely detail */
0681             cfi_tell_features(extp);
0682 #endif
0683 
0684 #ifdef CONFIG_OF
0685             if (np && of_property_read_bool(
0686                     np, "use-advanced-sector-protection")
0687                 && extp->BlkProtUnprot == 8) {
0688                 printk(KERN_INFO "  Advanced Sector Protection (PPB Locking) supported\n");
0689                 mtd->_lock = cfi_ppb_lock;
0690                 mtd->_unlock = cfi_ppb_unlock;
0691                 mtd->_is_locked = cfi_ppb_is_locked;
0692             }
0693 #endif
0694 
0695             bootloc = extp->TopBottom;
0696             if ((bootloc < 2) || (bootloc > 5)) {
0697                 printk(KERN_WARNING "%s: CFI contains unrecognised boot "
0698                        "bank location (%d). Assuming bottom.\n",
0699                        map->name, bootloc);
0700                 bootloc = 2;
0701             }
0702 
0703             if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
0704                 printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
0705 
0706                 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
0707                     int j = (cfi->cfiq->NumEraseRegions-1)-i;
0708 
0709                     swap(cfi->cfiq->EraseRegionInfo[i],
0710                          cfi->cfiq->EraseRegionInfo[j]);
0711                 }
0712             }
0713             /* Set the default CFI lock/unlock addresses */
0714             cfi->addr_unlock1 = 0x555;
0715             cfi->addr_unlock2 = 0x2aa;
0716         }
0717         cfi_fixup(mtd, cfi_nopri_fixup_table);
0718 
0719         if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
0720             kfree(mtd);
0721             return NULL;
0722         }
0723 
0724     } /* CFI mode */
0725     else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
0726         /* Apply jedec specific fixups */
0727         cfi_fixup(mtd, jedec_fixup_table);
0728     }
0729     /* Apply generic fixups */
0730     cfi_fixup(mtd, fixup_table);
0731 
0732     for (i=0; i< cfi->numchips; i++) {
0733         cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
0734         cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
0735         cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
0736         /*
0737          * First calculate the timeout max according to timeout field
0738          * of struct cfi_ident that probed from chip's CFI aera, if
0739          * available. Specify a minimum of 2000us, in case the CFI data
0740          * is wrong.
0741          */
0742         if (cfi->cfiq->BufWriteTimeoutTyp &&
0743             cfi->cfiq->BufWriteTimeoutMax)
0744             cfi->chips[i].buffer_write_time_max =
0745                 1 << (cfi->cfiq->BufWriteTimeoutTyp +
0746                       cfi->cfiq->BufWriteTimeoutMax);
0747         else
0748             cfi->chips[i].buffer_write_time_max = 0;
0749 
0750         cfi->chips[i].buffer_write_time_max =
0751             max(cfi->chips[i].buffer_write_time_max, 2000);
0752 
0753         cfi->chips[i].ref_point_counter = 0;
0754         init_waitqueue_head(&(cfi->chips[i].wq));
0755     }
0756 
0757     map->fldrv = &cfi_amdstd_chipdrv;
0758 
0759     return cfi_amdstd_setup(mtd);
0760 }
0761 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
0762 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
0763 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
0764 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
0765 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
0766 
0767 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
0768 {
0769     struct map_info *map = mtd->priv;
0770     struct cfi_private *cfi = map->fldrv_priv;
0771     unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
0772     unsigned long offset = 0;
0773     int i,j;
0774 
0775     printk(KERN_NOTICE "number of %s chips: %d\n",
0776            (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
0777     /* Select the correct geometry setup */
0778     mtd->size = devsize * cfi->numchips;
0779 
0780     mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
0781     mtd->eraseregions = kmalloc_array(mtd->numeraseregions,
0782                       sizeof(struct mtd_erase_region_info),
0783                       GFP_KERNEL);
0784     if (!mtd->eraseregions)
0785         goto setup_err;
0786 
0787     for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
0788         unsigned long ernum, ersize;
0789         ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
0790         ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
0791 
0792         if (mtd->erasesize < ersize) {
0793             mtd->erasesize = ersize;
0794         }
0795         for (j=0; j<cfi->numchips; j++) {
0796             mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
0797             mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
0798             mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
0799         }
0800         offset += (ersize * ernum);
0801     }
0802     if (offset != devsize) {
0803         /* Argh */
0804         printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
0805         goto setup_err;
0806     }
0807 
0808     __module_get(THIS_MODULE);
0809     register_reboot_notifier(&mtd->reboot_notifier);
0810     return mtd;
0811 
0812  setup_err:
0813     kfree(mtd->eraseregions);
0814     kfree(mtd);
0815     kfree(cfi->cmdset_priv);
0816     return NULL;
0817 }
0818 
0819 /*
0820  * Return true if the chip is ready and has the correct value.
0821  *
0822  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
0823  * non-suspended sector) and is indicated by no toggle bits toggling.
0824  *
0825  * Error are indicated by toggling bits or bits held with the wrong value,
0826  * or with bits toggling.
0827  *
0828  * Note that anything more complicated than checking if no bits are toggling
0829  * (including checking DQ5 for an error status) is tricky to get working
0830  * correctly and is therefore not done  (particularly with interleaved chips
0831  * as each chip must be checked independently of the others).
0832  */
0833 static int __xipram chip_ready(struct map_info *map, struct flchip *chip,
0834                    unsigned long addr, map_word *expected)
0835 {
0836     struct cfi_private *cfi = map->fldrv_priv;
0837     map_word oldd, curd;
0838     int ret;
0839 
0840     if (cfi_use_status_reg(cfi)) {
0841         map_word ready = CMD(CFI_SR_DRB);
0842         /*
0843          * For chips that support status register, check device
0844          * ready bit
0845          */
0846         cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
0847                  cfi->device_type, NULL);
0848         curd = map_read(map, addr);
0849 
0850         return map_word_andequal(map, curd, ready, ready);
0851     }
0852 
0853     oldd = map_read(map, addr);
0854     curd = map_read(map, addr);
0855 
0856     ret = map_word_equal(map, oldd, curd);
0857 
0858     if (!ret || !expected)
0859         return ret;
0860 
0861     return map_word_equal(map, curd, *expected);
0862 }
0863 
0864 static int __xipram chip_good(struct map_info *map, struct flchip *chip,
0865                   unsigned long addr, map_word *expected)
0866 {
0867     struct cfi_private *cfi = map->fldrv_priv;
0868     map_word *datum = expected;
0869 
0870     if (cfi->quirks & CFI_QUIRK_DQ_TRUE_DATA)
0871         datum = NULL;
0872 
0873     return chip_ready(map, chip, addr, datum);
0874 }
0875 
0876 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
0877 {
0878     DECLARE_WAITQUEUE(wait, current);
0879     struct cfi_private *cfi = map->fldrv_priv;
0880     unsigned long timeo;
0881     struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
0882 
0883  resettime:
0884     timeo = jiffies + HZ;
0885  retry:
0886     switch (chip->state) {
0887 
0888     case FL_STATUS:
0889         for (;;) {
0890             if (chip_ready(map, chip, adr, NULL))
0891                 break;
0892 
0893             if (time_after(jiffies, timeo)) {
0894                 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
0895                 return -EIO;
0896             }
0897             mutex_unlock(&chip->mutex);
0898             cfi_udelay(1);
0899             mutex_lock(&chip->mutex);
0900             /* Someone else might have been playing with it. */
0901             goto retry;
0902         }
0903         return 0;
0904 
0905     case FL_READY:
0906     case FL_CFI_QUERY:
0907     case FL_JEDEC_QUERY:
0908         return 0;
0909 
0910     case FL_ERASING:
0911         if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
0912             !(mode == FL_READY || mode == FL_POINT ||
0913             (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
0914             goto sleep;
0915 
0916         /* Do not allow suspend iff read/write to EB address */
0917         if ((adr & chip->in_progress_block_mask) ==
0918             chip->in_progress_block_addr)
0919             goto sleep;
0920 
0921         /* Erase suspend */
0922         /* It's harmless to issue the Erase-Suspend and Erase-Resume
0923          * commands when the erase algorithm isn't in progress. */
0924         map_write(map, CMD(0xB0), chip->in_progress_block_addr);
0925         chip->oldstate = FL_ERASING;
0926         chip->state = FL_ERASE_SUSPENDING;
0927         chip->erase_suspended = 1;
0928         for (;;) {
0929             if (chip_ready(map, chip, adr, NULL))
0930                 break;
0931 
0932             if (time_after(jiffies, timeo)) {
0933                 /* Should have suspended the erase by now.
