Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
0004  *
0005  * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
0006  */
0007 
0008 #include <linux/module.h>
0009 #include <linux/of_device.h>
0010 #include <linux/delay.h>
0011 #include <linux/mmc/mmc.h>
0012 #include <linux/pm_runtime.h>
0013 #include <linux/pm_opp.h>
0014 #include <linux/slab.h>
0015 #include <linux/iopoll.h>
0016 #include <linux/qcom_scm.h>
0017 #include <linux/regulator/consumer.h>
0018 #include <linux/interconnect.h>
0019 #include <linux/pinctrl/consumer.h>
0020 #include <linux/reset.h>
0021 
0022 #include "sdhci-pltfm.h"
0023 #include "cqhci.h"
0024 
0025 #define CORE_MCI_VERSION        0x50
0026 #define CORE_VERSION_MAJOR_SHIFT    28
0027 #define CORE_VERSION_MAJOR_MASK     (0xf << CORE_VERSION_MAJOR_SHIFT)
0028 #define CORE_VERSION_MINOR_MASK     0xff
0029 
0030 #define CORE_MCI_GENERICS       0x70
0031 #define SWITCHABLE_SIGNALING_VOLTAGE    BIT(29)
0032 
0033 #define HC_MODE_EN      0x1
0034 #define CORE_POWER      0x0
0035 #define CORE_SW_RST     BIT(7)
0036 #define FF_CLK_SW_RST_DIS   BIT(13)
0037 
0038 #define CORE_PWRCTL_BUS_OFF BIT(0)
0039 #define CORE_PWRCTL_BUS_ON  BIT(1)
0040 #define CORE_PWRCTL_IO_LOW  BIT(2)
0041 #define CORE_PWRCTL_IO_HIGH BIT(3)
0042 #define CORE_PWRCTL_BUS_SUCCESS BIT(0)
0043 #define CORE_PWRCTL_BUS_FAIL    BIT(1)
0044 #define CORE_PWRCTL_IO_SUCCESS  BIT(2)
0045 #define CORE_PWRCTL_IO_FAIL     BIT(3)
0046 #define REQ_BUS_OFF     BIT(0)
0047 #define REQ_BUS_ON      BIT(1)
0048 #define REQ_IO_LOW      BIT(2)
0049 #define REQ_IO_HIGH     BIT(3)
0050 #define INT_MASK        0xf
0051 #define MAX_PHASES      16
0052 #define CORE_DLL_LOCK       BIT(7)
0053 #define CORE_DDR_DLL_LOCK   BIT(11)
0054 #define CORE_DLL_EN     BIT(16)
0055 #define CORE_CDR_EN     BIT(17)
0056 #define CORE_CK_OUT_EN      BIT(18)
0057 #define CORE_CDR_EXT_EN     BIT(19)
0058 #define CORE_DLL_PDN        BIT(29)
0059 #define CORE_DLL_RST        BIT(30)
0060 #define CORE_CMD_DAT_TRACK_SEL  BIT(0)
0061 
0062 #define CORE_DDR_CAL_EN     BIT(0)
0063 #define CORE_FLL_CYCLE_CNT  BIT(18)
0064 #define CORE_DLL_CLOCK_DISABLE  BIT(21)
0065 
0066 #define DLL_USR_CTL_POR_VAL 0x10800
0067 #define ENABLE_DLL_LOCK_STATUS  BIT(26)
0068 #define FINE_TUNE_MODE_EN   BIT(27)
0069 #define BIAS_OK_SIGNAL      BIT(29)
0070 
0071 #define DLL_CONFIG_3_LOW_FREQ_VAL   0x08
0072 #define DLL_CONFIG_3_HIGH_FREQ_VAL  0x10
0073 
0074 #define CORE_VENDOR_SPEC_POR_VAL 0xa9c
0075 #define CORE_CLK_PWRSAVE    BIT(1)
0076 #define CORE_HC_MCLK_SEL_DFLT   (2 << 8)
0077 #define CORE_HC_MCLK_SEL_HS400  (3 << 8)
0078 #define CORE_HC_MCLK_SEL_MASK   (3 << 8)
0079 #define CORE_IO_PAD_PWR_SWITCH_EN   BIT(15)
0080 #define CORE_IO_PAD_PWR_SWITCH  BIT(16)
0081 #define CORE_HC_SELECT_IN_EN    BIT(18)
0082 #define CORE_HC_SELECT_IN_HS400 (6 << 19)
0083 #define CORE_HC_SELECT_IN_MASK  (7 << 19)
0084 
0085 #define CORE_3_0V_SUPPORT   BIT(25)
0086 #define CORE_1_8V_SUPPORT   BIT(26)
0087 #define CORE_VOLT_SUPPORT   (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
0088 
0089 #define CORE_CSR_CDC_CTLR_CFG0      0x130
0090 #define CORE_SW_TRIG_FULL_CALIB     BIT(16)
0091 #define CORE_HW_AUTOCAL_ENA     BIT(17)
0092 
0093 #define CORE_CSR_CDC_CTLR_CFG1      0x134
0094 #define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138
0095 #define CORE_TIMER_ENA          BIT(16)
0096 
0097 #define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C
0098 #define CORE_CSR_CDC_REFCOUNT_CFG   0x140
0099 #define CORE_CSR_CDC_COARSE_CAL_CFG 0x144
0100 #define CORE_CDC_OFFSET_CFG     0x14C
0101 #define CORE_CSR_CDC_DELAY_CFG      0x150
0102 #define CORE_CDC_SLAVE_DDA_CFG      0x160
0103 #define CORE_CSR_CDC_STATUS0        0x164
0104 #define CORE_CALIBRATION_DONE       BIT(0)
0105 
0106 #define CORE_CDC_ERROR_CODE_MASK    0x7000000
0107 
0108 #define CORE_CSR_CDC_GEN_CFG        0x178
0109 #define CORE_CDC_SWITCH_BYPASS_OFF  BIT(0)
0110 #define CORE_CDC_SWITCH_RC_EN       BIT(1)
0111 
0112 #define CORE_CDC_T4_DLY_SEL     BIT(0)
0113 #define CORE_CMDIN_RCLK_EN      BIT(1)
0114 #define CORE_START_CDC_TRAFFIC      BIT(6)
0115 
0116 #define CORE_PWRSAVE_DLL    BIT(3)
0117 
0118 #define DDR_CONFIG_POR_VAL  0x80040873
0119 
0120 
0121 #define INVALID_TUNING_PHASE    -1
0122 #define SDHCI_MSM_MIN_CLOCK 400000
0123 #define CORE_FREQ_100MHZ    (100 * 1000 * 1000)
0124 
0125 #define CDR_SELEXT_SHIFT    20
0126 #define CDR_SELEXT_MASK     (0xf << CDR_SELEXT_SHIFT)
0127 #define CMUX_SHIFT_PHASE_SHIFT  24
0128 #define CMUX_SHIFT_PHASE_MASK   (7 << CMUX_SHIFT_PHASE_SHIFT)
0129 
0130 #define MSM_MMC_AUTOSUSPEND_DELAY_MS    50
0131 
0132 /* Timeout value to avoid infinite waiting for pwr_irq */
0133 #define MSM_PWR_IRQ_TIMEOUT_MS 5000
0134 
0135 /* Max load for eMMC Vdd-io supply */
0136 #define MMC_VQMMC_MAX_LOAD_UA   325000
0137 
0138 #define msm_host_readl(msm_host, host, offset) \
0139     msm_host->var_ops->msm_readl_relaxed(host, offset)
0140 
0141 #define msm_host_writel(msm_host, val, host, offset) \
0142     msm_host->var_ops->msm_writel_relaxed(val, host, offset)
0143 
0144 /* CQHCI vendor specific registers */
0145 #define CQHCI_VENDOR_CFG1   0xA00
0146 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN   (0x3 << 13)
0147 
0148 struct sdhci_msm_offset {
0149     u32 core_hc_mode;
0150     u32 core_mci_data_cnt;
0151     u32 core_mci_status;
0152     u32 core_mci_fifo_cnt;
0153     u32 core_mci_version;
0154     u32 core_generics;
0155     u32 core_testbus_config;
0156     u32 core_testbus_sel2_bit;
0157     u32 core_testbus_ena;
0158     u32 core_testbus_sel2;
0159     u32 core_pwrctl_status;
0160     u32 core_pwrctl_mask;
0161     u32 core_pwrctl_clear;
0162     u32 core_pwrctl_ctl;
0163     u32 core_sdcc_debug_reg;
0164     u32 core_dll_config;
0165     u32 core_dll_status;
0166     u32 core_vendor_spec;
0167     u32 core_vendor_spec_adma_err_addr0;
0168     u32 core_vendor_spec_adma_err_addr1;
0169     u32 core_vendor_spec_func2;
0170     u32 core_vendor_spec_capabilities0;
0171     u32 core_ddr_200_cfg;
0172     u32 core_vendor_spec3;
0173     u32 core_dll_config_2;
0174     u32 core_dll_config_3;
0175     u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
0176     u32 core_ddr_config;
0177     u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
0178 };
0179 
0180 static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
0181     .core_mci_data_cnt = 0x35c,
0182     .core_mci_status = 0x324,
0183     .core_mci_fifo_cnt = 0x308,
0184     .core_mci_version = 0x318,
0185     .core_generics = 0x320,
0186     .core_testbus_config = 0x32c,
0187     .core_testbus_sel2_bit = 3,
0188     .core_testbus_ena = (1 << 31),
0189     .core_testbus_sel2 = (1 << 3),
0190     .core_pwrctl_status = 0x240,
0191     .core_pwrctl_mask = 0x244,
0192     .core_pwrctl_clear = 0x248,
0193     .core_pwrctl_ctl = 0x24c,
0194     .core_sdcc_debug_reg = 0x358,
0195     .core_dll_config = 0x200,
0196     .core_dll_status = 0x208,
0197     .core_vendor_spec = 0x20c,
0198     .core_vendor_spec_adma_err_addr0 = 0x214,
0199     .core_vendor_spec_adma_err_addr1 = 0x218,
0200     .core_vendor_spec_func2 = 0x210,
0201     .core_vendor_spec_capabilities0 = 0x21c,
0202     .core_ddr_200_cfg = 0x224,
0203     .core_vendor_spec3 = 0x250,
0204     .core_dll_config_2 = 0x254,
0205     .core_dll_config_3 = 0x258,
0206     .core_ddr_config = 0x25c,
0207     .core_dll_usr_ctl = 0x388,
0208 };
0209 
0210 static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
0211     .core_hc_mode = 0x78,
0212     .core_mci_data_cnt = 0x30,
0213     .core_mci_status = 0x34,
0214     .core_mci_fifo_cnt = 0x44,
0215     .core_mci_version = 0x050,
0216     .core_generics = 0x70,
0217     .core_testbus_config = 0x0cc,
0218     .core_testbus_sel2_bit = 4,
0219     .core_testbus_ena = (1 << 3),
0220     .core_testbus_sel2 = (1 << 4),
0221     .core_pwrctl_status = 0xdc,
0222     .core_pwrctl_mask = 0xe0,
0223     .core_pwrctl_clear = 0xe4,
0224     .core_pwrctl_ctl = 0xe8,
0225     .core_sdcc_debug_reg = 0x124,
0226     .core_dll_config = 0x100,
0227     .core_dll_status = 0x108,
0228     .core_vendor_spec = 0x10c,
0229     .core_vendor_spec_adma_err_addr0 = 0x114,
0230     .core_vendor_spec_adma_err_addr1 = 0x118,
0231     .core_vendor_spec_func2 = 0x110,
0232     .core_vendor_spec_capabilities0 = 0x11c,
0233     .core_ddr_200_cfg = 0x184,
0234     .core_vendor_spec3 = 0x1b0,
0235     .core_dll_config_2 = 0x1b4,
0236     .core_ddr_config_old = 0x1b8,
0237     .core_ddr_config = 0x1bc,
0238 };
0239 
0240 struct sdhci_msm_variant_ops {
0241     u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
0242     void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
0243             u32 offset);
0244 };
0245 
0246 /*
0247  * From V5, register spaces have changed. Wrap this info in a structure
0248  * and choose the data_structure based on version info mentioned in DT.
