Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * core.c - Implementation of core module of MOST Linux driver stack
0004  *
0005  * Copyright (C) 2013-2020 Microchip Technology Germany II GmbH & Co. KG
0006  */
0007 
0008 #include <linux/module.h>
0009 #include <linux/fs.h>
0010 #include <linux/slab.h>
0011 #include <linux/init.h>
0012 #include <linux/device.h>
0013 #include <linux/list.h>
0014 #include <linux/poll.h>
0015 #include <linux/wait.h>
0016 #include <linux/kobject.h>
0017 #include <linux/mutex.h>
0018 #include <linux/completion.h>
0019 #include <linux/sysfs.h>
0020 #include <linux/kthread.h>
0021 #include <linux/dma-mapping.h>
0022 #include <linux/idr.h>
0023 #include <linux/most.h>
0024 
0025 #define MAX_CHANNELS    64
0026 #define STRING_SIZE 80
0027 
0028 static struct ida mdev_id;
0029 static int dummy_num_buffers;
0030 static struct list_head comp_list;
0031 
0032 struct pipe {
0033     struct most_component *comp;
0034     int refs;
0035     int num_buffers;
0036 };
0037 
0038 struct most_channel {
0039     struct device dev;
0040     struct completion cleanup;
0041     atomic_t mbo_ref;
0042     atomic_t mbo_nq_level;
0043     u16 channel_id;
0044     char name[STRING_SIZE];
0045     bool is_poisoned;
0046     struct mutex start_mutex; /* channel activation synchronization */
0047     struct mutex nq_mutex; /* nq thread synchronization */
0048     int is_starving;
0049     struct most_interface *iface;
0050     struct most_channel_config cfg;
0051     bool keep_mbo;
0052     bool enqueue_halt;
0053     struct list_head fifo;
0054     spinlock_t fifo_lock; /* fifo access synchronization */
0055     struct list_head halt_fifo;
0056     struct list_head list;
0057     struct pipe pipe0;
0058     struct pipe pipe1;
0059     struct list_head trash_fifo;
0060     struct task_struct *hdm_enqueue_task;
0061     wait_queue_head_t hdm_fifo_wq;
0062 
0063 };
0064 
0065 #define to_channel(d) container_of(d, struct most_channel, dev)
0066 
0067 struct interface_private {
0068     int dev_id;
0069     char name[STRING_SIZE];
0070     struct most_channel *channel[MAX_CHANNELS];
0071     struct list_head channel_list;
0072 };
0073 
0074 static const struct {
0075     int most_ch_data_type;
0076     const char *name;
0077 } ch_data_type[] = {
0078     { MOST_CH_CONTROL, "control" },
0079     { MOST_CH_ASYNC, "async" },
0080     { MOST_CH_SYNC, "sync" },
0081     { MOST_CH_ISOC, "isoc"},
0082     { MOST_CH_ISOC, "isoc_avp"},
0083 };
0084 
0085 /**
0086  * list_pop_mbo - retrieves the first MBO of the list and removes it
0087  * @ptr: the list head to grab the MBO from.
0088  */
0089 #define list_pop_mbo(ptr)                       \
0090 ({                                  \
0091     struct mbo *_mbo = list_first_entry(ptr, struct mbo, list); \
0092     list_del(&_mbo->list);                      \
0093     _mbo;                               \
0094 })
0095 
0096 /**
0097  * most_free_mbo_coherent - free an MBO and its coherent buffer
0098  * @mbo: most buffer
0099  */
0100 static void most_free_mbo_coherent(struct mbo *mbo)
0101 {
0102     struct most_channel *c = mbo->context;
0103     u16 const coherent_buf_size = c->cfg.buffer_size + c->cfg.extra_len;
0104 
0105     if (c->iface->dma_free)
0106         c->iface->dma_free(mbo, coherent_buf_size);
0107     else
0108         kfree(mbo->virt_address);
0109     kfree(mbo);
0110     if (atomic_sub_and_test(1, &c->mbo_ref))
0111         complete(&c->cleanup);
0112 }
0113 
0114 /**
0115  * flush_channel_fifos - clear the channel fifos
0116  * @c: pointer to channel object
0117  */
0118 static void flush_channel_fifos(struct most_channel *c)
0119 {
0120     unsigned long flags, hf_flags;
0121     struct mbo *mbo, *tmp;
0122 
0123     if (list_empty(&c->fifo) && list_empty(&c->halt_fifo))
0124         return;
0125 
0126     spin_lock_irqsave(&c->fifo_lock, flags);
0127     list_for_each_entry_safe(mbo, tmp, &c->fifo, list) {
0128         list_del(&mbo->list);
0129         spin_unlock_irqrestore(&c->fifo_lock, flags);
0130         most_free_mbo_coherent(mbo);
0131         spin_lock_irqsave(&c->fifo_lock, flags);
0132     }
0133     spin_unlock_irqrestore(&c->fifo_lock, flags);
0134 
0135     spin_lock_irqsave(&c->fifo_lock, hf_flags);
0136     list_for_each_entry_safe(mbo, tmp, &c->halt_fifo, list) {
0137         list_del(&mbo->list);
0138         spin_unlock_irqrestore(&c->fifo_lock, hf_flags);
0139         most_free_mbo_coherent(mbo);
0140         spin_lock_irqsave(&c->fifo_lock, hf_flags);
0141     }
0142     spin_unlock_irqrestore(&c->fifo_lock, hf_flags);
0143 
0144     if (unlikely((!list_empty(&c->fifo) || !list_empty(&c->halt_fifo))))
0145         dev_warn(&c->dev, "Channel or trash fifo not empty\n");
0146 }
0147 
0148 /**
0149  * flush_trash_fifo - clear the trash fifo
0150  * @c: pointer to channel object
0151  */
0152 static int flush_trash_fifo(struct most_channel *c)
0153 {
0154     struct mbo *mbo, *tmp;
0155     unsigned long flags;
0156 
0157     spin_lock_irqsave(&c->fifo_lock, flags);
0158     list_for_each_entry_safe(mbo, tmp, &c->trash_fifo, list) {
0159         list_del(&mbo->list);
0160         spin_unlock_irqrestore(&c->fifo_lock, flags);
0161         most_free_mbo_coherent(mbo);
0162         spin_lock_irqsave(&c->fifo_lock, flags);
0163     }
0164     spin_unlock_irqrestore(&c->fifo_lock, flags);
0165     return 0;
0166 }
0167 
0168 static ssize_t available_directions_show(struct device *dev,
0169                      struct device_attribute *attr,
0170                      char *buf)
0171 {
0172     struct most_channel *c = to_channel(dev);
0173     unsigned int i = c->channel_id;
0174 
0175     strcpy(buf, "");
0176     if (c->iface->channel_vector[i].direction & MOST_CH_RX)
0177         strcat(buf, "rx ");
0178     if (c->iface->channel_vector[i].direction & MOST_CH_TX)
0179         strcat(buf, "tx ");
0180     strcat(buf, "\n");
0181     return strlen(buf);
0182 }
0183 
0184 static ssize_t available_datatypes_show(struct device *dev,
