Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * usb.c - Hardware dependent module for USB
0004  *
0005  * Copyright (C) 2013-2015 Microchip Technology Germany II GmbH & Co. KG
0006  */
0007 
0008 #include <linux/module.h>
0009 #include <linux/fs.h>
0010 #include <linux/usb.h>
0011 #include <linux/slab.h>
0012 #include <linux/init.h>
0013 #include <linux/cdev.h>
0014 #include <linux/device.h>
0015 #include <linux/list.h>
0016 #include <linux/completion.h>
0017 #include <linux/mutex.h>
0018 #include <linux/spinlock.h>
0019 #include <linux/interrupt.h>
0020 #include <linux/workqueue.h>
0021 #include <linux/sysfs.h>
0022 #include <linux/dma-mapping.h>
0023 #include <linux/etherdevice.h>
0024 #include <linux/uaccess.h>
0025 #include <linux/most.h>
0026 
0027 #define USB_MTU         512
0028 #define NO_ISOCHRONOUS_URB  0
0029 #define AV_PACKETS_PER_XACT 2
0030 #define BUF_CHAIN_SIZE      0xFFFF
0031 #define MAX_NUM_ENDPOINTS   30
0032 #define MAX_SUFFIX_LEN      10
0033 #define MAX_STRING_LEN      80
0034 #define MAX_BUF_SIZE        0xFFFF
0035 
0036 #define USB_VENDOR_ID_SMSC  0x0424  /* VID: SMSC */
0037 #define USB_DEV_ID_BRDG     0xC001  /* PID: USB Bridge */
0038 #define USB_DEV_ID_OS81118  0xCF18  /* PID: USB OS81118 */
0039 #define USB_DEV_ID_OS81119  0xCF19  /* PID: USB OS81119 */
0040 #define USB_DEV_ID_OS81210  0xCF30  /* PID: USB OS81210 */
0041 /* DRCI Addresses */
0042 #define DRCI_REG_NI_STATE   0x0100
0043 #define DRCI_REG_PACKET_BW  0x0101
0044 #define DRCI_REG_NODE_ADDR  0x0102
0045 #define DRCI_REG_NODE_POS   0x0103
0046 #define DRCI_REG_MEP_FILTER 0x0140
0047 #define DRCI_REG_HASH_TBL0  0x0141
0048 #define DRCI_REG_HASH_TBL1  0x0142
0049 #define DRCI_REG_HASH_TBL2  0x0143
0050 #define DRCI_REG_HASH_TBL3  0x0144
0051 #define DRCI_REG_HW_ADDR_HI 0x0145
0052 #define DRCI_REG_HW_ADDR_MI 0x0146
0053 #define DRCI_REG_HW_ADDR_LO 0x0147
0054 #define DRCI_REG_BASE       0x1100
0055 #define DRCI_COMMAND        0x02
0056 #define DRCI_READ_REQ       0xA0
0057 #define DRCI_WRITE_REQ      0xA1
0058 
0059 /**
0060  * struct most_dci_obj - Direct Communication Interface
0061  * @kobj:position in sysfs
0062  * @usb_device: pointer to the usb device
0063  * @reg_addr: register address for arbitrary DCI access
0064  */
0065 struct most_dci_obj {
0066     struct device dev;
0067     struct usb_device *usb_device;
0068     u16 reg_addr;
0069 };
0070 
0071 #define to_dci_obj(p) container_of(p, struct most_dci_obj, dev)
0072 
0073 struct most_dev;
0074 
0075 struct clear_hold_work {
0076     struct work_struct ws;
0077     struct most_dev *mdev;
0078     unsigned int channel;
0079     int pipe;
0080 };
0081 
0082 #define to_clear_hold_work(w) container_of(w, struct clear_hold_work, ws)
0083 
0084 /**
0085  * struct most_dev - holds all usb interface specific stuff
0086  * @usb_device: pointer to usb device
0087  * @iface: hardware interface
0088  * @cap: channel capabilities
0089  * @conf: channel configuration
0090  * @dci: direct communication interface of hardware
0091  * @ep_address: endpoint address table
0092  * @description: device description
0093  * @suffix: suffix for channel name
0094  * @channel_lock: synchronize channel access
0095  * @padding_active: indicates channel uses padding
0096  * @is_channel_healthy: health status table of each channel
0097  * @busy_urbs: list of anchored items
0098  * @io_mutex: synchronize I/O with disconnect
0099  * @link_stat_timer: timer for link status reports
0100  * @poll_work_obj: work for polling link status
0101  */
0102 struct most_dev {
0103     struct device dev;
0104     struct usb_device *usb_device;
0105     struct most_interface iface;
0106     struct most_channel_capability *cap;
0107     struct most_channel_config *conf;
0108     struct most_dci_obj *dci;
0109     u8 *ep_address;
0110     char description[MAX_STRING_LEN];
0111     char suffix[MAX_NUM_ENDPOINTS][MAX_SUFFIX_LEN];
0112     spinlock_t channel_lock[MAX_NUM_ENDPOINTS]; /* sync channel access */
0113     bool padding_active[MAX_NUM_ENDPOINTS];
0114     bool is_channel_healthy[MAX_NUM_ENDPOINTS];
0115     struct clear_hold_work clear_work[MAX_NUM_ENDPOINTS];
0116     struct usb_anchor *busy_urbs;
0117     struct mutex io_mutex;
0118     struct timer_list link_stat_timer;
0119     struct work_struct poll_work_obj;
0120     void (*on_netinfo)(struct most_interface *most_iface,
0121                unsigned char link_state, unsigned char *addrs);
0122 };
0123 
0124 #define to_mdev(d) container_of(d, struct most_dev, iface)
0125 #define to_mdev_from_dev(d) container_of(d, struct most_dev, dev)
0126 #define to_mdev_from_work(w) container_of(w, struct most_dev, poll_work_obj)
0127 
0128 static void wq_clear_halt(struct work_struct *wq_obj);
0129 static void wq_netinfo(struct work_struct *wq_obj);
0130 
0131 /**
0132  * drci_rd_reg - read a DCI register
0133  * @dev: usb device
0134  * @reg: register address
0135  * @buf: buffer to store data
0136  *
0137  * This is reads data from INIC's direct register communication interface
0138  */
0139 static inline int drci_rd_reg(struct usb_device *dev, u16 reg, u16 *buf)
0140 {
0141     int retval;
0142     __le16 *dma_buf;
0143     u8 req_type = USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE;
0144 
0145     dma_buf = kzalloc(sizeof(*dma_buf), GFP_KERNEL);
0146     if (!dma_buf)
0147         return -ENOMEM;
0148 
