Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
0004  *
0005  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
0006  *  Copyright (C) 2010 ST-Ericsson SA
0007  */
0008 #include <linux/module.h>
0009 #include <linux/moduleparam.h>
0010 #include <linux/init.h>
0011 #include <linux/ioport.h>
0012 #include <linux/device.h>
0013 #include <linux/io.h>
0014 #include <linux/interrupt.h>
0015 #include <linux/kernel.h>
0016 #include <linux/slab.h>
0017 #include <linux/delay.h>
0018 #include <linux/err.h>
0019 #include <linux/highmem.h>
0020 #include <linux/log2.h>
0021 #include <linux/mmc/mmc.h>
0022 #include <linux/mmc/pm.h>
0023 #include <linux/mmc/host.h>
0024 #include <linux/mmc/card.h>
0025 #include <linux/mmc/sd.h>
0026 #include <linux/mmc/slot-gpio.h>
0027 #include <linux/amba/bus.h>
0028 #include <linux/clk.h>
0029 #include <linux/scatterlist.h>
0030 #include <linux/of.h>
0031 #include <linux/regulator/consumer.h>
0032 #include <linux/dmaengine.h>
0033 #include <linux/dma-mapping.h>
0034 #include <linux/amba/mmci.h>
0035 #include <linux/pm_runtime.h>
0036 #include <linux/types.h>
0037 #include <linux/pinctrl/consumer.h>
0038 #include <linux/reset.h>
0039 #include <linux/gpio/consumer.h>
0040 
0041 #include <asm/div64.h>
0042 #include <asm/io.h>
0043 
0044 #include "mmci.h"
0045 
0046 #define DRIVER_NAME "mmci-pl18x"
0047 
0048 static void mmci_variant_init(struct mmci_host *host);
0049 static void ux500_variant_init(struct mmci_host *host);
0050 static void ux500v2_variant_init(struct mmci_host *host);
0051 
0052 static unsigned int fmax = 515633;
0053 
0054 static struct variant_data variant_arm = {
0055     .fifosize       = 16 * 4,
0056     .fifohalfsize       = 8 * 4,
0057     .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
0058     .cmdreg_lrsp_crc    = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
0059     .cmdreg_srsp_crc    = MCI_CPSM_RESPONSE,
0060     .cmdreg_srsp        = MCI_CPSM_RESPONSE,
0061     .datalength_bits    = 16,
0062     .datactrl_blocksz   = 11,
0063     .pwrreg_powerup     = MCI_PWR_UP,
0064     .f_max          = 100000000,
0065     .reversed_irq_handling  = true,
0066     .mmcimask1      = true,
0067     .irq_pio_mask       = MCI_IRQ_PIO_MASK,
0068     .start_err      = MCI_STARTBITERR,
0069     .opendrain      = MCI_ROD,
0070     .init           = mmci_variant_init,
0071 };
0072 
0073 static struct variant_data variant_arm_extended_fifo = {
0074     .fifosize       = 128 * 4,
0075     .fifohalfsize       = 64 * 4,
0076     .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
0077     .cmdreg_lrsp_crc    = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
0078     .cmdreg_srsp_crc    = MCI_CPSM_RESPONSE,
0079     .cmdreg_srsp        = MCI_CPSM_RESPONSE,
0080     .datalength_bits    = 16,
0081     .datactrl_blocksz   = 11,
0082     .pwrreg_powerup     = MCI_PWR_UP,
0083     .f_max          = 100000000,
0084     .mmcimask1      = true,
0085     .irq_pio_mask       = MCI_IRQ_PIO_MASK,
0086     .start_err      = MCI_STARTBITERR,
0087     .opendrain      = MCI_ROD,
0088     .init           = mmci_variant_init,
0089 };
0090 
0091 static struct variant_data variant_arm_extended_fifo_hwfc = {
0092     .fifosize       = 128 * 4,
0093     .fifohalfsize       = 64 * 4,
0094     .clkreg_enable      = MCI_ARM_HWFCEN,
0095     .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
0096     .cmdreg_lrsp_crc    = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
0097     .cmdreg_srsp_crc    = MCI_CPSM_RESPONSE,
0098     .cmdreg_srsp        = MCI_CPSM_RESPONSE,
0099     .datalength_bits    = 16,
0100     .datactrl_blocksz   = 11,
0101     .pwrreg_powerup     = MCI_PWR_UP,
0102     .f_max          = 100000000,
0103     .mmcimask1      = true,
0104     .irq_pio_mask       = MCI_IRQ_PIO_MASK,
0105     .start_err      = MCI_STARTBITERR,
0106     .opendrain      = MCI_ROD,
0107     .init           = mmci_variant_init,
0108 };
0109 
0110 static struct variant_data variant_u300 = {
0111     .fifosize       = 16 * 4,
0112     .fifohalfsize       = 8 * 4,
0113     .clkreg_enable      = MCI_ST_U300_HWFCEN,
0114     .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
0115     .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
0116     .cmdreg_lrsp_crc    = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
0117     .cmdreg_srsp_crc    = MCI_CPSM_RESPONSE,
0118     .cmdreg_srsp        = MCI_CPSM_RESPONSE,
0119     .datalength_bits    = 16,
0120     .datactrl_blocksz   = 11,
0121     .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
0122     .st_sdio            = true,
0123     .pwrreg_powerup     = MCI_PWR_ON,
0124     .f_max          = 100000000,
0125     .signal_direction   = true,
0126     .pwrreg_clkgate     = true,
0127     .pwrreg_nopower     = true,
0128     .mmcimask1      = true,
0129     .irq_pio_mask       = MCI_IRQ_PIO_MASK,
0130     .start_err      = MCI_STARTBITERR,
0131     .opendrain      = MCI_OD,
0132     .init           = mmci_variant_init,
0133 };
0134 
0135 static struct variant_data variant_nomadik = {
0136     .fifosize       = 16 * 4,
0137     .fifohalfsize       = 8 * 4,
0138     .clkreg         = MCI_CLK_ENABLE,
0139     .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
0140     .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
0141     .cmdreg_lrsp_crc    = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
0142     .cmdreg_srsp_crc    = MCI_CPSM_RESPONSE,
0143     .cmdreg_srsp        = MCI_CPSM_RESPONSE,
0144     .datalength_bits    = 24,
0145     .datactrl_blocksz   = 11,
0146     .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
0147     .st_sdio        = true,
0148     .st_clkdiv      = true,
0149     .pwrreg_powerup     = MCI_PWR_ON,
0150     .f_max          = 100000000,
0151     .signal_direction   = true,
0152     .pwrreg_clkgate     = true,
0153     .pwrreg_nopower     = true,
0154     .mmcimask1      = true,
0155     .irq_pio_mask       = MCI_IRQ_PIO_MASK,
0156     .start_err      = MCI_STARTBITERR,
0157     .opendrain      = MCI_OD,
0158     .init           = mmci_variant_init,
0159 };
0160 
0161 static struct variant_data variant_ux500 = {
0162     .fifosize       = 30 * 4,
0163     .fifohalfsize       = 8 * 4,
0164     .clkreg         = MCI_CLK_ENABLE,
0165     .clkreg_enable      = MCI_ST_UX500_HWFCEN,
0166     .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
0167     .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
0168     .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
0169     .cmdreg_lrsp_crc    = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
0170     .cmdreg_srsp_crc    = MCI_CPSM_RESPONSE,
0171     .cmdreg_srsp        = MCI_CPSM_RESPONSE,
0172     .datalength_bits    = 24,
0173     .datactrl_blocksz   = 11,
0174     .datactrl_any_blocksz   = true,
0175     .dma_power_of_2     = true,
0176     .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
0177     .st_sdio        = true,
0178     .st_clkdiv      = true,
0179     .pwrreg_powerup     = MCI_PWR_ON,
0180     .f_max          = 100000000,
0181     .signal_direction   = true,
0182     .pwrreg_clkgate     = true,
0183     .busy_detect        = true,
0184     .busy_dpsm_flag     = MCI_DPSM_ST_BUSYMODE,
0185     .busy_detect_flag   = MCI_ST_CARDBUSY,
0186     .busy_detect_mask   = MCI_ST_BUSYENDMASK,
0187     .pwrreg_nopower     = true,
0188     .mmcimask1      = true,
0189     .irq_pio_mask       = MCI_IRQ_PIO_MASK,
0190     .start_err      = MCI_STARTBITERR,
0191     .opendrain      = MCI_OD,
0192     .init           = ux500_variant_init,
0193 };
0194 
0195 static struct variant_data variant_ux500v2 = {
0196     .fifosize       = 30 * 4,
0197     .fifohalfsize       = 8 * 4,
0198     .clkreg         = MCI_CLK_ENABLE,
0199     .clkreg_enable      = MCI_ST_UX500_HWFCEN,
0200     .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
0201     .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
0202     .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
0203     .cmdreg_lrsp_crc    = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
0204     .cmdreg_srsp_crc    = MCI_CPSM_RESPONSE,
0205     .cmdreg_srsp        = MCI_CPSM_RESPONSE,
0206     .datactrl_mask_ddrmode  = MCI_DPSM_ST_DDRMODE,
0207     .datalength_bits    = 24,
0208     .datactrl_blocksz   = 11,
0209     .datactrl_any_blocksz   = true,
0210     .dma_power_of_2     = true,
0211     .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
0212     .st_sdio        = true,
0213     .st_clkdiv      = true,
0214     .pwrreg_powerup     = MCI_PWR_ON,
0215     .f_max          = 100000000,
0216     .signal_direction   = true,
0217     .pwrreg_clkgate     = true,
0218     .busy_detect        = true,
0219     .busy_dpsm_flag     = MCI_DPSM_ST_BUSYMODE,
0220     .busy_detect_flag   = MCI_ST_CARDBUSY,
0221     .busy_detect_mask   = MCI_ST_BUSYENDMASK,
0222     .pwrreg_nopower     = true,
0223     .mmcimask1      = true,
0224     .irq_pio_mask       = MCI_IRQ_PIO_MASK,
0225     .start_err      = MCI_STARTBITERR,
0226     .opendrain      = MCI_OD,
0227     .init           = ux500v2_variant_init,
0228 };
0229 
0230 static struct variant_data variant_stm32 = {
0231     .fifosize       = 32 * 4,
0232     .fifohalfsize       = 8 * 4,
0233     .clkreg         = MCI_CLK_ENABLE,
0234     .clkreg_enable      = MCI_ST_UX500_HWFCEN,
0235     .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
0236     .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
0237     .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
0238     .cmdreg_lrsp_crc    = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
0239     .cmdreg_srsp_crc    = MCI_CPSM_RESPONSE,
0240     .cmdreg_srsp        = MCI_CPSM_RESPONSE,
0241     .irq_pio_mask       = MCI_IRQ_PIO_MASK,