0185                     struct device_attribute *attr,
0186                     char *buf)
0187 {
0188     struct most_channel *c = to_channel(dev);
0189     unsigned int i = c->channel_id;
0190 
0191     strcpy(buf, "");
0192     if (c->iface->channel_vector[i].data_type & MOST_CH_CONTROL)
0193         strcat(buf, "control ");
0194     if (c->iface->channel_vector[i].data_type & MOST_CH_ASYNC)
0195         strcat(buf, "async ");
0196     if (c->iface->channel_vector[i].data_type & MOST_CH_SYNC)
0197         strcat(buf, "sync ");
0198     if (c->iface->channel_vector[i].data_type & MOST_CH_ISOC)
0199         strcat(buf, "isoc ");
0200     strcat(buf, "\n");
0201     return strlen(buf);
0202 }
0203 
0204 static ssize_t number_of_packet_buffers_show(struct device *dev,
0205                          struct device_attribute *attr,
0206                          char *buf)
0207 {
0208     struct most_channel *c = to_channel(dev);
0209     unsigned int i = c->channel_id;
0210 
0211     return snprintf(buf, PAGE_SIZE, "%d\n",
0212             c->iface->channel_vector[i].num_buffers_packet);
0213 }
0214 
0215 static ssize_t number_of_stream_buffers_show(struct device *dev,
0216                          struct device_attribute *attr,
0217                          char *buf)
0218 {
0219     struct most_channel *c = to_channel(dev);
0220     unsigned int i = c->channel_id;
0221 
0222     return snprintf(buf, PAGE_SIZE, "%d\n",
0223             c->iface->channel_vector[i].num_buffers_streaming);
0224 }
0225 
0226 static ssize_t size_of_packet_buffer_show(struct device *dev,
0227                       struct device_attribute *attr,
0228                       char *buf)
0229 {
0230     struct most_channel *c = to_channel(dev);
0231     unsigned int i = c->channel_id;
0232 
0233     return snprintf(buf, PAGE_SIZE, "%d\n",
0234             c->iface->channel_vector[i].buffer_size_packet);
0235 }
0236 
0237 static ssize_t size_of_stream_buffer_show(struct device *dev,
0238                       struct device_attribute *attr,
0239                       char *buf)
0240 {
0241     struct most_channel *c = to_channel(dev);
0242     unsigned int i = c->channel_id;
0243 
0244     return snprintf(buf, PAGE_SIZE, "%d\n",
0245             c->iface->channel_vector[i].buffer_size_streaming);
0246 }
0247 
0248 static ssize_t channel_starving_show(struct device *dev,
0249                      struct device_attribute *attr,
0250                      char *buf)
0251 {
0252     struct most_channel *c = to_channel(dev);
0253 
0254     return snprintf(buf, PAGE_SIZE, "%d\n", c->is_starving);
0255 }
0256 
0257 static ssize_t set_number_of_buffers_show(struct device *dev,
0258                       struct device_attribute *attr,
0259                       char *buf)
0260 {
0261     struct most_channel *c = to_channel(dev);
0262 
0263     return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.num_buffers);
0264 }
0265 
0266 static ssize_t set_buffer_size_show(struct device *dev,
0267                     struct device_attribute *attr,
0268                     char *buf)
0269 {
0270     struct most_channel *c = to_channel(dev);
0271 
0272     return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.buffer_size);
0273 }
0274 
0275 static ssize_t set_direction_show(struct device *dev,
0276                   struct device_attribute *attr,
0277                   char *buf)
0278 {
0279     struct most_channel *c = to_channel(dev);
0280 
0281     if (c->cfg.direction & MOST_CH_TX)
0282         return snprintf(buf, PAGE_SIZE, "tx\n");
0283     else if (c->cfg.direction & MOST_CH_RX)
0284         return snprintf(buf, PAGE_SIZE, "rx\n");
0285     return snprintf(buf, PAGE_SIZE, "unconfigured\n");
0286 }
0287 
0288 static ssize_t set_datatype_show(struct device *dev,
0289                  struct device_attribute *attr,
0290                  char *buf)
0291 {
0292     int i;
0293     struct most_channel *c = to_channel(dev);
0294 
0295     for (i = 0; i < ARRAY_SIZE(ch_data_type); i++) {
0296         if (c->cfg.data_type & ch_data_type[i].most_ch_data_type)
0297             return snprintf(buf, PAGE_SIZE, "%s",
0298                     ch_data_type[i].name);
0299     }
0300     return snprintf(buf, PAGE_SIZE, "unconfigured\n");
0301 }
0302 
0303 static ssize_t set_subbuffer_size_show(struct device *dev,
0304                        struct device_attribute *attr,
0305                        char *buf)
0306 {
0307     struct most_channel *c = to_channel(dev);
0308 
0309     return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.subbuffer_size);
0310 }
0311 
0312 static ssize_t set_packets_per_xact_show(struct device *dev,
0313                      struct device_attribute *attr,
0314                      char *buf)
0315 {
0316     struct most_channel *c = to_channel(dev);
0317 
0318     return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.packets_per_xact);
0319 }
0320 
0321 static ssize_t set_dbr_size_show(struct device *dev,
0322                  struct device_attribute *attr, char *buf)
0323 {
0324     struct most_channel *c = to_channel(dev);
0325 
0326     return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.dbr_size);
0327 }
0328 
0329 #define to_dev_attr(a) container_of(a, struct device_attribute, attr)
0330 static umode_t channel_attr_is_visible(struct kobject *kobj,
0331                        struct attribute *attr, int index)
0332 {
0333     struct device_attribute *dev_attr = to_dev_attr(attr);
0334     struct device *dev = kobj_to_dev(kobj);
0335     struct most_channel *c = to_channel(dev);
0336 
0337     if (!strcmp(dev_attr->attr.name, "set_dbr_size") &&
0338         (c->iface->interface != ITYPE_MEDIALB_DIM2))
0339         return 0;
0340     if (!strcmp(dev_attr->attr.name, "set_packets_per_xact") &&
0341         (c->iface->interface != ITYPE_USB))
0342         return 0;
0343 
0344     return attr->mode;
0345 }
0346 
0347 #define DEV_ATTR(_name)  (&dev_attr_##_name.attr)
0348 
0349 static DEVICE_ATTR_RO(available_directions);