0249  */
0250 struct sdhci_msm_variant_info {
0251     bool mci_removed;
0252     bool restore_dll_config;
0253     const struct sdhci_msm_variant_ops *var_ops;
0254     const struct sdhci_msm_offset *offset;
0255 };
0256 
0257 struct sdhci_msm_host {
0258     struct platform_device *pdev;
0259     void __iomem *core_mem; /* MSM SDCC mapped address */
0260     void __iomem *ice_mem;  /* MSM ICE mapped address (if available) */
0261     int pwr_irq;        /* power irq */
0262     struct clk *bus_clk;    /* SDHC bus voter clock */
0263     struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/
0264     /* core, iface, cal, sleep, and ice clocks */
0265     struct clk_bulk_data bulk_clks[5];
0266     unsigned long clk_rate;
0267     struct mmc_host *mmc;
0268     bool use_14lpp_dll_reset;
0269     bool tuning_done;
0270     bool calibration_done;
0271     u8 saved_tuning_phase;
0272     bool use_cdclp533;
0273     u32 curr_pwr_state;
0274     u32 curr_io_level;
0275     wait_queue_head_t pwr_irq_wait;
0276     bool pwr_irq_flag;
0277     u32 caps_0;
0278     bool mci_removed;
0279     bool restore_dll_config;
0280     const struct sdhci_msm_variant_ops *var_ops;
0281     const struct sdhci_msm_offset *offset;
0282     bool use_cdr;
0283     u32 transfer_mode;
0284     bool updated_ddr_cfg;
0285     bool uses_tassadar_dll;
0286     u32 dll_config;
0287     u32 ddr_config;
0288     bool vqmmc_enabled;
0289 };
0290 
0291 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
0292 {
0293     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
0294     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
0295 
0296     return msm_host->offset;
0297 }
0298 
0299 /*
0300  * APIs to read/write to vendor specific registers which were there in the
0301  * core_mem region before MCI was removed.
0302  */
0303 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
0304         u32 offset)
0305 {
0306     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
0307     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
0308 
0309     return readl_relaxed(msm_host->core_mem + offset);
0310 }
0311 
0312 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
0313         u32 offset)
0314 {
0315     return readl_relaxed(host->ioaddr + offset);
0316 }
0317 
0318 static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
0319         struct sdhci_host *host, u32 offset)
0320 {
0321     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
0322     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
0323 
0324     writel_relaxed(val, msm_host->core_mem + offset);
0325 }
0326 
0327 static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
0328         struct sdhci_host *host, u32 offset)
0329 {
0330     writel_relaxed(val, host->ioaddr + offset);
0331 }
0332 
0333 static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host)
0334 {
0335     struct mmc_ios ios = host->mmc->ios;
0336     /*
0337      * The SDHC requires internal clock frequency to be double the
0338      * actual clock that will be set for DDR mode. The controller
0339      * uses the faster clock(100/400MHz) for some of its parts and
0340      * send the actual required clock (50/200MHz) to the card.
0341      */
0342     if (ios.timing == MMC_TIMING_UHS_DDR50 ||
0343         ios.timing == MMC_TIMING_MMC_DDR52 ||
0344         ios.timing == MMC_TIMING_MMC_HS400 ||
0345         host->flags & SDHCI_HS400_TUNING)
0346         return 2;
0347     return 1;
0348 }
0349 
0350 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
0351                         unsigned int clock)
0352 {
0353     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
0354     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
0355     struct mmc_ios curr_ios = host->mmc->ios;
0356     struct clk *core_clk = msm_host->bulk_clks[0].clk;
0357     unsigned long achieved_rate;
0358     unsigned int desired_rate;
0359     unsigned int mult;
0360     int rc;
0361 
0362     mult = msm_get_clock_mult_for_bus_mode(host);
0363     desired_rate = clock * mult;
0364     rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate);
0365     if (rc) {
0366         pr_err("%s: Failed to set clock at rate %u at timing %d\n",
0367                mmc_hostname(host->mmc), desired_rate, curr_ios.timing);
0368         return;
0369     }
0370 
0371     /*
0372      * Qualcomm clock drivers by default round clock _up_ if they can't
0373      * make the requested rate.  This is not good for SD.  Yell if we
0374      * encounter it.
0375      */
0376     achieved_rate = clk_get_rate(core_clk);
0377     if (achieved_rate > desired_rate)
0378         pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n",
0379             mmc_hostname(host->mmc), desired_rate, achieved_rate);
0380     host->mmc->actual_clock = achieved_rate / mult;
0381 
0382     /* Stash the rate we requested to use in sdhci_msm_runtime_resume() */
0383     msm_host->clk_rate = desired_rate;
0384 
0385     pr_debug("%s: Setting clock at rate %lu at timing %d\n",
0386          mmc_hostname(host->mmc), achieved_rate, curr_ios.timing);
0387 }
0388 
0389 /* Platform specific tuning */
0390 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
0391 {
0392     u32 wait_cnt = 50;
0393     u8 ck_out_en;
0394     struct mmc_host *mmc = host->mmc;
0395     const struct sdhci_msm_offset *msm_offset =
0396                     sdhci_priv_msm_offset(host);
0397 
0398     /* Poll for CK_OUT_EN bit.  max. poll time = 50us */
0399     ck_out_en = !!(readl_relaxed(host->ioaddr +
0400             msm_offset->core_dll_config) & CORE_CK_OUT_EN);
0401 
0402     while (ck_out_en != poll) {
0403         if (--wait_cnt == 0) {
0404             dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
0405                    mmc_hostname(mmc), poll);
0406             return -ETIMEDOUT;
0407         }
0408         udelay(1);
0409 
0410         ck_out_en = !!(readl_relaxed(host->ioaddr +
0411             msm_offset->core_dll_config) & CORE_CK_OUT_EN);
0412     }
0413 
0414     return 0;
0415 }
0416 
0417 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
0418 {
0419     int rc;
0420     static const u8 grey_coded_phase_table[] = {
0421         0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
0422         0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
0423     };
0424     unsigned long flags;
0425     u32 config;
0426     struct mmc_host *mmc = host->mmc;
0427     const struct sdhci_msm_offset *msm_offset =
0428                     sdhci_priv_msm_offset(host);
0429 
0430     if (phase > 0xf)
0431         return -EINVAL;
0432 
0433     spin_lock_irqsave(&host->lock, flags);
0434 
0435     config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
0436     config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
0437     config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
0438     writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
0439 
0440     /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
0441     rc = msm_dll_poll_ck_out_en(host, 0);
0442     if (rc)
0443         goto err_out;
0444 
0445     /*
0446      * Write the selected DLL clock output phase (0 ... 15)
0447      * to CDR_SELEXT bit field of DLL_CONFIG register.
0448      */
0449     config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
0450     config &= ~CDR_SELEXT_MASK;
0451     config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
0452     writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
0453 
0454     config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
0455     config |= CORE_CK_OUT_EN;
0456     writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
0457 
0458     /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
0459     rc = msm_dll_poll_ck_out_en(host, 1);
0460     if (rc)
0461         goto err_out;
0462 
0463     config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
0464     config |= CORE_CDR_EN;
0465     config &= ~CORE_CDR_EXT_EN;
0466     writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
0467     goto out;
0468 
0469 err_out:
0470     dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
0471            mmc_hostname(mmc), phase);
0472 out:
0473     spin_unlock_irqrestore(&host->lock, flags);
0474     return rc;
0475 }
0476 
0477 /*
0478  * Find out the greatest range of consecuitive selected
0479  * DLL clock output phases that can be used as sampling
0480  * setting for SD3.0 UHS-I card read operation (in SDR104
0481  * timing mode) or for eMMC4.5 card read operation (in
0482  * HS400/HS200 timing mode).
0483  * Select the 3/4 of the range and configure the DLL with the
0484  * selected DLL clock output phase.
0485  */
0486 
0487 static int msm_find_most_appropriate_phase(struct sdhci_host *host,
0488                        u8 *phase_table, u8 total_phases)
0489 {
0490     int ret;
0491     u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
0492     u8 phases_per_row[MAX_PHASES] = { 0 };
0493     int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
0494     int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
0495     bool phase_0_found = false, phase_15_found = false;
0496     struct mmc_host *mmc = host->mmc;
0497 
0498     if (!total_phases || (total_phases > MAX_PHASES)) {
0499         dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
0500                mmc_hostname(mmc), total_phases);
0501         return -EINVAL;
0502     }
0503 
0504     for (cnt = 0; cnt < total_phases; cnt++) {
0505         ranges[row_index][col_index] = phase_table[cnt];
0506         phases_per_row[row_index] += 1;
0507         col_index++;
0508 
0509         if ((cnt + 1) == total_phases) {
0510             continue;
0511         /* check if next phase in phase_table is consecutive or not */
0512         } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
0513             row_index++;
0514             col_index = 0;
0515         }
0516     }
0517 
0518     if (row_index >= MAX_PHASES)
0519         return -EINVAL;
0520 
0521     /* Check if phase-0 is present in first valid window? */
0522     if (!ranges[0][0]) {
0523         phase_0_found = true;
0524         phase_0_raw_index = 0;
0525         /* Check if cycle exist between 2 valid windows */
0526         for (cnt = 1; cnt <= row_index; cnt++) {
0527             if (phases_per_row[cnt]) {
0528                 for (i = 0; i < phases_per_row[cnt]; i++) {
0529                     if (ranges[cnt][i] == 15) {
0530                         phase_15_found = true;
0531                         phase_15_raw_index = cnt;
0532                         break;
0533                     }
0534                 }
0535             }
0536         }
0537     }
0538 
0539     /* If 2 valid windows form cycle then merge them as single window */
0540     if (phase_0_found && phase_15_found) {
0541         /* number of phases in raw where phase 0 is present */
0542         u8 phases_0 = phases_per_row[phase_0_raw_index];
0543         /* number of phases in raw where phase 15 is present */
0544         u8 phases_15 = phases_per_row[phase_15_raw_index];
0545 
0546         if (phases_0 + phases_15 >= MAX_PHASES)
0547             /*
0548              * If there are more than 1 phase windows then total
0549              * number of phases in both the windows should not be
0550              * more than or equal to MAX_PHASES.
0551              */
0552             return -EINVAL;
0553 
0554         /* Merge 2 cyclic windows */
0555         i = phases_15;
0556         for (cnt = 0; cnt < phases_0; cnt++) {
0557             ranges[phase_15_raw_index][i] =
0558                 ranges[phase_0_raw_index][cnt];
0559             if (++i >= MAX_PHASES)
0560                 break;
0561         }
0562 
0563         phases_per_row[phase_0_raw_index] = 0;
0564         phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
0565     }
0566 
0567     for (cnt = 0; cnt <= row_index; cnt++) {
0568         if (phases_per_row[cnt] > curr_max) {
0569             curr_max = phases_per_row[cnt];
0570             selected_row_index = cnt;
0571         }
0572     }
0573 
0574     i = (curr_max * 3) / 4;
0575     if (i)
0576         i--;
0577 
0578     ret = ranges[selected_row_index][i];
0579 
0580     if (ret >= MAX_PHASES) {
0581         ret = -EINVAL;
0582         dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
0583                mmc_hostname(mmc), ret);
0584     }
0585 
0586     return ret;
0587 }
0588 
0589 static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
0590 {
0591     u32 mclk_freq = 0, config;
0592     const struct sdhci_msm_offset *msm_offset =
0593                     sdhci_priv_msm_offset(host);
0594 
0595     /* Program the MCLK value to MCLK_FREQ bit field */
0596     if (host->clock <= 112000000)
0597         mclk_freq = 0;
0598     else if (host->clock <= 125000000)
0599         mclk_freq = 1;
0600     else if (host->clock <= 137000000)
0601         mclk_freq = 2;
0602     else if (host->clock <= 150000000)
0603         mclk_freq = 3;
0604     else if (host->clock <= 162000000)
0605         mclk_freq = 4;
0606     else if (host->clock <= 175000000)
0607         mclk_freq = 5;
0608     else if (host->clock <= 187000000)
0609         mclk_freq = 6;
0610     else if (host->clock <= 200000000)
0611         mclk_freq = 7;
0612 
0613     config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
0614     config &= ~CMUX_SHIFT_PHASE_MASK;
0615     config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
0616     writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
0617 }
0618 
0619 /* Initialize the DLL (Programmable Delay Line) */
0620 static int msm_init_cm_dll(struct sdhci_host *host)
0621 {
0622     struct mmc_host *mmc = host->mmc;
0623     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
0624     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
0625     int wait_cnt = 50;
0626     unsigned long flags, xo_clk = 0;
0627     u32 config;
0628     const struct sdhci_msm_offset *msm_offset =
0629                     msm_host->offset;
0630 
0631     if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
0632         xo_clk = clk_get_rate(msm_host->xo_clk);
0633 
0634     spin_lock_irqsave(&host->lock, flags);
0635 
0636     /*
0637      * Make sure that clock is always enabled when DLL
0638      * tuning is in progress. Keeping PWRSAVE ON may
0639      * turn off the clock.