0242     .datalength_bits    = 24,
0243     .datactrl_blocksz   = 11,
0244     .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
0245     .st_sdio        = true,
0246     .st_clkdiv      = true,
0247     .pwrreg_powerup     = MCI_PWR_ON,
0248     .f_max          = 48000000,
0249     .pwrreg_clkgate     = true,
0250     .pwrreg_nopower     = true,
0251     .init           = mmci_variant_init,
0252 };
0253 
0254 static struct variant_data variant_stm32_sdmmc = {
0255     .fifosize       = 16 * 4,
0256     .fifohalfsize       = 8 * 4,
0257     .f_max          = 208000000,
0258     .stm32_clkdiv       = true,
0259     .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE,
0260     .cmdreg_lrsp_crc    = MCI_CPSM_STM32_LRSP_CRC,
0261     .cmdreg_srsp_crc    = MCI_CPSM_STM32_SRSP_CRC,
0262     .cmdreg_srsp        = MCI_CPSM_STM32_SRSP,
0263     .cmdreg_stop        = MCI_CPSM_STM32_CMDSTOP,
0264     .data_cmd_enable    = MCI_CPSM_STM32_CMDTRANS,
0265     .irq_pio_mask       = MCI_IRQ_PIO_STM32_MASK,
0266     .datactrl_first     = true,
0267     .datacnt_useless    = true,
0268     .datalength_bits    = 25,
0269     .datactrl_blocksz   = 14,
0270     .datactrl_any_blocksz   = true,
0271     .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
0272     .stm32_idmabsize_mask   = GENMASK(12, 5),
0273     .busy_timeout       = true,
0274     .busy_detect        = true,
0275     .busy_detect_flag   = MCI_STM32_BUSYD0,
0276     .busy_detect_mask   = MCI_STM32_BUSYD0ENDMASK,
0277     .init           = sdmmc_variant_init,
0278 };
0279 
0280 static struct variant_data variant_stm32_sdmmcv2 = {
0281     .fifosize       = 16 * 4,
0282     .fifohalfsize       = 8 * 4,
0283     .f_max          = 267000000,
0284     .stm32_clkdiv       = true,
0285     .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE,
0286     .cmdreg_lrsp_crc    = MCI_CPSM_STM32_LRSP_CRC,
0287     .cmdreg_srsp_crc    = MCI_CPSM_STM32_SRSP_CRC,
0288     .cmdreg_srsp        = MCI_CPSM_STM32_SRSP,
0289     .cmdreg_stop        = MCI_CPSM_STM32_CMDSTOP,
0290     .data_cmd_enable    = MCI_CPSM_STM32_CMDTRANS,
0291     .irq_pio_mask       = MCI_IRQ_PIO_STM32_MASK,
0292     .datactrl_first     = true,
0293     .datacnt_useless    = true,
0294     .datalength_bits    = 25,
0295     .datactrl_blocksz   = 14,
0296     .datactrl_any_blocksz   = true,
0297     .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
0298     .stm32_idmabsize_mask   = GENMASK(16, 5),
0299     .dma_lli        = true,
0300     .busy_timeout       = true,
0301     .busy_detect        = true,
0302     .busy_detect_flag   = MCI_STM32_BUSYD0,
0303     .busy_detect_mask   = MCI_STM32_BUSYD0ENDMASK,
0304     .init           = sdmmc_variant_init,
0305 };
0306 
0307 static struct variant_data variant_qcom = {
0308     .fifosize       = 16 * 4,
0309     .fifohalfsize       = 8 * 4,
0310     .clkreg         = MCI_CLK_ENABLE,
0311     .clkreg_enable      = MCI_QCOM_CLK_FLOWENA |
0312                   MCI_QCOM_CLK_SELECT_IN_FBCLK,
0313     .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
0314     .datactrl_mask_ddrmode  = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
0315     .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
0316     .cmdreg_lrsp_crc    = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
0317     .cmdreg_srsp_crc    = MCI_CPSM_RESPONSE,
0318     .cmdreg_srsp        = MCI_CPSM_RESPONSE,
0319     .data_cmd_enable    = MCI_CPSM_QCOM_DATCMD,
0320     .datalength_bits    = 24,
0321     .datactrl_blocksz   = 11,
0322     .datactrl_any_blocksz   = true,
0323     .pwrreg_powerup     = MCI_PWR_UP,
0324     .f_max          = 208000000,
0325     .explicit_mclk_control  = true,
0326     .qcom_fifo      = true,
0327     .qcom_dml       = true,
0328     .mmcimask1      = true,
0329     .irq_pio_mask       = MCI_IRQ_PIO_MASK,
0330     .start_err      = MCI_STARTBITERR,
0331     .opendrain      = MCI_ROD,
0332     .init           = qcom_variant_init,
0333 };
0334 
0335 /* Busy detection for the ST Micro variant */
0336 static int mmci_card_busy(struct mmc_host *mmc)
0337 {
0338     struct mmci_host *host = mmc_priv(mmc);
0339     unsigned long flags;
0340     int busy = 0;
0341 
0342     spin_lock_irqsave(&host->lock, flags);
0343     if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
0344         busy = 1;
0345     spin_unlock_irqrestore(&host->lock, flags);
0346 
0347     return busy;
0348 }
0349 
0350 static void mmci_reg_delay(struct mmci_host *host)
0351 {
0352     /*
0353      * According to the spec, at least three feedback clock cycles
0354      * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
0355      * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
0356      * Worst delay time during card init is at 100 kHz => 30 us.
0357      * Worst delay time when up and running is at 25 MHz => 120 ns.
0358      */
0359     if (host->cclk < 25000000)
0360         udelay(30);
0361     else
0362         ndelay(120);
0363 }
0364 
0365 /*
0366  * This must be called with host->lock held
0367  */
0368 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
0369 {
0370     if (host->clk_reg != clk) {
0371         host->clk_reg = clk;
0372         writel(clk, host->base + MMCICLOCK);
0373     }
0374 }
0375 
0376 /*
0377  * This must be called with host->lock held
0378  */
0379 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
0380 {
0381     if (host->pwr_reg != pwr) {
0382         host->pwr_reg = pwr;
0383         writel(pwr, host->base + MMCIPOWER);
0384     }
0385 }
0386 
0387 /*
0388  * This must be called with host->lock held
0389  */
0390 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
0391 {
0392     /* Keep busy mode in DPSM if enabled */
0393     datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
0394 
0395     if (host->datactrl_reg != datactrl) {
0396         host->datactrl_reg = datactrl;
0397         writel(datactrl, host->base + MMCIDATACTRL);
0398     }
0399 }
0400 
0401 /*
0402  * This must be called with host->lock held
0403  */
0404 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
0405 {
0406     struct variant_data *variant = host->variant;
0407     u32 clk = variant->clkreg;
0408 
0409     /* Make sure cclk reflects the current calculated clock */
0410     host->cclk = 0;
0411 
0412     if (desired) {
0413         if (variant->explicit_mclk_control) {
0414             host->cclk = host->mclk;
0415         } else if (desired >= host->mclk) {
0416             clk = MCI_CLK_BYPASS;
0417             if (variant->st_clkdiv)
0418                 clk |= MCI_ST_UX500_NEG_EDGE;
0419             host->cclk = host->mclk;
0420         } else if (variant->st_clkdiv) {
0421             /*
0422              * DB8500 TRM says f = mclk / (clkdiv + 2)
0423              * => clkdiv = (mclk / f) - 2
0424              * Round the divider up so we don't exceed the max
0425              * frequency
0426              */
0427             clk = DIV_ROUND_UP(host->mclk, desired) - 2;
0428             if (clk >= 256)
0429                 clk = 255;
0430             host->cclk = host->mclk / (clk + 2);
0431         } else {
0432             /*
0433              * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
0434              * => clkdiv = mclk / (2 * f) - 1
0435              */
0436             clk = host->mclk / (2 * desired) - 1;
0437             if (clk >= 256)
0438                 clk = 255;
0439             host->cclk = host->mclk / (2 * (clk + 1));
0440         }
0441 
0442         clk |= variant->clkreg_enable;
0443         clk |= MCI_CLK_ENABLE;
0444         /* This hasn't proven to be worthwhile */
0445         /* clk |= MCI_CLK_PWRSAVE; */
0446     }
0447 
0448     /* Set actual clock for debug */
0449     host->mmc->actual_clock = host->cclk;
0450 
0451     if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
0452         clk |= MCI_4BIT_BUS;
0453     if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
0454         clk |= variant->clkreg_8bit_bus_enable;
0455 
0456     if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
0457         host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
0458         clk |= variant->clkreg_neg_edge_enable;
0459 
0460     mmci_write_clkreg(host, clk);
0461 }
0462 
0463 static void mmci_dma_release(struct mmci_host *host)
0464 {
0465     if (host->ops && host->ops->dma_release)
0466         host->ops->dma_release(host);
0467 
0468     host->use_dma = false;
0469 }
0470 
0471 static void mmci_dma_setup(struct mmci_host *host)
0472 {
0473     if (!host->ops || !host->ops->dma_setup)
0474         return;
0475 
0476     if (host->ops->dma_setup(host))
0477         return;
0478 
0479     /* initialize pre request cookie */
0480     host->next_cookie = 1;
0481 
0482     host->use_dma = true;
0483 }
0484 
0485 /*
0486  * Validate mmc prerequisites
0487  */
0488 static int mmci_validate_data(struct mmci_host *host,
0489                   struct mmc_data *data)
0490 {
0491     struct variant_data *variant = host->variant;
0492 
0493     if (!data)
0494         return 0;
0495     if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
0496         dev_err(mmc_dev(host->mmc),
0497             "unsupported block size (%d bytes)\n", data->blksz);
0498         return -EINVAL;
0499     }
0500 
0501     if (host->ops && host->ops->validate_data)
0502         return host->ops->validate_data(host, data);
0503 
0504     return 0;
0505 }
0506 
0507 static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
0508 {
0509     int err;
0510 
0511     if (!host->ops || !host->ops->prep_data)
0512         return 0;
0513 
0514     err = host->ops->prep_data(host, data, next);
0515 
0516     if (next && !err)
0517         data->host_cookie = ++host->next_cookie < 0 ?