0149     retval = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
0150                  DRCI_READ_REQ, req_type,
0151                  0x0000,
0152                  reg, dma_buf, sizeof(*dma_buf),
0153                  USB_CTRL_GET_TIMEOUT);
0154     *buf = le16_to_cpu(*dma_buf);
0155     kfree(dma_buf);
0156 
0157     if (retval < 0)
0158         return retval;
0159     return 0;
0160 }
0161 
0162 /**
0163  * drci_wr_reg - write a DCI register
0164  * @dev: usb device
0165  * @reg: register address
0166  * @data: data to write
0167  *
0168  * This is writes data to INIC's direct register communication interface
0169  */
0170 static inline int drci_wr_reg(struct usb_device *dev, u16 reg, u16 data)
0171 {
0172     return usb_control_msg(dev,
0173                    usb_sndctrlpipe(dev, 0),
0174                    DRCI_WRITE_REQ,
0175                    USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
0176                    data,
0177                    reg,
0178                    NULL,
0179                    0,
0180                    USB_CTRL_SET_TIMEOUT);
0181 }
0182 
0183 static inline int start_sync_ep(struct usb_device *usb_dev, u16 ep)
0184 {
0185     return drci_wr_reg(usb_dev, DRCI_REG_BASE + DRCI_COMMAND + ep * 16, 1);
0186 }
0187 
0188 /**
0189  * get_stream_frame_size - calculate frame size of current configuration
0190  * @dev: device structure
0191  * @cfg: channel configuration
0192  */
0193 static unsigned int get_stream_frame_size(struct device *dev,
0194                       struct most_channel_config *cfg)
0195 {
0196     unsigned int frame_size;
0197     unsigned int sub_size = cfg->subbuffer_size;
0198 
0199     if (!sub_size) {
0200         dev_warn(dev, "Misconfig: Subbuffer size zero.\n");
0201         return 0;
0202     }
0203     switch (cfg->data_type) {
0204     case MOST_CH_ISOC:
0205         frame_size = AV_PACKETS_PER_XACT * sub_size;
0206         break;
0207     case MOST_CH_SYNC:
0208         if (cfg->packets_per_xact == 0) {
0209             dev_warn(dev, "Misconfig: Packets per XACT zero\n");
0210             frame_size = 0;
0211         } else if (cfg->packets_per_xact == 0xFF) {
0212             frame_size = (USB_MTU / sub_size) * sub_size;
0213         } else {
0214             frame_size = cfg->packets_per_xact * sub_size;
0215         }
0216         break;
0217     default:
0218         dev_warn(dev, "Query frame size of non-streaming channel\n");
0219         frame_size = 0;
0220         break;
0221     }
0222     return frame_size;
0223 }
0224 
0225 /**
0226  * hdm_poison_channel - mark buffers of this channel as invalid
0227  * @iface: pointer to the interface
0228  * @channel: channel ID
0229  *
0230  * This unlinks all URBs submitted to the HCD,
0231  * calls the associated completion function of the core and removes
0232  * them from the list.
0233  *
0234  * Returns 0 on success or error code otherwise.
0235  */
0236 static int hdm_poison_channel(struct most_interface *iface, int channel)
0237 {
0238     struct most_dev *mdev = to_mdev(iface);
0239     unsigned long flags;
0240     spinlock_t *lock; /* temp. lock */
0241 
0242     if (channel < 0 || channel >= iface->num_channels) {
0243         dev_warn(&mdev->usb_device->dev, "Channel ID out of range.\n");
0244         return -ECHRNG;
0245     }
0246 
0247     lock = mdev->channel_lock + channel;
0248     spin_lock_irqsave(lock, flags);
0249     mdev->is_channel_healthy[channel] = false;
0250     spin_unlock_irqrestore(lock, flags);
0251 
0252     cancel_work_sync(&mdev->clear_work[channel].ws);
0253 
0254     mutex_lock(&mdev->io_mutex);
0255     usb_kill_anchored_urbs(&mdev->busy_urbs[channel]);
0256     if (mdev->padding_active[channel])
0257         mdev->padding_active[channel] = false;
0258 
0259     if (mdev->conf[channel].data_type == MOST_CH_ASYNC) {
0260         del_timer_sync(&mdev->link_stat_timer);
0261         cancel_work_sync(&mdev->poll_work_obj);
0262     }
0263     mutex_unlock(&mdev->io_mutex);
0264     return 0;
0265 }
0266 
0267 /**
0268  * hdm_add_padding - add padding bytes
0269  * @mdev: most device
0270  * @channel: channel ID
0271  * @mbo: buffer object
0272  *
0273  * This inserts the INIC hardware specific padding bytes into a streaming
0274  * channel's buffer
0275  */
0276 static int hdm_add_padding(struct most_dev *mdev, int channel, struct mbo *mbo)
0277 {
0278     struct most_channel_config *conf = &mdev->conf[channel];
0279     unsigned int frame_size = get_stream_frame_size(&mdev->dev, conf);
0280     unsigned int j, num_frames;
0281 
0282     if (!frame_size)
0283         return -EINVAL;
0284     num_frames = mbo->buffer_length / frame_size;
0285 
0286     if (num_frames < 1) {
0287         dev_err(&mdev->usb_device->dev,
0288             "Missed minimal transfer unit.\n");
0289         return -EINVAL;
0290     }
0291 
0292     for (j = num_frames - 1; j > 0; j--)
0293         memmove(mbo->virt_address + j * USB_MTU,
0294             mbo->virt_address + j * frame_size,
0295             frame_size);
0296     mbo->buffer_length = num_frames * USB_MTU;
0297     return 0;
0298 }
0299 
0300 /**
0301  * hdm_remove_padding - remove padding bytes
0302  * @mdev: most device
0303  * @channel: channel ID
0304  * @mbo: buffer object
0305  *
0306  * This takes the INIC hardware specific padding bytes off a streaming
0307  * channel's buffer.