0640      */
0641     config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
0642     config &= ~CORE_CLK_PWRSAVE;
0643     writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
0644 
0645     if (msm_host->dll_config)
0646         writel_relaxed(msm_host->dll_config,
0647                 host->ioaddr + msm_offset->core_dll_config);
0648 
0649     if (msm_host->use_14lpp_dll_reset) {
0650         config = readl_relaxed(host->ioaddr +
0651                 msm_offset->core_dll_config);
0652         config &= ~CORE_CK_OUT_EN;
0653         writel_relaxed(config, host->ioaddr +
0654                 msm_offset->core_dll_config);
0655 
0656         config = readl_relaxed(host->ioaddr +
0657                 msm_offset->core_dll_config_2);
0658         config |= CORE_DLL_CLOCK_DISABLE;
0659         writel_relaxed(config, host->ioaddr +
0660                 msm_offset->core_dll_config_2);
0661     }
0662 
0663     config = readl_relaxed(host->ioaddr +
0664             msm_offset->core_dll_config);
0665     config |= CORE_DLL_RST;
0666     writel_relaxed(config, host->ioaddr +
0667             msm_offset->core_dll_config);
0668 
0669     config = readl_relaxed(host->ioaddr +
0670             msm_offset->core_dll_config);
0671     config |= CORE_DLL_PDN;
0672     writel_relaxed(config, host->ioaddr +
0673             msm_offset->core_dll_config);
0674 
0675     if (!msm_host->dll_config)
0676         msm_cm_dll_set_freq(host);
0677 
0678     if (msm_host->use_14lpp_dll_reset &&
0679         !IS_ERR_OR_NULL(msm_host->xo_clk)) {
0680         u32 mclk_freq = 0;
0681 
0682         config = readl_relaxed(host->ioaddr +
0683                 msm_offset->core_dll_config_2);
0684         config &= CORE_FLL_CYCLE_CNT;
0685         if (config)
0686             mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
0687                     xo_clk);
0688         else
0689             mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
0690                     xo_clk);
0691 
0692         config = readl_relaxed(host->ioaddr +
0693                 msm_offset->core_dll_config_2);
0694         config &= ~(0xFF << 10);
0695         config |= mclk_freq << 10;
0696 
0697         writel_relaxed(config, host->ioaddr +
0698                 msm_offset->core_dll_config_2);
0699         /* wait for 5us before enabling DLL clock */
0700         udelay(5);
0701     }
0702 
0703     config = readl_relaxed(host->ioaddr +
0704             msm_offset->core_dll_config);
0705     config &= ~CORE_DLL_RST;
0706     writel_relaxed(config, host->ioaddr +
0707             msm_offset->core_dll_config);
0708 
0709     config = readl_relaxed(host->ioaddr +
0710             msm_offset->core_dll_config);
0711     config &= ~CORE_DLL_PDN;
0712     writel_relaxed(config, host->ioaddr +
0713             msm_offset->core_dll_config);
0714 
0715     if (msm_host->use_14lpp_dll_reset) {
0716         if (!msm_host->dll_config)
0717             msm_cm_dll_set_freq(host);
0718         config = readl_relaxed(host->ioaddr +
0719                 msm_offset->core_dll_config_2);
0720         config &= ~CORE_DLL_CLOCK_DISABLE;
0721         writel_relaxed(config, host->ioaddr +
0722                 msm_offset->core_dll_config_2);
0723     }
0724 
0725     /*
0726      * Configure DLL user control register to enable DLL status.
0727      * This setting is applicable to SDCC v5.1 onwards only.
0728      */
0729     if (msm_host->uses_tassadar_dll) {
0730         config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
0731             ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
0732         writel_relaxed(config, host->ioaddr +
0733                 msm_offset->core_dll_usr_ctl);
0734 
0735         config = readl_relaxed(host->ioaddr +
0736                 msm_offset->core_dll_config_3);
0737         config &= ~0xFF;
0738         if (msm_host->clk_rate < 150000000)
0739             config |= DLL_CONFIG_3_LOW_FREQ_VAL;
0740         else
0741             config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
0742         writel_relaxed(config, host->ioaddr +
0743             msm_offset->core_dll_config_3);
0744     }
0745 
0746     config = readl_relaxed(host->ioaddr +
0747             msm_offset->core_dll_config);
0748     config |= CORE_DLL_EN;
0749     writel_relaxed(config, host->ioaddr +
0750             msm_offset->core_dll_config);
0751 
0752     config = readl_relaxed(host->ioaddr +
0753             msm_offset->core_dll_config);
0754     config |= CORE_CK_OUT_EN;
0755     writel_relaxed(config, host->ioaddr +
0756             msm_offset->core_dll_config);
0757 
0758     /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
0759     while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
0760          CORE_DLL_LOCK)) {
0761         /* max. wait for 50us sec for LOCK bit to be set */
0762         if (--wait_cnt == 0) {
0763             dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
0764                    mmc_hostname(mmc));
0765             spin_unlock_irqrestore(&host->lock, flags);
0766             return -ETIMEDOUT;
0767         }
0768         udelay(1);
0769     }
0770 
0771     spin_unlock_irqrestore(&host->lock, flags);
0772     return 0;
0773 }
0774 
0775 static void msm_hc_select_default(struct sdhci_host *host)
0776 {
0777     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
0778     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
0779     u32 config;
0780     const struct sdhci_msm_offset *msm_offset =
0781                     msm_host->offset;
0782 
0783     if (!msm_host->use_cdclp533) {
0784         config = readl_relaxed(host->ioaddr +
0785                 msm_offset->core_vendor_spec3);
0786         config &= ~CORE_PWRSAVE_DLL;
0787         writel_relaxed(config, host->ioaddr +
0788                 msm_offset->core_vendor_spec3);
0789     }
0790 
0791     config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
0792     config &= ~CORE_HC_MCLK_SEL_MASK;
0793     config |= CORE_HC_MCLK_SEL_DFLT;
0794     writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
0795 
0796     /*
0797      * Disable HC_SELECT_IN to be able to use the UHS mode select
0798      * configuration from Host Control2 register for all other
0799      * modes.
0800      * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
0801      * in VENDOR_SPEC_FUNC
0802      */
0803     config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
0804     config &= ~CORE_HC_SELECT_IN_EN;
0805     config &= ~CORE_HC_SELECT_IN_MASK;
0806     writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
0807 
0808     /*
0809      * Make sure above writes impacting free running MCLK are completed
0810      * before changing the clk_rate at GCC.
0811      */
0812     wmb();
0813 }
0814 
0815 static void msm_hc_select_hs400(struct sdhci_host *host)
0816 {
0817     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
0818     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
0819     struct mmc_ios ios = host->mmc->ios;
0820     u32 config, dll_lock;
0821     int rc;
0822     const struct sdhci_msm_offset *msm_offset =
0823                     msm_host->offset;
0824 
0825     /* Select the divided clock (free running MCLK/2) */
0826     config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
0827     config &= ~CORE_HC_MCLK_SEL_MASK;
0828     config |= CORE_HC_MCLK_SEL_HS400;
0829 
0830     writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
0831     /*
0832      * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
0833      * register
0834      */
0835     if ((msm_host->tuning_done || ios.enhanced_strobe) &&
0836         !msm_host->calibration_done) {
0837         config = readl_relaxed(host->ioaddr +
0838                 msm_offset->core_vendor_spec);
0839         config |= CORE_HC_SELECT_IN_HS400;
0840         config |= CORE_HC_SELECT_IN_EN;
0841         writel_relaxed(config, host->ioaddr +
0842                 msm_offset->core_vendor_spec);
0843     }
0844     if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
0845         /*
0846          * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
0847          * core_dll_status to be set. This should get set
0848          * within 15 us at 200 MHz.
0849          */
0850         rc = readl_relaxed_poll_timeout(host->ioaddr +
0851                         msm_offset->core_dll_status,
0852                         dll_lock,
0853                         (dll_lock &
0854                         (CORE_DLL_LOCK |
0855                         CORE_DDR_DLL_LOCK)), 10,
0856                         1000);
0857         if (rc == -ETIMEDOUT)
0858             pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
0859                    mmc_hostname(host->mmc), dll_lock);
0860     }
0861     /*
0862      * Make sure above writes impacting free running MCLK are completed
0863      * before changing the clk_rate at GCC.
0864      */
0865     wmb();
0866 }
0867 
0868 /*
0869  * sdhci_msm_hc_select_mode :- In general all timing modes are
0870  * controlled via UHS mode select in Host Control2 register.
0871  * eMMC specific HS200/HS400 doesn't have their respective modes
0872  * defined here, hence we use these values.
0873  *
0874  * HS200 - SDR104 (Since they both are equivalent in functionality)
0875  * HS400 - This involves multiple configurations
0876  *      Initially SDR104 - when tuning is required as HS200
0877  *      Then when switching to DDR @ 400MHz (HS400) we use
0878  *      the vendor specific HC_SELECT_IN to control the mode.
0879  *
0880  * In addition to controlling the modes we also need to select the
0881  * correct input clock for DLL depending on the mode.
0882  *
0883  * HS400 - divided clock (free running MCLK/2)
0884  * All other modes - default (free running MCLK)
0885  */
0886 static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
0887 {
0888     struct mmc_ios ios = host->mmc->ios;
0889 
0890     if (ios.timing == MMC_TIMING_MMC_HS400 ||
0891         host->flags & SDHCI_HS400_TUNING)
0892         msm_hc_select_hs400(host);
0893     else
0894         msm_hc_select_default(host);
0895 }
0896 
0897 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
0898 {
0899     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
0900     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
0901     u32 config, calib_done;
0902     int ret;
0903     const struct sdhci_msm_offset *msm_offset =
0904                     msm_host->offset;
0905 
0906     pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
0907 
0908     /*
0909      * Retuning in HS400 (DDR mode) will fail, just reset the
0910      * tuning block and restore the saved tuning phase.
0911      */
0912     ret = msm_init_cm_dll(host);
0913     if (ret)
0914         goto out;
0915 
0916     /* Set the selected phase in delay line hw block */
0917     ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
0918     if (ret)
0919         goto out;
0920 
0921     config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
0922     config |= CORE_CMD_DAT_TRACK_SEL;
0923     writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
0924 
0925     config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
0926     config &= ~CORE_CDC_T4_DLY_SEL;
0927     writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
0928 
0929     config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
0930     config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
0931     writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
0932 
0933     config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
0934     config |= CORE_CDC_SWITCH_RC_EN;
0935     writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
0936 
0937     config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
0938     config &= ~CORE_START_CDC_TRAFFIC;
0939     writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
0940 
0941     /* Perform CDC Register Initialization Sequence */
0942 
0943     writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
0944     writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
0945     writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
0946     writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
0947     writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
0948     writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
0949     writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
0950     writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
0951     writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
0952 
0953     /* CDC HW Calibration */
0954 
0955     config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
0956     config |= CORE_SW_TRIG_FULL_CALIB;
0957     writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
0958 
0959     config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
0960     config &= ~CORE_SW_TRIG_FULL_CALIB;
0961     writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
0962 
0963     config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
0964     config |= CORE_HW_AUTOCAL_ENA;
0965     writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
0966 
0967     config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
0968     config |= CORE_TIMER_ENA;
0969     writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
0970 
0971     ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
0972                      calib_done,
0973                      (calib_done & CORE_CALIBRATION_DONE),
0974                      1, 50);
0975 
0976     if (ret == -ETIMEDOUT) {
0977         pr_err("%s: %s: CDC calibration was not completed\n",
0978                mmc_hostname(host->mmc), __func__);
0979         goto out;
0980     }
0981 
0982     ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
0983             & CORE_CDC_ERROR_CODE_MASK;
0984     if (ret) {
0985         pr_err("%s: %s: CDC error code %d\n",
0986                mmc_hostname(host->mmc), __func__, ret);
0987         ret = -EINVAL;
0988         goto out;
0989     }
0990 
0991     config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
0992     config |= CORE_START_CDC_TRAFFIC;
0993     writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
0994 out:
0995     pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
0996          __func__, ret);
0997     return ret;
0998 }
0999 
1000 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
1001 {
1002     struct mmc_host *mmc = host->mmc;
1003     u32 dll_status, config, ddr_cfg_offset;
1004     int ret;
1005     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1006     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1007     const struct sdhci_msm_offset *msm_offset =
1008                     sdhci_priv_msm_offset(host);
1009 
1010     pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1011 
1012     /*
1013      * Currently the core_ddr_config register defaults to desired
1014      * configuration on reset. Currently reprogramming the power on
1015      * reset (POR) value in case it might have been modified by
1016      * bootloaders. In the future, if this changes, then the desired
1017      * values will need to be programmed appropriately.