0518             1 : host->next_cookie;
0519 
0520     return err;
0521 }
0522 
0523 static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
0524               int err)
0525 {
0526     if (host->ops && host->ops->unprep_data)
0527         host->ops->unprep_data(host, data, err);
0528 
0529     data->host_cookie = 0;
0530 }
0531 
0532 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
0533 {
0534     WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
0535 
0536     if (host->ops && host->ops->get_next_data)
0537         host->ops->get_next_data(host, data);
0538 }
0539 
0540 static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
0541 {
0542     struct mmc_data *data = host->data;
0543     int ret;
0544 
0545     if (!host->use_dma)
0546         return -EINVAL;
0547 
0548     ret = mmci_prep_data(host, data, false);
0549     if (ret)
0550         return ret;
0551 
0552     if (!host->ops || !host->ops->dma_start)
0553         return -EINVAL;
0554 
0555     /* Okay, go for it. */
0556     dev_vdbg(mmc_dev(host->mmc),
0557          "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
0558          data->sg_len, data->blksz, data->blocks, data->flags);
0559 
0560     ret = host->ops->dma_start(host, &datactrl);
0561     if (ret)
0562         return ret;
0563 
0564     /* Trigger the DMA transfer */
0565     mmci_write_datactrlreg(host, datactrl);
0566 
0567     /*
0568      * Let the MMCI say when the data is ended and it's time
0569      * to fire next DMA request. When that happens, MMCI will
0570      * call mmci_data_end()
0571      */
0572     writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
0573            host->base + MMCIMASK0);
0574     return 0;
0575 }
0576 
0577 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
0578 {
0579     if (!host->use_dma)
0580         return;
0581 
0582     if (host->ops && host->ops->dma_finalize)
0583         host->ops->dma_finalize(host, data);
0584 }
0585 
0586 static void mmci_dma_error(struct mmci_host *host)
0587 {
0588     if (!host->use_dma)
0589         return;
0590 
0591     if (host->ops && host->ops->dma_error)
0592         host->ops->dma_error(host);
0593 }
0594 
0595 static void
0596 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
0597 {
0598     writel(0, host->base + MMCICOMMAND);
0599 
0600     BUG_ON(host->data);
0601 
0602     host->mrq = NULL;
0603     host->cmd = NULL;
0604 
0605     mmc_request_done(host->mmc, mrq);
0606 }
0607 
0608 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
0609 {
0610     void __iomem *base = host->base;
0611     struct variant_data *variant = host->variant;
0612 
0613     if (host->singleirq) {
0614         unsigned int mask0 = readl(base + MMCIMASK0);
0615 
0616         mask0 &= ~variant->irq_pio_mask;
0617         mask0 |= mask;
0618 
0619         writel(mask0, base + MMCIMASK0);
0620     }
0621 
0622     if (variant->mmcimask1)
0623         writel(mask, base + MMCIMASK1);
0624 
0625     host->mask1_reg = mask;
0626 }
0627 
0628 static void mmci_stop_data(struct mmci_host *host)
0629 {
0630     mmci_write_datactrlreg(host, 0);
0631     mmci_set_mask1(host, 0);
0632     host->data = NULL;
0633 }
0634 
0635 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
0636 {
0637     unsigned int flags = SG_MITER_ATOMIC;
0638 
0639     if (data->flags & MMC_DATA_READ)
0640         flags |= SG_MITER_TO_SG;
0641     else
0642         flags |= SG_MITER_FROM_SG;
0643 
0644     sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
0645 }
0646 
0647 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
0648 {
0649     return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
0650 }
0651 
0652 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
0653 {
0654     return MCI_DPSM_ENABLE | (host->data->blksz << 16);
0655 }
0656 
0657 static bool ux500_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
0658 {
0659     void __iomem *base = host->base;
0660 
0661     /*
0662      * Before unmasking for the busy end IRQ, confirm that the
0663      * command was sent successfully. To keep track of having a
0664      * command in-progress, waiting for busy signaling to end,
0665      * store the status in host->busy_status.
0666      *
0667      * Note that, the card may need a couple of clock cycles before
0668      * it starts signaling busy on DAT0, hence re-read the
0669      * MMCISTATUS register here, to allow the busy bit to be set.
0670      * Potentially we may even need to poll the register for a
0671      * while, to allow it to be set, but tests indicates that it
0672      * isn't needed.
0673      */
0674     if (!host->busy_status && !(status & err_msk) &&
0675         (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
0676         writel(readl(base + MMCIMASK0) |
0677                host->variant->busy_detect_mask,
0678                base + MMCIMASK0);
0679 
0680         host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
0681         return false;
0682     }
0683 
0684     /*
0685      * If there is a command in-progress that has been successfully
0686      * sent, then bail out if busy status is set and wait for the
0687      * busy end IRQ.
0688      *
0689      * Note that, the HW triggers an IRQ on both edges while
0690      * monitoring DAT0 for busy completion, but there is only one
0691      * status bit in MMCISTATUS for the busy state. Therefore
0692      * both the start and the end interrupts needs to be cleared,
0693      * one after the other. So, clear the busy start IRQ here.
0694      */
0695     if (host->busy_status &&
0696         (status & host->variant->busy_detect_flag)) {
0697         writel(host->variant->busy_detect_mask, base + MMCICLEAR);
0698         return false;
0699     }
0700 
0701     /*
0702      * If there is a command in-progress that has been successfully
0703      * sent and the busy bit isn't set, it means we have received
0704      * the busy end IRQ. Clear and mask the IRQ, then continue to
0705      * process the command.
0706      */
0707     if (host->busy_status) {
0708         writel(host->variant->busy_detect_mask, base + MMCICLEAR);
0709 
0710         writel(readl(base + MMCIMASK0) &
0711                ~host->variant->busy_detect_mask, base + MMCIMASK0);
0712         host->busy_status = 0;
0713     }
0714 
0715     return true;
0716 }
0717 
0718 /*
0719  * All the DMA operation mode stuff goes inside this ifdef.
0720  * This assumes that you have a generic DMA device interface,
0721  * no custom DMA interfaces are supported.
0722  */
0723 #ifdef CONFIG_DMA_ENGINE
0724 struct mmci_dmae_next {
0725     struct dma_async_tx_descriptor *desc;
0726     struct dma_chan *chan;
0727 };
0728 
0729 struct mmci_dmae_priv {
0730     struct dma_chan *cur;
0731     struct dma_chan *rx_channel;
0732     struct dma_chan *tx_channel;
0733     struct dma_async_tx_descriptor  *desc_current;
0734     struct mmci_dmae_next next_data;
0735 };
0736 
0737 int mmci_dmae_setup(struct mmci_host *host)
0738 {
0739     const char *rxname, *txname;
0740     struct mmci_dmae_priv *dmae;
0741 
0742     dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
0743     if (!dmae)
0744         return -ENOMEM;
0745 
0746     host->dma_priv = dmae;
0747 
0748     dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
0749     if (IS_ERR(dmae->rx_channel)) {
0750         int ret = PTR_ERR(dmae->rx_channel);
0751         dmae->rx_channel = NULL;
0752         return ret;
0753     }
0754 
0755     dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
0756     if (IS_ERR(dmae->tx_channel)) {
0757         if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
0758             dev_warn(mmc_dev(host->mmc),
0759                  "Deferred probe for TX channel ignored\n");
0760         dmae->tx_channel = NULL;
0761     }
0762 
0763     /*
0764      * If only an RX channel is specified, the driver will
0765      * attempt to use it bidirectionally, however if it
0766      * is specified but cannot be located, DMA will be disabled.
0767      */
0768     if (dmae->rx_channel && !dmae->tx_channel)
0769         dmae->tx_channel = dmae->rx_channel;
0770 
0771     if (dmae->rx_channel)
0772         rxname = dma_chan_name(dmae->rx_channel);
0773     else
0774         rxname = "none";
0775 
0776     if (dmae->tx_channel)
0777         txname = dma_chan_name(dmae->tx_channel);
0778     else
0779         txname = "none";
0780 
0781     dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
0782          rxname, txname);
0783 
0784     /*
0785      * Limit the maximum segment size in any SG entry according to
0786      * the parameters of the DMA engine device.
0787      */
0788     if (dmae->tx_channel) {
0789         struct device *dev = dmae->tx_channel->device->dev;
0790         unsigned int max_seg_size = dma_get_max_seg_size(dev);
0791 
0792         if (max_seg_size < host->mmc->max_seg_size)
0793             host->mmc->max_seg_size = max_seg_size;
0794     }
0795     if (dmae->rx_channel) {
0796         struct device *dev = dmae->rx_channel->device->dev;
0797         unsigned int max_seg_size = dma_get_max_seg_size(dev);
0798 
0799         if (max_seg_size < host->mmc->max_seg_size)
0800             host->mmc->max_seg_size = max_seg_size;
0801     }
0802 
0803     if (!dmae->tx_channel || !dmae->rx_channel) {
0804         mmci_dmae_release(host);
0805         return -EINVAL;
0806     }
0807 
0808     return 0;
0809 }
0810 
0811 /*
0812  * This is used in or so inline it
0813  * so it can be discarded.
0814  */
0815 void mmci_dmae_release(struct mmci_host *host)
0816 {
0817     struct mmci_dmae_priv *dmae = host->dma_priv;
0818 
0819     if (dmae->rx_channel)
0820         dma_release_channel(dmae->rx_channel);
0821     if (dmae->tx_channel)
0822         dma_release_channel(dmae->tx_channel);
0823     dmae->rx_channel = dmae->tx_channel = NULL;
0824 }
0825 
0826 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
0827 {
0828     struct mmci_dmae_priv *dmae = host->dma_priv;
0829     struct dma_chan *chan;
0830 
0831     if (data->flags & MMC_DATA_READ)
0832         chan = dmae->rx_channel;
0833     else
0834         chan = dmae->tx_channel;
0835 
0836     dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
0837              mmc_get_dma_dir(data));
0838 }
0839 
0840 void mmci_dmae_error(struct mmci_host *host)
0841 {
0842     struct mmci_dmae_priv *dmae = host->dma_priv;
0843 
0844     if (!dma_inprogress(host))
0845         return;
0846 
0847     dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
0848     dmaengine_terminate_all(dmae->cur);
0849     host->dma_in_progress = false;
0850     dmae->cur = NULL;
0851     dmae->desc_current = NULL;
0852     host->data->host_cookie = 0;
0853 
0854     mmci_dma_unmap(host, host->data);
0855 }
0856 
0857 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
0858 {
0859     struct mmci_dmae_priv *dmae = host->dma_priv;
0860     u32 status;
0861     int i;
0862 
0863     if (!dma_inprogress(host))
0864         return;
0865 
0866     /* Wait up to 1ms for the DMA to complete */
0867     for (i = 0; ; i++) {
0868         status = readl(host->base + MMCISTATUS);
0869         if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
0870             break;
0871         udelay(10);
0872     }
0873 
0874     /*
0875      * Check to see whether we still have some data left in the FIFO -
0876      * this catches DMA controllers which are unable to monitor the
0877      * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
0878      * contiguous buffers.  On TX, we'll get a FIFO underrun error.