0934                  * Send an Erase-Resume command as either
0935                  * there was an error (so leave the erase
0936                  * routine to recover from it) or we trying to
0937                  * use the erase-in-progress sector. */
0938                 put_chip(map, chip, adr);
0939                 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
0940                 return -EIO;
0941             }
0942 
0943             mutex_unlock(&chip->mutex);
0944             cfi_udelay(1);
0945             mutex_lock(&chip->mutex);
0946             /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
0947                So we can just loop here. */
0948         }
0949         chip->state = FL_READY;
0950         return 0;
0951 
0952     case FL_XIP_WHILE_ERASING:
0953         if (mode != FL_READY && mode != FL_POINT &&
0954             (!cfip || !(cfip->EraseSuspend&2)))
0955             goto sleep;
0956         chip->oldstate = chip->state;
0957         chip->state = FL_READY;
0958         return 0;
0959 
0960     case FL_SHUTDOWN:
0961         /* The machine is rebooting */
0962         return -EIO;
0963 
0964     case FL_POINT:
0965         /* Only if there's no operation suspended... */
0966         if (mode == FL_READY && chip->oldstate == FL_READY)
0967             return 0;
0968         fallthrough;
0969     default:
0970     sleep:
0971         set_current_state(TASK_UNINTERRUPTIBLE);
0972         add_wait_queue(&chip->wq, &wait);
0973         mutex_unlock(&chip->mutex);
0974         schedule();
0975         remove_wait_queue(&chip->wq, &wait);
0976         mutex_lock(&chip->mutex);
0977         goto resettime;
0978     }
0979 }
0980 
0981 
0982 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
0983 {
0984     struct cfi_private *cfi = map->fldrv_priv;
0985 
0986     switch(chip->oldstate) {
0987     case FL_ERASING:
0988         cfi_fixup_m29ew_erase_suspend(map,
0989             chip->in_progress_block_addr);
0990         map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
0991         cfi_fixup_m29ew_delay_after_resume(cfi);
0992         chip->oldstate = FL_READY;
0993         chip->state = FL_ERASING;
0994         break;
0995 
0996     case FL_XIP_WHILE_ERASING:
0997         chip->state = chip->oldstate;
0998         chip->oldstate = FL_READY;
0999         break;
1000 
1001     case FL_READY:
1002     case FL_STATUS:
1003         break;
1004     default:
1005         printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
1006     }
1007     wake_up(&chip->wq);
1008 }
1009 
1010 #ifdef CONFIG_MTD_XIP
1011 
1012 /*
1013  * No interrupt what so ever can be serviced while the flash isn't in array
1014  * mode.  This is ensured by the xip_disable() and xip_enable() functions
1015  * enclosing any code path where the flash is known not to be in array mode.
1016  * And within a XIP disabled code path, only functions marked with __xipram
1017  * may be called and nothing else (it's a good thing to inspect generated
1018  * assembly to make sure inline functions were actually inlined and that gcc
1019  * didn't emit calls to its own support functions). Also configuring MTD CFI
1020  * support to a single buswidth and a single interleave is also recommended.
1021  */
1022 
1023 static void xip_disable(struct map_info *map, struct flchip *chip,
1024             unsigned long adr)
1025 {
1026     /* TODO: chips with no XIP use should ignore and return */
1027     (void) map_read(map, adr); /* ensure mmu mapping is up to date */
1028     local_irq_disable();
1029 }
1030 
1031 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
1032                 unsigned long adr)
1033 {
1034     struct cfi_private *cfi = map->fldrv_priv;
1035 
1036     if (chip->state != FL_POINT && chip->state != FL_READY) {
1037         map_write(map, CMD(0xf0), adr);
1038         chip->state = FL_READY;
1039     }
1040     (void) map_read(map, adr);
1041     xip_iprefetch();
1042     local_irq_enable();
1043 }
1044 
1045 /*
1046  * When a delay is required for the flash operation to complete, the
1047  * xip_udelay() function is polling for both the given timeout and pending
1048  * (but still masked) hardware interrupts.  Whenever there is an interrupt
1049  * pending then the flash erase operation is suspended, array mode restored
1050  * and interrupts unmasked.  Task scheduling might also happen at that
1051  * point.  The CPU eventually returns from the interrupt or the call to
1052  * schedule() and the suspended flash operation is resumed for the remaining
1053  * of the delay period.
1054  *
1055  * Warning: this function _will_ fool interrupt latency tracing tools.
1056  */
1057 
1058 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
1059                 unsigned long adr, int usec)
1060 {
1061     struct cfi_private *cfi = map->fldrv_priv;
1062     struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
1063     map_word status, OK = CMD(0x80);
1064     unsigned long suspended, start = xip_currtime();
1065     flstate_t oldstate;
1066 
1067     do {
1068         cpu_relax();
1069         if (xip_irqpending() && extp &&
1070             ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
1071             (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1072             /*
1073              * Let's suspend the erase operation when supported.
1074              * Note that we currently don't try to suspend
1075              * interleaved chips if there is already another
1076              * operation suspended (imagine what happens
1077              * when one chip was already done with the current
1078              * operation while another chip suspended it, then
1079              * we resume the whole thing at once).  Yes, it
1080              * can happen!
1081              */
1082             map_write(map, CMD(0xb0), adr);
1083             usec -= xip_elapsed_since(start);
1084             suspended = xip_currtime();
1085             do {
1086                 if (xip_elapsed_since(suspended) > 100000) {
1087                     /*
1088                      * The chip doesn't want to suspend
1089                      * after waiting for 100 msecs.
1090                      * This is a critical error but there
1091                      * is not much we can do here.
1092                      */
1093                     return;
1094                 }
1095                 status = map_read(map, adr);
1096             } while (!map_word_andequal(map, status, OK, OK));
1097 
1098             /* Suspend succeeded */
1099             oldstate = chip->state;
1100             if (!map_word_bitsset(map, status, CMD(0x40)))
1101                 break;
1102             chip->state = FL_XIP_WHILE_ERASING;
1103             chip->erase_suspended = 1;
1104             map_write(map, CMD(0xf0), adr);
1105             (void) map_read(map, adr);
1106             xip_iprefetch();
1107             local_irq_enable();
1108             mutex_unlock(&chip->mutex);
1109             xip_iprefetch();
1110             cond_resched();
1111 
1112             /*
1113              * We're back.  However someone else might have
1114              * decided to go write to the chip if we are in
1115              * a suspended erase state.  If so let's wait
1116              * until it's done.
1117              */
1118             mutex_lock(&chip->mutex);
1119             while (chip->state != FL_XIP_WHILE_ERASING) {
1120                 DECLARE_WAITQUEUE(wait, current);
1121                 set_current_state(TASK_UNINTERRUPTIBLE);
1122                 add_wait_queue(&chip->wq, &wait);
1123                 mutex_unlock(&chip->mutex);
1124                 schedule();
1125                 remove_wait_queue(&chip->wq, &wait);
1126                 mutex_lock(&chip->mutex);
1127             }
1128             /* Disallow XIP again */
1129             local_irq_disable();
1130 
1131             /* Correct Erase Suspend Hangups for M29EW */
1132             cfi_fixup_m29ew_erase_suspend(map, adr);
1133             /* Resume the write or erase operation */
1134             map_write(map, cfi->sector_erase_cmd, adr);
1135             chip->state = oldstate;
1136             start = xip_currtime();
1137         } else if (usec >= 1000000/HZ) {
1138             /*
1139              * Try to save on CPU power when waiting delay
1140              * is at least a system timer tick period.
1141              * No need to be extremely accurate here.
1142              */
1143             xip_cpu_idle();
1144         }
1145         status = map_read(map, adr);
1146     } while (!map_word_andequal(map, status, OK, OK)
1147          && xip_elapsed_since(start) < usec);
1148 }
1149 
1150 #define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
1151 
1152 /*
1153  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1154  * the flash is actively programming or erasing since we have to poll for
1155  * the operation to complete anyway.  We can't do that in a generic way with
1156  * a XIP setup so do it before the actual flash operation in this case
1157  * and stub it out from INVALIDATE_CACHE_UDELAY.
1158  */
1159 #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
1160     INVALIDATE_CACHED_RANGE(map, from, size)
1161 
1162 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1163     UDELAY(map, chip, adr, usec)
1164 
1165 /*
1166  * Extra notes:
1167  *
1168  * Activating this XIP support changes the way the code works a bit.  For
1169  * example the code to suspend the current process when concurrent access
1170  * happens is never executed because xip_udelay() will always return with the
1171  * same chip state as it was entered with.  This is why there is no care for
1172  * the presence of add_wait_queue() or schedule() calls from within a couple
1173  * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
1174  * The queueing and scheduling are always happening within xip_udelay().
1175  *
1176  * Similarly, get_chip() and put_chip() just happen to always be executed
1177  * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1178  * is in array mode, therefore never executing many cases therein and not
1179  * causing any problem with XIP.
1180  */
1181 
1182 #else
1183 
1184 #define xip_disable(map, chip, adr)
1185 #define xip_enable(map, chip, adr)
1186 #define XIP_INVAL_CACHED_RANGE(x...)