1018      */
1019     if (msm_host->updated_ddr_cfg)
1020         ddr_cfg_offset = msm_offset->core_ddr_config;
1021     else
1022         ddr_cfg_offset = msm_offset->core_ddr_config_old;
1023     writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1024 
1025     if (mmc->ios.enhanced_strobe) {
1026         config = readl_relaxed(host->ioaddr +
1027                 msm_offset->core_ddr_200_cfg);
1028         config |= CORE_CMDIN_RCLK_EN;
1029         writel_relaxed(config, host->ioaddr +
1030                 msm_offset->core_ddr_200_cfg);
1031     }
1032 
1033     config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1034     config |= CORE_DDR_CAL_EN;
1035     writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1036 
1037     ret = readl_relaxed_poll_timeout(host->ioaddr +
1038                     msm_offset->core_dll_status,
1039                     dll_status,
1040                     (dll_status & CORE_DDR_DLL_LOCK),
1041                     10, 1000);
1042 
1043     if (ret == -ETIMEDOUT) {
1044         pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1045                mmc_hostname(host->mmc), __func__);
1046         goto out;
1047     }
1048 
1049     /*
1050      * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1051      * When MCLK is gated OFF, it is not gated for less than 0.5us
1052      * and MCLK must be switched on for at-least 1us before DATA
1053      * starts coming. Controllers with 14lpp and later tech DLL cannot
1054      * guarantee above requirement. So PWRSAVE_DLL should not be
1055      * turned on for host controllers using this DLL.
1056      */
1057     if (!msm_host->use_14lpp_dll_reset) {
1058         config = readl_relaxed(host->ioaddr +
1059                 msm_offset->core_vendor_spec3);
1060         config |= CORE_PWRSAVE_DLL;
1061         writel_relaxed(config, host->ioaddr +
1062                 msm_offset->core_vendor_spec3);
1063     }
1064 
1065     /*
1066      * Drain writebuffer to ensure above DLL calibration
1067      * and PWRSAVE DLL is enabled.
1068      */
1069     wmb();
1070 out:
1071     pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1072          __func__, ret);
1073     return ret;
1074 }
1075 
1076 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1077 {
1078     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1079     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1080     struct mmc_host *mmc = host->mmc;
1081     int ret;
1082     u32 config;
1083     const struct sdhci_msm_offset *msm_offset =
1084                     msm_host->offset;
1085 
1086     pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1087 
1088     /*
1089      * Retuning in HS400 (DDR mode) will fail, just reset the
1090      * tuning block and restore the saved tuning phase.
1091      */
1092     ret = msm_init_cm_dll(host);
1093     if (ret)
1094         goto out;
1095 
1096     if (!mmc->ios.enhanced_strobe) {
1097         /* Set the selected phase in delay line hw block */
1098         ret = msm_config_cm_dll_phase(host,
1099                           msm_host->saved_tuning_phase);
1100         if (ret)
1101             goto out;
1102         config = readl_relaxed(host->ioaddr +
1103                 msm_offset->core_dll_config);
1104         config |= CORE_CMD_DAT_TRACK_SEL;
1105         writel_relaxed(config, host->ioaddr +
1106                 msm_offset->core_dll_config);
1107     }
1108 
1109     if (msm_host->use_cdclp533)
1110         ret = sdhci_msm_cdclp533_calibration(host);
1111     else
1112         ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1113 out:
1114     pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1115          __func__, ret);
1116     return ret;
1117 }
1118 
1119 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1120 {
1121     struct mmc_ios *ios = &host->mmc->ios;
1122 
1123     /*
1124      * Tuning is required for SDR104, HS200 and HS400 cards and
1125      * if clock frequency is greater than 100MHz in these modes.
1126      */
1127     if (host->clock <= CORE_FREQ_100MHZ ||
1128         !(ios->timing == MMC_TIMING_MMC_HS400 ||
1129         ios->timing == MMC_TIMING_MMC_HS200 ||
1130         ios->timing == MMC_TIMING_UHS_SDR104) ||
1131         ios->enhanced_strobe)
1132         return false;
1133 
1134     return true;
1135 }
1136 
1137 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1138 {
1139     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1140     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1141     int ret;
1142 
1143     /*
1144      * SDR DLL comes into picture only for timing modes which needs
1145      * tuning.
1146      */
1147     if (!sdhci_msm_is_tuning_needed(host))
1148         return 0;
1149 
1150     /* Reset the tuning block */
1151     ret = msm_init_cm_dll(host);
1152     if (ret)
1153         return ret;
1154 
1155     /* Restore the tuning block */
1156     ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1157 
1158     return ret;
1159 }
1160 
1161 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1162 {
1163     const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1164     u32 config, oldconfig = readl_relaxed(host->ioaddr +
1165                           msm_offset->core_dll_config);
1166 
1167     config = oldconfig;
1168     if (enable) {
1169         config |= CORE_CDR_EN;
1170         config &= ~CORE_CDR_EXT_EN;
1171     } else {
1172         config &= ~CORE_CDR_EN;
1173         config |= CORE_CDR_EXT_EN;
1174     }
1175 
1176     if (config != oldconfig) {
1177         writel_relaxed(config, host->ioaddr +
1178                    msm_offset->core_dll_config);
1179     }
1180 }
1181 
1182 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1183 {
1184     struct sdhci_host *host = mmc_priv(mmc);
1185     int tuning_seq_cnt = 10;
1186     u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1187     int rc;
1188     struct mmc_ios ios = host->mmc->ios;
1189     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1190     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1191 
1192     if (!sdhci_msm_is_tuning_needed(host)) {
1193         msm_host->use_cdr = false;
1194         sdhci_msm_set_cdr(host, false);
1195         return 0;
1196     }
1197 
1198     /* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1199     msm_host->use_cdr = true;
1200 
1201     /*
1202      * Clear tuning_done flag before tuning to ensure proper
1203      * HS400 settings.
1204      */
1205     msm_host->tuning_done = 0;
1206 
1207     /*
1208      * For HS400 tuning in HS200 timing requires:
1209      * - select MCLK/2 in VENDOR_SPEC
1210      * - program MCLK to 400MHz (or nearest supported) in GCC
1211      */
1212     if (host->flags & SDHCI_HS400_TUNING) {
1213         sdhci_msm_hc_select_mode(host);
1214         msm_set_clock_rate_for_bus_mode(host, ios.clock);
1215         host->flags &= ~SDHCI_HS400_TUNING;
1216     }
1217 
1218 retry:
1219     /* First of all reset the tuning block */
1220     rc = msm_init_cm_dll(host);
1221     if (rc)
1222         return rc;
1223 
1224     phase = 0;
1225     do {
1226         /* Set the phase in delay line hw block */
1227         rc = msm_config_cm_dll_phase(host, phase);
1228         if (rc)
1229             return rc;
1230 
1231         rc = mmc_send_tuning(mmc, opcode, NULL);
1232         if (!rc) {
1233             /* Tuning is successful at this tuning point */
1234             tuned_phases[tuned_phase_cnt++] = phase;
1235             dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1236                  mmc_hostname(mmc), phase);
1237         }
1238     } while (++phase < ARRAY_SIZE(tuned_phases));
1239 
1240     if (tuned_phase_cnt) {
1241         if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1242             /*
1243              * All phases valid is _almost_ as bad as no phases
1244              * valid.  Probably all phases are not really reliable
1245              * but we didn't detect where the unreliable place is.
1246              * That means we'll essentially be guessing and hoping
1247              * we get a good phase.  Better to try a few times.
1248              */
1249             dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1250                 mmc_hostname(mmc));
1251             if (--tuning_seq_cnt) {
1252                 tuned_phase_cnt = 0;
1253                 goto retry;
1254             }
1255         }
1256 
1257         rc = msm_find_most_appropriate_phase(host, tuned_phases,
1258                              tuned_phase_cnt);
1259         if (rc < 0)
1260             return rc;
1261         else
1262             phase = rc;
1263 
1264         /*
1265          * Finally set the selected phase in delay
1266          * line hw block.
1267          */
1268         rc = msm_config_cm_dll_phase(host, phase);
1269         if (rc)
1270             return rc;
1271         msm_host->saved_tuning_phase = phase;
1272         dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1273              mmc_hostname(mmc), phase);
1274     } else {
1275         if (--tuning_seq_cnt)
1276             goto retry;
1277         /* Tuning failed */
1278         dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1279                mmc_hostname(mmc));
1280         rc = -EIO;
1281     }
1282 
1283     if (!rc)
1284         msm_host->tuning_done = true;
1285     return rc;
1286 }
1287 
1288 /*
1289  * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1290  * This needs to be done for both tuning and enhanced_strobe mode.
1291  * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1292  * fixed feedback clock is used.
1293  */
1294 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1295 {
1296     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1297     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1298     int ret;
1299 
1300     if (host->clock > CORE_FREQ_100MHZ &&
1301         (msm_host->tuning_done || ios->enhanced_strobe) &&
1302         !msm_host->calibration_done) {
1303         ret = sdhci_msm_hs400_dll_calibration(host);
1304         if (!ret)
1305             msm_host->calibration_done = true;
1306         else
1307             pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1308                    mmc_hostname(host->mmc), ret);
1309     }
1310 }
1311 
1312 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1313                     unsigned int uhs)
1314 {
1315     struct mmc_host *mmc = host->mmc;
1316     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1317     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1318     u16 ctrl_2;
1319     u32 config;
1320     const struct sdhci_msm_offset *msm_offset =
1321                     msm_host->offset;
1322 
1323     ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1324     /* Select Bus Speed Mode for host */
1325     ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1326     switch (uhs) {
1327     case MMC_TIMING_UHS_SDR12:
1328         ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1329         break;
1330     case MMC_TIMING_UHS_SDR25:
1331         ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1332         break;
1333     case MMC_TIMING_UHS_SDR50:
1334         ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1335         break;
1336     case MMC_TIMING_MMC_HS400:
1337     case MMC_TIMING_MMC_HS200:
1338     case MMC_TIMING_UHS_SDR104:
1339         ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1340         break;
1341     case MMC_TIMING_UHS_DDR50:
1342     case MMC_TIMING_MMC_DDR52:
1343         ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1344         break;
1345     }
1346 
1347     /*
1348      * When clock frequency is less than 100MHz, the feedback clock must be
1349      * provided and DLL must not be used so that tuning can be skipped. To
1350      * provide feedback clock, the mode selection can be any value less
1351      * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1352      */
1353     if (host->clock <= CORE_FREQ_100MHZ) {
1354         if (uhs == MMC_TIMING_MMC_HS400 ||
1355             uhs == MMC_TIMING_MMC_HS200 ||
1356             uhs == MMC_TIMING_UHS_SDR104)
1357             ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1358         /*
1359          * DLL is not required for clock <= 100MHz
1360          * Thus, make sure DLL it is disabled when not required
1361          */
1362         config = readl_relaxed(host->ioaddr +
1363                 msm_offset->core_dll_config);
1364         config |= CORE_DLL_RST;
1365         writel_relaxed(config, host->ioaddr +
1366                 msm_offset->core_dll_config);
1367 
1368         config = readl_relaxed(host->ioaddr +
1369                 msm_offset->core_dll_config);
1370         config |= CORE_DLL_PDN;
1371         writel_relaxed(config, host->ioaddr +
1372                 msm_offset->core_dll_config);
1373 
1374         /*
1375          * The DLL needs to be restored and CDCLP533 recalibrated
1376          * when the clock frequency is set back to 400MHz.