0879      */
0880     if (status & MCI_RXDATAAVLBLMASK) {
0881         mmci_dma_error(host);
0882         if (!data->error)
0883             data->error = -EIO;
0884     } else if (!data->host_cookie) {
0885         mmci_dma_unmap(host, data);
0886     }
0887 
0888     /*
0889      * Use of DMA with scatter-gather is impossible.
0890      * Give up with DMA and switch back to PIO mode.
0891      */
0892     if (status & MCI_RXDATAAVLBLMASK) {
0893         dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
0894         mmci_dma_release(host);
0895     }
0896 
0897     host->dma_in_progress = false;
0898     dmae->cur = NULL;
0899     dmae->desc_current = NULL;
0900 }
0901 
0902 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
0903 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
0904                 struct dma_chan **dma_chan,
0905                 struct dma_async_tx_descriptor **dma_desc)
0906 {
0907     struct mmci_dmae_priv *dmae = host->dma_priv;
0908     struct variant_data *variant = host->variant;
0909     struct dma_slave_config conf = {
0910         .src_addr = host->phybase + MMCIFIFO,
0911         .dst_addr = host->phybase + MMCIFIFO,
0912         .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
0913         .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
0914         .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
0915         .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
0916         .device_fc = false,
0917     };
0918     struct dma_chan *chan;
0919     struct dma_device *device;
0920     struct dma_async_tx_descriptor *desc;
0921     int nr_sg;
0922     unsigned long flags = DMA_CTRL_ACK;
0923 
0924     if (data->flags & MMC_DATA_READ) {
0925         conf.direction = DMA_DEV_TO_MEM;
0926         chan = dmae->rx_channel;
0927     } else {
0928         conf.direction = DMA_MEM_TO_DEV;
0929         chan = dmae->tx_channel;
0930     }
0931 
0932     /* If there's no DMA channel, fall back to PIO */
0933     if (!chan)
0934         return -EINVAL;
0935 
0936     /* If less than or equal to the fifo size, don't bother with DMA */
0937     if (data->blksz * data->blocks <= variant->fifosize)
0938         return -EINVAL;
0939 
0940     /*
0941      * This is necessary to get SDIO working on the Ux500. We do not yet
0942      * know if this is a bug in:
0943      * - The Ux500 DMA controller (DMA40)
0944      * - The MMCI DMA interface on the Ux500
0945      * some power of two blocks (such as 64 bytes) are sent regularly
0946      * during SDIO traffic and those work fine so for these we enable DMA
0947      * transfers.
0948      */
0949     if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
0950         return -EINVAL;
0951 
0952     device = chan->device;
0953     nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
0954                mmc_get_dma_dir(data));
0955     if (nr_sg == 0)
0956         return -EINVAL;
0957 
0958     if (host->variant->qcom_dml)
0959         flags |= DMA_PREP_INTERRUPT;
0960 
0961     dmaengine_slave_config(chan, &conf);
0962     desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
0963                         conf.direction, flags);
0964     if (!desc)
0965         goto unmap_exit;
0966 
0967     *dma_chan = chan;
0968     *dma_desc = desc;
0969 
0970     return 0;
0971 
0972  unmap_exit:
0973     dma_unmap_sg(device->dev, data->sg, data->sg_len,
0974              mmc_get_dma_dir(data));
0975     return -ENOMEM;
0976 }
0977 
0978 int mmci_dmae_prep_data(struct mmci_host *host,
0979             struct mmc_data *data,
0980             bool next)
0981 {
0982     struct mmci_dmae_priv *dmae = host->dma_priv;
0983     struct mmci_dmae_next *nd = &dmae->next_data;
0984 
0985     if (!host->use_dma)
0986         return -EINVAL;
0987 
0988     if (next)
0989         return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
0990     /* Check if next job is already prepared. */
0991     if (dmae->cur && dmae->desc_current)
0992         return 0;
0993 
0994     /* No job were prepared thus do it now. */
0995     return _mmci_dmae_prep_data(host, data, &dmae->cur,
0996                     &dmae->desc_current);
0997 }
0998 
0999 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
1000 {
1001     struct mmci_dmae_priv *dmae = host->dma_priv;
1002     int ret;
1003 
1004     host->dma_in_progress = true;
1005     ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1006     if (ret < 0) {
1007         host->dma_in_progress = false;
1008         return ret;
1009     }
1010     dma_async_issue_pending(dmae->cur);
1011 
1012     *datactrl |= MCI_DPSM_DMAENABLE;
1013 
1014     return 0;
1015 }
1016 
1017 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1018 {
1019     struct mmci_dmae_priv *dmae = host->dma_priv;
1020     struct mmci_dmae_next *next = &dmae->next_data;
1021 
1022     if (!host->use_dma)
1023         return;
1024 
1025     WARN_ON(!data->host_cookie && (next->desc || next->chan));
1026 
1027     dmae->desc_current = next->desc;
1028     dmae->cur = next->chan;
1029     next->desc = NULL;
1030     next->chan = NULL;
1031 }
1032 
1033 void mmci_dmae_unprep_data(struct mmci_host *host,
1034                struct mmc_data *data, int err)
1035 
1036 {
1037     struct mmci_dmae_priv *dmae = host->dma_priv;
1038 
1039     if (!host->use_dma)
1040         return;
1041 
1042     mmci_dma_unmap(host, data);
1043 
1044     if (err) {
1045         struct mmci_dmae_next *next = &dmae->next_data;
1046         struct dma_chan *chan;
1047         if (data->flags & MMC_DATA_READ)
1048             chan = dmae->rx_channel;
1049         else
1050             chan = dmae->tx_channel;
1051         dmaengine_terminate_all(chan);
1052 
1053         if (dmae->desc_current == next->desc)
1054             dmae->desc_current = NULL;
1055 
1056         if (dmae->cur == next->chan) {
1057             host->dma_in_progress = false;
1058             dmae->cur = NULL;
1059         }
1060 
1061         next->desc = NULL;
1062         next->chan = NULL;
1063     }
1064 }
1065 
1066 static struct mmci_host_ops mmci_variant_ops = {
1067     .prep_data = mmci_dmae_prep_data,
1068     .unprep_data = mmci_dmae_unprep_data,
1069     .get_datactrl_cfg = mmci_get_dctrl_cfg,
1070     .get_next_data = mmci_dmae_get_next_data,
1071     .dma_setup = mmci_dmae_setup,
1072     .dma_release = mmci_dmae_release,
1073     .dma_start = mmci_dmae_start,
1074     .dma_finalize = mmci_dmae_finalize,
1075     .dma_error = mmci_dmae_error,
1076 };
1077 #else
1078 static struct mmci_host_ops mmci_variant_ops = {
1079     .get_datactrl_cfg = mmci_get_dctrl_cfg,
1080 };
1081 #endif
1082 
1083 static void mmci_variant_init(struct mmci_host *host)
1084 {
1085     host->ops = &mmci_variant_ops;
1086 }
1087 
1088 static void ux500_variant_init(struct mmci_host *host)
1089 {
1090     host->ops = &mmci_variant_ops;
1091     host->ops->busy_complete = ux500_busy_complete;
1092 }
1093 
1094 static void ux500v2_variant_init(struct mmci_host *host)
1095 {
1096     host->ops = &mmci_variant_ops;
1097     host->ops->busy_complete = ux500_busy_complete;
1098     host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1099 }
1100 
1101 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1102 {
1103     struct mmci_host *host = mmc_priv(mmc);
1104     struct mmc_data *data = mrq->data;
1105 
1106     if (!data)
1107         return;
1108 
1109     WARN_ON(data->host_cookie);
1110 
1111     if (mmci_validate_data(host, data))
1112         return;
1113 
1114     mmci_prep_data(host, data, true);
1115 }
1116 
1117 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1118                   int err)
1119 {
1120     struct mmci_host *host = mmc_priv(mmc);
1121     struct mmc_data *data = mrq->data;
1122 
1123     if (!data || !data->host_cookie)
1124         return;
1125 
1126     mmci_unprep_data(host, data, err);
1127 }
1128 
1129 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1130 {
1131     struct variant_data *variant = host->variant;
1132     unsigned int datactrl, timeout, irqmask;
1133     unsigned long long clks;
1134     void __iomem *base;
1135 
1136     dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1137         data->blksz, data->blocks, data->flags);
1138 
1139     host->data = data;
1140     host->size = data->blksz * data->blocks;
1141     data->bytes_xfered = 0;
1142 
1143     clks = (unsigned long long)data->timeout_ns * host->cclk;
1144     do_div(clks, NSEC_PER_SEC);
1145 
1146     timeout = data->timeout_clks + (unsigned int)clks;
1147 
1148     base = host->base;
1149     writel(timeout, base + MMCIDATATIMER);
1150     writel(host->size, base + MMCIDATALENGTH);
1151 
1152     datactrl = host->ops->get_datactrl_cfg(host);
1153     datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1154 
1155     if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1156         u32 clk;
1157 
1158         datactrl |= variant->datactrl_mask_sdio;
1159 
1160         /*
1161          * The ST Micro variant for SDIO small write transfers
1162          * needs to have clock H/W flow control disabled,
1163          * otherwise the transfer will not start. The threshold
1164          * depends on the rate of MCLK.