1187 
1188 #define UDELAY(map, chip, adr, usec)  \
1189 do {  \
1190     mutex_unlock(&chip->mutex);  \
1191     cfi_udelay(usec);  \
1192     mutex_lock(&chip->mutex);  \
1193 } while (0)
1194 
1195 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1196 do {  \
1197     mutex_unlock(&chip->mutex);  \
1198     INVALIDATE_CACHED_RANGE(map, adr, len);  \
1199     cfi_udelay(usec);  \
1200     mutex_lock(&chip->mutex);  \
1201 } while (0)
1202 
1203 #endif
1204 
1205 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1206 {
1207     unsigned long cmd_addr;
1208     struct cfi_private *cfi = map->fldrv_priv;
1209     int ret;
1210 
1211     adr += chip->start;
1212 
1213     /* Ensure cmd read/writes are aligned. */
1214     cmd_addr = adr & ~(map_bankwidth(map)-1);
1215 
1216     mutex_lock(&chip->mutex);
1217     ret = get_chip(map, chip, cmd_addr, FL_READY);
1218     if (ret) {
1219         mutex_unlock(&chip->mutex);
1220         return ret;
1221     }
1222 
1223     if (chip->state != FL_POINT && chip->state != FL_READY) {
1224         map_write(map, CMD(0xf0), cmd_addr);
1225         chip->state = FL_READY;
1226     }
1227 
1228     map_copy_from(map, buf, adr, len);
1229 
1230     put_chip(map, chip, cmd_addr);
1231 
1232     mutex_unlock(&chip->mutex);
1233     return 0;
1234 }
1235 
1236 
1237 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1238 {
1239     struct map_info *map = mtd->priv;
1240     struct cfi_private *cfi = map->fldrv_priv;
1241     unsigned long ofs;
1242     int chipnum;
1243     int ret = 0;
1244 
1245     /* ofs: offset within the first chip that the first read should start */
1246     chipnum = (from >> cfi->chipshift);
1247     ofs = from - (chipnum <<  cfi->chipshift);
1248 
1249     while (len) {
1250         unsigned long thislen;
1251 
1252         if (chipnum >= cfi->numchips)
1253             break;
1254 
1255         if ((len + ofs -1) >> cfi->chipshift)
1256             thislen = (1<<cfi->chipshift) - ofs;
1257         else
1258             thislen = len;
1259 
1260         ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1261         if (ret)
1262             break;
1263 
1264         *retlen += thislen;
1265         len -= thislen;
1266         buf += thislen;
1267 
1268         ofs = 0;
1269         chipnum++;
1270     }
1271     return ret;
1272 }
1273 
1274 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
1275             loff_t adr, size_t len, u_char *buf, size_t grouplen);
1276 
1277 static inline void otp_enter(struct map_info *map, struct flchip *chip,
1278                  loff_t adr, size_t len)
1279 {
1280     struct cfi_private *cfi = map->fldrv_priv;
1281 
1282     cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1283              cfi->device_type, NULL);
1284     cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1285              cfi->device_type, NULL);
1286     cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
1287              cfi->device_type, NULL);
1288 
1289     INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1290 }
1291 
1292 static inline void otp_exit(struct map_info *map, struct flchip *chip,
1293                 loff_t adr, size_t len)
1294 {
1295     struct cfi_private *cfi = map->fldrv_priv;
1296 
1297     cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1298              cfi->device_type, NULL);
1299     cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1300              cfi->device_type, NULL);
1301     cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
1302              cfi->device_type, NULL);
1303     cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
1304              cfi->device_type, NULL);
1305 
1306     INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1307 }
1308 
1309 static inline int do_read_secsi_onechip(struct map_info *map,
1310                     struct flchip *chip, loff_t adr,
1311                     size_t len, u_char *buf,
1312                     size_t grouplen)
1313 {
1314     DECLARE_WAITQUEUE(wait, current);
1315 
1316  retry:
1317     mutex_lock(&chip->mutex);
1318 
1319     if (chip->state != FL_READY){
1320         set_current_state(TASK_UNINTERRUPTIBLE);
1321         add_wait_queue(&chip->wq, &wait);
1322 
1323         mutex_unlock(&chip->mutex);
1324 
1325         schedule();
1326         remove_wait_queue(&chip->wq, &wait);
1327 
1328         goto retry;
1329     }
1330 
1331     adr += chip->start;
1332 
1333     chip->state = FL_READY;
1334 
1335     otp_enter(map, chip, adr, len);
1336     map_copy_from(map, buf, adr, len);
1337     otp_exit(map, chip, adr, len);
1338 
1339     wake_up(&chip->wq);
1340     mutex_unlock(&chip->mutex);
1341 
1342     return 0;
1343 }
1344 
1345 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1346 {
1347     struct map_info *map = mtd->priv;
1348     struct cfi_private *cfi = map->fldrv_priv;
1349     unsigned long ofs;
1350     int chipnum;
1351     int ret = 0;
1352 
1353     /* ofs: offset within the first chip that the first read should start */
1354     /* 8 secsi bytes per chip */
1355     chipnum=from>>3;
1356     ofs=from & 7;
1357 
1358     while (len) {
1359         unsigned long thislen;
1360 
1361         if (chipnum >= cfi->numchips)
1362             break;
1363 
1364         if ((len + ofs -1) >> 3)
1365             thislen = (1<<3) - ofs;
1366         else
1367             thislen = len;
1368 
1369         ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
1370                         thislen, buf, 0);
1371         if (ret)
1372             break;
1373 
1374         *retlen += thislen;
1375         len -= thislen;
1376         buf += thislen;
1377 
1378         ofs = 0;
1379         chipnum++;
1380     }
1381     return ret;
1382 }
1383 
1384 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1385                      unsigned long adr, map_word datum,
1386                      int mode);
1387 
1388 static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
1389             size_t len, u_char *buf, size_t grouplen)
1390 {
1391     int ret;
1392     while (len) {
1393         unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
1394         int gap = adr - bus_ofs;
1395         int n = min_t(int, len, map_bankwidth(map) - gap);
1396         map_word datum = map_word_ff(map);
1397 
1398         if (n != map_bankwidth(map)) {
1399             /* partial write of a word, load old contents */
1400             otp_enter(map, chip, bus_ofs, map_bankwidth(map));
1401             datum = map_read(map, bus_ofs);
1402             otp_exit(map, chip, bus_ofs, map_bankwidth(map));
1403         }
1404 
1405         datum = map_word_load_partial(map, datum, buf, gap, n);
1406         ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1407         if (ret)
1408             return ret;
1409 
1410         adr += n;
1411         buf += n;
1412         len -= n;
1413     }
1414 
1415     return 0;
1416 }
1417 
1418 static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
1419                size_t len, u_char *buf, size_t grouplen)
1420 {
1421     struct cfi_private *cfi = map->fldrv_priv;
1422     uint8_t lockreg;
1423     unsigned long timeo;
1424     int ret;
1425 
1426     /* make sure area matches group boundaries */
1427     if ((adr != 0) || (len != grouplen))
1428         return -EINVAL;
1429 
1430     mutex_lock(&chip->mutex);
1431     ret = get_chip(map, chip, chip->start, FL_LOCKING);
1432     if (ret) {
1433         mutex_unlock(&chip->mutex);
1434         return ret;
1435     }
1436     chip->state = FL_LOCKING;
1437 
1438     /* Enter lock register command */
1439     cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1440              cfi->device_type, NULL);
1441     cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1442              cfi->device_type, NULL);
1443     cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
1444              cfi->device_type, NULL);
1445 
1446     /* read lock register */
1447     lockreg = cfi_read_query(map, 0);
1448 
1449     /* set bit 0 to protect extended memory block */
1450     lockreg &= ~0x01;
1451 
1452     /* set bit 0 to protect extended memory block */
1453     /* write lock register */
1454     map_write(map, CMD(0xA0), chip->start);
1455     map_write(map, CMD(lockreg), chip->start);
1456 
1457     /* wait for chip to become ready */
1458     timeo = jiffies + msecs_to_jiffies(2);
1459     for (;;) {
1460         if (chip_ready(map, chip, adr, NULL))
1461             break;
1462 
1463         if (time_after(jiffies, timeo)) {
1464             pr_err("Waiting for chip to be ready timed out.\n");
1465             ret = -EIO;
1466             break;
1467         }
1468         UDELAY(map, chip, 0, 1);
1469     }
1470 
1471     /* exit protection commands */
1472     map_write(map, CMD(0x90), chip->start);
1473     map_write(map, CMD(0x00), chip->start);
1474 
1475     chip->state = FL_READY;
1476     put_chip(map, chip, chip->start);
1477     mutex_unlock(&chip->mutex);
1478 
1479     return ret;
1480 }
1481 
1482 static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1483                    size_t *retlen, u_char *buf,
1484                    otp_op_t action, int user_regs)
1485 {
1486     struct map_info *map = mtd->priv;
1487     struct cfi_private *cfi = map->fldrv_priv;
1488     int ofs_factor = cfi->interleave * cfi->device_type;
1489     unsigned long base;
1490     int chipnum;
1491     struct flchip *chip;
1492     uint8_t otp, lockreg;
1493     int ret;
1494 
1495     size_t user_size, factory_size, otpsize;
1496     loff_t user_offset, factory_offset, otpoffset;
1497     int user_locked = 0, otplocked;
1498 
1499     *retlen = 0;
1500 
1501     for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
1502         chip = &cfi->chips[chipnum];
1503         factory_size = 0;
1504         user_size = 0;
1505 
1506         /* Micron M29EW family */
1507         if (is_m29ew(cfi)) {
1508             base = chip->start;
1509 
1510             /* check whether secsi area is factory locked
1511                or user lockable */
1512             mutex_lock(&chip->mutex);
1513             ret = get_chip(map, chip, base, FL_CFI_QUERY);
1514             if (ret) {
1515                 mutex_unlock(&chip->mutex);
1516                 return ret;
1517             }
1518             cfi_qry_mode_on(base, map, cfi);
1519             otp = cfi_read_query(map, base + 0x3 * ofs_factor);
1520             cfi_qry_mode_off(base, map, cfi);
1521             put_chip(map, chip, base);
1522             mutex_unlock(&chip->mutex);
1523 
1524             if (otp & 0x80) {
1525                 /* factory locked */
1526                 factory_offset = 0;
1527                 factory_size = 0x100;
1528             } else {
1529                 /* customer lockable */
1530                 user_offset = 0;
1531                 user_size = 0x100;
1532 
1533                 mutex_lock(&chip->mutex);
1534                 ret = get_chip(map, chip, base, FL_LOCKING);
1535                 if (ret) {
1536                     mutex_unlock(&chip->mutex);
1537                     return ret;
1538                 }
1539 
1540                 /* Enter lock register command */
1541                 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
1542                          chip->start, map, cfi,
1543                          cfi->device_type, NULL);
1544                 cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
1545                          chip->start, map, cfi,
1546                          cfi->device_type, NULL);
1547                 cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
1548                          chip->start, map, cfi,
1549                          cfi->device_type, NULL);
1550                 /* read lock register */
1551                 lockreg = cfi_read_query(map, 0);
1552                 /* exit protection commands */
1553                 map_write(map, CMD(0x90), chip->start);
1554                 map_write(map, CMD(0x00), chip->start);
1555                 put_chip(map, chip, chip->start);
1556                 mutex_unlock(&chip->mutex);
1557 
1558                 user_locked = ((lockreg & 0x01) == 0x00);
1559             }
1560         }
1561 
1562         otpsize = user_regs ? user_size : factory_size;
1563         if (!otpsize)
1564             continue;
1565         otpoffset = user_regs ? user_offset : factory_offset;
1566         otplocked = user_regs ? user_locked : 1;
1567 
1568         if (!action) {
1569             /* return otpinfo */
1570             struct otp_info *otpinfo;
1571             len -= sizeof(*otpinfo);
1572             if (len <= 0)
1573                 return -ENOSPC;