1377          */
1378         msm_host->calibration_done = false;
1379     }
1380 
1381     dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1382         mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1383     sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1384 
1385     if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1386         sdhci_msm_hs400(host, &mmc->ios);
1387 }
1388 
1389 static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1390 {
1391     struct platform_device *pdev = msm_host->pdev;
1392     int ret;
1393 
1394     if (level)
1395         ret = pinctrl_pm_select_default_state(&pdev->dev);
1396     else
1397         ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1398 
1399     return ret;
1400 }
1401 
1402 static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
1403 {
1404     if (IS_ERR(mmc->supply.vmmc))
1405         return 0;
1406 
1407     return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1408 }
1409 
1410 static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1411                   struct mmc_host *mmc, bool level)
1412 {
1413     int ret;
1414     struct mmc_ios ios;
1415 
1416     if (msm_host->vqmmc_enabled == level)
1417         return 0;
1418 
1419     if (level) {
1420         /* Set the IO voltage regulator to default voltage level */
1421         if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1422             ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1423         else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1424             ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1425 
1426         if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1427             ret = mmc_regulator_set_vqmmc(mmc, &ios);
1428             if (ret < 0) {
1429                 dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1430                     mmc_hostname(mmc), ret);
1431                 goto out;
1432             }
1433         }
1434         ret = regulator_enable(mmc->supply.vqmmc);
1435     } else {
1436         ret = regulator_disable(mmc->supply.vqmmc);
1437     }
1438 
1439     if (ret)
1440         dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1441             mmc_hostname(mmc), level ? "en":"dis", ret);
1442     else
1443         msm_host->vqmmc_enabled = level;
1444 out:
1445     return ret;
1446 }
1447 
1448 static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1449                   struct mmc_host *mmc, bool hpm)
1450 {
1451     int load, ret;
1452 
1453     load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1454     ret = regulator_set_load(mmc->supply.vqmmc, load);
1455     if (ret)
1456         dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1457             mmc_hostname(mmc), ret);
1458     return ret;
1459 }
1460 
1461 static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1462                   struct mmc_host *mmc, bool level)
1463 {
1464     int ret;
1465     bool always_on;
1466 
1467     if (IS_ERR(mmc->supply.vqmmc) ||
1468             (mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1469         return 0;
1470     /*
1471      * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1472      * and HPM modes by setting the corresponding load.
1473      *
1474      * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1475      * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1476      * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1477      * Vqmmc should remain ON, So just set the load instead of turning it
1478      * off/on.
1479      */
1480     always_on = !mmc_card_is_removable(mmc) &&
1481             mmc->card && mmc_card_mmc(mmc->card);
1482 
1483     if (always_on)
1484         ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1485     else
1486         ret = msm_toggle_vqmmc(msm_host, mmc, level);
1487 
1488     return ret;
1489 }
1490 
1491 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1492 {
1493     init_waitqueue_head(&msm_host->pwr_irq_wait);
1494 }
1495 
1496 static inline void sdhci_msm_complete_pwr_irq_wait(
1497         struct sdhci_msm_host *msm_host)
1498 {
1499     wake_up(&msm_host->pwr_irq_wait);
1500 }
1501 
1502 /*
1503  * sdhci_msm_check_power_status API should be called when registers writes
1504  * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1505  * To what state the register writes will change the IO lines should be passed
1506  * as the argument req_type. This API will check whether the IO line's state
1507  * is already the expected state and will wait for power irq only if
1508  * power irq is expected to be triggered based on the current IO line state
1509  * and expected IO line state.
1510  */
1511 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1512 {
1513     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1514     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1515     bool done = false;
1516     u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1517     const struct sdhci_msm_offset *msm_offset =
1518                     msm_host->offset;
1519 
1520     pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1521             mmc_hostname(host->mmc), __func__, req_type,
1522             msm_host->curr_pwr_state, msm_host->curr_io_level);
1523 
1524     /*
1525      * The power interrupt will not be generated for signal voltage
1526      * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1527      * Since sdhci-msm-v5, this bit has been removed and SW must consider
1528      * it as always set.
1529      */
1530     if (!msm_host->mci_removed)
1531         val = msm_host_readl(msm_host, host,
1532                 msm_offset->core_generics);
1533     if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1534         !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1535         return;
1536     }
1537 
1538     /*
1539      * The IRQ for request type IO High/LOW will be generated when -
1540      * there is a state change in 1.8V enable bit (bit 3) of
1541      * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1542      * which indicates 3.3V IO voltage. So, when MMC core layer tries
1543      * to set it to 3.3V before card detection happens, the
1544      * IRQ doesn't get triggered as there is no state change in this bit.
1545      * The driver already handles this case by changing the IO voltage
1546      * level to high as part of controller power up sequence. Hence, check
1547      * for host->pwr to handle a case where IO voltage high request is
1548      * issued even before controller power up.
1549      */
1550     if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1551         pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1552                 mmc_hostname(host->mmc), req_type);
1553         return;
1554     }
1555     if ((req_type & msm_host->curr_pwr_state) ||
1556             (req_type & msm_host->curr_io_level))
1557         done = true;
1558     /*
1559      * This is needed here to handle cases where register writes will
1560      * not change the current bus state or io level of the controller.
1561      * In this case, no power irq will be triggerred and we should
1562      * not wait.
1563      */
1564     if (!done) {
1565         if (!wait_event_timeout(msm_host->pwr_irq_wait,
1566                 msm_host->pwr_irq_flag,
1567                 msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1568             dev_warn(&msm_host->pdev->dev,
1569                  "%s: pwr_irq for req: (%d) timed out\n",
1570                  mmc_hostname(host->mmc), req_type);
1571     }
1572     pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1573             __func__, req_type);
1574 }
1575 
1576 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1577 {
1578     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1579     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1580     const struct sdhci_msm_offset *msm_offset =
1581                     msm_host->offset;
1582 
1583     pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1584         mmc_hostname(host->mmc),
1585         msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1586         msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1587         msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1588 }
1589 
1590 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1591 {
1592     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1593     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1594     struct mmc_host *mmc = host->mmc;
1595     u32 irq_status, irq_ack = 0;
1596     int retry = 10, ret;
1597     u32 pwr_state = 0, io_level = 0;
1598     u32 config;
1599     const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1600 
1601     irq_status = msm_host_readl(msm_host, host,
1602             msm_offset->core_pwrctl_status);
1603     irq_status &= INT_MASK;
1604 
1605     msm_host_writel(msm_host, irq_status, host,
1606             msm_offset->core_pwrctl_clear);
1607 
1608     /*
1609      * There is a rare HW scenario where the first clear pulse could be
1610      * lost when actual reset and clear/read of status register is
1611      * happening at a time. Hence, retry for at least 10 times to make
1612      * sure status register is cleared. Otherwise, this will result in
1613      * a spurious power IRQ resulting in system instability.
1614      */
1615     while (irq_status & msm_host_readl(msm_host, host,
1616                 msm_offset->core_pwrctl_status)) {
1617         if (retry == 0) {
1618             pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1619                     mmc_hostname(host->mmc), irq_status);
1620             sdhci_msm_dump_pwr_ctrl_regs(host);
1621             WARN_ON(1);
1622             break;
1623         }
1624         msm_host_writel(msm_host, irq_status, host,
1625             msm_offset->core_pwrctl_clear);
1626         retry--;
1627         udelay(10);
1628     }
1629 
1630     /* Handle BUS ON/OFF*/
1631     if (irq_status & CORE_PWRCTL_BUS_ON) {
1632         pwr_state = REQ_BUS_ON;
1633         io_level = REQ_IO_HIGH;
1634     }
1635     if (irq_status & CORE_PWRCTL_BUS_OFF) {
1636         pwr_state = REQ_BUS_OFF;
1637         io_level = REQ_IO_LOW;
1638     }
1639 
1640     if (pwr_state) {
1641         ret = sdhci_msm_set_vmmc(mmc);
1642         if (!ret)
1643             ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1644                     pwr_state & REQ_BUS_ON);
1645         if (!ret)
1646             ret = sdhci_msm_set_pincfg(msm_host,
1647                     pwr_state & REQ_BUS_ON);
1648         if (!ret)
1649             irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1650         else
1651             irq_ack |= CORE_PWRCTL_BUS_FAIL;
1652     }
1653 
1654     /* Handle IO LOW/HIGH */
1655     if (irq_status & CORE_PWRCTL_IO_LOW)
1656         io_level = REQ_IO_LOW;
1657 
1658     if (irq_status & CORE_PWRCTL_IO_HIGH)
1659         io_level = REQ_IO_HIGH;
1660 
1661     if (io_level)
1662         irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1663 
1664     if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1665         ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1666         if (ret < 0) {
1667             dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1668                     mmc_hostname(mmc), ret,
1669                     mmc->ios.signal_voltage, mmc->ios.vdd,
1670                     irq_status);
1671             irq_ack |= CORE_PWRCTL_IO_FAIL;
1672         }
1673     }
1674 
1675     /*
1676      * The driver has to acknowledge the interrupt, switch voltages and
1677      * report back if it succeded or not to this register. The voltage
1678      * switches are handled by the sdhci core, so just report success.
1679      */
1680     msm_host_writel(msm_host, irq_ack, host,
1681             msm_offset->core_pwrctl_ctl);
1682 
1683     /*
1684      * If we don't have info regarding the voltage levels supported by
1685      * regulators, don't change the IO PAD PWR SWITCH.
1686      */
1687     if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1688         u32 new_config;
1689         /*
1690          * We should unset IO PAD PWR switch only if the register write
1691          * can set IO lines high and the regulator also switches to 3 V.
1692          * Else, we should keep the IO PAD PWR switch set.
1693          * This is applicable to certain targets where eMMC vccq supply
1694          * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1695          * IO PAD PWR switch must be kept set to reflect actual
1696          * regulator voltage. This way, during initialization of
1697          * controllers with only 1.8V, we will set the IO PAD bit
1698          * without waiting for a REQ_IO_LOW.
1699          */
1700         config = readl_relaxed(host->ioaddr +
1701                 msm_offset->core_vendor_spec);
1702         new_config = config;
1703 
1704         if ((io_level & REQ_IO_HIGH) &&
1705                 (msm_host->caps_0 & CORE_3_0V_SUPPORT))
1706             new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1707         else if ((io_level & REQ_IO_LOW) ||
1708                 (msm_host->caps_0 & CORE_1_8V_SUPPORT))
1709             new_config |= CORE_IO_PAD_PWR_SWITCH;
1710 
1711         if (config ^ new_config)
1712             writel_relaxed(new_config, host->ioaddr +
1713                     msm_offset->core_vendor_spec);
1714     }
1715 
1716     if (pwr_state)
1717         msm_host->curr_pwr_state = pwr_state;
1718     if (io_level)
1719         msm_host->curr_io_level = io_level;
1720 
1721     dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1722         mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1723         irq_ack);
1724 }
1725 
1726 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1727 {
1728     struct sdhci_host *host = (struct sdhci_host *)data;
1729     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1730     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1731 
1732     sdhci_msm_handle_pwr_irq(host, irq);
1733     msm_host->pwr_irq_flag = 1;
1734     sdhci_msm_complete_pwr_irq_wait(msm_host);
1735 
1736 
1737     return IRQ_HANDLED;
1738 }
1739 
1740 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1741 {
1742     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1743     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1744     struct clk *core_clk = msm_host->bulk_clks[0].clk;
1745 
1746     return clk_round_rate(core_clk, ULONG_MAX);
1747 }
1748 
1749 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1750 {
1751     return SDHCI_MSM_MIN_CLOCK;
1752 }
1753 
1754 /*
1755  * __sdhci_msm_set_clock - sdhci_msm clock control.