1165          */
1166         if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1167             (host->size < 8 ||
1168              (host->size <= 8 && host->mclk > 50000000)))
1169             clk = host->clk_reg & ~variant->clkreg_enable;
1170         else
1171             clk = host->clk_reg | variant->clkreg_enable;
1172 
1173         mmci_write_clkreg(host, clk);
1174     }
1175 
1176     if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1177         host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1178         datactrl |= variant->datactrl_mask_ddrmode;
1179 
1180     /*
1181      * Attempt to use DMA operation mode, if this
1182      * should fail, fall back to PIO mode
1183      */
1184     if (!mmci_dma_start(host, datactrl))
1185         return;
1186 
1187     /* IRQ mode, map the SG list for CPU reading/writing */
1188     mmci_init_sg(host, data);
1189 
1190     if (data->flags & MMC_DATA_READ) {
1191         irqmask = MCI_RXFIFOHALFFULLMASK;
1192 
1193         /*
1194          * If we have less than the fifo 'half-full' threshold to
1195          * transfer, trigger a PIO interrupt as soon as any data
1196          * is available.
1197          */
1198         if (host->size < variant->fifohalfsize)
1199             irqmask |= MCI_RXDATAAVLBLMASK;
1200     } else {
1201         /*
1202          * We don't actually need to include "FIFO empty" here
1203          * since its implicit in "FIFO half empty".
1204          */
1205         irqmask = MCI_TXFIFOHALFEMPTYMASK;
1206     }
1207 
1208     mmci_write_datactrlreg(host, datactrl);
1209     writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1210     mmci_set_mask1(host, irqmask);
1211 }
1212 
1213 static void
1214 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1215 {
1216     void __iomem *base = host->base;
1217     unsigned long long clks;
1218 
1219     dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1220         cmd->opcode, cmd->arg, cmd->flags);
1221 
1222     if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1223         writel(0, base + MMCICOMMAND);
1224         mmci_reg_delay(host);
1225     }
1226 
1227     if (host->variant->cmdreg_stop &&
1228         cmd->opcode == MMC_STOP_TRANSMISSION)
1229         c |= host->variant->cmdreg_stop;
1230 
1231     c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1232     if (cmd->flags & MMC_RSP_PRESENT) {
1233         if (cmd->flags & MMC_RSP_136)
1234             c |= host->variant->cmdreg_lrsp_crc;
1235         else if (cmd->flags & MMC_RSP_CRC)
1236             c |= host->variant->cmdreg_srsp_crc;
1237         else
1238             c |= host->variant->cmdreg_srsp;
1239     }
1240 
1241     if (host->variant->busy_timeout && cmd->flags & MMC_RSP_BUSY) {
1242         if (!cmd->busy_timeout)
1243             cmd->busy_timeout = 10 * MSEC_PER_SEC;
1244 
1245         if (cmd->busy_timeout > host->mmc->max_busy_timeout)
1246             clks = (unsigned long long)host->mmc->max_busy_timeout * host->cclk;
1247         else
1248             clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1249 
1250         do_div(clks, MSEC_PER_SEC);
1251         writel_relaxed(clks, host->base + MMCIDATATIMER);
1252     }
1253 
1254     if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1255         host->ops->pre_sig_volt_switch(host);
1256 
1257     if (/*interrupt*/0)
1258         c |= MCI_CPSM_INTERRUPT;
1259 
1260     if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1261         c |= host->variant->data_cmd_enable;
1262 
1263     host->cmd = cmd;
1264 
1265     writel(cmd->arg, base + MMCIARGUMENT);
1266     writel(c, base + MMCICOMMAND);
1267 }
1268 
1269 static void mmci_stop_command(struct mmci_host *host)
1270 {
1271     host->stop_abort.error = 0;
1272     mmci_start_command(host, &host->stop_abort, 0);
1273 }
1274 
1275 static void
1276 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1277           unsigned int status)
1278 {
1279     unsigned int status_err;
1280 
1281     /* Make sure we have data to handle */
1282     if (!data)
1283         return;
1284 
1285     /* First check for errors */
1286     status_err = status & (host->variant->start_err |
1287                    MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1288                    MCI_TXUNDERRUN | MCI_RXOVERRUN);
1289 
1290     if (status_err) {
1291         u32 remain, success;
1292 
1293         /* Terminate the DMA transfer */
1294         mmci_dma_error(host);
1295 
1296         /*
1297          * Calculate how far we are into the transfer.  Note that
1298          * the data counter gives the number of bytes transferred
1299          * on the MMC bus, not on the host side.  On reads, this
1300          * can be as much as a FIFO-worth of data ahead.  This
1301          * matters for FIFO overruns only.
1302          */
1303         if (!host->variant->datacnt_useless) {
1304             remain = readl(host->base + MMCIDATACNT);
1305             success = data->blksz * data->blocks - remain;
1306         } else {
1307             success = 0;
1308         }
1309 
1310         dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1311             status_err, success);
1312         if (status_err & MCI_DATACRCFAIL) {
1313             /* Last block was not successful */
1314             success -= 1;
1315             data->error = -EILSEQ;
1316         } else if (status_err & MCI_DATATIMEOUT) {
1317             data->error = -ETIMEDOUT;
1318         } else if (status_err & MCI_STARTBITERR) {
1319             data->error = -ECOMM;
1320         } else if (status_err & MCI_TXUNDERRUN) {
1321             data->error = -EIO;
1322         } else if (status_err & MCI_RXOVERRUN) {
1323             if (success > host->variant->fifosize)
1324                 success -= host->variant->fifosize;
1325             else
1326                 success = 0;
1327             data->error = -EIO;
1328         }
1329         data->bytes_xfered = round_down(success, data->blksz);
1330     }
1331 
1332     if (status & MCI_DATABLOCKEND)
1333         dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1334 
1335     if (status & MCI_DATAEND || data->error) {
1336         mmci_dma_finalize(host, data);
1337 
1338         mmci_stop_data(host);
1339 
1340         if (!data->error)
1341             /* The error clause is handled above, success! */
1342             data->bytes_xfered = data->blksz * data->blocks;
1343 
1344         if (!data->stop) {
1345             if (host->variant->cmdreg_stop && data->error)
1346                 mmci_stop_command(host);
1347             else
1348                 mmci_request_end(host, data->mrq);
1349         } else if (host->mrq->sbc && !data->error) {
1350             mmci_request_end(host, data->mrq);
1351         } else {
1352             mmci_start_command(host, data->stop, 0);
1353         }
1354     }
1355 }
1356 
1357 static void
1358 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1359          unsigned int status)
1360 {
1361     u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1362     void __iomem *base = host->base;
1363     bool sbc, busy_resp;
1364 
1365     if (!cmd)
1366         return;
1367 
1368     sbc = (cmd == host->mrq->sbc);
1369     busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1370 
1371     /*
1372      * We need to be one of these interrupts to be considered worth
1373      * handling. Note that we tag on any latent IRQs postponed
1374      * due to waiting for busy status.
1375      */
1376     if (host->variant->busy_timeout && busy_resp)
1377         err_msk |= MCI_DATATIMEOUT;
1378 
1379     if (!((status | host->busy_status) &
1380           (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1381         return;
1382 
1383     /* Handle busy detection on DAT0 if the variant supports it. */
1384     if (busy_resp && host->variant->busy_detect)
1385         if (!host->ops->busy_complete(host, status, err_msk))
1386             return;
1387 
1388     host->cmd = NULL;
1389 
1390     if (status & MCI_CMDTIMEOUT) {
1391         cmd->error = -ETIMEDOUT;
1392     } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1393         cmd->error = -EILSEQ;
1394     } else if (host->variant->busy_timeout && busy_resp &&
1395            status & MCI_DATATIMEOUT) {
1396         cmd->error = -ETIMEDOUT;
1397         /*
1398          * This will wake up mmci_irq_thread() which will issue
1399          * a hardware reset of the MMCI block.
1400          */
1401         host->irq_action = IRQ_WAKE_THREAD;
1402     } else {
1403         cmd->resp[0] = readl(base + MMCIRESPONSE0);
1404         cmd->resp[1] = readl(base + MMCIRESPONSE1);
1405         cmd->resp[2] = readl(base + MMCIRESPONSE2);
1406         cmd->resp[3] = readl(base + MMCIRESPONSE3);
1407     }
1408 
1409     if ((!sbc && !cmd->data) || cmd->error) {
1410         if (host->data) {
1411             /* Terminate the DMA transfer */
1412             mmci_dma_error(host);
1413 
1414             mmci_stop_data(host);
1415             if (host->variant->cmdreg_stop && cmd->error) {
1416                 mmci_stop_command(host);
1417                 return;
1418             }
1419         }
1420 
1421         if (host->irq_action != IRQ_WAKE_THREAD)
1422             mmci_request_end(host, host->mrq);
1423 
1424     } else if (sbc) {
1425         mmci_start_command(host, host->mrq->cmd, 0);
1426     } else if (!host->variant->datactrl_first &&
1427            !(cmd->data->flags & MMC_DATA_READ)) {
1428         mmci_start_data(host, cmd->data);
1429     }
1430 }
1431 
1432 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1433 {
1434     return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1435 }
1436 
1437 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1438 {
1439     /*
1440      * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1441      * from the fifo range should be used
1442      */
1443     if (status & MCI_RXFIFOHALFFULL)
1444         return host->variant->fifohalfsize;
1445     else if (status & MCI_RXDATAAVLBL)
1446         return 4;
1447 
1448     return 0;
1449 }
1450 
1451 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1452 {
1453     void __iomem *base = host->base;
1454     char *ptr = buffer;
1455     u32 status = readl(host->base + MMCISTATUS);
1456     int host_remain = host->size;
1457 
1458     do {
1459         int count = host->get_rx_fifocnt(host, status, host_remain);
1460 
1461         if (count > remain)
1462             count = remain;
1463 
1464         if (count <= 0)
1465             break;
1466 
1467         /*
1468          * SDIO especially may want to send something that is
1469          * not divisible by 4 (as opposed to card sectors
1470          * etc). Therefore make sure to always read the last bytes
1471          * while only doing full 32-bit reads towards the FIFO.
1472          */
1473         if (unlikely(count & 0x3)) {
1474             if (count < 4) {
1475                 unsigned char buf[4];
1476                 ioread32_rep(base + MMCIFIFO, buf, 1);
1477                 memcpy(ptr, buf, count);
1478             } else {
1479                 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1480                 count &= ~0x3;
1481             }
1482         } else {
1483             ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1484         }
1485 
1486         ptr += count;
1487         remain -= count;
1488         host_remain -= count;
1489 
1490         if (remain == 0)
1491             break;
1492 
1493         status = readl(base + MMCISTATUS);
1494     } while (status & MCI_RXDATAAVLBL);
1495 
1496     return ptr - buffer;
1497 }
1498 
1499 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1500 {
1501     struct variant_data *variant = host->variant;
1502     void __iomem *base = host->base;
1503     char *ptr = buffer;
1504 
1505     do {
1506         unsigned int count, maxcnt;
1507 
1508         maxcnt = status & MCI_TXFIFOEMPTY ?