1574             otpinfo = (struct otp_info *)buf;
1575             otpinfo->start = from;
1576             otpinfo->length = otpsize;
1577             otpinfo->locked = otplocked;
1578             buf += sizeof(*otpinfo);
1579             *retlen += sizeof(*otpinfo);
1580             from += otpsize;
1581         } else if ((from < otpsize) && (len > 0)) {
1582             size_t size;
1583             size = (len < otpsize - from) ? len : otpsize - from;
1584             ret = action(map, chip, otpoffset + from, size, buf,
1585                      otpsize);
1586             if (ret < 0)
1587                 return ret;
1588 
1589             buf += size;
1590             len -= size;
1591             *retlen += size;
1592             from = 0;
1593         } else {
1594             from -= otpsize;
1595         }
1596     }
1597     return 0;
1598 }
1599 
1600 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
1601                      size_t *retlen, struct otp_info *buf)
1602 {
1603     return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1604                    NULL, 0);
1605 }
1606 
1607 static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
1608                      size_t *retlen, struct otp_info *buf)
1609 {
1610     return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1611                    NULL, 1);
1612 }
1613 
1614 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1615                      size_t len, size_t *retlen,
1616                      u_char *buf)
1617 {
1618     return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1619                    buf, do_read_secsi_onechip, 0);
1620 }
1621 
1622 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1623                      size_t len, size_t *retlen,
1624                      u_char *buf)
1625 {
1626     return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1627                    buf, do_read_secsi_onechip, 1);
1628 }
1629 
1630 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1631                       size_t len, size_t *retlen,
1632                       const u_char *buf)
1633 {
1634     return cfi_amdstd_otp_walk(mtd, from, len, retlen, (u_char *)buf,
1635                    do_otp_write, 1);
1636 }
1637 
1638 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1639                      size_t len)
1640 {
1641     size_t retlen;
1642     return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
1643                    do_otp_lock, 1);
1644 }
1645 
1646 static int __xipram do_write_oneword_once(struct map_info *map,
1647                       struct flchip *chip,
1648                       unsigned long adr, map_word datum,
1649                       int mode, struct cfi_private *cfi)
1650 {
1651     unsigned long timeo;
1652     /*
1653      * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1654      * have a max write time of a few hundreds usec). However, we should
1655      * use the maximum timeout value given by the chip at probe time
1656      * instead.  Unfortunately, struct flchip does have a field for
1657      * maximum timeout, only for typical which can be far too short
1658      * depending of the conditions.  The ' + 1' is to avoid having a
1659      * timeout of 0 jiffies if HZ is smaller than 1000.
1660      */
1661     unsigned long uWriteTimeout = (HZ / 1000) + 1;
1662     int ret = 0;
1663 
1664     cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1665     cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1666     cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1667     map_write(map, datum, adr);
1668     chip->state = mode;
1669 
1670     INVALIDATE_CACHE_UDELAY(map, chip,
1671                 adr, map_bankwidth(map),
1672                 chip->word_write_time);
1673 
1674     /* See comment above for timeout value. */
1675     timeo = jiffies + uWriteTimeout;
1676     for (;;) {
1677         if (chip->state != mode) {
1678             /* Someone's suspended the write. Sleep */
1679             DECLARE_WAITQUEUE(wait, current);
1680 
1681             set_current_state(TASK_UNINTERRUPTIBLE);
1682             add_wait_queue(&chip->wq, &wait);
1683             mutex_unlock(&chip->mutex);
1684             schedule();
1685             remove_wait_queue(&chip->wq, &wait);
1686             timeo = jiffies + (HZ / 2); /* FIXME */
1687             mutex_lock(&chip->mutex);
1688             continue;
1689         }
1690 
1691         /*
1692          * We check "time_after" and "!chip_good" before checking
1693          * "chip_good" to avoid the failure due to scheduling.
1694          */
1695         if (time_after(jiffies, timeo) &&
1696             !chip_good(map, chip, adr, &datum)) {
1697             xip_enable(map, chip, adr);
1698             printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1699             xip_disable(map, chip, adr);
1700             ret = -EIO;
1701             break;
1702         }
1703 
1704         if (chip_good(map, chip, adr, &datum)) {
1705             if (cfi_check_err_status(map, chip, adr))
1706                 ret = -EIO;
1707             break;
1708         }
1709 
1710         /* Latency issues. Drop the lock, wait a while and retry */
1711         UDELAY(map, chip, adr, 1);
1712     }
1713 
1714     return ret;
1715 }
1716 
1717 static int __xipram do_write_oneword_start(struct map_info *map,
1718                        struct flchip *chip,
1719                        unsigned long adr, int mode)
1720 {
1721     int ret;
1722 
1723     mutex_lock(&chip->mutex);
1724 
1725     ret = get_chip(map, chip, adr, mode);
1726     if (ret) {
1727         mutex_unlock(&chip->mutex);
1728         return ret;
1729     }
1730 
1731     if (mode == FL_OTP_WRITE)
1732         otp_enter(map, chip, adr, map_bankwidth(map));
1733 
1734     return ret;
1735 }
1736 
1737 static void __xipram do_write_oneword_done(struct map_info *map,
1738                        struct flchip *chip,
1739                        unsigned long adr, int mode)
1740 {
1741     if (mode == FL_OTP_WRITE)
1742         otp_exit(map, chip, adr, map_bankwidth(map));
1743 
1744     chip->state = FL_READY;
1745     DISABLE_VPP(map);
1746     put_chip(map, chip, adr);
1747 
1748     mutex_unlock(&chip->mutex);
1749 }
1750 
1751 static int __xipram do_write_oneword_retry(struct map_info *map,
1752                        struct flchip *chip,
1753                        unsigned long adr, map_word datum,
1754                        int mode)
1755 {
1756     struct cfi_private *cfi = map->fldrv_priv;
1757     int ret = 0;
1758     map_word oldd;
1759     int retry_cnt = 0;
1760 
1761     /*
1762      * Check for a NOP for the case when the datum to write is already
1763      * present - it saves time and works around buggy chips that corrupt
1764      * data at other locations when 0xff is written to a location that
1765      * already contains 0xff.
1766      */
1767     oldd = map_read(map, adr);
1768     if (map_word_equal(map, oldd, datum)) {
1769         pr_debug("MTD %s(): NOP\n", __func__);
1770         return ret;
1771     }
1772 
1773     XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1774     ENABLE_VPP(map);
1775     xip_disable(map, chip, adr);
1776 
1777  retry:
1778     ret = do_write_oneword_once(map, chip, adr, datum, mode, cfi);
1779     if (ret) {
1780         /* reset on all failures. */
1781         map_write(map, CMD(0xF0), chip->start);
1782         /* FIXME - should have reset delay before continuing */
1783 
1784         if (++retry_cnt <= MAX_RETRIES) {
1785             ret = 0;
1786             goto retry;
1787         }
1788     }
1789     xip_enable(map, chip, adr);
1790 
1791     return ret;
1792 }
1793 
1794 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1795                      unsigned long adr, map_word datum,
1796                      int mode)
1797 {
1798     int ret;
1799 
1800     adr += chip->start;
1801 
1802     pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", __func__, adr,
1803          datum.x[0]);
1804 
1805     ret = do_write_oneword_start(map, chip, adr, mode);
1806     if (ret)
1807         return ret;
1808 
1809     ret = do_write_oneword_retry(map, chip, adr, datum, mode);
1810 
1811     do_write_oneword_done(map, chip, adr, mode);
1812 
1813     return ret;
1814 }
1815 
1816 
1817 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1818                   size_t *retlen, const u_char *buf)
1819 {
1820     struct map_info *map = mtd->priv;
1821     struct cfi_private *cfi = map->fldrv_priv;
1822     int ret;
1823     int chipnum;
1824     unsigned long ofs, chipstart;
1825     DECLARE_WAITQUEUE(wait, current);
1826 
1827     chipnum = to >> cfi->chipshift;
1828     ofs = to  - (chipnum << cfi->chipshift);
1829     chipstart = cfi->chips[chipnum].start;
1830 
1831     /* If it's not bus-aligned, do the first byte write */
1832     if (ofs & (map_bankwidth(map)-1)) {
1833         unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1834         int i = ofs - bus_ofs;
1835         int n = 0;
1836         map_word tmp_buf;
1837 
1838  retry:
1839         mutex_lock(&cfi->chips[chipnum].mutex);
1840 
1841         if (cfi->chips[chipnum].state != FL_READY) {
1842             set_current_state(TASK_UNINTERRUPTIBLE);
1843             add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1844 
1845             mutex_unlock(&cfi->chips[chipnum].mutex);
1846 
1847             schedule();
1848             remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1849             goto retry;
1850         }
1851 
1852         /* Load 'tmp_buf' with old contents of flash */
1853         tmp_buf = map_read(map, bus_ofs+chipstart);
1854 
1855         mutex_unlock(&cfi->chips[chipnum].mutex);
1856 
1857         /* Number of bytes to copy from buffer */
1858         n = min_t(int, len, map_bankwidth(map)-i);
1859 
1860         tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1861 
1862         ret = do_write_oneword(map, &cfi->chips[chipnum],
1863                        bus_ofs, tmp_buf, FL_WRITING);
1864         if (ret)
1865             return ret;
1866 
1867         ofs += n;
1868         buf += n;
1869         (*retlen) += n;
1870         len -= n;
1871 
1872         if (ofs >> cfi->chipshift) {
1873             chipnum ++;
1874             ofs = 0;
1875             if (chipnum == cfi->numchips)
1876                 return 0;
1877         }
1878     }
1879 
1880     /* We are now aligned, write as much as possible */
1881     while(len >= map_bankwidth(map)) {
1882         map_word datum;
1883 
1884         datum = map_word_load(map, buf);
1885 
1886         ret = do_write_oneword(map, &cfi->chips[chipnum],
1887                        ofs, datum, FL_WRITING);
1888         if (ret)
1889             return ret;
1890 
1891         ofs += map_bankwidth(map);
1892         buf += map_bankwidth(map);
1893         (*retlen) += map_bankwidth(map);
1894         len -= map_bankwidth(map);
1895 
1896         if (ofs >> cfi->chipshift) {
1897             chipnum ++;
1898             ofs = 0;
1899             if (chipnum == cfi->numchips)
1900                 return 0;
1901             chipstart = cfi->chips[chipnum].start;
1902         }
1903     }
1904 
1905     /* Write the trailing bytes if any */
1906     if (len & (map_bankwidth(map)-1)) {
1907         map_word tmp_buf;
1908 
1909  retry1:
1910         mutex_lock(&cfi->chips[chipnum].mutex);
1911 
1912         if (cfi->chips[chipnum].state != FL_READY) {
1913             set_current_state(TASK_UNINTERRUPTIBLE);
1914             add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1915 
1916             mutex_unlock(&cfi->chips[chipnum].mutex);
1917 
1918             schedule();
1919             remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1920             goto retry1;
1921         }
1922 
1923         tmp_buf = map_read(map, ofs + chipstart);
1924 
1925         mutex_unlock(&cfi->chips[chipnum].mutex);
1926 
1927         tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1928 
1929         ret = do_write_oneword(map, &cfi->chips[chipnum],
1930                        ofs, tmp_buf, FL_WRITING);
1931         if (ret)
1932             return ret;
1933 
1934         (*retlen) += len;
1935     }
1936 
1937     return 0;
1938 }
1939 
1940 #if !FORCE_WORD_WRITE
1941 static int __xipram do_write_buffer_wait(struct map_info *map,
1942                      struct flchip *chip, unsigned long adr,
1943                      map_word datum)
1944 {
1945     unsigned long timeo;
1946     unsigned long u_write_timeout;
1947     int ret = 0;
1948 
1949     /*
1950      * Timeout is calculated according to CFI data, if available.