0308  */
0309 static int hdm_remove_padding(struct most_dev *mdev, int channel,
0310                   struct mbo *mbo)
0311 {
0312     struct most_channel_config *const conf = &mdev->conf[channel];
0313     unsigned int frame_size = get_stream_frame_size(&mdev->dev, conf);
0314     unsigned int j, num_frames;
0315 
0316     if (!frame_size)
0317         return -EINVAL;
0318     num_frames = mbo->processed_length / USB_MTU;
0319 
0320     for (j = 1; j < num_frames; j++)
0321         memmove(mbo->virt_address + frame_size * j,
0322             mbo->virt_address + USB_MTU * j,
0323             frame_size);
0324 
0325     mbo->processed_length = frame_size * num_frames;
0326     return 0;
0327 }
0328 
0329 /**
0330  * hdm_write_completion - completion function for submitted Tx URBs
0331  * @urb: the URB that has been completed
0332  *
0333  * This checks the status of the completed URB. In case the URB has been
0334  * unlinked before, it is immediately freed. On any other error the MBO
0335  * transfer flag is set. On success it frees allocated resources and calls
0336  * the completion function.
0337  *
0338  * Context: interrupt!
0339  */
0340 static void hdm_write_completion(struct urb *urb)
0341 {
0342     struct mbo *mbo = urb->context;
0343     struct most_dev *mdev = to_mdev(mbo->ifp);
0344     unsigned int channel = mbo->hdm_channel_id;
0345     spinlock_t *lock = mdev->channel_lock + channel;
0346     unsigned long flags;
0347 
0348     spin_lock_irqsave(lock, flags);
0349 
0350     mbo->processed_length = 0;
0351     mbo->status = MBO_E_INVAL;
0352     if (likely(mdev->is_channel_healthy[channel])) {
0353         switch (urb->status) {
0354         case 0:
0355         case -ESHUTDOWN:
0356             mbo->processed_length = urb->actual_length;
0357             mbo->status = MBO_SUCCESS;
0358             break;
0359         case -EPIPE:
0360             dev_warn(&mdev->usb_device->dev,
0361                  "Broken pipe on ep%02x\n",
0362                  mdev->ep_address[channel]);
0363             mdev->is_channel_healthy[channel] = false;
0364             mdev->clear_work[channel].pipe = urb->pipe;
0365             schedule_work(&mdev->clear_work[channel].ws);
0366             break;
0367         case -ENODEV:
0368         case -EPROTO:
0369             mbo->status = MBO_E_CLOSE;
0370             break;
0371         }
0372     }
0373 
0374     spin_unlock_irqrestore(lock, flags);
0375 
0376     if (likely(mbo->complete))
0377         mbo->complete(mbo);
0378     usb_free_urb(urb);
0379 }
0380 
0381 /**
0382  * hdm_read_completion - completion function for submitted Rx URBs
0383  * @urb: the URB that has been completed
0384  *
0385  * This checks the status of the completed URB. In case the URB has been
0386  * unlinked before it is immediately freed. On any other error the MBO transfer
0387  * flag is set. On success it frees allocated resources, removes
0388  * padding bytes -if necessary- and calls the completion function.
0389  *
0390  * Context: interrupt!
0391  */
0392 static void hdm_read_completion(struct urb *urb)
0393 {
0394     struct mbo *mbo = urb->context;
0395     struct most_dev *mdev = to_mdev(mbo->ifp);
0396     unsigned int channel = mbo->hdm_channel_id;
0397     struct device *dev = &mdev->usb_device->dev;
0398     spinlock_t *lock = mdev->channel_lock + channel;
0399     unsigned long flags;
0400 
0401     spin_lock_irqsave(lock, flags);
0402 
0403     mbo->processed_length = 0;
0404     mbo->status = MBO_E_INVAL;
0405     if (likely(mdev->is_channel_healthy[channel])) {
0406         switch (urb->status) {
0407         case 0:
0408         case -ESHUTDOWN:
0409             mbo->processed_length = urb->actual_length;
0410             mbo->status = MBO_SUCCESS;
0411             if (mdev->padding_active[channel] &&
0412                 hdm_remove_padding(mdev, channel, mbo)) {
0413                 mbo->processed_length = 0;
0414                 mbo->status = MBO_E_INVAL;
0415             }
0416             break;
0417         case -EPIPE:
0418             dev_warn(dev, "Broken pipe on ep%02x\n",
0419                  mdev->ep_address[channel]);
0420             mdev->is_channel_healthy[channel] = false;
0421             mdev->clear_work[channel].pipe = urb->pipe;
0422             schedule_work(&mdev->clear_work[channel].ws);
0423             break;
0424         case -ENODEV:
0425         case -EPROTO:
0426             mbo->status = MBO_E_CLOSE;
0427             break;
0428         case -EOVERFLOW:
0429             dev_warn(dev, "Babble on ep%02x\n",
0430                  mdev->ep_address[channel]);
0431             break;
0432         }
0433     }
0434 
0435     spin_unlock_irqrestore(lock, flags);
0436 
0437     if (likely(mbo->complete))
0438         mbo->complete(mbo);
0439     usb_free_urb(urb);
0440 }
0441 
0442 /**
0443  * hdm_enqueue - receive a buffer to be used for data transfer
0444  * @iface: interface to enqueue to
0445  * @channel: ID of the channel
0446  * @mbo: pointer to the buffer object
0447  *
0448  * This allocates a new URB and fills it according to the channel
0449  * that is being used for transmission of data. Before the URB is
0450  * submitted it is stored in the private anchor list.
0451  *
0452  * Returns 0 on success. On any error the URB is freed and a error code
0453  * is returned.