1509              variant->fifosize : variant->fifohalfsize;
1510         count = min(remain, maxcnt);
1511 
1512         /*
1513          * SDIO especially may want to send something that is
1514          * not divisible by 4 (as opposed to card sectors
1515          * etc), and the FIFO only accept full 32-bit writes.
1516          * So compensate by adding +3 on the count, a single
1517          * byte become a 32bit write, 7 bytes will be two
1518          * 32bit writes etc.
1519          */
1520         iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1521 
1522         ptr += count;
1523         remain -= count;
1524 
1525         if (remain == 0)
1526             break;
1527 
1528         status = readl(base + MMCISTATUS);
1529     } while (status & MCI_TXFIFOHALFEMPTY);
1530 
1531     return ptr - buffer;
1532 }
1533 
1534 /*
1535  * PIO data transfer IRQ handler.
1536  */
1537 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1538 {
1539     struct mmci_host *host = dev_id;
1540     struct sg_mapping_iter *sg_miter = &host->sg_miter;
1541     struct variant_data *variant = host->variant;
1542     void __iomem *base = host->base;
1543     u32 status;
1544 
1545     status = readl(base + MMCISTATUS);
1546 
1547     dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1548 
1549     do {
1550         unsigned int remain, len;
1551         char *buffer;
1552 
1553         /*
1554          * For write, we only need to test the half-empty flag
1555          * here - if the FIFO is completely empty, then by
1556          * definition it is more than half empty.
1557          *
1558          * For read, check for data available.
1559          */
1560         if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1561             break;
1562 
1563         if (!sg_miter_next(sg_miter))
1564             break;
1565 
1566         buffer = sg_miter->addr;
1567         remain = sg_miter->length;
1568 
1569         len = 0;
1570         if (status & MCI_RXACTIVE)
1571             len = mmci_pio_read(host, buffer, remain);
1572         if (status & MCI_TXACTIVE)
1573             len = mmci_pio_write(host, buffer, remain, status);
1574 
1575         sg_miter->consumed = len;
1576 
1577         host->size -= len;
1578         remain -= len;
1579 
1580         if (remain)
1581             break;
1582 
1583         status = readl(base + MMCISTATUS);
1584     } while (1);
1585 
1586     sg_miter_stop(sg_miter);
1587 
1588     /*
1589      * If we have less than the fifo 'half-full' threshold to transfer,
1590      * trigger a PIO interrupt as soon as any data is available.
1591      */
1592     if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1593         mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1594 
1595     /*
1596      * If we run out of data, disable the data IRQs; this
1597      * prevents a race where the FIFO becomes empty before
1598      * the chip itself has disabled the data path, and
1599      * stops us racing with our data end IRQ.
1600      */
1601     if (host->size == 0) {
1602         mmci_set_mask1(host, 0);
1603         writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1604     }
1605 
1606     return IRQ_HANDLED;
1607 }
1608 
1609 /*
1610  * Handle completion of command and data transfers.
1611  */
1612 static irqreturn_t mmci_irq(int irq, void *dev_id)
1613 {
1614     struct mmci_host *host = dev_id;
1615     u32 status;
1616 
1617     spin_lock(&host->lock);
1618     host->irq_action = IRQ_HANDLED;
1619 
1620     do {
1621         status = readl(host->base + MMCISTATUS);
1622         if (!status)
1623             break;
1624 
1625         if (host->singleirq) {
1626             if (status & host->mask1_reg)
1627                 mmci_pio_irq(irq, dev_id);
1628 
1629             status &= ~host->variant->irq_pio_mask;
1630         }
1631 
1632         /*
1633          * Busy detection is managed by mmci_cmd_irq(), including to
1634          * clear the corresponding IRQ.
1635          */
1636         status &= readl(host->base + MMCIMASK0);
1637         if (host->variant->busy_detect)
1638             writel(status & ~host->variant->busy_detect_mask,
1639                    host->base + MMCICLEAR);
1640         else
1641             writel(status, host->base + MMCICLEAR);
1642 
1643         dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1644 
1645         if (host->variant->reversed_irq_handling) {
1646             mmci_data_irq(host, host->data, status);
1647             mmci_cmd_irq(host, host->cmd, status);
1648         } else {
1649             mmci_cmd_irq(host, host->cmd, status);
1650             mmci_data_irq(host, host->data, status);
1651         }
1652 
1653         /*
1654          * Busy detection has been handled by mmci_cmd_irq() above.
1655          * Clear the status bit to prevent polling in IRQ context.
1656          */
1657         if (host->variant->busy_detect_flag)
1658             status &= ~host->variant->busy_detect_flag;
1659 
1660     } while (status);
1661 
1662     spin_unlock(&host->lock);
1663 
1664     return host->irq_action;
1665 }
1666 
1667 /*
1668  * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1669  *
1670  * A reset is needed for some variants, where a datatimeout for a R1B request
1671  * causes the DPSM to stay busy (non-functional).
1672  */
1673 static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1674 {
1675     struct mmci_host *host = dev_id;
1676     unsigned long flags;
1677 
1678     if (host->rst) {
1679         reset_control_assert(host->rst);
1680         udelay(2);
1681         reset_control_deassert(host->rst);
1682     }
1683 
1684     spin_lock_irqsave(&host->lock, flags);
1685     writel(host->clk_reg, host->base + MMCICLOCK);
1686     writel(host->pwr_reg, host->base + MMCIPOWER);
1687     writel(MCI_IRQENABLE | host->variant->start_err,
1688            host->base + MMCIMASK0);
1689 
1690     host->irq_action = IRQ_HANDLED;
1691     mmci_request_end(host, host->mrq);
1692     spin_unlock_irqrestore(&host->lock, flags);
1693 
1694     return host->irq_action;
1695 }
1696 
1697 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1698 {
1699     struct mmci_host *host = mmc_priv(mmc);
1700     unsigned long flags;
1701 
1702     WARN_ON(host->mrq != NULL);
1703 
1704     mrq->cmd->error = mmci_validate_data(host, mrq->data);
1705     if (mrq->cmd->error) {
1706         mmc_request_done(mmc, mrq);
1707         return;
1708     }
1709 
1710     spin_lock_irqsave(&host->lock, flags);
1711 
1712     host->mrq = mrq;
1713 
1714     if (mrq->data)
1715         mmci_get_next_data(host, mrq->data);
1716 
1717     if (mrq->data &&
1718         (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1719         mmci_start_data(host, mrq->data);
1720 
1721     if (mrq->sbc)
1722         mmci_start_command(host, mrq->sbc, 0);
1723     else
1724         mmci_start_command(host, mrq->cmd, 0);
1725 
1726     spin_unlock_irqrestore(&host->lock, flags);
1727 }
1728 
1729 static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1730 {
1731     struct mmci_host *host = mmc_priv(mmc);
1732     u32 max_busy_timeout = 0;
1733 
1734     if (!host->variant->busy_detect)
1735         return;
1736 
1737     if (host->variant->busy_timeout && mmc->actual_clock)
1738         max_busy_timeout = ~0UL / (mmc->actual_clock / MSEC_PER_SEC);
1739 
1740     mmc->max_busy_timeout = max_busy_timeout;
1741 }
1742 
1743 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1744 {
1745     struct mmci_host *host = mmc_priv(mmc);
1746     struct variant_data *variant = host->variant;
1747     u32 pwr = 0;
1748     unsigned long flags;
1749     int ret;
1750 
1751     switch (ios->power_mode) {
1752     case MMC_POWER_OFF:
1753         if (!IS_ERR(mmc->supply.vmmc))
1754             mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1755 
1756         if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1757             regulator_disable(mmc->supply.vqmmc);
1758             host->vqmmc_enabled = false;
1759         }
1760 
1761         break;
1762     case MMC_POWER_UP:
1763         if (!IS_ERR(mmc->supply.vmmc))
1764             mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1765 
1766         /*
1767          * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1768          * and instead uses MCI_PWR_ON so apply whatever value is
1769          * configured in the variant data.
1770          */
1771         pwr |= variant->pwrreg_powerup;
1772 
1773         break;
1774     case MMC_POWER_ON:
1775         if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1776             ret = regulator_enable(mmc->supply.vqmmc);
1777             if (ret < 0)
1778                 dev_err(mmc_dev(mmc),
1779                     "failed to enable vqmmc regulator\n");
1780             else
1781                 host->vqmmc_enabled = true;
1782         }
1783 
1784         pwr |= MCI_PWR_ON;
1785         break;
1786     }
1787 
1788     if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1789         /*
1790          * The ST Micro variant has some additional bits
1791          * indicating signal direction for the signals in
1792          * the SD/MMC bus and feedback-clock usage.
1793          */
1794         pwr |= host->pwr_reg_add;
1795 
1796         if (ios->bus_width == MMC_BUS_WIDTH_4)
1797             pwr &= ~MCI_ST_DATA74DIREN;
1798         else if (ios->bus_width == MMC_BUS_WIDTH_1)
1799             pwr &= (~MCI_ST_DATA74DIREN &
1800                 ~MCI_ST_DATA31DIREN &
1801                 ~MCI_ST_DATA2DIREN);
1802     }
1803 
1804     if (variant->opendrain) {
1805         if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1806             pwr |= variant->opendrain;
1807     } else {
1808         /*
1809          * If the variant cannot configure the pads by its own, then we
1810          * expect the pinctrl to be able to do that for us
1811          */
1812         if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1813             pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1814         else
1815             pinctrl_select_default_state(mmc_dev(mmc));
1816     }
1817 
1818     /*
1819      * If clock = 0 and the variant requires the MMCIPOWER to be used for
1820      * gating the clock, the MCI_PWR_ON bit is cleared.