1951      * See more comments in cfi_cmdset_0002().
1952      */
1953     u_write_timeout = usecs_to_jiffies(chip->buffer_write_time_max);
1954     timeo = jiffies + u_write_timeout;
1955 
1956     for (;;) {
1957         if (chip->state != FL_WRITING) {
1958             /* Someone's suspended the write. Sleep */
1959             DECLARE_WAITQUEUE(wait, current);
1960 
1961             set_current_state(TASK_UNINTERRUPTIBLE);
1962             add_wait_queue(&chip->wq, &wait);
1963             mutex_unlock(&chip->mutex);
1964             schedule();
1965             remove_wait_queue(&chip->wq, &wait);
1966             timeo = jiffies + (HZ / 2); /* FIXME */
1967             mutex_lock(&chip->mutex);
1968             continue;
1969         }
1970 
1971         /*
1972          * We check "time_after" and "!chip_good" before checking
1973          * "chip_good" to avoid the failure due to scheduling.
1974          */
1975         if (time_after(jiffies, timeo) &&
1976             !chip_good(map, chip, adr, &datum)) {
1977             pr_err("MTD %s(): software timeout, address:0x%.8lx.\n",
1978                    __func__, adr);
1979             ret = -EIO;
1980             break;
1981         }
1982 
1983         if (chip_good(map, chip, adr, &datum)) {
1984             if (cfi_check_err_status(map, chip, adr))
1985                 ret = -EIO;
1986             break;
1987         }
1988 
1989         /* Latency issues. Drop the lock, wait a while and retry */
1990         UDELAY(map, chip, adr, 1);
1991     }
1992 
1993     return ret;
1994 }
1995 
1996 static void __xipram do_write_buffer_reset(struct map_info *map,
1997                        struct flchip *chip,
1998                        struct cfi_private *cfi)
1999 {
2000     /*
2001      * Recovery from write-buffer programming failures requires
2002      * the write-to-buffer-reset sequence.  Since the last part
2003      * of the sequence also works as a normal reset, we can run
2004      * the same commands regardless of why we are here.
2005      * See e.g.
2006      * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
2007      */
2008     cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2009              cfi->device_type, NULL);
2010     cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2011              cfi->device_type, NULL);
2012     cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
2013              cfi->device_type, NULL);
2014 
2015     /* FIXME - should have reset delay before continuing */
2016 }
2017 
2018 /*
2019  * FIXME: interleaved mode not tested, and probably not supported!
2020  */
2021 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
2022                     unsigned long adr, const u_char *buf,
2023                     int len)
2024 {
2025     struct cfi_private *cfi = map->fldrv_priv;
2026     int ret;
2027     unsigned long cmd_adr;
2028     int z, words;
2029     map_word datum;
2030 
2031     adr += chip->start;
2032     cmd_adr = adr;
2033 
2034     mutex_lock(&chip->mutex);
2035     ret = get_chip(map, chip, adr, FL_WRITING);
2036     if (ret) {
2037         mutex_unlock(&chip->mutex);
2038         return ret;
2039     }
2040 
2041     datum = map_word_load(map, buf);
2042 
2043     pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
2044          __func__, adr, datum.x[0]);
2045 
2046     XIP_INVAL_CACHED_RANGE(map, adr, len);
2047     ENABLE_VPP(map);
2048     xip_disable(map, chip, cmd_adr);
2049 
2050     cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2051     cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2052 
2053     /* Write Buffer Load */
2054     map_write(map, CMD(0x25), cmd_adr);
2055 
2056     chip->state = FL_WRITING_TO_BUFFER;
2057 
2058     /* Write length of data to come */
2059     words = len / map_bankwidth(map);
2060     map_write(map, CMD(words - 1), cmd_adr);
2061     /* Write data */
2062     z = 0;
2063     while(z < words * map_bankwidth(map)) {
2064         datum = map_word_load(map, buf);
2065         map_write(map, datum, adr + z);
2066 
2067         z += map_bankwidth(map);
2068         buf += map_bankwidth(map);
2069     }
2070     z -= map_bankwidth(map);
2071 
2072     adr += z;
2073 
2074     /* Write Buffer Program Confirm: GO GO GO */
2075     map_write(map, CMD(0x29), cmd_adr);
2076     chip->state = FL_WRITING;
2077 
2078     INVALIDATE_CACHE_UDELAY(map, chip,
2079                 adr, map_bankwidth(map),
2080                 chip->word_write_time);
2081 
2082     ret = do_write_buffer_wait(map, chip, adr, datum);
2083     if (ret)
2084         do_write_buffer_reset(map, chip, cfi);
2085 
2086     xip_enable(map, chip, adr);
2087 
2088     chip->state = FL_READY;
2089     DISABLE_VPP(map);
2090     put_chip(map, chip, adr);
2091     mutex_unlock(&chip->mutex);
2092 
2093     return ret;
2094 }
2095 
2096 
2097 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
2098                     size_t *retlen, const u_char *buf)
2099 {
2100     struct map_info *map = mtd->priv;
2101     struct cfi_private *cfi = map->fldrv_priv;
2102     int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
2103     int ret;
2104     int chipnum;
2105     unsigned long ofs;
2106 
2107     chipnum = to >> cfi->chipshift;
2108     ofs = to  - (chipnum << cfi->chipshift);
2109 
2110     /* If it's not bus-aligned, do the first word write */
2111     if (ofs & (map_bankwidth(map)-1)) {
2112         size_t local_len = (-ofs)&(map_bankwidth(map)-1);
2113         if (local_len > len)
2114             local_len = len;
2115         ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
2116                          local_len, retlen, buf);
2117         if (ret)
2118             return ret;
2119         ofs += local_len;
2120         buf += local_len;
2121         len -= local_len;
2122 
2123         if (ofs >> cfi->chipshift) {
2124             chipnum ++;
2125             ofs = 0;
2126             if (chipnum == cfi->numchips)
2127                 return 0;
2128         }
2129     }
2130 
2131     /* Write buffer is worth it only if more than one word to write... */
2132     while (len >= map_bankwidth(map) * 2) {
2133         /* We must not cross write block boundaries */
2134         int size = wbufsize - (ofs & (wbufsize-1));
2135 
2136         if (size > len)
2137             size = len;
2138         if (size % map_bankwidth(map))
2139             size -= size % map_bankwidth(map);
2140 
2141         ret = do_write_buffer(map, &cfi->chips[chipnum],
2142                       ofs, buf, size);
2143         if (ret)
2144             return ret;
2145 
2146         ofs += size;
2147         buf += size;
2148         (*retlen) += size;
2149         len -= size;
2150 
2151         if (ofs >> cfi->chipshift) {
2152             chipnum ++;
2153             ofs = 0;
2154             if (chipnum == cfi->numchips)
2155                 return 0;
2156         }
2157     }
2158 
2159     if (len) {
2160         size_t retlen_dregs = 0;
2161 
2162         ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
2163                          len, &retlen_dregs, buf);
2164 
2165         *retlen += retlen_dregs;
2166         return ret;
2167     }
2168 
2169     return 0;
2170 }
2171 #endif /* !FORCE_WORD_WRITE */
2172 
2173 /*
2174  * Wait for the flash chip to become ready to write data
2175  *
2176  * This is only called during the panic_write() path. When panic_write()
2177  * is called, the kernel is in the process of a panic, and will soon be
2178  * dead. Therefore we don't take any locks, and attempt to get access
2179  * to the chip as soon as possible.