0350 static DEVICE_ATTR_RO(available_datatypes);
0351 static DEVICE_ATTR_RO(number_of_packet_buffers);
0352 static DEVICE_ATTR_RO(number_of_stream_buffers);
0353 static DEVICE_ATTR_RO(size_of_stream_buffer);
0354 static DEVICE_ATTR_RO(size_of_packet_buffer);
0355 static DEVICE_ATTR_RO(channel_starving);
0356 static DEVICE_ATTR_RO(set_buffer_size);
0357 static DEVICE_ATTR_RO(set_number_of_buffers);
0358 static DEVICE_ATTR_RO(set_direction);
0359 static DEVICE_ATTR_RO(set_datatype);
0360 static DEVICE_ATTR_RO(set_subbuffer_size);
0361 static DEVICE_ATTR_RO(set_packets_per_xact);
0362 static DEVICE_ATTR_RO(set_dbr_size);
0363 
0364 static struct attribute *channel_attrs[] = {
0365     DEV_ATTR(available_directions),
0366     DEV_ATTR(available_datatypes),
0367     DEV_ATTR(number_of_packet_buffers),
0368     DEV_ATTR(number_of_stream_buffers),
0369     DEV_ATTR(size_of_stream_buffer),
0370     DEV_ATTR(size_of_packet_buffer),
0371     DEV_ATTR(channel_starving),
0372     DEV_ATTR(set_buffer_size),
0373     DEV_ATTR(set_number_of_buffers),
0374     DEV_ATTR(set_direction),
0375     DEV_ATTR(set_datatype),
0376     DEV_ATTR(set_subbuffer_size),
0377     DEV_ATTR(set_packets_per_xact),
0378     DEV_ATTR(set_dbr_size),
0379     NULL,
0380 };
0381 
0382 static const struct attribute_group channel_attr_group = {
0383     .attrs = channel_attrs,
0384     .is_visible = channel_attr_is_visible,
0385 };
0386 
0387 static const struct attribute_group *channel_attr_groups[] = {
0388     &channel_attr_group,
0389     NULL,
0390 };
0391 
0392 static ssize_t description_show(struct device *dev,
0393                 struct device_attribute *attr,
0394                 char *buf)
0395 {
0396     struct most_interface *iface = dev_get_drvdata(dev);
0397 
0398     return snprintf(buf, PAGE_SIZE, "%s\n", iface->description);
0399 }
0400 
0401 static ssize_t interface_show(struct device *dev,
0402                   struct device_attribute *attr,
0403                   char *buf)
0404 {
0405     struct most_interface *iface = dev_get_drvdata(dev);
0406 
0407     switch (iface->interface) {
0408     case ITYPE_LOOPBACK:
0409         return snprintf(buf, PAGE_SIZE, "loopback\n");
0410     case ITYPE_I2C:
0411         return snprintf(buf, PAGE_SIZE, "i2c\n");
0412     case ITYPE_I2S:
0413         return snprintf(buf, PAGE_SIZE, "i2s\n");
0414     case ITYPE_TSI:
0415         return snprintf(buf, PAGE_SIZE, "tsi\n");
0416     case ITYPE_HBI:
0417         return snprintf(buf, PAGE_SIZE, "hbi\n");
0418     case ITYPE_MEDIALB_DIM:
0419         return snprintf(buf, PAGE_SIZE, "mlb_dim\n");
0420     case ITYPE_MEDIALB_DIM2:
0421         return snprintf(buf, PAGE_SIZE, "mlb_dim2\n");
0422     case ITYPE_USB:
0423         return snprintf(buf, PAGE_SIZE, "usb\n");
0424     case ITYPE_PCIE:
0425         return snprintf(buf, PAGE_SIZE, "pcie\n");
0426     }
0427     return snprintf(buf, PAGE_SIZE, "unknown\n");
0428 }
0429 
0430 static DEVICE_ATTR_RO(description);
0431 static DEVICE_ATTR_RO(interface);
0432 
0433 static struct attribute *interface_attrs[] = {
0434     DEV_ATTR(description),
0435     DEV_ATTR(interface),
0436     NULL,
0437 };
0438 
0439 static const struct attribute_group interface_attr_group = {
0440     .attrs = interface_attrs,
0441 };
0442 
0443 static const struct attribute_group *interface_attr_groups[] = {
0444     &interface_attr_group,
0445     NULL,
0446 };
0447 
0448 static struct most_component *match_component(char *name)
0449 {
0450     struct most_component *comp;
0451 
0452     list_for_each_entry(comp, &comp_list, list) {
0453         if (!strcmp(comp->name, name))
0454             return comp;
0455     }
0456     return NULL;
0457 }
0458 
0459 struct show_links_data {
0460     int offs;
0461     char *buf;
0462 };
0463 
0464 static int print_links(struct device *dev, void *data)
0465 {
0466     struct show_links_data *d = data;
0467     int offs = d->offs;
0468     char *buf = d->buf;
0469     struct most_channel *c;
0470     struct most_interface *iface = dev_get_drvdata(dev);
0471 
0472     list_for_each_entry(c, &iface->p->channel_list, list) {
0473         if (c->pipe0.comp) {
0474             offs += scnprintf(buf + offs,
0475                      PAGE_SIZE - offs,
0476                      "%s:%s:%s\n",
0477                      c->pipe0.comp->name,
0478                      dev_name(iface->dev),
0479                      dev_name(&c->dev));
0480         }
0481         if (c->pipe1.comp) {
0482             offs += scnprintf(buf + offs,
0483                      PAGE_SIZE - offs,
0484                      "%s:%s:%s\n",
0485                      c->pipe1.comp->name,
0486                      dev_name(iface->dev),
0487                      dev_name(&c->dev));
0488         }
0489     }
0490     d->offs = offs;
0491     return 0;
0492 }
0493 
0494 static int most_match(struct device *dev, struct device_driver *drv)
0495 {
0496     if (!strcmp(dev_name(dev), "most"))
0497         return 0;
0498     else
0499         return 1;
0500 }
0501 
0502 static struct bus_type mostbus = {
0503     .name = "most",
0504     .match = most_match,
0505 };
0506 
0507 static ssize_t links_show(struct device_driver *drv, char *buf)
0508 {
0509     struct show_links_data d = { .buf = buf };
0510 
0511     bus_for_each_dev(&mostbus, NULL, &d, print_links);
0512     return d.offs;
0513 }
0514 
0515 static ssize_t components_show(struct device_driver *drv, char *buf)
0516 {
0517     struct most_component *comp;
0518     int offs = 0;
0519 
0520     list_for_each_entry(comp, &comp_list, list) {
0521         offs += scnprintf(buf + offs, PAGE_SIZE - offs, "%s\n",
0522                  comp->name);
0523     }
0524     return offs;
0525 }
0526 
0527 /**
0528  * get_channel - get pointer to channel
0529  * @mdev: name of the device interface
0530  * @mdev_ch: name of channel
0531  */
0532 static struct most_channel *get_channel(char *mdev, char *mdev_ch)
0533 {
0534     struct device *dev = NULL;
0535     struct most_interface *iface;