1756  *
1757  * Description:
1758  * MSM controller does not use internal divider and
1759  * instead directly control the GCC clock as per
1760  * HW recommendation.
1761  **/
1762 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1763 {
1764     u16 clk;
1765 
1766     sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1767 
1768     if (clock == 0)
1769         return;
1770 
1771     /*
1772      * MSM controller do not use clock divider.
1773      * Thus read SDHCI_CLOCK_CONTROL and only enable
1774      * clock with no divider value programmed.
1775      */
1776     clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1777     sdhci_enable_clk(host, clk);
1778 }
1779 
1780 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1781 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1782 {
1783     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1784     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1785 
1786     if (!clock) {
1787         host->mmc->actual_clock = msm_host->clk_rate = 0;
1788         goto out;
1789     }
1790 
1791     sdhci_msm_hc_select_mode(host);
1792 
1793     msm_set_clock_rate_for_bus_mode(host, clock);
1794 out:
1795     __sdhci_msm_set_clock(host, clock);
1796 }
1797 
1798 /*****************************************************************************\
1799  *                                                                           *
1800  * Inline Crypto Engine (ICE) support                                        *
1801  *                                                                           *
1802 \*****************************************************************************/
1803 
1804 #ifdef CONFIG_MMC_CRYPTO
1805 
1806 #define AES_256_XTS_KEY_SIZE            64
1807 
1808 /* QCOM ICE registers */
1809 
1810 #define QCOM_ICE_REG_VERSION            0x0008
1811 
1812 #define QCOM_ICE_REG_FUSE_SETTING       0x0010
1813 #define QCOM_ICE_FUSE_SETTING_MASK      0x1
1814 #define QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK 0x2
1815 #define QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK 0x4
1816 
1817 #define QCOM_ICE_REG_BIST_STATUS        0x0070
1818 #define QCOM_ICE_BIST_STATUS_MASK       0xF0000000
1819 
1820 #define QCOM_ICE_REG_ADVANCED_CONTROL       0x1000
1821 
1822 #define sdhci_msm_ice_writel(host, val, reg)    \
1823     writel((val), (host)->ice_mem + (reg))
1824 #define sdhci_msm_ice_readl(host, reg)  \
1825     readl((host)->ice_mem + (reg))
1826 
1827 static bool sdhci_msm_ice_supported(struct sdhci_msm_host *msm_host)
1828 {
1829     struct device *dev = mmc_dev(msm_host->mmc);
1830     u32 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_VERSION);
1831     int major = regval >> 24;
1832     int minor = (regval >> 16) & 0xFF;
1833     int step = regval & 0xFFFF;
1834 
1835     /* For now this driver only supports ICE version 3. */
1836     if (major != 3) {
1837         dev_warn(dev, "Unsupported ICE version: v%d.%d.%d\n",
1838              major, minor, step);
1839         return false;
1840     }
1841 
1842     dev_info(dev, "Found QC Inline Crypto Engine (ICE) v%d.%d.%d\n",
1843          major, minor, step);
1844 
1845     /* If fuses are blown, ICE might not work in the standard way. */
1846     regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_FUSE_SETTING);
1847     if (regval & (QCOM_ICE_FUSE_SETTING_MASK |
1848               QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK |
1849               QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK)) {
1850         dev_warn(dev, "Fuses are blown; ICE is unusable!\n");
1851         return false;
1852     }
1853     return true;
1854 }
1855 
1856 static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
1857 {
1858     return devm_clk_get(dev, "ice");
1859 }
1860 
1861 static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1862                   struct cqhci_host *cq_host)
1863 {
1864     struct mmc_host *mmc = msm_host->mmc;
1865     struct device *dev = mmc_dev(mmc);
1866     struct resource *res;
1867 
1868     if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
1869         return 0;
1870 
1871     res = platform_get_resource_byname(msm_host->pdev, IORESOURCE_MEM,
1872                        "ice");
1873     if (!res) {
1874         dev_warn(dev, "ICE registers not found\n");
1875         goto disable;
1876     }
1877 
1878     if (!qcom_scm_ice_available()) {
1879         dev_warn(dev, "ICE SCM interface not found\n");
1880         goto disable;
1881     }
1882 
1883     msm_host->ice_mem = devm_ioremap_resource(dev, res);
1884     if (IS_ERR(msm_host->ice_mem))
1885         return PTR_ERR(msm_host->ice_mem);
1886 
1887     if (!sdhci_msm_ice_supported(msm_host))
1888         goto disable;
1889 
1890     mmc->caps2 |= MMC_CAP2_CRYPTO;
1891     return 0;
1892 
1893 disable:
1894     dev_warn(dev, "Disabling inline encryption support\n");
1895     return 0;
1896 }
1897 
1898 static void sdhci_msm_ice_low_power_mode_enable(struct sdhci_msm_host *msm_host)
1899 {
1900     u32 regval;
1901 
1902     regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1903     /*
1904      * Enable low power mode sequence
1905      * [0]-0, [1]-0, [2]-0, [3]-E, [4]-0, [5]-0, [6]-0, [7]-0
1906      */
1907     regval |= 0x7000;
1908     sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1909 }
1910 
1911 static void sdhci_msm_ice_optimization_enable(struct sdhci_msm_host *msm_host)
1912 {
1913     u32 regval;
1914 
1915     /* ICE Optimizations Enable Sequence */
1916     regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1917     regval |= 0xD807100;
1918     /* ICE HPG requires delay before writing */
1919     udelay(5);
1920     sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1921     udelay(5);
1922 }
1923 
1924 /*
1925  * Wait until the ICE BIST (built-in self-test) has completed.
1926  *
1927  * This may be necessary before ICE can be used.
1928  *
1929  * Note that we don't really care whether the BIST passed or failed; we really
1930  * just want to make sure that it isn't still running.  This is because (a) the
1931  * BIST is a FIPS compliance thing that never fails in practice, (b) ICE is
1932  * documented to reject crypto requests if the BIST fails, so we needn't do it
1933  * in software too, and (c) properly testing storage encryption requires testing
1934  * the full storage stack anyway, and not relying on hardware-level self-tests.
1935  */
1936 static int sdhci_msm_ice_wait_bist_status(struct sdhci_msm_host *msm_host)
1937 {
1938     u32 regval;
1939     int err;
1940 
1941     err = readl_poll_timeout(msm_host->ice_mem + QCOM_ICE_REG_BIST_STATUS,
1942                  regval, !(regval & QCOM_ICE_BIST_STATUS_MASK),
1943                  50, 5000);
1944     if (err)
1945         dev_err(mmc_dev(msm_host->mmc),
1946             "Timed out waiting for ICE self-test to complete\n");
1947     return err;
1948 }
1949 
1950 static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1951 {
1952     if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1953         return;
1954     sdhci_msm_ice_low_power_mode_enable(msm_host);
1955     sdhci_msm_ice_optimization_enable(msm_host);
1956     sdhci_msm_ice_wait_bist_status(msm_host);
1957 }
1958 
1959 static int __maybe_unused sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1960 {
1961     if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1962         return 0;
1963     return sdhci_msm_ice_wait_bist_status(msm_host);
1964 }
1965 
1966 /*
1967  * Program a key into a QC ICE keyslot, or evict a keyslot.  QC ICE requires
1968  * vendor-specific SCM calls for this; it doesn't support the standard way.
1969  */
1970 static int sdhci_msm_program_key(struct cqhci_host *cq_host,
1971                  const union cqhci_crypto_cfg_entry *cfg,
1972                  int slot)
1973 {
1974     struct device *dev = mmc_dev(cq_host->mmc);
1975     union cqhci_crypto_cap_entry cap;
1976     union {
1977         u8 bytes[AES_256_XTS_KEY_SIZE];
1978         u32 words[AES_256_XTS_KEY_SIZE / sizeof(u32)];
1979     } key;
1980     int i;
1981     int err;
1982 
1983     if (!(cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE))
1984         return qcom_scm_ice_invalidate_key(slot);
1985 
1986     /* Only AES-256-XTS has been tested so far. */
1987     cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx];
1988     if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS ||
1989         cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256) {
1990         dev_err_ratelimited(dev,
1991                     "Unhandled crypto capability; algorithm_id=%d, key_size=%d\n",
1992                     cap.algorithm_id, cap.key_size);
1993         return -EINVAL;
1994     }
1995 
1996     memcpy(key.bytes, cfg->crypto_key, AES_256_XTS_KEY_SIZE);
1997 
1998     /*
1999      * The SCM call byte-swaps the 32-bit words of the key.  So we have to
2000      * do the same, in order for the final key be correct.
2001      */
2002     for (i = 0; i < ARRAY_SIZE(key.words); i++)
2003         __cpu_to_be32s(&key.words[i]);
2004 
2005     err = qcom_scm_ice_set_key(slot, key.bytes, AES_256_XTS_KEY_SIZE,
2006                    QCOM_SCM_ICE_CIPHER_AES_256_XTS,
2007                    cfg->data_unit_size);
2008     memzero_explicit(&key, sizeof(key));
2009     return err;
2010 }
2011 #else /* CONFIG_MMC_CRYPTO */
2012 static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
2013 {
2014     return NULL;
2015 }
2016 
2017 static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
2018                      struct cqhci_host *cq_host)
2019 {
2020     return 0;
2021 }
2022 
2023 static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
2024 {
2025 }
2026 
2027 static inline int __maybe_unused
2028 sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
2029 {
2030     return 0;
2031 }
2032 #endif /* !CONFIG_MMC_CRYPTO */
2033 
2034 /*****************************************************************************\
2035  *                                                                           *
2036  * MSM Command Queue Engine (CQE)                                            *
2037  *                                                                           *
2038 \*****************************************************************************/
2039 
2040 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
2041 {
2042     int cmd_error = 0;
2043     int data_error = 0;
2044 
2045     if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
2046         return intmask;
2047 
2048     cqhci_irq(host->mmc, intmask, cmd_error, data_error);
2049     return 0;
2050 }
2051 
2052 static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
2053 {
2054     struct sdhci_host *host = mmc_priv(mmc);
2055     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2056     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2057 
2058     sdhci_cqe_enable(mmc);
2059     sdhci_msm_ice_enable(msm_host);
2060 }
2061 
2062 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
2063 {
2064     struct sdhci_host *host = mmc_priv(mmc);
2065     unsigned long flags;
2066     u32 ctrl;
2067 
2068     /*
2069      * When CQE is halted, the legacy SDHCI path operates only
2070      * on 16-byte descriptors in 64bit mode.
2071      */
2072     if (host->flags & SDHCI_USE_64_BIT_DMA)
2073         host->desc_sz = 16;
2074 
2075     spin_lock_irqsave(&host->lock, flags);
2076 
2077     /*
2078      * During CQE command transfers, command complete bit gets latched.
2079      * So s/w should clear command complete interrupt status when CQE is
2080      * either halted or disabled. Otherwise unexpected SDCHI legacy
2081      * interrupt gets triggered when CQE is halted/disabled.
2082      */
2083     ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
2084     ctrl |= SDHCI_INT_RESPONSE;
2085     sdhci_writel(host,  ctrl, SDHCI_INT_ENABLE);
2086     sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
2087 
2088     spin_unlock_irqrestore(&host->lock, flags);
2089 
2090     sdhci_cqe_disable(mmc, recovery);
2091 }
2092 
2093 static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
2094 {
2095     u32 count, start = 15;
2096 
2097     __sdhci_set_timeout(host, cmd);
2098     count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL);
2099     /*
2100      * Update software timeout value if its value is less than hardware data
2101      * timeout value. Qcom SoC hardware data timeout value was calculated
2102      * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock.
2103      */
2104     if (cmd && cmd->data && host->clock > 400000 &&
2105         host->clock <= 50000000 &&
2106         ((1 << (count + start)) > (10 * host->clock)))
2107         host->data_timeout = 22LL * NSEC_PER_SEC;
2108 }
2109 
2110 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
2111     .enable     = sdhci_msm_cqe_enable,
2112     .disable    = sdhci_msm_cqe_disable,
2113 #ifdef CONFIG_MMC_CRYPTO
2114     .program_key    = sdhci_msm_program_key,
2115 #endif
2116 };
2117 
2118 static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
2119                 struct platform_device *pdev)
2120 {
2121     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2122     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2123     struct cqhci_host *cq_host;
2124     bool dma64;
2125     u32 cqcfg;
2126     int ret;
2127 
2128     /*
2129      * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
2130      * So ensure ADMA table is allocated for 16byte descriptors.