2180  */
2181 static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
2182                  unsigned long adr)
2183 {
2184     struct cfi_private *cfi = map->fldrv_priv;
2185     int retries = 10;
2186     int i;
2187 
2188     /*
2189      * If the driver thinks the chip is idle, and no toggle bits
2190      * are changing, then the chip is actually idle for sure.
2191      */
2192     if (chip->state == FL_READY && chip_ready(map, chip, adr, NULL))
2193         return 0;
2194 
2195     /*
2196      * Try several times to reset the chip and then wait for it
2197      * to become idle. The upper limit of a few milliseconds of
2198      * delay isn't a big problem: the kernel is dying anyway. It
2199      * is more important to save the messages.
2200      */
2201     while (retries > 0) {
2202         const unsigned long timeo = (HZ / 1000) + 1;
2203 
2204         /* send the reset command */
2205         map_write(map, CMD(0xF0), chip->start);
2206 
2207         /* wait for the chip to become ready */
2208         for (i = 0; i < jiffies_to_usecs(timeo); i++) {
2209             if (chip_ready(map, chip, adr, NULL))
2210                 return 0;
2211 
2212             udelay(1);
2213         }
2214 
2215         retries--;
2216     }
2217 
2218     /* the chip never became ready */
2219     return -EBUSY;
2220 }
2221 
2222 /*
2223  * Write out one word of data to a single flash chip during a kernel panic
2224  *
2225  * This is only called during the panic_write() path. When panic_write()
2226  * is called, the kernel is in the process of a panic, and will soon be
2227  * dead. Therefore we don't take any locks, and attempt to get access
2228  * to the chip as soon as possible.
2229  *
2230  * The implementation of this routine is intentionally similar to
2231  * do_write_oneword(), in order to ease code maintenance.
2232  */
2233 static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
2234                   unsigned long adr, map_word datum)
2235 {
2236     const unsigned long uWriteTimeout = (HZ / 1000) + 1;
2237     struct cfi_private *cfi = map->fldrv_priv;
2238     int retry_cnt = 0;
2239     map_word oldd;
2240     int ret;
2241     int i;
2242 
2243     adr += chip->start;
2244 
2245     ret = cfi_amdstd_panic_wait(map, chip, adr);
2246     if (ret)
2247         return ret;
2248 
2249     pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2250             __func__, adr, datum.x[0]);
2251 
2252     /*
2253      * Check for a NOP for the case when the datum to write is already
2254      * present - it saves time and works around buggy chips that corrupt
2255      * data at other locations when 0xff is written to a location that
2256      * already contains 0xff.
2257      */
2258     oldd = map_read(map, adr);
2259     if (map_word_equal(map, oldd, datum)) {
2260         pr_debug("MTD %s(): NOP\n", __func__);
2261         goto op_done;
2262     }
2263 
2264     ENABLE_VPP(map);
2265 
2266 retry:
2267     cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2268     cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2269     cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2270     map_write(map, datum, adr);
2271 
2272     for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
2273         if (chip_ready(map, chip, adr, NULL))
2274             break;
2275 
2276         udelay(1);
2277     }
2278 
2279     if (!chip_ready(map, chip, adr, &datum) ||
2280         cfi_check_err_status(map, chip, adr)) {
2281         /* reset on all failures. */
2282         map_write(map, CMD(0xF0), chip->start);
2283         /* FIXME - should have reset delay before continuing */
2284 
2285         if (++retry_cnt <= MAX_RETRIES)
2286             goto retry;
2287 
2288         ret = -EIO;
2289     }
2290 
2291 op_done:
2292     DISABLE_VPP(map);
2293     return ret;
2294 }
2295 
2296 /*
2297  * Write out some data during a kernel panic
2298  *
2299  * This is used by the mtdoops driver to save the dying messages from a
2300  * kernel which has panic'd.
2301  *
2302  * This routine ignores all of the locking used throughout the rest of the
2303  * driver, in order to ensure that the data gets written out no matter what
2304  * state this driver (and the flash chip itself) was in when the kernel crashed.
2305  *
2306  * The implementation of this routine is intentionally similar to
2307  * cfi_amdstd_write_words(), in order to ease code maintenance.
2308  */
2309 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
2310                   size_t *retlen, const u_char *buf)
2311 {
2312     struct map_info *map = mtd->priv;
2313     struct cfi_private *cfi = map->fldrv_priv;
2314     unsigned long ofs, chipstart;
2315     int ret;
2316     int chipnum;
2317 
2318     chipnum = to >> cfi->chipshift;
2319     ofs = to - (chipnum << cfi->chipshift);
2320     chipstart = cfi->chips[chipnum].start;
2321 
2322     /* If it's not bus aligned, do the first byte write */
2323     if (ofs & (map_bankwidth(map) - 1)) {
2324         unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
2325         int i = ofs - bus_ofs;
2326         int n = 0;
2327         map_word tmp_buf;
2328 
2329         ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
2330         if (ret)
2331             return ret;
2332 
2333         /* Load 'tmp_buf' with old contents of flash */
2334         tmp_buf = map_read(map, bus_ofs + chipstart);
2335 
2336         /* Number of bytes to copy from buffer */
2337         n = min_t(int, len, map_bankwidth(map) - i);
2338 
2339         tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
2340 
2341         ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2342                          bus_ofs, tmp_buf);
2343         if (ret)
2344             return ret;
2345 
2346         ofs += n;
2347         buf += n;
2348         (*retlen) += n;
2349         len -= n;
2350 
2351         if (ofs >> cfi->chipshift) {
2352             chipnum++;
2353             ofs = 0;
2354             if (chipnum == cfi->numchips)
2355                 return 0;
2356         }
2357     }
2358 
2359     /* We are now aligned, write as much as possible */
2360     while (len >= map_bankwidth(map)) {
2361         map_word datum;
2362 
2363         datum = map_word_load(map, buf);
2364 
2365         ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2366                          ofs, datum);
2367         if (ret)
2368             return ret;
2369 
2370         ofs += map_bankwidth(map);
2371         buf += map_bankwidth(map);
2372         (*retlen) += map_bankwidth(map);
2373         len -= map_bankwidth(map);
2374 
2375         if (ofs >> cfi->chipshift) {
2376             chipnum++;
2377             ofs = 0;
2378             if (chipnum == cfi->numchips)
2379                 return 0;
2380 
2381             chipstart = cfi->chips[chipnum].start;
2382         }
2383     }
2384 
2385     /* Write the trailing bytes if any */
2386     if (len & (map_bankwidth(map) - 1)) {
2387         map_word tmp_buf;
2388 
2389         ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
2390         if (ret)
2391             return ret;
2392 
2393         tmp_buf = map_read(map, ofs + chipstart);
2394 
2395         tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
2396 
2397         ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2398                          ofs, tmp_buf);
2399         if (ret)
2400             return ret;
2401 
2402         (*retlen) += len;
2403     }
2404 
2405     return 0;
2406 }
2407 
2408 
2409 /*
2410  * Handle devices with one erase region, that only implement
2411  * the chip erase command.
2412  */
2413 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
2414 {
2415     struct cfi_private *cfi = map->fldrv_priv;
2416     unsigned long timeo = jiffies + HZ;
2417     unsigned long int adr;
2418     DECLARE_WAITQUEUE(wait, current);
2419     int ret;
2420     int retry_cnt = 0;
2421     map_word datum = map_word_ff(map);
2422 
2423     adr = cfi->addr_unlock1;
2424 
2425     mutex_lock(&chip->mutex);
2426     ret = get_chip(map, chip, adr, FL_ERASING);
2427     if (ret) {
2428         mutex_unlock(&chip->mutex);
2429         return ret;
2430     }
2431 
2432     pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2433            __func__, chip->start);
2434 
2435     XIP_INVAL_CACHED_RANGE(map, adr, map->size);
2436     ENABLE_VPP(map);
2437     xip_disable(map, chip, adr);
2438 
2439  retry:
2440     cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2441     cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2442     cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2443     cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2444     cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2445     cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2446 
2447     chip->state = FL_ERASING;
2448     chip->erase_suspended = 0;
2449     chip->in_progress_block_addr = adr;
2450     chip->in_progress_block_mask = ~(map->size - 1);
2451 
2452     INVALIDATE_CACHE_UDELAY(map, chip,
2453                 adr, map->size,
2454                 chip->erase_time*500);
2455 
2456     timeo = jiffies + (HZ*20);
2457 
2458     for (;;) {
2459         if (chip->state != FL_ERASING) {
2460             /* Someone's suspended the erase. Sleep */
2461             set_current_state(TASK_UNINTERRUPTIBLE);
2462             add_wait_queue(&chip->wq, &wait);
2463             mutex_unlock(&chip->mutex);
2464             schedule();
2465             remove_wait_queue(&chip->wq, &wait);
2466             mutex_lock(&chip->mutex);
2467             continue;
2468         }
2469         if (chip->erase_suspended) {
2470             /* This erase was suspended and resumed.