1821      */
1822     if (!ios->clock && variant->pwrreg_clkgate)
1823         pwr &= ~MCI_PWR_ON;
1824 
1825     if (host->variant->explicit_mclk_control &&
1826         ios->clock != host->clock_cache) {
1827         ret = clk_set_rate(host->clk, ios->clock);
1828         if (ret < 0)
1829             dev_err(mmc_dev(host->mmc),
1830                 "Error setting clock rate (%d)\n", ret);
1831         else
1832             host->mclk = clk_get_rate(host->clk);
1833     }
1834     host->clock_cache = ios->clock;
1835 
1836     spin_lock_irqsave(&host->lock, flags);
1837 
1838     if (host->ops && host->ops->set_clkreg)
1839         host->ops->set_clkreg(host, ios->clock);
1840     else
1841         mmci_set_clkreg(host, ios->clock);
1842 
1843     mmci_set_max_busy_timeout(mmc);
1844 
1845     if (host->ops && host->ops->set_pwrreg)
1846         host->ops->set_pwrreg(host, pwr);
1847     else
1848         mmci_write_pwrreg(host, pwr);
1849 
1850     mmci_reg_delay(host);
1851 
1852     spin_unlock_irqrestore(&host->lock, flags);
1853 }
1854 
1855 static int mmci_get_cd(struct mmc_host *mmc)
1856 {
1857     struct mmci_host *host = mmc_priv(mmc);
1858     struct mmci_platform_data *plat = host->plat;
1859     unsigned int status = mmc_gpio_get_cd(mmc);
1860 
1861     if (status == -ENOSYS) {
1862         if (!plat->status)
1863             return 1; /* Assume always present */
1864 
1865         status = plat->status(mmc_dev(host->mmc));
1866     }
1867     return status;
1868 }
1869 
1870 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1871 {
1872     struct mmci_host *host = mmc_priv(mmc);
1873     int ret;
1874 
1875     ret = mmc_regulator_set_vqmmc(mmc, ios);
1876 
1877     if (!ret && host->ops && host->ops->post_sig_volt_switch)
1878         ret = host->ops->post_sig_volt_switch(host, ios);
1879     else if (ret)
1880         ret = 0;
1881 
1882     if (ret < 0)
1883         dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1884 
1885     return ret;
1886 }
1887 
1888 static struct mmc_host_ops mmci_ops = {
1889     .request    = mmci_request,
1890     .pre_req    = mmci_pre_request,
1891     .post_req   = mmci_post_request,
1892     .set_ios    = mmci_set_ios,
1893     .get_ro     = mmc_gpio_get_ro,
1894     .get_cd     = mmci_get_cd,
1895     .start_signal_voltage_switch = mmci_sig_volt_switch,
1896 };
1897 
1898 static void mmci_probe_level_translator(struct mmc_host *mmc)
1899 {
1900     struct device *dev = mmc_dev(mmc);
1901     struct mmci_host *host = mmc_priv(mmc);
1902     struct gpio_desc *cmd_gpio;
1903     struct gpio_desc *ck_gpio;
1904     struct gpio_desc *ckin_gpio;
1905     int clk_hi, clk_lo;
1906 
1907     /*
1908      * Assume the level translator is present if st,use-ckin is set.
1909      * This is to cater for DTs which do not implement this test.
1910      */
1911     host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1912 
1913     cmd_gpio = gpiod_get(dev, "st,cmd", GPIOD_OUT_HIGH);
1914     if (IS_ERR(cmd_gpio))
1915         goto exit_cmd;
1916 
1917     ck_gpio = gpiod_get(dev, "st,ck", GPIOD_OUT_HIGH);
1918     if (IS_ERR(ck_gpio))
1919         goto exit_ck;
1920 
1921     ckin_gpio = gpiod_get(dev, "st,ckin", GPIOD_IN);
1922     if (IS_ERR(ckin_gpio))
1923         goto exit_ckin;
1924 
1925     /* All GPIOs are valid, test whether level translator works */
1926 
1927     /* Sample CKIN */
1928     clk_hi = !!gpiod_get_value(ckin_gpio);
1929 
1930     /* Set CK low */
1931     gpiod_set_value(ck_gpio, 0);
1932 
1933     /* Sample CKIN */
1934     clk_lo = !!gpiod_get_value(ckin_gpio);
1935 
1936     /* Tristate all */
1937     gpiod_direction_input(cmd_gpio);
1938     gpiod_direction_input(ck_gpio);
1939 
1940     /* Level translator is present if CK signal is propagated to CKIN */
1941     if (!clk_hi || clk_lo) {
1942         host->clk_reg_add &= ~MCI_STM32_CLK_SELCKIN;
1943         dev_warn(dev,
1944              "Level translator inoperable, CK signal not detected on CKIN, disabling.\n");
1945     }
1946 
1947     gpiod_put(ckin_gpio);
1948 
1949 exit_ckin:
1950     gpiod_put(ck_gpio);
1951 exit_ck:
1952     gpiod_put(cmd_gpio);
1953 exit_cmd:
1954     pinctrl_select_default_state(dev);
1955 }
1956 
1957 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1958 {
1959     struct mmci_host *host = mmc_priv(mmc);
1960     int ret = mmc_of_parse(mmc);
1961 
1962     if (ret)
1963         return ret;
1964 
1965     if (of_get_property(np, "st,sig-dir-dat0", NULL))
1966         host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1967     if (of_get_property(np, "st,sig-dir-dat2", NULL))
1968         host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1969     if (of_get_property(np, "st,sig-dir-dat31", NULL))
1970         host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1971     if (of_get_property(np, "st,sig-dir-dat74", NULL))
1972         host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1973     if (of_get_property(np, "st,sig-dir-cmd", NULL))
1974         host->pwr_reg_add |= MCI_ST_CMDDIREN;
1975     if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1976         host->pwr_reg_add |= MCI_ST_FBCLKEN;
1977     if (of_get_property(np, "st,sig-dir", NULL))
1978         host->pwr_reg_add |= MCI_STM32_DIRPOL;
1979     if (of_get_property(np, "st,neg-edge", NULL))
1980         host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1981     if (of_get_property(np, "st,use-ckin", NULL))
1982         mmci_probe_level_translator(mmc);
1983 
1984     if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1985         mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1986     if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1987         mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1988 
1989     return 0;
1990 }
1991 
1992 static int mmci_probe(struct amba_device *dev,
1993     const struct amba_id *id)
1994 {
1995     struct mmci_platform_data *plat = dev->dev.platform_data;
1996     struct device_node *np = dev->dev.of_node;
1997     struct variant_data *variant = id->data;
1998     struct mmci_host *host;
1999     struct mmc_host *mmc;
2000     int ret;
2001 
2002     /* Must have platform data or Device Tree. */
2003     if (!plat && !np) {
2004         dev_err(&dev->dev, "No plat data or DT found\n");
2005         return -EINVAL;
2006     }
2007 
2008     if (!plat) {
2009         plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
2010         if (!plat)
2011             return -ENOMEM;
2012     }
2013 
2014     mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
2015     if (!mmc)
2016         return -ENOMEM;
2017 
2018     host = mmc_priv(mmc);
2019     host->mmc = mmc;
2020     host->mmc_ops = &mmci_ops;
2021     mmc->ops = &mmci_ops;
2022 
2023     ret = mmci_of_parse(np, mmc);
2024     if (ret)
2025         goto host_free;
2026 
2027     /*
2028      * Some variant (STM32) doesn't have opendrain bit, nevertheless
2029      * pins can be set accordingly using pinctrl
2030      */
2031     if (!variant->opendrain) {
2032         host->pinctrl = devm_pinctrl_get(&dev->dev);
2033         if (IS_ERR(host->pinctrl)) {
2034             dev_err(&dev->dev, "failed to get pinctrl");
2035             ret = PTR_ERR(host->pinctrl);
2036             goto host_free;
2037         }
2038 
2039         host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
2040                                 MMCI_PINCTRL_STATE_OPENDRAIN);
2041         if (IS_ERR(host->pins_opendrain)) {
2042             dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
2043             ret = PTR_ERR(host->pins_opendrain);
2044             goto host_free;
2045         }
2046     }
2047 
2048     host->hw_designer = amba_manf(dev);
2049     host->hw_revision = amba_rev(dev);
2050     dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
2051     dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
2052 
2053     host->clk = devm_clk_get(&dev->dev, NULL);
2054     if (IS_ERR(host->clk)) {
2055         ret = PTR_ERR(host->clk);
2056         goto host_free;
2057     }
2058 
2059     ret = clk_prepare_enable(host->clk);
2060     if (ret)
2061         goto host_free;
2062 
2063     if (variant->qcom_fifo)
2064         host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
2065     else
2066         host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2067 
2068     host->plat = plat;
2069     host->variant = variant;
2070     host->mclk = clk_get_rate(host->clk);
2071     /*
2072      * According to the spec, mclk is max 100 MHz,
2073      * so we try to adjust the clock down to this,
2074      * (if possible).
2075      */
2076     if (host->mclk > variant->f_max) {
2077         ret = clk_set_rate(host->clk, variant->f_max);
2078         if (ret < 0)
2079             goto clk_disable;
2080         host->mclk = clk_get_rate(host->clk);
2081         dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2082             host->mclk);
2083     }
2084 
2085     host->phybase = dev->res.start;
2086     host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2087     if (IS_ERR(host->base)) {
2088         ret = PTR_ERR(host->base);
2089         goto clk_disable;
2090     }
2091 
2092     if (variant->init)
2093         variant->init(host);
2094 
2095     /*
2096      * The ARM and ST versions of the block have slightly different
2097      * clock divider equations which means that the minimum divider
2098      * differs too.
2099      * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2100      */
2101     if (variant->st_clkdiv)
2102         mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2103     else if (variant->stm32_clkdiv)
2104         mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2105     else if (variant->explicit_mclk_control)
2106         mmc->f_min = clk_round_rate(host->clk, 100000);
2107     else
2108         mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2109     /*
2110      * If no maximum operating frequency is supplied, fall back to use
2111      * the module parameter, which has a (low) default value in case it
2112      * is not specified. Either value must not exceed the clock rate into
2113      * the block, of course.
2114      */
2115     if (mmc->f_max)
2116         mmc->f_max = variant->explicit_mclk_control ?
2117                 min(variant->f_max, mmc->f_max) :
2118                 min(host->mclk, mmc->f_max);
2119     else
2120         mmc->f_max = variant->explicit_mclk_control ?