0536     struct most_channel *c, *tmp;
0537 
0538     dev = bus_find_device_by_name(&mostbus, NULL, mdev);
0539     if (!dev)
0540         return NULL;
0541     put_device(dev);
0542     iface = dev_get_drvdata(dev);
0543     list_for_each_entry_safe(c, tmp, &iface->p->channel_list, list) {
0544         if (!strcmp(dev_name(&c->dev), mdev_ch))
0545             return c;
0546     }
0547     return NULL;
0548 }
0549 
0550 static
0551 inline int link_channel_to_component(struct most_channel *c,
0552                      struct most_component *comp,
0553                      char *name,
0554                      char *comp_param)
0555 {
0556     int ret;
0557     struct most_component **comp_ptr;
0558 
0559     if (!c->pipe0.comp)
0560         comp_ptr = &c->pipe0.comp;
0561     else if (!c->pipe1.comp)
0562         comp_ptr = &c->pipe1.comp;
0563     else
0564         return -ENOSPC;
0565 
0566     *comp_ptr = comp;
0567     ret = comp->probe_channel(c->iface, c->channel_id, &c->cfg, name,
0568                   comp_param);
0569     if (ret) {
0570         *comp_ptr = NULL;
0571         return ret;
0572     }
0573     return 0;
0574 }
0575 
0576 int most_set_cfg_buffer_size(char *mdev, char *mdev_ch, u16 val)
0577 {
0578     struct most_channel *c = get_channel(mdev, mdev_ch);
0579 
0580     if (!c)
0581         return -ENODEV;
0582     c->cfg.buffer_size = val;
0583     return 0;
0584 }
0585 
0586 int most_set_cfg_subbuffer_size(char *mdev, char *mdev_ch, u16 val)
0587 {
0588     struct most_channel *c = get_channel(mdev, mdev_ch);
0589 
0590     if (!c)
0591         return -ENODEV;
0592     c->cfg.subbuffer_size = val;
0593     return 0;
0594 }
0595 
0596 int most_set_cfg_dbr_size(char *mdev, char *mdev_ch, u16 val)
0597 {
0598     struct most_channel *c = get_channel(mdev, mdev_ch);
0599 
0600     if (!c)
0601         return -ENODEV;
0602     c->cfg.dbr_size = val;
0603     return 0;
0604 }
0605 
0606 int most_set_cfg_num_buffers(char *mdev, char *mdev_ch, u16 val)
0607 {
0608     struct most_channel *c = get_channel(mdev, mdev_ch);
0609 
0610     if (!c)
0611         return -ENODEV;
0612     c->cfg.num_buffers = val;
0613     return 0;
0614 }
0615 
0616 int most_set_cfg_datatype(char *mdev, char *mdev_ch, char *buf)
0617 {
0618     int i;
0619     struct most_channel *c = get_channel(mdev, mdev_ch);
0620 
0621     if (!c)
0622         return -ENODEV;
0623     for (i = 0; i < ARRAY_SIZE(ch_data_type); i++) {
0624         if (!strcmp(buf, ch_data_type[i].name)) {
0625             c->cfg.data_type = ch_data_type[i].most_ch_data_type;
0626             break;
0627         }
0628     }
0629 
0630     if (i == ARRAY_SIZE(ch_data_type))
0631         dev_warn(&c->dev, "Invalid attribute settings\n");
0632     return 0;
0633 }
0634 
0635 int most_set_cfg_direction(char *mdev, char *mdev_ch, char *buf)
0636 {
0637     struct most_channel *c = get_channel(mdev, mdev_ch);
0638 
0639     if (!c)
0640         return -ENODEV;
0641     if (!strcmp(buf, "dir_rx")) {
0642         c->cfg.direction = MOST_CH_RX;
0643     } else if (!strcmp(buf, "rx")) {
0644         c->cfg.direction = MOST_CH_RX;
0645     } else if (!strcmp(buf, "dir_tx")) {
0646         c->cfg.direction = MOST_CH_TX;
0647     } else if (!strcmp(buf, "tx")) {
0648         c->cfg.direction = MOST_CH_TX;
0649     } else {
0650         dev_err(&c->dev, "Invalid direction\n");
0651         return -ENODATA;
0652     }
0653     return 0;
0654 }
0655 
0656 int most_set_cfg_packets_xact(char *mdev, char *mdev_ch, u16 val)
0657 {
0658     struct most_channel *c = get_channel(mdev, mdev_ch);
0659 
0660     if (!c)
0661         return -ENODEV;
0662     c->cfg.packets_per_xact = val;
0663     return 0;
0664 }
0665 
0666 int most_cfg_complete(char *comp_name)
0667 {
0668     struct most_component *comp;
0669 
0670     comp = match_component(comp_name);
0671     if (!comp)
0672         return -ENODEV;
0673 
0674     return comp->cfg_complete();
0675 }
0676 
0677 int most_add_link(char *mdev, char *mdev_ch, char *comp_name, char *link_name,
0678           char *comp_param)
0679 {
0680     struct most_channel *c = get_channel(mdev, mdev_ch);
0681     struct most_component *comp = match_component(comp_name);
0682 
0683     if (!c || !comp)
0684         return -ENODEV;
0685 
0686     return link_channel_to_component(c, comp, link_name, comp_param);
0687 }
0688 
0689 int most_remove_link(char *mdev, char *mdev_ch, char *comp_name)
0690 {
0691     struct most_channel *c;
0692     struct most_component *comp;
0693 
0694     comp = match_component(comp_name);
0695     if (!comp)
0696         return -ENODEV;
0697     c = get_channel(mdev, mdev_ch);
0698     if (!c)
0699         return -ENODEV;
0700 
0701     if (comp->disconnect_channel(c->iface, c->channel_id))
0702         return -EIO;
0703     if (c->pipe0.comp == comp)
0704         c->pipe0.comp = NULL;
0705     if (c->pipe1.comp == comp)
0706         c->pipe1.comp = NULL;
0707     return 0;
0708 }
0709 
0710 #define DRV_ATTR(_name)  (&driver_attr_##_name.attr)
0711 
0712 static DRIVER_ATTR_RO(links);
0713 static DRIVER_ATTR_RO(components);
0714 
0715 static struct attribute *mc_attrs[] = {
0716     DRV_ATTR(links),
0717     DRV_ATTR(components),
0718     NULL,
0719 };
0720 
0721 static const struct attribute_group mc_attr_group = {
0722     .attrs = mc_attrs,
0723 };
0724 
0725 static const struct attribute_group *mc_attr_groups[] = {
0726     &mc_attr_group,
0727     NULL,
0728 };
0729 
0730 static struct device_driver mostbus_driver = {
0731     .name = "most_core",
0732     .bus = &mostbus,
0733     .groups = mc_attr_groups,
0734 };
0735 
0736 static inline void trash_mbo(struct mbo *mbo)
0737 {
0738     unsigned long flags;
0739     struct most_channel *c = mbo->context;
0740 
0741     spin_lock_irqsave(&c->fifo_lock, flags);
0742     list_add(&mbo->list, &c->trash_fifo);
0743     spin_unlock_irqrestore(&c->fifo_lock, flags);
0744 }
0745 
0746 static bool hdm_mbo_ready(struct most_channel *c)
0747 {
0748     bool empty;
0749 