2131      */
2132     if (host->caps & SDHCI_CAN_64BIT)
2133         host->alloc_desc_sz = 16;
2134 
2135     ret = sdhci_setup_host(host);
2136     if (ret)
2137         return ret;
2138 
2139     cq_host = cqhci_pltfm_init(pdev);
2140     if (IS_ERR(cq_host)) {
2141         ret = PTR_ERR(cq_host);
2142         dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
2143         goto cleanup;
2144     }
2145 
2146     msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
2147     cq_host->ops = &sdhci_msm_cqhci_ops;
2148 
2149     dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
2150 
2151     ret = sdhci_msm_ice_init(msm_host, cq_host);
2152     if (ret)
2153         goto cleanup;
2154 
2155     ret = cqhci_init(cq_host, host->mmc, dma64);
2156     if (ret) {
2157         dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
2158                 mmc_hostname(host->mmc), ret);
2159         goto cleanup;
2160     }
2161 
2162     /* Disable cqe reset due to cqe enable signal */
2163     cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
2164     cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
2165     cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
2166 
2167     /*
2168      * SDHC expects 12byte ADMA descriptors till CQE is enabled.
2169      * So limit desc_sz to 12 so that the data commands that are sent
2170      * during card initialization (before CQE gets enabled) would
2171      * get executed without any issues.
2172      */
2173     if (host->flags & SDHCI_USE_64_BIT_DMA)
2174         host->desc_sz = 12;
2175 
2176     ret = __sdhci_add_host(host);
2177     if (ret)
2178         goto cleanup;
2179 
2180     dev_info(&pdev->dev, "%s: CQE init: success\n",
2181             mmc_hostname(host->mmc));
2182     return ret;
2183 
2184 cleanup:
2185     sdhci_cleanup_host(host);
2186     return ret;
2187 }
2188 
2189 /*
2190  * Platform specific register write functions. This is so that, if any
2191  * register write needs to be followed up by platform specific actions,
2192  * they can be added here. These functions can go to sleep when writes
2193  * to certain registers are done.
2194  * These functions are relying on sdhci_set_ios not using spinlock.
2195  */
2196 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
2197 {
2198     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2199     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2200     u32 req_type = 0;
2201 
2202     switch (reg) {
2203     case SDHCI_HOST_CONTROL2:
2204         req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
2205             REQ_IO_HIGH;
2206         break;
2207     case SDHCI_SOFTWARE_RESET:
2208         if (host->pwr && (val & SDHCI_RESET_ALL))
2209             req_type = REQ_BUS_OFF;
2210         break;
2211     case SDHCI_POWER_CONTROL:
2212         req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
2213         break;
2214     case SDHCI_TRANSFER_MODE:
2215         msm_host->transfer_mode = val;
2216         break;
2217     case SDHCI_COMMAND:
2218         if (!msm_host->use_cdr)
2219             break;
2220         if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
2221             SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 &&
2222             SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK)
2223             sdhci_msm_set_cdr(host, true);
2224         else
2225             sdhci_msm_set_cdr(host, false);
2226         break;
2227     }
2228 
2229     if (req_type) {
2230         msm_host->pwr_irq_flag = 0;
2231         /*
2232          * Since this register write may trigger a power irq, ensure
2233          * all previous register writes are complete by this point.
2234          */
2235         mb();
2236     }
2237     return req_type;
2238 }
2239 
2240 /* This function may sleep*/
2241 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
2242 {
2243     u32 req_type = 0;
2244 
2245     req_type = __sdhci_msm_check_write(host, val, reg);
2246     writew_relaxed(val, host->ioaddr + reg);
2247 
2248     if (req_type)
2249         sdhci_msm_check_power_status(host, req_type);
2250 }
2251 
2252 /* This function may sleep*/
2253 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
2254 {
2255     u32 req_type = 0;
2256 
2257     req_type = __sdhci_msm_check_write(host, val, reg);
2258 
2259     writeb_relaxed(val, host->ioaddr + reg);
2260 
2261     if (req_type)
2262         sdhci_msm_check_power_status(host, req_type);
2263 }
2264 
2265 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
2266 {
2267     struct mmc_host *mmc = msm_host->mmc;
2268     struct regulator *supply = mmc->supply.vqmmc;
2269     u32 caps = 0, config;
2270     struct sdhci_host *host = mmc_priv(mmc);
2271     const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2272 
2273     if (!IS_ERR(mmc->supply.vqmmc)) {
2274         if (regulator_is_supported_voltage(supply, 1700000, 1950000))
2275             caps |= CORE_1_8V_SUPPORT;
2276         if (regulator_is_supported_voltage(supply, 2700000, 3600000))
2277             caps |= CORE_3_0V_SUPPORT;
2278 
2279         if (!caps)
2280             pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2281                     mmc_hostname(mmc));
2282     }
2283 
2284     if (caps) {
2285         /*
2286          * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2287          * bit can be used as required later on.
2288          */
2289         u32 io_level = msm_host->curr_io_level;
2290 
2291         config = readl_relaxed(host->ioaddr +
2292                 msm_offset->core_vendor_spec);
2293         config |= CORE_IO_PAD_PWR_SWITCH_EN;
2294 
2295         if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT))
2296             config &= ~CORE_IO_PAD_PWR_SWITCH;
2297         else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2298             config |= CORE_IO_PAD_PWR_SWITCH;
2299 
2300         writel_relaxed(config,
2301                 host->ioaddr + msm_offset->core_vendor_spec);
2302     }
2303     msm_host->caps_0 |= caps;
2304     pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2305 }
2306 
2307 static void sdhci_msm_reset(struct sdhci_host *host, u8 mask)
2308 {
2309     if ((host->mmc->caps2 & MMC_CAP2_CQE) && (mask & SDHCI_RESET_ALL))
2310         cqhci_deactivate(host->mmc);
2311     sdhci_reset(host, mask);
2312 }
2313 
2314 static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2315 {
2316     int ret;
2317 
2318     ret = mmc_regulator_get_supply(msm_host->mmc);
2319     if (ret)
2320         return ret;
2321 
2322     sdhci_msm_set_regulator_caps(msm_host);
2323 
2324     return 0;
2325 }
2326 
2327 static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2328                       struct mmc_ios *ios)
2329 {
2330     struct sdhci_host *host = mmc_priv(mmc);
2331     u16 ctrl, status;
2332 
2333     /*
2334      * Signal Voltage Switching is only applicable for Host Controllers
2335      * v3.00 and above.
2336      */
2337     if (host->version < SDHCI_SPEC_300)
2338         return 0;
2339 
2340     ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2341 
2342     switch (ios->signal_voltage) {
2343     case MMC_SIGNAL_VOLTAGE_330:
2344         if (!(host->flags & SDHCI_SIGNALING_330))
2345             return -EINVAL;
2346 
2347         /* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2348         ctrl &= ~SDHCI_CTRL_VDD_180;
2349         break;
2350     case MMC_SIGNAL_VOLTAGE_180:
2351         if (!(host->flags & SDHCI_SIGNALING_180))
2352             return -EINVAL;
2353 
2354         /* Enable 1.8V Signal Enable in the Host Control2 register */
2355         ctrl |= SDHCI_CTRL_VDD_180;
2356         break;
2357 
2358     default:
2359         return -EINVAL;
2360     }
2361 
2362     sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2363 
2364     /* Wait for 5ms */
2365     usleep_range(5000, 5500);
2366 
2367     /* regulator output should be stable within 5 ms */
2368     status = ctrl & SDHCI_CTRL_VDD_180;
2369     ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2370     if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2371         return 0;
2372 
2373     dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2374         mmc_hostname(mmc));
2375 
2376     return -EAGAIN;
2377 }
2378 
2379 #define DRIVER_NAME "sdhci_msm"
2380 #define SDHCI_MSM_DUMP(f, x...) \
2381     pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2382 
2383 static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2384 {
2385     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2386     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2387     const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2388 
2389     SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2390 
2391     SDHCI_MSM_DUMP(
2392             "DLL sts: 0x%08x | DLL cfg:  0x%08x | DLL cfg2: 0x%08x\n",
2393         readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2394         readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2395         readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2396     SDHCI_MSM_DUMP(
2397             "DLL cfg3: 0x%08x | DLL usr ctl:  0x%08x | DDR cfg: 0x%08x\n",
2398         readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2399         readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2400         readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2401     SDHCI_MSM_DUMP(
2402             "Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2403         readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2404         readl_relaxed(host->ioaddr +
2405             msm_offset->core_vendor_spec_func2),
2406         readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2407 }
2408 
2409 static const struct sdhci_msm_variant_ops mci_var_ops = {
2410     .msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2411     .msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2412 };
2413 
2414 static const struct sdhci_msm_variant_ops v5_var_ops = {
2415     .msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2416     .msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2417 };
2418 
2419 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2420     .var_ops = &mci_var_ops,
2421     .offset = &sdhci_msm_mci_offset,
2422 };
2423 
2424 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2425     .mci_removed = true,
2426     .var_ops = &v5_var_ops,
2427     .offset = &sdhci_msm_v5_offset,
2428 };
2429 
2430 static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2431     .mci_removed = true,
2432     .restore_dll_config = true,
2433     .var_ops = &v5_var_ops,
2434     .offset = &sdhci_msm_v5_offset,
2435 };
2436 
2437 static const struct of_device_id sdhci_msm_dt_match[] = {
2438     /*
2439      * Do not add new variants to the driver which are compatible with
2440      * generic ones, unless they need customization.
2441      */
2442     {.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2443     {.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2444     {.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2445     {.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
2446     {},
2447 };
2448 
2449 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2450 
2451 static const struct sdhci_ops sdhci_msm_ops = {
2452     .reset = sdhci_msm_reset,
2453     .set_clock = sdhci_msm_set_clock,
2454     .get_min_clock = sdhci_msm_get_min_clock,
2455     .get_max_clock = sdhci_msm_get_max_clock,
2456     .set_bus_width = sdhci_set_bus_width,
2457     .set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2458     .write_w = sdhci_msm_writew,
2459     .write_b = sdhci_msm_writeb,
2460     .irq    = sdhci_msm_cqe_irq,
2461     .dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2462     .set_power = sdhci_set_power_noreg,
2463     .set_timeout = sdhci_msm_set_timeout,
2464 };
2465 
2466 static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2467     .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2468           SDHCI_QUIRK_SINGLE_POWER_WRITE |
2469           SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2470           SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2471 
2472     .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2473     .ops = &sdhci_msm_ops,
2474 };
2475 
2476 static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2477         struct sdhci_host *host)
2478 {
2479     struct device_node *node = pdev->dev.of_node;
2480     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2481     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2482 
2483     if (of_property_read_u32(node, "qcom,ddr-config",
2484                 &msm_host->ddr_config))
2485         msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2486 
2487     of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2488 }
2489 
2490 static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host)
2491 {
2492     struct reset_control *reset;
2493     int ret = 0;
2494 
2495     reset = reset_control_get_optional_exclusive(dev, NULL);
2496     if (IS_ERR(reset))
2497         return dev_err_probe(dev, PTR_ERR(reset),
2498                 "unable to acquire core_reset\n");
2499 
2500     if (!reset)
2501         return ret;
2502 
2503     ret = reset_control_assert(reset);
2504     if (ret) {
2505         reset_control_put(reset);
2506         return dev_err_probe(dev, ret, "core_reset assert failed\n");
2507     }
2508 
2509     /*
2510      * The hardware requirement for delay between assert/deassert
2511      * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
2512      * ~125us (4/32768). To be on the safe side add 200us delay.