0454  *
0455  * Context: Could in _some_ cases be interrupt!
0456  */
0457 static int hdm_enqueue(struct most_interface *iface, int channel,
0458                struct mbo *mbo)
0459 {
0460     struct most_dev *mdev = to_mdev(iface);
0461     struct most_channel_config *conf;
0462     int retval = 0;
0463     struct urb *urb;
0464     unsigned long length;
0465     void *virt_address;
0466 
0467     if (!mbo)
0468         return -EINVAL;
0469     if (iface->num_channels <= channel || channel < 0)
0470         return -ECHRNG;
0471 
0472     urb = usb_alloc_urb(NO_ISOCHRONOUS_URB, GFP_KERNEL);
0473     if (!urb)
0474         return -ENOMEM;
0475 
0476     conf = &mdev->conf[channel];
0477 
0478     mutex_lock(&mdev->io_mutex);
0479     if (!mdev->usb_device) {
0480         retval = -ENODEV;
0481         goto err_free_urb;
0482     }
0483 
0484     if ((conf->direction & MOST_CH_TX) && mdev->padding_active[channel] &&
0485         hdm_add_padding(mdev, channel, mbo)) {
0486         retval = -EINVAL;
0487         goto err_free_urb;
0488     }
0489 
0490     urb->transfer_dma = mbo->bus_address;
0491     virt_address = mbo->virt_address;
0492     length = mbo->buffer_length;
0493 
0494     if (conf->direction & MOST_CH_TX) {
0495         usb_fill_bulk_urb(urb, mdev->usb_device,
0496                   usb_sndbulkpipe(mdev->usb_device,
0497                           mdev->ep_address[channel]),
0498                   virt_address,
0499                   length,
0500                   hdm_write_completion,
0501                   mbo);
0502         if (conf->data_type != MOST_CH_ISOC &&
0503             conf->data_type != MOST_CH_SYNC)
0504             urb->transfer_flags |= URB_ZERO_PACKET;
0505     } else {
0506         usb_fill_bulk_urb(urb, mdev->usb_device,
0507                   usb_rcvbulkpipe(mdev->usb_device,
0508                           mdev->ep_address[channel]),
0509                   virt_address,
0510                   length + conf->extra_len,
0511                   hdm_read_completion,
0512                   mbo);
0513     }
0514     urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
0515 
0516     usb_anchor_urb(urb, &mdev->busy_urbs[channel]);
0517 
0518     retval = usb_submit_urb(urb, GFP_KERNEL);
0519     if (retval) {
0520         dev_err(&mdev->usb_device->dev,
0521             "URB submit failed with error %d.\n", retval);
0522         goto err_unanchor_urb;
0523     }
0524     mutex_unlock(&mdev->io_mutex);
0525     return 0;
0526 
0527 err_unanchor_urb:
0528     usb_unanchor_urb(urb);
0529 err_free_urb:
0530     usb_free_urb(urb);
0531     mutex_unlock(&mdev->io_mutex);
0532     return retval;
0533 }
0534 
0535 static void *hdm_dma_alloc(struct mbo *mbo, u32 size)
0536 {
0537     struct most_dev *mdev = to_mdev(mbo->ifp);
0538 
0539     return usb_alloc_coherent(mdev->usb_device, size, GFP_KERNEL,
0540                   &mbo->bus_address);
0541 }
0542 
0543 static void hdm_dma_free(struct mbo *mbo, u32 size)
0544 {
0545     struct most_dev *mdev = to_mdev(mbo->ifp);
0546 
0547     usb_free_coherent(mdev->usb_device, size, mbo->virt_address,
0548               mbo->bus_address);
0549 }
0550 
0551 /**
0552  * hdm_configure_channel - receive channel configuration from core
0553  * @iface: interface
0554  * @channel: channel ID
0555  * @conf: structure that holds the configuration information
0556  *
0557  * The attached network interface controller (NIC) supports a padding mode
0558  * to avoid short packets on USB, hence increasing the performance due to a
0559  * lower interrupt load. This mode is default for synchronous data and can
0560  * be switched on for isochronous data. In case padding is active the
0561  * driver needs to know the frame size of the payload in order to calculate
0562  * the number of bytes it needs to pad when transmitting or to cut off when
0563  * receiving data.
0564  *
0565  */
0566 static int hdm_configure_channel(struct most_interface *iface, int channel,
0567                  struct most_channel_config *conf)
0568 {
0569     unsigned int num_frames;
0570     unsigned int frame_size;
0571     struct most_dev *mdev = to_mdev(iface);
0572     struct device *dev = &mdev->usb_device->dev;
0573 
0574     if (!conf) {
0575         dev_err(dev, "Bad config pointer.\n");
0576         return -EINVAL;
0577     }
0578     if (channel < 0 || channel >= iface->num_channels) {
0579         dev_err(dev, "Channel ID out of range.\n");
0580         return -EINVAL;
0581     }
0582 
0583     mdev->is_channel_healthy[channel] = true;
0584     mdev->clear_work[channel].channel = channel;
0585     mdev->clear_work[channel].mdev = mdev;
0586     INIT_WORK(&mdev->clear_work[channel].ws, wq_clear_halt);
0587 
0588     if (!conf->num_buffers || !conf->buffer_size) {
0589         dev_err(dev, "Misconfig: buffer size or #buffers zero.\n");
0590         return -EINVAL;
0591     }
0592 
0593     if (conf->data_type != MOST_CH_SYNC &&
0594         !(conf->data_type == MOST_CH_ISOC &&
0595           conf->packets_per_xact != 0xFF)) {
0596         mdev->padding_active[channel] = false;
0597         /*
0598          * Since the NIC's padding mode is not going to be
0599          * used, we can skip the frame size calculations and
0600          * move directly on to exit.