0750     if (c->enqueue_halt)
0751         return false;
0752 
0753     spin_lock_irq(&c->fifo_lock);
0754     empty = list_empty(&c->halt_fifo);
0755     spin_unlock_irq(&c->fifo_lock);
0756 
0757     return !empty;
0758 }
0759 
0760 static void nq_hdm_mbo(struct mbo *mbo)
0761 {
0762     unsigned long flags;
0763     struct most_channel *c = mbo->context;
0764 
0765     spin_lock_irqsave(&c->fifo_lock, flags);
0766     list_add_tail(&mbo->list, &c->halt_fifo);
0767     spin_unlock_irqrestore(&c->fifo_lock, flags);
0768     wake_up_interruptible(&c->hdm_fifo_wq);
0769 }
0770 
0771 static int hdm_enqueue_thread(void *data)
0772 {
0773     struct most_channel *c = data;
0774     struct mbo *mbo;
0775     int ret;
0776     typeof(c->iface->enqueue) enqueue = c->iface->enqueue;
0777 
0778     while (likely(!kthread_should_stop())) {
0779         wait_event_interruptible(c->hdm_fifo_wq,
0780                      hdm_mbo_ready(c) ||
0781                      kthread_should_stop());
0782 
0783         mutex_lock(&c->nq_mutex);
0784         spin_lock_irq(&c->fifo_lock);
0785         if (unlikely(c->enqueue_halt || list_empty(&c->halt_fifo))) {
0786             spin_unlock_irq(&c->fifo_lock);
0787             mutex_unlock(&c->nq_mutex);
0788             continue;
0789         }
0790 
0791         mbo = list_pop_mbo(&c->halt_fifo);
0792         spin_unlock_irq(&c->fifo_lock);
0793 
0794         if (c->cfg.direction == MOST_CH_RX)
0795             mbo->buffer_length = c->cfg.buffer_size;
0796 
0797         ret = enqueue(mbo->ifp, mbo->hdm_channel_id, mbo);
0798         mutex_unlock(&c->nq_mutex);
0799 
0800         if (unlikely(ret)) {
0801             dev_err(&c->dev, "Buffer enqueue failed\n");
0802             nq_hdm_mbo(mbo);
0803             c->hdm_enqueue_task = NULL;
0804             return 0;
0805         }
0806     }
0807 
0808     return 0;
0809 }
0810 
0811 static int run_enqueue_thread(struct most_channel *c, int channel_id)
0812 {
0813     struct task_struct *task =
0814         kthread_run(hdm_enqueue_thread, c, "hdm_fifo_%d",
0815                 channel_id);
0816 
0817     if (IS_ERR(task))
0818         return PTR_ERR(task);
0819 
0820     c->hdm_enqueue_task = task;
0821     return 0;
0822 }
0823 
0824 /**
0825  * arm_mbo - recycle MBO for further usage
0826  * @mbo: most buffer
0827  *
0828  * This puts an MBO back to the list to have it ready for up coming
0829  * tx transactions.
0830  *
0831  * In case the MBO belongs to a channel that recently has been
0832  * poisoned, the MBO is scheduled to be trashed.
0833  * Calls the completion handler of an attached component.
0834  */
0835 static void arm_mbo(struct mbo *mbo)
0836 {
0837     unsigned long flags;
0838     struct most_channel *c;
0839 
0840     c = mbo->context;
0841 
0842     if (c->is_poisoned) {
0843         trash_mbo(mbo);
0844         return;
0845     }
0846 
0847     spin_lock_irqsave(&c->fifo_lock, flags);
0848     ++*mbo->num_buffers_ptr;
0849     list_add_tail(&mbo->list, &c->fifo);
0850     spin_unlock_irqrestore(&c->fifo_lock, flags);
0851 
0852     if (c->pipe0.refs && c->pipe0.comp->tx_completion)
0853         c->pipe0.comp->tx_completion(c->iface, c->channel_id);
0854 
0855     if (c->pipe1.refs && c->pipe1.comp->tx_completion)
0856         c->pipe1.comp->tx_completion(c->iface, c->channel_id);
0857 }
0858 
0859 /**
0860  * arm_mbo_chain - helper function that arms an MBO chain for the HDM
0861  * @c: pointer to interface channel
0862  * @dir: direction of the channel
0863  * @compl: pointer to completion function
0864  *
0865  * This allocates buffer objects including the containing DMA coherent
0866  * buffer and puts them in the fifo.
0867  * Buffers of Rx channels are put in the kthread fifo, hence immediately
0868  * submitted to the HDM.
0869  *
0870  * Returns the number of allocated and enqueued MBOs.
0871  */
0872 static int arm_mbo_chain(struct most_channel *c, int dir,
0873              void (*compl)(struct mbo *))
0874 {
0875     unsigned int i;
0876     struct mbo *mbo;
0877     unsigned long flags;
0878     u32 coherent_buf_size = c->cfg.buffer_size + c->cfg.extra_len;
0879 
0880     atomic_set(&c->mbo_nq_level, 0);
0881 
0882     for (i = 0; i < c->cfg.num_buffers; i++) {
0883         mbo = kzalloc(sizeof(*mbo), GFP_KERNEL);
0884         if (!mbo)
0885             goto flush_fifos;
0886 
0887         mbo->context = c;
0888         mbo->ifp = c->iface;
0889         mbo->hdm_channel_id = c->channel_id;
0890         if (c->iface->dma_alloc) {
0891             mbo->virt_address =
0892                 c->iface->dma_alloc(mbo, coherent_buf_size);
0893         } else {
0894             mbo->virt_address =
0895                 kzalloc(coherent_buf_size, GFP_KERNEL);
0896         }
0897         if (!mbo->virt_address)
0898             goto release_mbo;
0899 
0900         mbo->complete = compl;
0901         mbo->num_buffers_ptr = &dummy_num_buffers;
0902         if (dir == MOST_CH_RX) {
0903             nq_hdm_mbo(mbo);
0904             atomic_inc(&c->mbo_nq_level);
0905         } else {
0906             spin_lock_irqsave(&c->fifo_lock, flags);
0907             list_add_tail(&mbo->list, &c->fifo);
0908             spin_unlock_irqrestore(&c->fifo_lock, flags);
0909         }
0910     }
0911     return c->cfg.num_buffers;
0912 
0913 release_mbo:
0914     kfree(mbo);
0915 
0916 flush_fifos:
0917     flush_channel_fifos(c);
0918     return 0;
0919 }
0920 
0921 /**
0922  * most_submit_mbo - submits an MBO to fifo
0923  * @mbo: most buffer
0924  */
0925 void most_submit_mbo(struct mbo *mbo)
0926 {
0927     if (WARN_ONCE(!mbo || !mbo->context,
0928               "Bad buffer or missing channel reference\n"))
0929         return;
0930 
0931     nq_hdm_mbo(mbo);
0932 }
0933 EXPORT_SYMBOL_GPL(most_submit_mbo);
0934 
0935 /**
0936  * most_write_completion - write completion handler
0937  * @mbo: most buffer
0938  *
0939  * This recycles the MBO for further usage. In case the channel has been
0940  * poisoned, the MBO is scheduled to be trashed.