2471                Adjust the timeout */
2472             timeo = jiffies + (HZ*20); /* FIXME */
2473             chip->erase_suspended = 0;
2474         }
2475 
2476         if (chip_ready(map, chip, adr, &datum)) {
2477             if (cfi_check_err_status(map, chip, adr))
2478                 ret = -EIO;
2479             break;
2480         }
2481 
2482         if (time_after(jiffies, timeo)) {
2483             printk(KERN_WARNING "MTD %s(): software timeout\n",
2484                    __func__);
2485             ret = -EIO;
2486             break;
2487         }
2488 
2489         /* Latency issues. Drop the lock, wait a while and retry */
2490         UDELAY(map, chip, adr, 1000000/HZ);
2491     }
2492     /* Did we succeed? */
2493     if (ret) {
2494         /* reset on all failures. */
2495         map_write(map, CMD(0xF0), chip->start);
2496         /* FIXME - should have reset delay before continuing */
2497 
2498         if (++retry_cnt <= MAX_RETRIES) {
2499             ret = 0;
2500             goto retry;
2501         }
2502     }
2503 
2504     chip->state = FL_READY;
2505     xip_enable(map, chip, adr);
2506     DISABLE_VPP(map);
2507     put_chip(map, chip, adr);
2508     mutex_unlock(&chip->mutex);
2509 
2510     return ret;
2511 }
2512 
2513 
2514 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
2515 {
2516     struct cfi_private *cfi = map->fldrv_priv;
2517     unsigned long timeo = jiffies + HZ;
2518     DECLARE_WAITQUEUE(wait, current);
2519     int ret;
2520     int retry_cnt = 0;
2521     map_word datum = map_word_ff(map);
2522 
2523     adr += chip->start;
2524 
2525     mutex_lock(&chip->mutex);
2526     ret = get_chip(map, chip, adr, FL_ERASING);
2527     if (ret) {
2528         mutex_unlock(&chip->mutex);
2529         return ret;
2530     }
2531 
2532     pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2533          __func__, adr);
2534 
2535     XIP_INVAL_CACHED_RANGE(map, adr, len);
2536     ENABLE_VPP(map);
2537     xip_disable(map, chip, adr);
2538 
2539  retry:
2540     cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2541     cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2542     cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2543     cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2544     cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2545     map_write(map, cfi->sector_erase_cmd, adr);
2546 
2547     chip->state = FL_ERASING;
2548     chip->erase_suspended = 0;
2549     chip->in_progress_block_addr = adr;
2550     chip->in_progress_block_mask = ~(len - 1);
2551 
2552     INVALIDATE_CACHE_UDELAY(map, chip,
2553                 adr, len,
2554                 chip->erase_time*500);
2555 
2556     timeo = jiffies + (HZ*20);
2557 
2558     for (;;) {
2559         if (chip->state != FL_ERASING) {
2560             /* Someone's suspended the erase. Sleep */
2561             set_current_state(TASK_UNINTERRUPTIBLE);
2562             add_wait_queue(&chip->wq, &wait);
2563             mutex_unlock(&chip->mutex);
2564             schedule();
2565             remove_wait_queue(&chip->wq, &wait);
2566             mutex_lock(&chip->mutex);
2567             continue;
2568         }
2569         if (chip->erase_suspended) {
2570             /* This erase was suspended and resumed.
2571                Adjust the timeout */
2572             timeo = jiffies + (HZ*20); /* FIXME */
2573             chip->erase_suspended = 0;
2574         }
2575 
2576         if (chip_ready(map, chip, adr, &datum)) {
2577             if (cfi_check_err_status(map, chip, adr))
2578                 ret = -EIO;
2579             break;
2580         }
2581 
2582         if (time_after(jiffies, timeo)) {
2583             printk(KERN_WARNING "MTD %s(): software timeout\n",
2584                    __func__);
2585             ret = -EIO;
2586             break;
2587         }
2588 
2589         /* Latency issues. Drop the lock, wait a while and retry */
2590         UDELAY(map, chip, adr, 1000000/HZ);
2591     }
2592     /* Did we succeed? */
2593     if (ret) {
2594         /* reset on all failures. */
2595         map_write(map, CMD(0xF0), chip->start);
2596         /* FIXME - should have reset delay before continuing */
2597 
2598         if (++retry_cnt <= MAX_RETRIES) {
2599             ret = 0;
2600             goto retry;
2601         }
2602     }
2603 
2604     chip->state = FL_READY;
2605     xip_enable(map, chip, adr);
2606     DISABLE_VPP(map);
2607     put_chip(map, chip, adr);
2608     mutex_unlock(&chip->mutex);
2609     return ret;
2610 }
2611 
2612 
2613 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2614 {
2615     return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
2616                 instr->len, NULL);
2617 }
2618 
2619 
2620 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2621 {
2622     struct map_info *map = mtd->priv;
2623     struct cfi_private *cfi = map->fldrv_priv;
2624 
2625     if (instr->addr != 0)
2626         return -EINVAL;
2627 
2628     if (instr->len != mtd->size)
2629         return -EINVAL;
2630 
2631     return do_erase_chip(map, &cfi->chips[0]);
2632 }
2633 
2634 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2635              unsigned long adr, int len, void *thunk)
2636 {
2637     struct cfi_private *cfi = map->fldrv_priv;
2638     int ret;
2639 
2640     mutex_lock(&chip->mutex);
2641     ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2642     if (ret)
2643         goto out_unlock;
2644     chip->state = FL_LOCKING;
2645 
2646     pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2647 
2648     cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2649              cfi->device_type, NULL);
2650     cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2651              cfi->device_type, NULL);
2652     cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2653              cfi->device_type, NULL);
2654     cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2655              cfi->device_type, NULL);
2656     cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2657              cfi->device_type, NULL);
2658     map_write(map, CMD(0x40), chip->start + adr);
2659 
2660     chip->state = FL_READY;
2661     put_chip(map, chip, adr + chip->start);
2662     ret = 0;
2663 
2664 out_unlock:
2665     mutex_unlock(&chip->mutex);
2666     return ret;
2667 }
2668 
2669 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2670                unsigned long adr, int len, void *thunk)
2671 {
2672     struct cfi_private *cfi = map->fldrv_priv;
2673     int ret;
2674 
2675     mutex_lock(&chip->mutex);
2676     ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2677     if (ret)
2678         goto out_unlock;
2679     chip->state = FL_UNLOCKING;
2680 
2681     pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2682 
2683     cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2684              cfi->device_type, NULL);
2685     map_write(map, CMD(0x70), adr);
2686 
2687     chip->state = FL_READY;
2688     put_chip(map, chip, adr + chip->start);
2689     ret = 0;
2690 
2691 out_unlock:
2692     mutex_unlock(&chip->mutex);
2693     return ret;
2694 }
2695 
2696 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2697 {
2698     return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2699 }
2700 
2701 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2702 {
2703     return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2704 }
2705 
2706 /*
2707  * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2708  */
2709 
2710 struct ppb_lock {
2711     struct flchip *chip;
2712     unsigned long adr;
2713     int locked;
2714 };
2715 
2716 #define DO_XXLOCK_ONEBLOCK_LOCK     ((void *)1)
2717 #define DO_XXLOCK_ONEBLOCK_UNLOCK   ((void *)2)
2718 #define DO_XXLOCK_ONEBLOCK_GETLOCK  ((void *)3)
2719 
2720 static int __maybe_unused do_ppb_xxlock(struct map_info *map,
2721                     struct flchip *chip,
2722                     unsigned long adr, int len, void *thunk)
2723 {
2724     struct cfi_private *cfi = map->fldrv_priv;
2725     unsigned long timeo;
2726     int ret;
2727 
2728     adr += chip->start;
2729     mutex_lock(&chip->mutex);
2730     ret = get_chip(map, chip, adr, FL_LOCKING);
2731     if (ret) {
2732         mutex_unlock(&chip->mutex);
2733         return ret;
2734     }
2735 
2736     pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
2737 
2738     cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2739              cfi->device_type, NULL);
2740     cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2741              cfi->device_type, NULL);
2742     /* PPB entry command */
2743     cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
2744              cfi->device_type, NULL);
2745 
2746     if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2747         chip->state = FL_LOCKING;
2748         map_write(map, CMD(0xA0), adr);
2749         map_write(map, CMD(0x00), adr);
2750     } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2751         /*
2752          * Unlocking of one specific sector is not supported, so we
2753          * have to unlock all sectors of this device instead
2754          */
2755         chip->state = FL_UNLOCKING;
2756         map_write(map, CMD(0x80), chip->start);
2757         map_write(map, CMD(0x30), chip->start);
2758     } else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
2759         chip->state = FL_JEDEC_QUERY;
2760         /* Return locked status: 0->locked, 1->unlocked */
2761         ret = !cfi_read_query(map, adr);
2762     } else
2763         BUG();
2764 
2765     /*
2766      * Wait for some time as unlocking of all sectors takes quite long
2767      */
2768     timeo = jiffies + msecs_to_jiffies(2000);   /* 2s max (un)locking */
2769     for (;;) {
2770         if (chip_ready(map, chip, adr, NULL))
2771             break;
2772 
2773         if (time_after(jiffies, timeo)) {
2774             printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
2775             ret = -EIO;
2776             break;
2777         }
2778 
2779         UDELAY(map, chip, adr, 1);
2780     }
2781 
2782     /* Exit BC commands */
2783     map_write(map, CMD(0x90), chip->start);
2784     map_write(map, CMD(0x00), chip->start);
2785 
2786     chip->state = FL_READY;
2787     put_chip(map, chip, adr);
2788     mutex_unlock(&chip->mutex);
2789 
2790     return ret;
2791 }
2792 
2793 static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
2794                        uint64_t len)
2795 {
2796     return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2797                 DO_XXLOCK_ONEBLOCK_LOCK);
2798 }
2799 
2800 static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
2801                      uint64_t len)
2802 {
2803     struct mtd_erase_region_info *regions = mtd->eraseregions;
2804     struct map_info *map = mtd->priv;
2805     struct cfi_private *cfi = map->fldrv_priv;
2806     struct ppb_lock *sect;
2807     unsigned long adr;
2808     loff_t offset;
2809     uint64_t length;
2810     int chipnum;
2811     int i;
2812     int sectors;
2813     int ret;
2814     int max_sectors;
2815 
2816     /*
2817      * PPB unlocking always unlocks all sectors of the flash chip.