0601          */
0602         goto exit;
0603     }
0604 
0605     mdev->padding_active[channel] = true;
0606 
0607     frame_size = get_stream_frame_size(&mdev->dev, conf);
0608     if (frame_size == 0 || frame_size > USB_MTU) {
0609         dev_warn(dev, "Misconfig: frame size wrong\n");
0610         return -EINVAL;
0611     }
0612 
0613     num_frames = conf->buffer_size / frame_size;
0614 
0615     if (conf->buffer_size % frame_size) {
0616         u16 old_size = conf->buffer_size;
0617 
0618         conf->buffer_size = num_frames * frame_size;
0619         dev_warn(dev, "%s: fixed buffer size (%d -> %d)\n",
0620              mdev->suffix[channel], old_size, conf->buffer_size);
0621     }
0622 
0623     /* calculate extra length to comply w/ HW padding */
0624     conf->extra_len = num_frames * (USB_MTU - frame_size);
0625 
0626 exit:
0627     mdev->conf[channel] = *conf;
0628     if (conf->data_type == MOST_CH_ASYNC) {
0629         u16 ep = mdev->ep_address[channel];
0630 
0631         if (start_sync_ep(mdev->usb_device, ep) < 0)
0632             dev_warn(dev, "sync for ep%02x failed", ep);
0633     }
0634     return 0;
0635 }
0636 
0637 /**
0638  * hdm_request_netinfo - request network information
0639  * @iface: pointer to interface
0640  * @channel: channel ID
0641  *
0642  * This is used as trigger to set up the link status timer that
0643  * polls for the NI state of the INIC every 2 seconds.
0644  *
0645  */
0646 static void hdm_request_netinfo(struct most_interface *iface, int channel,
0647                 void (*on_netinfo)(struct most_interface *,
0648                            unsigned char,
0649                            unsigned char *))
0650 {
0651     struct most_dev *mdev = to_mdev(iface);
0652 
0653     mdev->on_netinfo = on_netinfo;
0654     if (!on_netinfo)
0655         return;
0656 
0657     mdev->link_stat_timer.expires = jiffies + HZ;
0658     mod_timer(&mdev->link_stat_timer, mdev->link_stat_timer.expires);
0659 }
0660 
0661 /**
0662  * link_stat_timer_handler - schedule work obtaining mac address and link status
0663  * @data: pointer to USB device instance
0664  *
0665  * The handler runs in interrupt context. That's why we need to defer the
0666  * tasks to a work queue.
0667  */
0668 static void link_stat_timer_handler(struct timer_list *t)
0669 {
0670     struct most_dev *mdev = from_timer(mdev, t, link_stat_timer);
0671 
0672     schedule_work(&mdev->poll_work_obj);
0673     mdev->link_stat_timer.expires = jiffies + (2 * HZ);
0674     add_timer(&mdev->link_stat_timer);
0675 }
0676 
0677 /**
0678  * wq_netinfo - work queue function to deliver latest networking information
0679  * @wq_obj: object that holds data for our deferred work to do
0680  *
0681  * This retrieves the network interface status of the USB INIC
0682  */
0683 static void wq_netinfo(struct work_struct *wq_obj)
0684 {
0685     struct most_dev *mdev = to_mdev_from_work(wq_obj);
0686     struct usb_device *usb_device = mdev->usb_device;
0687     struct device *dev = &usb_device->dev;
0688     u16 hi, mi, lo, link;
0689     u8 hw_addr[6];
0690 
0691     if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_HI, &hi)) {
0692         dev_err(dev, "Vendor request 'hw_addr_hi' failed\n");
0693         return;
0694     }
0695 
0696     if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_MI, &mi)) {
0697         dev_err(dev, "Vendor request 'hw_addr_mid' failed\n");
0698         return;
0699     }
0700 
0701     if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_LO, &lo)) {
0702         dev_err(dev, "Vendor request 'hw_addr_low' failed\n");
0703         return;
0704     }
0705 
0706     if (drci_rd_reg(usb_device, DRCI_REG_NI_STATE, &link)) {
0707         dev_err(dev, "Vendor request 'link status' failed\n");
0708         return;
0709     }
0710 
0711     hw_addr[0] = hi >> 8;
0712     hw_addr[1] = hi;
0713     hw_addr[2] = mi >> 8;
0714     hw_addr[3] = mi;
0715     hw_addr[4] = lo >> 8;
0716     hw_addr[5] = lo;
0717 
0718     if (mdev->on_netinfo)
0719         mdev->on_netinfo(&mdev->iface, link, hw_addr);
0720 }
0721 
0722 /**
0723  * wq_clear_halt - work queue function
0724  * @wq_obj: work_struct object to execute
0725  *
0726  * This sends a clear_halt to the given USB pipe.
0727  */
0728 static void wq_clear_halt(struct work_struct *wq_obj)
0729 {
0730     struct clear_hold_work *clear_work = to_clear_hold_work(wq_obj);
0731     struct most_dev *mdev = clear_work->mdev;
0732     unsigned int channel = clear_work->channel;
0733     int pipe = clear_work->pipe;
0734     int snd_pipe;
0735     int peer;
0736 
0737     mutex_lock(&mdev->io_mutex);
0738     most_stop_enqueue(&mdev->iface, channel);
0739     usb_kill_anchored_urbs(&mdev->busy_urbs[channel]);
0740     if (usb_clear_halt(mdev->usb_device, pipe))
0741         dev_warn(&mdev->usb_device->dev, "Failed to reset endpoint.\n");
0742 
0743     /* If the functional Stall condition has been set on an
0744      * asynchronous rx channel, we need to clear the tx channel
0745      * too, since the hardware runs its clean-up sequence on both
0746      * channels, as they are physically one on the network.
0747      *
0748      * The USB interface that exposes the asynchronous channels
0749      * contains always two endpoints, and two only.