2121                 fmax : min(host->mclk, fmax);
2122 
2123 
2124     dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2125 
2126     host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2127     if (IS_ERR(host->rst)) {
2128         ret = PTR_ERR(host->rst);
2129         goto clk_disable;
2130     }
2131     ret = reset_control_deassert(host->rst);
2132     if (ret)
2133         dev_err(mmc_dev(mmc), "failed to de-assert reset\n");
2134 
2135     /* Get regulators and the supported OCR mask */
2136     ret = mmc_regulator_get_supply(mmc);
2137     if (ret)
2138         goto clk_disable;
2139 
2140     if (!mmc->ocr_avail)
2141         mmc->ocr_avail = plat->ocr_mask;
2142     else if (plat->ocr_mask)
2143         dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2144 
2145     /* We support these capabilities. */
2146     mmc->caps |= MMC_CAP_CMD23;
2147 
2148     /*
2149      * Enable busy detection.
2150      */
2151     if (variant->busy_detect) {
2152         mmci_ops.card_busy = mmci_card_busy;
2153         /*
2154          * Not all variants have a flag to enable busy detection
2155          * in the DPSM, but if they do, set it here.
2156          */
2157         if (variant->busy_dpsm_flag)
2158             mmci_write_datactrlreg(host,
2159                            host->variant->busy_dpsm_flag);
2160         mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2161     }
2162 
2163     /* Variants with mandatory busy timeout in HW needs R1B responses. */
2164     if (variant->busy_timeout)
2165         mmc->caps |= MMC_CAP_NEED_RSP_BUSY;
2166 
2167     /* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2168     host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2169     host->stop_abort.arg = 0;
2170     host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2171 
2172     /* We support these PM capabilities. */
2173     mmc->pm_caps |= MMC_PM_KEEP_POWER;
2174 
2175     /*
2176      * We can do SGIO
2177      */
2178     mmc->max_segs = NR_SG;
2179 
2180     /*
2181      * Since only a certain number of bits are valid in the data length
2182      * register, we must ensure that we don't exceed 2^num-1 bytes in a
2183      * single request.
2184      */
2185     mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2186 
2187     /*
2188      * Set the maximum segment size.  Since we aren't doing DMA
2189      * (yet) we are only limited by the data length register.
2190      */
2191     mmc->max_seg_size = mmc->max_req_size;
2192 
2193     /*
2194      * Block size can be up to 2048 bytes, but must be a power of two.
2195      */
2196     mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2197 
2198     /*
2199      * Limit the number of blocks transferred so that we don't overflow
2200      * the maximum request size.
2201      */
2202     mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2203 
2204     spin_lock_init(&host->lock);
2205 
2206     writel(0, host->base + MMCIMASK0);
2207 
2208     if (variant->mmcimask1)
2209         writel(0, host->base + MMCIMASK1);
2210 
2211     writel(0xfff, host->base + MMCICLEAR);
2212 
2213     /*
2214      * If:
2215      * - not using DT but using a descriptor table, or
2216      * - using a table of descriptors ALONGSIDE DT, or
2217      * look up these descriptors named "cd" and "wp" right here, fail
2218      * silently of these do not exist
2219      */
2220     if (!np) {
2221         ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2222         if (ret == -EPROBE_DEFER)
2223             goto clk_disable;
2224 
2225         ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2226         if (ret == -EPROBE_DEFER)
2227             goto clk_disable;
2228     }
2229 
2230     ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2231                     mmci_irq_thread, IRQF_SHARED,
2232                     DRIVER_NAME " (cmd)", host);
2233     if (ret)
2234         goto clk_disable;
2235 
2236     if (!dev->irq[1])
2237         host->singleirq = true;
2238     else {
2239         ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2240                 IRQF_SHARED, DRIVER_NAME " (pio)", host);
2241         if (ret)
2242             goto clk_disable;
2243     }
2244 
2245     writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2246 
2247     amba_set_drvdata(dev, mmc);
2248 
2249     dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2250          mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2251          amba_rev(dev), (unsigned long long)dev->res.start,
2252          dev->irq[0], dev->irq[1]);
2253 
2254     mmci_dma_setup(host);
2255 
2256     pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2257     pm_runtime_use_autosuspend(&dev->dev);
2258 
2259     mmc_add_host(mmc);
2260 
2261     pm_runtime_put(&dev->dev);
2262     return 0;
2263 
2264  clk_disable:
2265     clk_disable_unprepare(host->clk);
2266  host_free:
2267     mmc_free_host(mmc);
2268     return ret;
2269 }
2270 
2271 static void mmci_remove(struct amba_device *dev)
2272 {
2273     struct mmc_host *mmc = amba_get_drvdata(dev);
2274 
2275     if (mmc) {
2276         struct mmci_host *host = mmc_priv(mmc);
2277         struct variant_data *variant = host->variant;
2278 
2279         /*
2280          * Undo pm_runtime_put() in probe.  We use the _sync
2281          * version here so that we can access the primecell.
2282          */
2283         pm_runtime_get_sync(&dev->dev);
2284 
2285         mmc_remove_host(mmc);
2286 
2287         writel(0, host->base + MMCIMASK0);
2288 
2289         if (variant->mmcimask1)
2290             writel(0, host->base + MMCIMASK1);
2291 
2292         writel(0, host->base + MMCICOMMAND);
2293         writel(0, host->base + MMCIDATACTRL);
2294 
2295         mmci_dma_release(host);
2296         clk_disable_unprepare(host->clk);
2297         mmc_free_host(mmc);
2298     }
2299 }
2300 
2301 #ifdef CONFIG_PM
2302 static void mmci_save(struct mmci_host *host)
2303 {
2304     unsigned long flags;
2305 
2306     spin_lock_irqsave(&host->lock, flags);
2307 
2308     writel(0, host->base + MMCIMASK0);
2309     if (host->variant->pwrreg_nopower) {
2310         writel(0, host->base + MMCIDATACTRL);
2311         writel(0, host->base + MMCIPOWER);
2312         writel(0, host->base + MMCICLOCK);
2313     }
2314     mmci_reg_delay(host);
2315 
2316     spin_unlock_irqrestore(&host->lock, flags);
2317 }
2318 
2319 static void mmci_restore(struct mmci_host *host)
2320 {
2321     unsigned long flags;
2322 
2323     spin_lock_irqsave(&host->lock, flags);
2324 
2325     if (host->variant->pwrreg_nopower) {
2326         writel(host->clk_reg, host->base + MMCICLOCK);
2327         writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2328         writel(host->pwr_reg, host->base + MMCIPOWER);
2329     }
2330     writel(MCI_IRQENABLE | host->variant->start_err,
2331            host->base + MMCIMASK0);
2332     mmci_reg_delay(host);
2333 
2334     spin_unlock_irqrestore(&host->lock, flags);
2335 }
2336 
2337 static int mmci_runtime_suspend(struct device *dev)
2338 {
2339     struct amba_device *adev = to_amba_device(dev);
2340     struct mmc_host *mmc = amba_get_drvdata(adev);
2341 
2342     if (mmc) {
2343         struct mmci_host *host = mmc_priv(mmc);
2344         pinctrl_pm_select_sleep_state(dev);
2345         mmci_save(host);
2346         clk_disable_unprepare(host->clk);
2347     }
2348 
2349     return 0;
2350 }
2351 
2352 static int mmci_runtime_resume(struct device *dev)
2353 {
2354     struct amba_device *adev = to_amba_device(dev);
2355     struct mmc_host *mmc = amba_get_drvdata(adev);
2356 
2357     if (mmc) {
2358         struct mmci_host *host = mmc_priv(mmc);
2359         clk_prepare_enable(host->clk);
2360         mmci_restore(host);
2361         pinctrl_select_default_state(dev);
2362     }
2363 
2364     return 0;
2365 }
2366 #endif
2367 
2368 static const struct dev_pm_ops mmci_dev_pm_ops = {
2369     SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2370                 pm_runtime_force_resume)
2371     SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2372 };
2373 
2374 static const struct amba_id mmci_ids[] = {
2375     {
2376         .id = 0x00041180,
2377         .mask   = 0xff0fffff,
2378         .data   = &variant_arm,
2379     },
2380     {
2381         .id = 0x01041180,
2382         .mask   = 0xff0fffff,
2383         .data   = &variant_arm_extended_fifo,
2384     },
2385     {
2386         .id = 0x02041180,
2387         .mask   = 0xff0fffff,
2388         .data   = &variant_arm_extended_fifo_hwfc,
2389     },
2390     {
2391         .id = 0x00041181,
2392         .mask   = 0x000fffff,
2393         .data   = &variant_arm,
2394     },
2395     /* ST Micro variants */
2396     {
2397         .id     = 0x00180180,
2398         .mask   = 0x00ffffff,
2399         .data   = &variant_u300,
2400     },
2401     {
2402         .id     = 0x10180180,
2403         .mask   = 0xf0ffffff,
2404         .data   = &variant_nomadik,
2405     },
2406     {
2407         .id     = 0x00280180,
2408         .mask   = 0x00ffffff,
2409         .data   = &variant_nomadik,
2410     },
2411     {
2412         .id     = 0x00480180,
2413         .mask   = 0xf0ffffff,
2414         .data   = &variant_ux500,
2415     },
2416     {
2417         .id     = 0x10480180,
2418         .mask   = 0xf0ffffff,
2419         .data   = &variant_ux500v2,
2420     },
2421     {
2422         .id     = 0x00880180,
2423         .mask   = 0x00ffffff,
2424         .data   = &variant_stm32,
2425     },
2426     {
2427         .id     = 0x10153180,
2428         .mask   = 0xf0ffffff,
2429         .data   = &variant_stm32_sdmmc,
2430     },
2431     {
2432         .id     = 0x00253180,
2433         .mask   = 0xf0ffffff,
2434         .data   = &variant_stm32_sdmmcv2,
2435     },
2436     {
2437         .id     = 0x20253180,
2438         .mask   = 0xf0ffffff,
2439         .data   = &variant_stm32_sdmmcv2,
2440     },
2441     /* Qualcomm variants */
2442     {
2443         .id     = 0x00051180,
2444         .mask   = 0x000fffff,
2445         .data   = &variant_qcom,
2446     },
2447     { 0, 0 },
2448 };
2449 
2450 MODULE_DEVICE_TABLE(amba, mmci_ids);
2451 
2452 static struct amba_driver mmci_driver = {
2453     .drv        = {
2454         .name   = DRIVER_NAME,
2455         .pm = &mmci_dev_pm_ops,
2456     },
2457     .probe      = mmci_probe,
2458     .remove     = mmci_remove,
2459     .id_table   = mmci_ids,
2460 };
2461 
2462 module_amba_driver(mmci_driver);
2463 
2464 module_param(fmax, uint, 0444);
2465 
2466 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2467 MODULE_LICENSE("GPL");