2818      * We need to re-lock all previously locked sectors. So lets
2819      * first check the locking status of all sectors and save
2820      * it for future use.
2821      */
2822     max_sectors = 0;
2823     for (i = 0; i < mtd->numeraseregions; i++)
2824         max_sectors += regions[i].numblocks;
2825 
2826     sect = kcalloc(max_sectors, sizeof(struct ppb_lock), GFP_KERNEL);
2827     if (!sect)
2828         return -ENOMEM;
2829 
2830     /*
2831      * This code to walk all sectors is a slightly modified version
2832      * of the cfi_varsize_frob() code.
2833      */
2834     i = 0;
2835     chipnum = 0;
2836     adr = 0;
2837     sectors = 0;
2838     offset = 0;
2839     length = mtd->size;
2840 
2841     while (length) {
2842         int size = regions[i].erasesize;
2843 
2844         /*
2845          * Only test sectors that shall not be unlocked. The other
2846          * sectors shall be unlocked, so lets keep their locking
2847          * status at "unlocked" (locked=0) for the final re-locking.
2848          */
2849         if ((offset < ofs) || (offset >= (ofs + len))) {
2850             sect[sectors].chip = &cfi->chips[chipnum];
2851             sect[sectors].adr = adr;
2852             sect[sectors].locked = do_ppb_xxlock(
2853                 map, &cfi->chips[chipnum], adr, 0,
2854                 DO_XXLOCK_ONEBLOCK_GETLOCK);
2855         }
2856 
2857         adr += size;
2858         offset += size;
2859         length -= size;
2860 
2861         if (offset == regions[i].offset + size * regions[i].numblocks)
2862             i++;
2863 
2864         if (adr >> cfi->chipshift) {
2865             if (offset >= (ofs + len))
2866                 break;
2867             adr = 0;
2868             chipnum++;
2869 
2870             if (chipnum >= cfi->numchips)
2871                 break;
2872         }
2873 
2874         sectors++;
2875         if (sectors >= max_sectors) {
2876             printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
2877                    max_sectors);
2878             kfree(sect);
2879             return -EINVAL;
2880         }
2881     }
2882 
2883     /* Now unlock the whole chip */
2884     ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2885                    DO_XXLOCK_ONEBLOCK_UNLOCK);
2886     if (ret) {
2887         kfree(sect);
2888         return ret;
2889     }
2890 
2891     /*
2892      * PPB unlocking always unlocks all sectors of the flash chip.
2893      * We need to re-lock all previously locked sectors.
2894      */
2895     for (i = 0; i < sectors; i++) {
2896         if (sect[i].locked)
2897             do_ppb_xxlock(map, sect[i].chip, sect[i].adr, 0,
2898                       DO_XXLOCK_ONEBLOCK_LOCK);
2899     }
2900 
2901     kfree(sect);
2902     return ret;
2903 }
2904 
2905 static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
2906                         uint64_t len)
2907 {
2908     return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2909                 DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
2910 }
2911 
2912 static void cfi_amdstd_sync (struct mtd_info *mtd)
2913 {
2914     struct map_info *map = mtd->priv;
2915     struct cfi_private *cfi = map->fldrv_priv;
2916     int i;
2917     struct flchip *chip;
2918     int ret = 0;
2919     DECLARE_WAITQUEUE(wait, current);
2920 
2921     for (i=0; !ret && i<cfi->numchips; i++) {
2922         chip = &cfi->chips[i];
2923 
2924     retry:
2925         mutex_lock(&chip->mutex);
2926 
2927         switch(chip->state) {
2928         case FL_READY:
2929         case FL_STATUS:
2930         case FL_CFI_QUERY:
2931         case FL_JEDEC_QUERY:
2932             chip->oldstate = chip->state;
2933             chip->state = FL_SYNCING;
2934             /* No need to wake_up() on this state change -
2935              * as the whole point is that nobody can do anything
2936              * with the chip now anyway.
2937              */
2938             fallthrough;
2939         case FL_SYNCING:
2940             mutex_unlock(&chip->mutex);
2941             break;
2942 
2943         default:
2944             /* Not an idle state */
2945             set_current_state(TASK_UNINTERRUPTIBLE);
2946             add_wait_queue(&chip->wq, &wait);
2947 
2948             mutex_unlock(&chip->mutex);
2949 
2950             schedule();
2951 
2952             remove_wait_queue(&chip->wq, &wait);
2953 
2954             goto retry;
2955         }
2956     }
2957 
2958     /* Unlock the chips again */
2959 
2960     for (i--; i >=0; i--) {
2961         chip = &cfi->chips[i];
2962 
2963         mutex_lock(&chip->mutex);
2964 
2965         if (chip->state == FL_SYNCING) {
2966             chip->state = chip->oldstate;
2967             wake_up(&chip->wq);
2968         }
2969         mutex_unlock(&chip->mutex);
2970     }
2971 }
2972 
2973 
2974 static int cfi_amdstd_suspend(struct mtd_info *mtd)
2975 {
2976     struct map_info *map = mtd->priv;
2977     struct cfi_private *cfi = map->fldrv_priv;
2978     int i;
2979     struct flchip *chip;
2980     int ret = 0;
2981 
2982     for (i=0; !ret && i<cfi->numchips; i++) {
2983         chip = &cfi->chips[i];
2984 
2985         mutex_lock(&chip->mutex);
2986 
2987         switch(chip->state) {
2988         case FL_READY:
2989         case FL_STATUS:
2990         case FL_CFI_QUERY:
2991         case FL_JEDEC_QUERY:
2992             chip->oldstate = chip->state;
2993             chip->state = FL_PM_SUSPENDED;
2994             /* No need to wake_up() on this state change -
2995              * as the whole point is that nobody can do anything
2996              * with the chip now anyway.
2997              */
2998             break;
2999         case FL_PM_SUSPENDED:
3000             break;
3001 
3002         default:
3003             ret = -EAGAIN;
3004             break;
3005         }
3006         mutex_unlock(&chip->mutex);
3007     }
3008 
3009     /* Unlock the chips again */
3010 
3011     if (ret) {
3012         for (i--; i >=0; i--) {
3013             chip = &cfi->chips[i];
3014 
3015             mutex_lock(&chip->mutex);
3016 
3017             if (chip->state == FL_PM_SUSPENDED) {
3018                 chip->state = chip->oldstate;
3019                 wake_up(&chip->wq);
3020             }
3021             mutex_unlock(&chip->mutex);
3022         }
3023     }
3024 
3025     return ret;
3026 }
3027 
3028 
3029 static void cfi_amdstd_resume(struct mtd_info *mtd)
3030 {
3031     struct map_info *map = mtd->priv;
3032     struct cfi_private *cfi = map->fldrv_priv;
3033     int i;
3034     struct flchip *chip;
3035 
3036     for (i=0; i<cfi->numchips; i++) {
3037 
3038         chip = &cfi->chips[i];
3039 
3040         mutex_lock(&chip->mutex);
3041 
3042         if (chip->state == FL_PM_SUSPENDED) {
3043             chip->state = FL_READY;
3044             map_write(map, CMD(0xF0), chip->start);
3045             wake_up(&chip->wq);
3046         }
3047         else
3048             printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
3049 
3050         mutex_unlock(&chip->mutex);
3051     }
3052 }
3053 
3054 
3055 /*
3056  * Ensure that the flash device is put back into read array mode before
3057  * unloading the driver or rebooting.  On some systems, rebooting while
3058  * the flash is in query/program/erase mode will prevent the CPU from
3059  * fetching the bootloader code, requiring a hard reset or power cycle.
3060  */
3061 static int cfi_amdstd_reset(struct mtd_info *mtd)
3062 {
3063     struct map_info *map = mtd->priv;
3064     struct cfi_private *cfi = map->fldrv_priv;
3065     int i, ret;
3066     struct flchip *chip;
3067 
3068     for (i = 0; i < cfi->numchips; i++) {
3069 
3070         chip = &cfi->chips[i];
3071 
3072         mutex_lock(&chip->mutex);
3073 
3074         ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
3075         if (!ret) {
3076             map_write(map, CMD(0xF0), chip->start);
3077             chip->state = FL_SHUTDOWN;
3078             put_chip(map, chip, chip->start);
3079         }
3080 
3081         mutex_unlock(&chip->mutex);
3082     }
3083 
3084     return 0;
3085 }
3086 
3087 
3088 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
3089                    void *v)
3090 {
3091     struct mtd_info *mtd;
3092 
3093     mtd = container_of(nb, struct mtd_info, reboot_notifier);
3094     cfi_amdstd_reset(mtd);
3095     return NOTIFY_DONE;
3096 }
3097 
3098 
3099 static void cfi_amdstd_destroy(struct mtd_info *mtd)
3100 {
3101     struct map_info *map = mtd->priv;
3102     struct cfi_private *cfi = map->fldrv_priv;
3103 
3104     cfi_amdstd_reset(mtd);
3105     unregister_reboot_notifier(&mtd->reboot_notifier);
3106     kfree(cfi->cmdset_priv);
3107     kfree(cfi->cfiq);
3108     kfree(cfi);
3109     kfree(mtd->eraseregions);
3110 }
3111 
3112 MODULE_LICENSE("GPL");
3113 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
3114 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
3115 MODULE_ALIAS("cfi_cmdset_0006");
3116 MODULE_ALIAS("cfi_cmdset_0701");