2513      */
2514     usleep_range(200, 210);
2515 
2516     ret = reset_control_deassert(reset);
2517     if (ret) {
2518         reset_control_put(reset);
2519         return dev_err_probe(dev, ret, "core_reset deassert failed\n");
2520     }
2521 
2522     usleep_range(200, 210);
2523     reset_control_put(reset);
2524 
2525     return ret;
2526 }
2527 
2528 static int sdhci_msm_probe(struct platform_device *pdev)
2529 {
2530     struct sdhci_host *host;
2531     struct sdhci_pltfm_host *pltfm_host;
2532     struct sdhci_msm_host *msm_host;
2533     struct clk *clk;
2534     int ret;
2535     u16 host_version, core_minor;
2536     u32 core_version, config;
2537     u8 core_major;
2538     const struct sdhci_msm_offset *msm_offset;
2539     const struct sdhci_msm_variant_info *var_info;
2540     struct device_node *node = pdev->dev.of_node;
2541 
2542     host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2543     if (IS_ERR(host))
2544         return PTR_ERR(host);
2545 
2546     host->sdma_boundary = 0;
2547     pltfm_host = sdhci_priv(host);
2548     msm_host = sdhci_pltfm_priv(pltfm_host);
2549     msm_host->mmc = host->mmc;
2550     msm_host->pdev = pdev;
2551 
2552     ret = mmc_of_parse(host->mmc);
2553     if (ret)
2554         goto pltfm_free;
2555 
2556     /*
2557      * Based on the compatible string, load the required msm host info from
2558      * the data associated with the version info.
2559      */
2560     var_info = of_device_get_match_data(&pdev->dev);
2561 
2562     msm_host->mci_removed = var_info->mci_removed;
2563     msm_host->restore_dll_config = var_info->restore_dll_config;
2564     msm_host->var_ops = var_info->var_ops;
2565     msm_host->offset = var_info->offset;
2566 
2567     msm_offset = msm_host->offset;
2568 
2569     sdhci_get_of_property(pdev);
2570     sdhci_msm_get_of_property(pdev, host);
2571 
2572     msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2573 
2574     ret = sdhci_msm_gcc_reset(&pdev->dev, host);
2575     if (ret)
2576         goto pltfm_free;
2577 
2578     /* Setup SDCC bus voter clock. */
2579     msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2580     if (!IS_ERR(msm_host->bus_clk)) {
2581         /* Vote for max. clk rate for max. performance */
2582         ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2583         if (ret)
2584             goto pltfm_free;
2585         ret = clk_prepare_enable(msm_host->bus_clk);
2586         if (ret)
2587             goto pltfm_free;
2588     }
2589 
2590     /* Setup main peripheral bus clock */
2591     clk = devm_clk_get(&pdev->dev, "iface");
2592     if (IS_ERR(clk)) {
2593         ret = PTR_ERR(clk);
2594         dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2595         goto bus_clk_disable;
2596     }
2597     msm_host->bulk_clks[1].clk = clk;
2598 
2599     /* Setup SDC MMC clock */
2600     clk = devm_clk_get(&pdev->dev, "core");
2601     if (IS_ERR(clk)) {
2602         ret = PTR_ERR(clk);
2603         dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2604         goto bus_clk_disable;
2605     }
2606     msm_host->bulk_clks[0].clk = clk;
2607 
2608      /* Check for optional interconnect paths */
2609     ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2610     if (ret)
2611         goto bus_clk_disable;
2612 
2613     ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
2614     if (ret)
2615         goto bus_clk_disable;
2616 
2617     /* OPP table is optional */
2618     ret = devm_pm_opp_of_add_table(&pdev->dev);
2619     if (ret && ret != -ENODEV) {
2620         dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2621         goto bus_clk_disable;
2622     }
2623 
2624     /* Vote for maximum clock rate for maximum performance */
2625     ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2626     if (ret)
2627         dev_warn(&pdev->dev, "core clock boost failed\n");
2628 
2629     clk = devm_clk_get(&pdev->dev, "cal");
2630     if (IS_ERR(clk))
2631         clk = NULL;
2632     msm_host->bulk_clks[2].clk = clk;
2633 
2634     clk = devm_clk_get(&pdev->dev, "sleep");
2635     if (IS_ERR(clk))
2636         clk = NULL;
2637     msm_host->bulk_clks[3].clk = clk;
2638 
2639     clk = sdhci_msm_ice_get_clk(&pdev->dev);
2640     if (IS_ERR(clk))
2641         clk = NULL;
2642     msm_host->bulk_clks[4].clk = clk;
2643 
2644     ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2645                       msm_host->bulk_clks);
2646     if (ret)
2647         goto bus_clk_disable;
2648 
2649     /*
2650      * xo clock is needed for FLL feature of cm_dll.
2651      * In case if xo clock is not mentioned in DT, warn and proceed.
2652      */
2653     msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2654     if (IS_ERR(msm_host->xo_clk)) {
2655         ret = PTR_ERR(msm_host->xo_clk);
2656         dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2657     }
2658 
2659     if (!msm_host->mci_removed) {
2660         msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2661         if (IS_ERR(msm_host->core_mem)) {
2662             ret = PTR_ERR(msm_host->core_mem);
2663             goto clk_disable;
2664         }
2665     }
2666 
2667     /* Reset the vendor spec register to power on reset state */
2668     writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2669             host->ioaddr + msm_offset->core_vendor_spec);
2670 
2671     if (!msm_host->mci_removed) {
2672         /* Set HC_MODE_EN bit in HC_MODE register */
2673         msm_host_writel(msm_host, HC_MODE_EN, host,
2674                 msm_offset->core_hc_mode);
2675         config = msm_host_readl(msm_host, host,
2676                 msm_offset->core_hc_mode);
2677         config |= FF_CLK_SW_RST_DIS;
2678         msm_host_writel(msm_host, config, host,
2679                 msm_offset->core_hc_mode);
2680     }
2681 
2682     host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2683     dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2684         host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2685                    SDHCI_VENDOR_VER_SHIFT));
2686 
2687     core_version = msm_host_readl(msm_host, host,
2688             msm_offset->core_mci_version);
2689     core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2690               CORE_VERSION_MAJOR_SHIFT;
2691     core_minor = core_version & CORE_VERSION_MINOR_MASK;
2692     dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2693         core_version, core_major, core_minor);
2694 
2695     if (core_major == 1 && core_minor >= 0x42)
2696         msm_host->use_14lpp_dll_reset = true;
2697 
2698     /*
2699      * SDCC 5 controller with major version 1, minor version 0x34 and later
2700      * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2701      */
2702     if (core_major == 1 && core_minor < 0x34)
2703         msm_host->use_cdclp533 = true;
2704 
2705     /*
2706      * Support for some capabilities is not advertised by newer
2707      * controller versions and must be explicitly enabled.
2708      */
2709     if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2710         config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2711         config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2712         writel_relaxed(config, host->ioaddr +
2713                 msm_offset->core_vendor_spec_capabilities0);
2714     }
2715 
2716     if (core_major == 1 && core_minor >= 0x49)
2717         msm_host->updated_ddr_cfg = true;
2718 
2719     if (core_major == 1 && core_minor >= 0x71)
2720         msm_host->uses_tassadar_dll = true;
2721 
2722     ret = sdhci_msm_register_vreg(msm_host);
2723     if (ret)
2724         goto clk_disable;
2725 
2726     /*
2727      * Power on reset state may trigger power irq if previous status of
2728      * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2729      * interrupt in GIC, any pending power irq interrupt should be
2730      * acknowledged. Otherwise power irq interrupt handler would be
2731      * fired prematurely.
2732      */
2733     sdhci_msm_handle_pwr_irq(host, 0);
2734 
2735     /*
2736      * Ensure that above writes are propogated before interrupt enablement
2737      * in GIC.
2738      */
2739     mb();
2740 
2741     /* Setup IRQ for handling power/voltage tasks with PMIC */
2742     msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2743     if (msm_host->pwr_irq < 0) {
2744         ret = msm_host->pwr_irq;
2745         goto clk_disable;
2746     }
2747 
2748     sdhci_msm_init_pwr_irq_wait(msm_host);
2749     /* Enable pwr irq interrupts */
2750     msm_host_writel(msm_host, INT_MASK, host,
2751         msm_offset->core_pwrctl_mask);
2752 
2753     ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2754                     sdhci_msm_pwr_irq, IRQF_ONESHOT,
2755                     dev_name(&pdev->dev), host);
2756     if (ret) {
2757         dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2758         goto clk_disable;
2759     }
2760 
2761     msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2762 
2763     /* Set the timeout value to max possible */
2764     host->max_timeout_count = 0xF;
2765 
2766     pm_runtime_get_noresume(&pdev->dev);
2767     pm_runtime_set_active(&pdev->dev);
2768     pm_runtime_enable(&pdev->dev);
2769     pm_runtime_set_autosuspend_delay(&pdev->dev,
2770                      MSM_MMC_AUTOSUSPEND_DELAY_MS);
2771     pm_runtime_use_autosuspend(&pdev->dev);
2772 
2773     host->mmc_host_ops.start_signal_voltage_switch =
2774         sdhci_msm_start_signal_voltage_switch;
2775     host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2776     if (of_property_read_bool(node, "supports-cqe"))
2777         ret = sdhci_msm_cqe_add_host(host, pdev);
2778     else
2779         ret = sdhci_add_host(host);
2780     if (ret)
2781         goto pm_runtime_disable;
2782 
2783     pm_runtime_mark_last_busy(&pdev->dev);
2784     pm_runtime_put_autosuspend(&pdev->dev);
2785 
2786     return 0;
2787 
2788 pm_runtime_disable:
2789     pm_runtime_disable(&pdev->dev);
2790     pm_runtime_set_suspended(&pdev->dev);
2791     pm_runtime_put_noidle(&pdev->dev);
2792 clk_disable:
2793     clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2794                    msm_host->bulk_clks);
2795 bus_clk_disable:
2796     if (!IS_ERR(msm_host->bus_clk))
2797         clk_disable_unprepare(msm_host->bus_clk);
2798 pltfm_free:
2799     sdhci_pltfm_free(pdev);
2800     return ret;
2801 }
2802 
2803 static int sdhci_msm_remove(struct platform_device *pdev)
2804 {
2805     struct sdhci_host *host = platform_get_drvdata(pdev);
2806     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2807     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2808     int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2809             0xffffffff);
2810 
2811     sdhci_remove_host(host, dead);
2812 
2813     pm_runtime_get_sync(&pdev->dev);
2814     pm_runtime_disable(&pdev->dev);
2815     pm_runtime_put_noidle(&pdev->dev);
2816 
2817     clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2818                    msm_host->bulk_clks);
2819     if (!IS_ERR(msm_host->bus_clk))
2820         clk_disable_unprepare(msm_host->bus_clk);
2821     sdhci_pltfm_free(pdev);
2822     return 0;
2823 }
2824 
2825 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2826 {
2827     struct sdhci_host *host = dev_get_drvdata(dev);
2828     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2829     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2830 
2831     /* Drop the performance vote */
2832     dev_pm_opp_set_rate(dev, 0);
2833     clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2834                    msm_host->bulk_clks);
2835 
2836     return 0;
2837 }
2838 
2839 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2840 {
2841     struct sdhci_host *host = dev_get_drvdata(dev);
2842     struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2843     struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2844     int ret;
2845 
2846     ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2847                        msm_host->bulk_clks);
2848     if (ret)
2849         return ret;
2850     /*
2851      * Whenever core-clock is gated dynamically, it's needed to
2852      * restore the SDR DLL settings when the clock is ungated.
2853      */
2854     if (msm_host->restore_dll_config && msm_host->clk_rate) {
2855         ret = sdhci_msm_restore_sdr_dll_config(host);
2856         if (ret)
2857             return ret;
2858     }
2859 
2860     dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2861 
2862     return sdhci_msm_ice_resume(msm_host);
2863 }
2864 
2865 static const struct dev_pm_ops sdhci_msm_pm_ops = {
2866     SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2867                 pm_runtime_force_resume)
2868     SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2869                sdhci_msm_runtime_resume,
2870                NULL)
2871 };
2872 
2873 static struct platform_driver sdhci_msm_driver = {
2874     .probe = sdhci_msm_probe,
2875     .remove = sdhci_msm_remove,
2876     .driver = {
2877            .name = "sdhci_msm",
2878            .of_match_table = sdhci_msm_dt_match,
2879            .pm = &sdhci_msm_pm_ops,
2880            .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2881     },
2882 };
2883 
2884 module_platform_driver(sdhci_msm_driver);
2885 
2886 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2887 MODULE_LICENSE("GPL v2");