0750      */
0751     if (mdev->conf[channel].data_type == MOST_CH_ASYNC &&
0752         mdev->conf[channel].direction == MOST_CH_RX) {
0753         if (channel == 0)
0754             peer = 1;
0755         else
0756             peer = 0;
0757         snd_pipe = usb_sndbulkpipe(mdev->usb_device,
0758                        mdev->ep_address[peer]);
0759         usb_clear_halt(mdev->usb_device, snd_pipe);
0760     }
0761     mdev->is_channel_healthy[channel] = true;
0762     most_resume_enqueue(&mdev->iface, channel);
0763     mutex_unlock(&mdev->io_mutex);
0764 }
0765 
0766 /**
0767  * hdm_usb_fops - file operation table for USB driver
0768  */
0769 static const struct file_operations hdm_usb_fops = {
0770     .owner = THIS_MODULE,
0771 };
0772 
0773 /**
0774  * usb_device_id - ID table for HCD device probing
0775  */
0776 static const struct usb_device_id usbid[] = {
0777     { USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_BRDG), },
0778     { USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81118), },
0779     { USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81119), },
0780     { USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81210), },
0781     { } /* Terminating entry */
0782 };
0783 
0784 struct regs {
0785     const char *name;
0786     u16 reg;
0787 };
0788 
0789 static const struct regs ro_regs[] = {
0790     { "ni_state", DRCI_REG_NI_STATE },
0791     { "packet_bandwidth", DRCI_REG_PACKET_BW },
0792     { "node_address", DRCI_REG_NODE_ADDR },
0793     { "node_position", DRCI_REG_NODE_POS },
0794 };
0795 
0796 static const struct regs rw_regs[] = {
0797     { "mep_filter", DRCI_REG_MEP_FILTER },
0798     { "mep_hash0", DRCI_REG_HASH_TBL0 },
0799     { "mep_hash1", DRCI_REG_HASH_TBL1 },
0800     { "mep_hash2", DRCI_REG_HASH_TBL2 },
0801     { "mep_hash3", DRCI_REG_HASH_TBL3 },
0802     { "mep_eui48_hi", DRCI_REG_HW_ADDR_HI },
0803     { "mep_eui48_mi", DRCI_REG_HW_ADDR_MI },
0804     { "mep_eui48_lo", DRCI_REG_HW_ADDR_LO },
0805 };
0806 
0807 static int get_stat_reg_addr(const struct regs *regs, int size,
0808                  const char *name, u16 *reg_addr)
0809 {
0810     int i;
0811 
0812     for (i = 0; i < size; i++) {
0813         if (sysfs_streq(name, regs[i].name)) {
0814             *reg_addr = regs[i].reg;
0815             return 0;
0816         }
0817     }
0818     return -EINVAL;
0819 }
0820 
0821 #define get_static_reg_addr(regs, name, reg_addr) \
0822     get_stat_reg_addr(regs, ARRAY_SIZE(regs), name, reg_addr)
0823 
0824 static ssize_t value_show(struct device *dev, struct device_attribute *attr,
0825               char *buf)
0826 {
0827     const char *name = attr->attr.name;
0828     struct most_dci_obj *dci_obj = to_dci_obj(dev);
0829     u16 val;
0830     u16 reg_addr;
0831     int err;
0832 
0833     if (sysfs_streq(name, "arb_address"))
0834         return sysfs_emit(buf, "%04x\n", dci_obj->reg_addr);
0835 
0836     if (sysfs_streq(name, "arb_value"))
0837         reg_addr = dci_obj->reg_addr;
0838     else if (get_static_reg_addr(ro_regs, name, &reg_addr) &&
0839          get_static_reg_addr(rw_regs, name, &reg_addr))
0840         return -EINVAL;
0841 
0842     err = drci_rd_reg(dci_obj->usb_device, reg_addr, &val);
0843     if (err < 0)
0844         return err;
0845 
0846     return sysfs_emit(buf, "%04x\n", val);
0847 }
0848 
0849 static ssize_t value_store(struct device *dev, struct device_attribute *attr,
0850                const char *buf, size_t count)
0851 {
0852     u16 val;
0853     u16 reg_addr;
0854     const char *name = attr->attr.name;
0855     struct most_dci_obj *dci_obj = to_dci_obj(dev);
0856     struct usb_device *usb_dev = dci_obj->usb_device;
0857     int err;
0858 
0859     err = kstrtou16(buf, 16, &val);
0860     if (err)
0861         return err;
0862 
0863     if (sysfs_streq(name, "arb_address")) {
0864         dci_obj->reg_addr = val;
0865         return count;
0866     }
0867 
0868     if (sysfs_streq(name, "arb_value"))
0869         err = drci_wr_reg(usb_dev, dci_obj->reg_addr, val);
0870     else if (sysfs_streq(name, "sync_ep"))
0871         err = start_sync_ep(usb_dev, val);
0872     else if (!get_static_reg_addr(rw_regs, name, &reg_addr))
0873         err = drci_wr_reg(usb_dev, reg_addr, val);
0874     else
0875         return -EINVAL;
0876 
0877     if (err < 0)
0878         return err;
0879 
0880     return count;
0881 }
0882 
0883 static DEVICE_ATTR(ni_state, 0444, value_show, NULL);
0884 static DEVICE_ATTR(packet_bandwidth, 0444, value_show, NULL);
0885 static DEVICE_ATTR(node_address, 0444, value_show, NULL);
0886 static DEVICE_ATTR(node_position, 0444, value_show, NULL);
0887 static DEVICE_ATTR(sync_ep, 0200, NULL, value_store);
0888 static DEVICE_ATTR(mep_filter, 0644, value_show, value_store);
0889 static DEVICE_ATTR(mep_hash0, 0644, value_show, value_store);
0890 static DEVICE_ATTR(mep_hash1, 0644, value_show, value_store);
0891 static DEVICE_ATTR(mep_hash2, 0644, value_show, value_store);
0892 static DEVICE_ATTR(mep_hash3, 0644, value_show, value_store);
0893 static DEVICE_ATTR(mep_eui48_hi, 0644, value_show, value_store);
0894 static DEVICE_ATTR(mep_eui48_mi, 0644, value_show, value_store);
0895 static DEVICE_ATTR(mep_eui48_lo, 0644, value_show, value_store);
0896 static DEVICE_ATTR(arb_address, 0644, value_show, value_store);
0897 static DEVICE_ATTR(arb_value, 0644, value_show, value_store);
0898 
0899 static struct attribute *dci_attrs[] = {
0900     &dev_attr_ni_state.attr,
0901     &dev_attr_packet_bandwidth.attr,
0902     &dev_attr_node_address.attr,
0903     &dev_attr_node_position.attr,
0904     &dev_attr_sync_ep.attr,
0905     &dev_attr_mep_filter.attr,
0906     &dev_attr_mep_hash0.attr,
0907     &dev_attr_mep_hash1.attr,
0908     &dev_attr_mep_hash2.attr,
0909     &dev_attr_mep_hash3.attr,
0910     &dev_attr_mep_eui48_hi.attr,
0911     &dev_attr_mep_eui48_mi.attr,
0912     &dev_attr_mep_eui48_lo.attr,
0913     &dev_attr_arb_address.attr,
0914     &dev_attr_arb_value.attr,
0915     NULL,
0916 };
0917 
0918 ATTRIBUTE_GROUPS(dci);
0919 
0920 static void release_dci(struct device *dev)
0921 {
0922     struct most_dci_obj *dci = to_dci_obj(dev);
0923 
0924     put_device(dev->parent);
0925     kfree(dci);
0926 }
0927 
0928 static void release_mdev(struct device *dev)
0929 {
0930     struct most_dev *mdev = to_mdev_from_dev(dev);
0931 
0932     kfree(mdev);
0933 }
0934 /**
0935  * hdm_probe - probe function of USB device driver
0936  * @interface: Interface of the attached USB device
0937  * @id: Pointer to the USB ID table.