0941  */
0942 static void most_write_completion(struct mbo *mbo)
0943 {
0944     struct most_channel *c;
0945 
0946     c = mbo->context;
0947     if (unlikely(c->is_poisoned || (mbo->status == MBO_E_CLOSE)))
0948         trash_mbo(mbo);
0949     else
0950         arm_mbo(mbo);
0951 }
0952 
0953 int channel_has_mbo(struct most_interface *iface, int id,
0954             struct most_component *comp)
0955 {
0956     struct most_channel *c = iface->p->channel[id];
0957     unsigned long flags;
0958     int empty;
0959 
0960     if (unlikely(!c))
0961         return -EINVAL;
0962 
0963     if (c->pipe0.refs && c->pipe1.refs &&
0964         ((comp == c->pipe0.comp && c->pipe0.num_buffers <= 0) ||
0965          (comp == c->pipe1.comp && c->pipe1.num_buffers <= 0)))
0966         return 0;
0967 
0968     spin_lock_irqsave(&c->fifo_lock, flags);
0969     empty = list_empty(&c->fifo);
0970     spin_unlock_irqrestore(&c->fifo_lock, flags);
0971     return !empty;
0972 }
0973 EXPORT_SYMBOL_GPL(channel_has_mbo);
0974 
0975 /**
0976  * most_get_mbo - get pointer to an MBO of pool
0977  * @iface: pointer to interface instance
0978  * @id: channel ID
0979  * @comp: driver component
0980  *
0981  * This attempts to get a free buffer out of the channel fifo.
0982  * Returns a pointer to MBO on success or NULL otherwise.
0983  */
0984 struct mbo *most_get_mbo(struct most_interface *iface, int id,
0985              struct most_component *comp)
0986 {
0987     struct mbo *mbo;
0988     struct most_channel *c;
0989     unsigned long flags;
0990     int *num_buffers_ptr;
0991 
0992     c = iface->p->channel[id];
0993     if (unlikely(!c))
0994         return NULL;
0995 
0996     if (c->pipe0.refs && c->pipe1.refs &&
0997         ((comp == c->pipe0.comp && c->pipe0.num_buffers <= 0) ||
0998          (comp == c->pipe1.comp && c->pipe1.num_buffers <= 0)))
0999         return NULL;
1000 
1001     if (comp == c->pipe0.comp)
1002         num_buffers_ptr = &c->pipe0.num_buffers;
1003     else if (comp == c->pipe1.comp)
1004         num_buffers_ptr = &c->pipe1.num_buffers;
1005     else
1006         num_buffers_ptr = &dummy_num_buffers;
1007 
1008     spin_lock_irqsave(&c->fifo_lock, flags);
1009     if (list_empty(&c->fifo)) {
1010         spin_unlock_irqrestore(&c->fifo_lock, flags);
1011         return NULL;
1012     }
1013     mbo = list_pop_mbo(&c->fifo);
1014     --*num_buffers_ptr;
1015     spin_unlock_irqrestore(&c->fifo_lock, flags);
1016 
1017     mbo->num_buffers_ptr = num_buffers_ptr;
1018     mbo->buffer_length = c->cfg.buffer_size;
1019     return mbo;
1020 }
1021 EXPORT_SYMBOL_GPL(most_get_mbo);
1022 
1023 /**
1024  * most_put_mbo - return buffer to pool
1025  * @mbo: most buffer
1026  */
1027 void most_put_mbo(struct mbo *mbo)
1028 {
1029     struct most_channel *c = mbo->context;
1030 
1031     if (c->cfg.direction == MOST_CH_TX) {
1032         arm_mbo(mbo);
1033         return;
1034     }
1035     nq_hdm_mbo(mbo);
1036     atomic_inc(&c->mbo_nq_level);
1037 }
1038 EXPORT_SYMBOL_GPL(most_put_mbo);
1039 
1040 /**
1041  * most_read_completion - read completion handler
1042  * @mbo: most buffer
1043  *
1044  * This function is called by the HDM when data has been received from the
1045  * hardware and copied to the buffer of the MBO.
1046  *
1047  * In case the channel has been poisoned it puts the buffer in the trash queue.
1048  * Otherwise, it passes the buffer to an component for further processing.
1049  */
1050 static void most_read_completion(struct mbo *mbo)
1051 {
1052     struct most_channel *c = mbo->context;
1053 
1054     if (unlikely(c->is_poisoned || (mbo->status == MBO_E_CLOSE))) {
1055         trash_mbo(mbo);
1056         return;
1057     }
1058 
1059     if (mbo->status == MBO_E_INVAL) {
1060         nq_hdm_mbo(mbo);
1061         atomic_inc(&c->mbo_nq_level);
1062         return;
1063     }
1064 
1065     if (atomic_sub_and_test(1, &c->mbo_nq_level))
1066         c->is_starving = 1;
1067 
1068     if (c->pipe0.refs && c->pipe0.comp->rx_completion &&
1069         c->pipe0.comp->rx_completion(mbo) == 0)
1070         return;
1071 
1072     if (c->pipe1.refs && c->pipe1.comp->rx_completion &&
1073         c->pipe1.comp->rx_completion(mbo) == 0)
1074         return;
1075 
1076     most_put_mbo(mbo);
1077 }
1078 
1079 /**
1080  * most_start_channel - prepares a channel for communication
1081  * @iface: pointer to interface instance
1082  * @id: channel ID
1083  * @comp: driver component
1084  *
1085  * This prepares the channel for usage. Cross-checks whether the
1086  * channel's been properly configured.
1087  *
1088  * Returns 0 on success or error code otherwise.