0938  *
0939  * This allocates and initializes the device instance, adds the new
0940  * entry to the internal list, scans the USB descriptors and registers
0941  * the interface with the core.
0942  * Additionally, the DCI objects are created and the hardware is sync'd.
0943  *
0944  * Return 0 on success. In case of an error a negative number is returned.
0945  */
0946 static int
0947 hdm_probe(struct usb_interface *interface, const struct usb_device_id *id)
0948 {
0949     struct usb_host_interface *usb_iface_desc = interface->cur_altsetting;
0950     struct usb_device *usb_dev = interface_to_usbdev(interface);
0951     struct device *dev = &usb_dev->dev;
0952     struct most_dev *mdev;
0953     unsigned int i;
0954     unsigned int num_endpoints;
0955     struct most_channel_capability *tmp_cap;
0956     struct usb_endpoint_descriptor *ep_desc;
0957     int ret = -ENOMEM;
0958 
0959     mdev = kzalloc(sizeof(*mdev), GFP_KERNEL);
0960     if (!mdev)
0961         return -ENOMEM;
0962 
0963     usb_set_intfdata(interface, mdev);
0964     num_endpoints = usb_iface_desc->desc.bNumEndpoints;
0965     if (num_endpoints > MAX_NUM_ENDPOINTS) {
0966         kfree(mdev);
0967         return -EINVAL;
0968     }
0969     mutex_init(&mdev->io_mutex);
0970     INIT_WORK(&mdev->poll_work_obj, wq_netinfo);
0971     timer_setup(&mdev->link_stat_timer, link_stat_timer_handler, 0);
0972 
0973     mdev->usb_device = usb_dev;
0974     mdev->link_stat_timer.expires = jiffies + (2 * HZ);
0975 
0976     mdev->iface.mod = hdm_usb_fops.owner;
0977     mdev->iface.dev = &mdev->dev;
0978     mdev->iface.driver_dev = &interface->dev;
0979     mdev->iface.interface = ITYPE_USB;
0980     mdev->iface.configure = hdm_configure_channel;
0981     mdev->iface.request_netinfo = hdm_request_netinfo;
0982     mdev->iface.enqueue = hdm_enqueue;
0983     mdev->iface.poison_channel = hdm_poison_channel;
0984     mdev->iface.dma_alloc = hdm_dma_alloc;
0985     mdev->iface.dma_free = hdm_dma_free;
0986     mdev->iface.description = mdev->description;
0987     mdev->iface.num_channels = num_endpoints;
0988 
0989     snprintf(mdev->description, sizeof(mdev->description),
0990          "%d-%s:%d.%d",
0991          usb_dev->bus->busnum,
0992          usb_dev->devpath,
0993          usb_dev->config->desc.bConfigurationValue,
0994          usb_iface_desc->desc.bInterfaceNumber);
0995 
0996     mdev->dev.init_name = mdev->description;
0997     mdev->dev.parent = &interface->dev;
0998     mdev->dev.release = release_mdev;
0999     mdev->conf = kcalloc(num_endpoints, sizeof(*mdev->conf), GFP_KERNEL);
1000     if (!mdev->conf)
1001         goto err_free_mdev;
1002 
1003     mdev->cap = kcalloc(num_endpoints, sizeof(*mdev->cap), GFP_KERNEL);
1004     if (!mdev->cap)
1005         goto err_free_conf;
1006 
1007     mdev->iface.channel_vector = mdev->cap;
1008     mdev->ep_address =
1009         kcalloc(num_endpoints, sizeof(*mdev->ep_address), GFP_KERNEL);
1010     if (!mdev->ep_address)
1011         goto err_free_cap;
1012 
1013     mdev->busy_urbs =
1014         kcalloc(num_endpoints, sizeof(*mdev->busy_urbs), GFP_KERNEL);
1015     if (!mdev->busy_urbs)
1016         goto err_free_ep_address;
1017 
1018     tmp_cap = mdev->cap;
1019     for (i = 0; i < num_endpoints; i++) {
1020         ep_desc = &usb_iface_desc->endpoint[i].desc;
1021         mdev->ep_address[i] = ep_desc->bEndpointAddress;
1022         mdev->padding_active[i] = false;
1023         mdev->is_channel_healthy[i] = true;
1024 
1025         snprintf(&mdev->suffix[i][0], MAX_SUFFIX_LEN, "ep%02x",
1026              mdev->ep_address[i]);
1027 
1028         tmp_cap->name_suffix = &mdev->suffix[i][0];
1029         tmp_cap->buffer_size_packet = MAX_BUF_SIZE;
1030         tmp_cap->buffer_size_streaming = MAX_BUF_SIZE;
1031         tmp_cap->num_buffers_packet = BUF_CHAIN_SIZE;
1032         tmp_cap->num_buffers_streaming = BUF_CHAIN_SIZE;
1033         tmp_cap->data_type = MOST_CH_CONTROL | MOST_CH_ASYNC |
1034                      MOST_CH_ISOC | MOST_CH_SYNC;
1035         if (usb_endpoint_dir_in(ep_desc))
1036             tmp_cap->direction = MOST_CH_RX;
1037         else
1038             tmp_cap->direction = MOST_CH_TX;
1039         tmp_cap++;
1040         init_usb_anchor(&mdev->busy_urbs[i]);
1041         spin_lock_init(&mdev->channel_lock[i]);
1042     }
1043     dev_dbg(dev, "claimed gadget: Vendor=%4.4x ProdID=%4.4x Bus=%02x Device=%02x\n",
1044         le16_to_cpu(usb_dev->descriptor.idVendor),
1045         le16_to_cpu(usb_dev->descriptor.idProduct),
1046         usb_dev->bus->busnum,
1047         usb_dev->devnum);
1048 
1049     dev_dbg(dev, "device path: /sys/bus/usb/devices/%d-%s:%d.%d\n",
1050         usb_dev->bus->busnum,
1051         usb_dev->devpath,
1052         usb_dev->config->desc.bConfigurationValue,
1053         usb_iface_desc->desc.bInterfaceNumber);
1054 
1055     ret = most_register_interface(&mdev->iface);
1056     if (ret)
1057         goto err_free_busy_urbs;
1058 
1059     mutex_lock(&mdev->io_mutex);
1060     if (le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81118 ||
1061         le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81119 ||
1062         le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81210) {
1063         mdev->dci = kzalloc(sizeof(*mdev->dci), GFP_KERNEL);
1064         if (!mdev->dci) {
1065             mutex_unlock(&mdev->io_mutex);
1066             most_deregister_interface(&mdev->iface);
1067             ret = -ENOMEM;
1068             goto err_free_busy_urbs;
1069         }
1070 
1071         mdev->dci->dev.init_name = "dci";
1072         mdev->dci->dev.parent = get_device(mdev->iface.dev);
1073         mdev->dci->dev.groups = dci_groups;
1074         mdev->dci->dev.release = release_dci;
1075         if (device_register(&mdev->dci->dev)) {
1076             mutex_unlock(&mdev->io_mutex);
1077             most_deregister_interface(&mdev->iface);
1078             ret = -ENOMEM;
1079             goto err_free_dci;
1080         }
1081         mdev->dci->usb_device = mdev->usb_device;
1082     }
1083     mutex_unlock(&mdev->io_mutex);
1084     return 0;
1085 err_free_dci:
1086     put_device(&mdev->dci->dev);
1087 err_free_busy_urbs:
1088     kfree(mdev->busy_urbs);
1089 err_free_ep_address:
1090     kfree(mdev->ep_address);
1091 err_free_cap:
1092     kfree(mdev->cap);
1093 err_free_conf:
1094     kfree(mdev->conf);
1095 err_free_mdev:
1096     put_device(&mdev->dev);
1097     return ret;
1098 }
1099 
1100 /**
1101  * hdm_disconnect - disconnect function of USB device driver
1102  * @interface: Interface of the attached USB device
1103  *
1104  * This deregisters the interface with the core, removes the kernel timer
1105  * and frees resources.
1106  *
1107  * Context: hub kernel thread
1108  */
1109 static void hdm_disconnect(struct usb_interface *interface)
1110 {
1111     struct most_dev *mdev = usb_get_intfdata(interface);
1112 
1113     mutex_lock(&mdev->io_mutex);
1114     usb_set_intfdata(interface, NULL);
1115     mdev->usb_device = NULL;
1116     mutex_unlock(&mdev->io_mutex);
1117 
1118     del_timer_sync(&mdev->link_stat_timer);
1119     cancel_work_sync(&mdev->poll_work_obj);
1120 
1121     if (mdev->dci)
1122         device_unregister(&mdev->dci->dev);
1123     most_deregister_interface(&mdev->iface);
1124 
1125     kfree(mdev->busy_urbs);
1126     kfree(mdev->cap);
1127     kfree(mdev->conf);
1128     kfree(mdev->ep_address);
1129     put_device(&mdev->dci->dev);
1130     put_device(&mdev->dev);
1131 }
1132 
1133 static int hdm_suspend(struct usb_interface *interface, pm_message_t message)
1134 {
1135     struct most_dev *mdev = usb_get_intfdata(interface);
1136     int i;
1137 
1138     mutex_lock(&mdev->io_mutex);
1139     for (i = 0; i < mdev->iface.num_channels; i++) {
1140         most_stop_enqueue(&mdev->iface, i);
1141         usb_kill_anchored_urbs(&mdev->busy_urbs[i]);
1142     }
1143     mutex_unlock(&mdev->io_mutex);
1144     return 0;
1145 }
1146 
1147 static int hdm_resume(struct usb_interface *interface)
1148 {
1149     struct most_dev *mdev = usb_get_intfdata(interface);
1150     int i;
1151 
1152     mutex_lock(&mdev->io_mutex);
1153     for (i = 0; i < mdev->iface.num_channels; i++)
1154         most_resume_enqueue(&mdev->iface, i);
1155     mutex_unlock(&mdev->io_mutex);
1156     return 0;
1157 }
1158 
1159 static struct usb_driver hdm_usb = {
1160     .name = "hdm_usb",
1161     .id_table = usbid,
1162     .probe = hdm_probe,
1163     .disconnect = hdm_disconnect,
1164     .resume = hdm_resume,
1165     .suspend = hdm_suspend,
1166 };
1167 
1168 module_usb_driver(hdm_usb);
1169 MODULE_LICENSE("GPL");
1170 MODULE_AUTHOR("Christian Gromm <christian.gromm@microchip.com>");
1171 MODULE_DESCRIPTION("HDM_4_USB");