1089  */
1090 int most_start_channel(struct most_interface *iface, int id,
1091                struct most_component *comp)
1092 {
1093     int num_buffer;
1094     int ret;
1095     struct most_channel *c = iface->p->channel[id];
1096 
1097     if (unlikely(!c))
1098         return -EINVAL;
1099 
1100     mutex_lock(&c->start_mutex);
1101     if (c->pipe0.refs + c->pipe1.refs > 0)
1102         goto out; /* already started by another component */
1103 
1104     if (!try_module_get(iface->mod)) {
1105         dev_err(&c->dev, "Failed to acquire HDM lock\n");
1106         mutex_unlock(&c->start_mutex);
1107         return -ENOLCK;
1108     }
1109 
1110     c->cfg.extra_len = 0;
1111     if (c->iface->configure(c->iface, c->channel_id, &c->cfg)) {
1112         dev_err(&c->dev, "Channel configuration failed. Go check settings...\n");
1113         ret = -EINVAL;
1114         goto err_put_module;
1115     }
1116 
1117     init_waitqueue_head(&c->hdm_fifo_wq);
1118 
1119     if (c->cfg.direction == MOST_CH_RX)
1120         num_buffer = arm_mbo_chain(c, c->cfg.direction,
1121                        most_read_completion);
1122     else
1123         num_buffer = arm_mbo_chain(c, c->cfg.direction,
1124                        most_write_completion);
1125     if (unlikely(!num_buffer)) {
1126         ret = -ENOMEM;
1127         goto err_put_module;
1128     }
1129 
1130     ret = run_enqueue_thread(c, id);
1131     if (ret)
1132         goto err_put_module;
1133 
1134     c->is_starving = 0;
1135     c->pipe0.num_buffers = c->cfg.num_buffers / 2;
1136     c->pipe1.num_buffers = c->cfg.num_buffers - c->pipe0.num_buffers;
1137     atomic_set(&c->mbo_ref, num_buffer);
1138 
1139 out:
1140     if (comp == c->pipe0.comp)
1141         c->pipe0.refs++;
1142     if (comp == c->pipe1.comp)
1143         c->pipe1.refs++;
1144     mutex_unlock(&c->start_mutex);
1145     return 0;
1146 
1147 err_put_module:
1148     module_put(iface->mod);
1149     mutex_unlock(&c->start_mutex);
1150     return ret;
1151 }
1152 EXPORT_SYMBOL_GPL(most_start_channel);
1153 
1154 /**
1155  * most_stop_channel - stops a running channel
1156  * @iface: pointer to interface instance
1157  * @id: channel ID
1158  * @comp: driver component
1159  */
1160 int most_stop_channel(struct most_interface *iface, int id,
1161               struct most_component *comp)
1162 {
1163     struct most_channel *c;
1164 
1165     if (unlikely((!iface) || (id >= iface->num_channels) || (id < 0))) {
1166         pr_err("Bad interface or index out of range\n");
1167         return -EINVAL;
1168     }
1169     c = iface->p->channel[id];
1170     if (unlikely(!c))
1171         return -EINVAL;
1172 
1173     mutex_lock(&c->start_mutex);
1174     if (c->pipe0.refs + c->pipe1.refs >= 2)
1175         goto out;
1176 
1177     if (c->hdm_enqueue_task)
1178         kthread_stop(c->hdm_enqueue_task);
1179     c->hdm_enqueue_task = NULL;
1180 
1181     if (iface->mod)
1182         module_put(iface->mod);
1183 
1184     c->is_poisoned = true;
1185     if (c->iface->poison_channel(c->iface, c->channel_id)) {
1186         dev_err(&c->dev, "Failed to stop channel %d of interface %s\n", c->channel_id,
1187             c->iface->description);
1188         mutex_unlock(&c->start_mutex);
1189         return -EAGAIN;
1190     }
1191     flush_trash_fifo(c);
1192     flush_channel_fifos(c);
1193 
1194 #ifdef CMPL_INTERRUPTIBLE
1195     if (wait_for_completion_interruptible(&c->cleanup)) {
1196         dev_err(&c->dev, "Interrupted while cleaning up channel %d\n", c->channel_id);
1197         mutex_unlock(&c->start_mutex);
1198         return -EINTR;
1199     }
1200 #else
1201     wait_for_completion(&c->cleanup);
1202 #endif
1203     c->is_poisoned = false;
1204 
1205 out:
1206     if (comp == c->pipe0.comp)
1207         c->pipe0.refs--;
1208     if (comp == c->pipe1.comp)
1209         c->pipe1.refs--;
1210     mutex_unlock(&c->start_mutex);
1211     return 0;
1212 }
1213 EXPORT_SYMBOL_GPL(most_stop_channel);
1214 
1215 /**
1216  * most_register_component - registers a driver component with the core
1217  * @comp: driver component
1218  */
1219 int most_register_component(struct most_component *comp)
1220 {
1221     if (!comp) {
1222         pr_err("Bad component\n");
1223         return -EINVAL;
1224     }
1225     list_add_tail(&comp->list, &comp_list);
1226     return 0;
1227 }
1228 EXPORT_SYMBOL_GPL(most_register_component);
1229 
1230 static int disconnect_channels(struct device *dev, void *data)
1231 {
1232     struct most_interface *iface;
1233     struct most_channel *c, *tmp;
1234     struct most_component *comp = data;
1235 
1236     iface = dev_get_drvdata(dev);
1237     list_for_each_entry_safe(c, tmp, &iface->p->channel_list, list) {
1238         if (c->pipe0.comp == comp || c->pipe1.comp == comp)
1239             comp->disconnect_channel(c->iface, c->channel_id);
1240         if (c->pipe0.comp == comp)
1241             c->pipe0.comp = NULL;
1242         if (c->pipe1.comp == comp)
1243             c->pipe1.comp = NULL;
1244     }
1245     return 0;
1246 }
1247 
1248 /**
1249  * most_deregister_component - deregisters a driver component with the core
1250  * @comp: driver component
1251  */
1252 int most_deregister_component(struct most_component *comp)
1253 {
1254     if (!comp) {
1255         pr_err("Bad component\n");
1256         return -EINVAL;
1257     }
1258 
1259     bus_for_each_dev(&mostbus, NULL, comp, disconnect_channels);
1260     list_del(&comp->list);
1261     return 0;
1262 }
1263 EXPORT_SYMBOL_GPL(most_deregister_component);
1264 
1265 static void release_channel(struct device *dev)
1266 {
1267     struct most_channel *c = to_channel(dev);
1268 
1269     kfree(c);
1270 }
1271 
1272 /**
1273  * most_register_interface - registers an interface with core
1274  * @iface: device interface
1275  *
1276  * Allocates and initializes a new interface instance and all of its channels.
1277  * Returns a pointer to kobject or an error pointer.
1278  */
1279 int most_register_interface(struct most_interface *iface)
1280 {
1281     unsigned int i;
1282     int id;
1283     struct most_channel *c;
1284 
1285     if (!iface || !iface->enqueue || !iface->configure ||
1286         !iface->poison_channel || (iface->num_channels > MAX_CHANNELS))
1287         return -EINVAL;
1288 
1289     id = ida_simple_get(&mdev_id, 0, 0, GFP_KERNEL);
1290     if (id < 0) {
1291         dev_err(iface->dev, "Failed to allocate device ID\n");
1292         return id;
1293     }
1294 
1295     iface->p = kzalloc(sizeof(*iface->p), GFP_KERNEL);
1296     if (!iface->p) {
1297         ida_simple_remove(&mdev_id, id);
1298         return -ENOMEM;
1299     }
1300 
1301     INIT_LIST_HEAD(&iface->p->channel_list);
1302     iface->p->dev_id = id;
1303     strscpy(iface->p->name, iface->description, sizeof(iface->p->name));
1304     iface->dev->bus = &mostbus;
1305     iface->dev->groups = interface_attr_groups;
1306     dev_set_drvdata(iface->dev, iface);
1307     if (device_register(iface->dev)) {
1308         dev_err(iface->dev, "Failed to register interface device\n");
1309         kfree(iface->p);
1310         put_device(iface->dev);
1311         ida_simple_remove(&mdev_id, id);
1312         return -ENOMEM;
1313     }
1314 
1315     for (i = 0; i < iface->num_channels; i++) {
1316         const char *name_suffix = iface->channel_vector[i].name_suffix;
1317 
1318         c = kzalloc(sizeof(*c), GFP_KERNEL);
1319         if (!c)
1320             goto err_free_resources;
1321         if (!name_suffix)
1322             snprintf(c->name, STRING_SIZE, "ch%d", i);
1323         else
1324             snprintf(c->name, STRING_SIZE, "%s", name_suffix);
1325         c->dev.init_name = c->name;
1326         c->dev.parent = iface->dev;
1327         c->dev.groups = channel_attr_groups;
1328         c->dev.release = release_channel;
1329         iface->p->channel[i] = c;
1330         c->is_starving = 0;
1331         c->iface = iface;
1332         c->channel_id = i;
1333         c->keep_mbo = false;
1334         c->enqueue_halt = false;
1335         c->is_poisoned = false;
1336         c->cfg.direction = 0;
1337         c->cfg.data_type = 0;
1338         c->cfg.num_buffers = 0;
1339         c->cfg.buffer_size = 0;
1340         c->cfg.subbuffer_size = 0;
1341         c->cfg.packets_per_xact = 0;
1342         spin_lock_init(&c->fifo_lock);
1343         INIT_LIST_HEAD(&c->fifo);
1344         INIT_LIST_HEAD(&c->trash_fifo);
1345         INIT_LIST_HEAD(&c->halt_fifo);
1346         init_completion(&c->cleanup);
1347         atomic_set(&c->mbo_ref, 0);
1348         mutex_init(&c->start_mutex);
1349         mutex_init(&c->nq_mutex);
1350         list_add_tail(&c->list, &iface->p->channel_list);
1351         if (device_register(&c->dev)) {
1352             dev_err(&c->dev, "Failed to register channel device\n");
1353             goto err_free_most_channel;
1354         }
1355     }
1356     most_interface_register_notify(iface->description);
1357     return 0;
1358 
1359 err_free_most_channel:
1360     put_device(&c->dev);
1361 
1362 err_free_resources:
1363     while (i > 0) {
1364         c = iface->p->channel[--i];
1365         device_unregister(&c->dev);
1366     }
1367     kfree(iface->p);
1368     device_unregister(iface->dev);
1369     ida_simple_remove(&mdev_id, id);
1370     return -ENOMEM;
1371 }
1372 EXPORT_SYMBOL_GPL(most_register_interface);
1373 
1374 /**
1375  * most_deregister_interface - deregisters an interface with core
1376  * @iface: device interface
1377  *
1378  * Before removing an interface instance from the list, all running
1379  * channels are stopped and poisoned.
1380  */
1381 void most_deregister_interface(struct most_interface *iface)
1382 {
1383     int i;
1384     struct most_channel *c;
1385 
1386     for (i = 0; i < iface->num_channels; i++) {
1387         c = iface->p->channel[i];
1388         if (c->pipe0.comp)
1389             c->pipe0.comp->disconnect_channel(c->iface,
1390                             c->channel_id);
1391         if (c->pipe1.comp)
1392             c->pipe1.comp->disconnect_channel(c->iface,
1393                             c->channel_id);
1394         c->pipe0.comp = NULL;
1395         c->pipe1.comp = NULL;
1396         list_del(&c->list);
1397         device_unregister(&c->dev);
1398     }
1399 
1400     ida_simple_remove(&mdev_id, iface->p->dev_id);
1401     kfree(iface->p);
1402     device_unregister(iface->dev);
1403 }
1404 EXPORT_SYMBOL_GPL(most_deregister_interface);
1405 
1406 /**
1407  * most_stop_enqueue - prevents core from enqueueing MBOs
1408  * @iface: pointer to interface
1409  * @id: channel id
1410  *
1411  * This is called by an HDM that _cannot_ attend to its duties and
1412  * is imminent to get run over by the core. The core is not going to
1413  * enqueue any further packets unless the flagging HDM calls
1414  * most_resume enqueue().
1415  */
1416 void most_stop_enqueue(struct most_interface *iface, int id)
1417 {
1418     struct most_channel *c = iface->p->channel[id];
1419 
1420     if (!c)
1421         return;
1422 
1423     mutex_lock(&c->nq_mutex);
1424     c->enqueue_halt = true;
1425     mutex_unlock(&c->nq_mutex);
1426 }
1427 EXPORT_SYMBOL_GPL(most_stop_enqueue);
1428 
1429 /**
1430  * most_resume_enqueue - allow core to enqueue MBOs again
1431  * @iface: pointer to interface
1432  * @id: channel id
1433  *
1434  * This clears the enqueue halt flag and enqueues all MBOs currently
1435  * sitting in the wait fifo.
1436  */
1437 void most_resume_enqueue(struct most_interface *iface, int id)
1438 {
1439     struct most_channel *c = iface->p->channel[id];
1440 
1441     if (!c)
1442         return;
1443 
1444     mutex_lock(&c->nq_mutex);
1445     c->enqueue_halt = false;
1446     mutex_unlock(&c->nq_mutex);
1447 
1448     wake_up_interruptible(&c->hdm_fifo_wq);
1449 }
1450 EXPORT_SYMBOL_GPL(most_resume_enqueue);
1451 
1452 static int __init most_init(void)
1453 {
1454     int err;
1455 
1456     INIT_LIST_HEAD(&comp_list);
1457     ida_init(&mdev_id);
1458 
1459     err = bus_register(&mostbus);
1460     if (err) {
1461         pr_err("Failed to register most bus\n");
1462         return err;
1463     }
1464     err = driver_register(&mostbus_driver);
1465     if (err) {
1466         pr_err("Failed to register core driver\n");
1467         goto err_unregister_bus;
1468     }
1469     configfs_init();
1470     return 0;
1471 
1472 err_unregister_bus:
1473     bus_unregister(&mostbus);
1474     return err;
1475 }
1476 
1477 static void __exit most_exit(void)
1478 {
1479     driver_unregister(&mostbus_driver);
1480     bus_unregister(&mostbus);
1481     ida_destroy(&mdev_id);
1482 }
1483 
1484 subsys_initcall(most_init);
1485 module_exit(most_exit);
1486 MODULE_LICENSE("GPL");
1487 MODULE_AUTHOR("Christian Gromm <christian.gromm@microchip.com>");
1488 MODULE_DESCRIPTION("Core module of stacked MOST Linux driver");