Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  *  Copyright 2007-2008 Pierre Ossman
0004  */
0005 
0006 #include <linux/mmc/core.h>
0007 #include <linux/mmc/card.h>
0008 #include <linux/mmc/host.h>
0009 #include <linux/mmc/mmc.h>
0010 #include <linux/slab.h>
0011 
0012 #include <linux/scatterlist.h>
0013 #include <linux/list.h>
0014 
0015 #include <linux/debugfs.h>
0016 #include <linux/uaccess.h>
0017 #include <linux/seq_file.h>
0018 #include <linux/module.h>
0019 
0020 #include "core.h"
0021 #include "card.h"
0022 #include "host.h"
0023 #include "bus.h"
0024 #include "mmc_ops.h"
0025 
0026 #define RESULT_OK       0
0027 #define RESULT_FAIL     1
0028 #define RESULT_UNSUP_HOST   2
0029 #define RESULT_UNSUP_CARD   3
0030 
0031 #define BUFFER_ORDER        2
0032 #define BUFFER_SIZE     (PAGE_SIZE << BUFFER_ORDER)
0033 
0034 #define TEST_ALIGN_END      8
0035 
0036 /*
0037  * Limit the test area size to the maximum MMC HC erase group size.  Note that
0038  * the maximum SD allocation unit size is just 4MiB.
0039  */
0040 #define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
0041 
0042 /**
0043  * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
0044  * @page: first page in the allocation
0045  * @order: order of the number of pages allocated
0046  */
0047 struct mmc_test_pages {
0048     struct page *page;
0049     unsigned int order;
0050 };
0051 
0052 /**
0053  * struct mmc_test_mem - allocated memory.
0054  * @arr: array of allocations
0055  * @cnt: number of allocations
0056  */
0057 struct mmc_test_mem {
0058     struct mmc_test_pages *arr;
0059     unsigned int cnt;
0060 };
0061 
0062 /**
0063  * struct mmc_test_area - information for performance tests.
0064  * @max_sz: test area size (in bytes)
0065  * @dev_addr: address on card at which to do performance tests
0066  * @max_tfr: maximum transfer size allowed by driver (in bytes)
0067  * @max_segs: maximum segments allowed by driver in scatterlist @sg
0068  * @max_seg_sz: maximum segment size allowed by driver
0069  * @blocks: number of (512 byte) blocks currently mapped by @sg
0070  * @sg_len: length of currently mapped scatterlist @sg
0071  * @mem: allocated memory
0072  * @sg: scatterlist
0073  * @sg_areq: scatterlist for non-blocking request
0074  */
0075 struct mmc_test_area {
0076     unsigned long max_sz;
0077     unsigned int dev_addr;
0078     unsigned int max_tfr;
0079     unsigned int max_segs;
0080     unsigned int max_seg_sz;
0081     unsigned int blocks;
0082     unsigned int sg_len;
0083     struct mmc_test_mem *mem;
0084     struct scatterlist *sg;
0085     struct scatterlist *sg_areq;
0086 };
0087 
0088 /**
0089  * struct mmc_test_transfer_result - transfer results for performance tests.
0090  * @link: double-linked list
0091  * @count: amount of group of sectors to check
0092  * @sectors: amount of sectors to check in one group
0093  * @ts: time values of transfer
0094  * @rate: calculated transfer rate
0095  * @iops: I/O operations per second (times 100)
0096  */
0097 struct mmc_test_transfer_result {
0098     struct list_head link;
0099     unsigned int count;
0100     unsigned int sectors;
0101     struct timespec64 ts;
0102     unsigned int rate;
0103     unsigned int iops;
0104 };
0105 
0106 /**
0107  * struct mmc_test_general_result - results for tests.
0108  * @link: double-linked list
0109  * @card: card under test
0110  * @testcase: number of test case
0111  * @result: result of test run
0112  * @tr_lst: transfer measurements if any as mmc_test_transfer_result
0113  */
0114 struct mmc_test_general_result {
0115     struct list_head link;
0116     struct mmc_card *card;
0117     int testcase;
0118     int result;
0119     struct list_head tr_lst;
0120 };
0121 
0122 /**
0123  * struct mmc_test_dbgfs_file - debugfs related file.
0124  * @link: double-linked list
0125  * @card: card under test
0126  * @file: file created under debugfs
0127  */
0128 struct mmc_test_dbgfs_file {
0129     struct list_head link;
0130     struct mmc_card *card;
0131     struct dentry *file;
0132 };
0133 
0134 /**
0135  * struct mmc_test_card - test information.
0136  * @card: card under test
0137  * @scratch: transfer buffer
0138  * @buffer: transfer buffer
0139  * @highmem: buffer for highmem tests
0140  * @area: information for performance tests
0141  * @gr: pointer to results of current testcase
0142  */
0143 struct mmc_test_card {
0144     struct mmc_card *card;
0145 
0146     u8      scratch[BUFFER_SIZE];
0147     u8      *buffer;
0148 #ifdef CONFIG_HIGHMEM
0149     struct page *highmem;
0150 #endif
0151     struct mmc_test_area        area;
0152     struct mmc_test_general_result  *gr;
0153 };
0154 
0155 enum mmc_test_prep_media {
0156     MMC_TEST_PREP_NONE = 0,
0157     MMC_TEST_PREP_WRITE_FULL = 1 << 0,
0158     MMC_TEST_PREP_ERASE = 1 << 1,
0159 };
0160 
0161 struct mmc_test_multiple_rw {
0162     unsigned int *sg_len;
0163     unsigned int *bs;
0164     unsigned int len;
0165     unsigned int size;
0166     bool do_write;
0167     bool do_nonblock_req;
0168     enum mmc_test_prep_media prepare;
0169 };
0170 
0171 /*******************************************************************/
0172 /*  General helper functions                                       */
0173 /*******************************************************************/
0174 
0175 /*
0176  * Configure correct block size in card
0177  */
0178 static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
0179 {
0180     return mmc_set_blocklen(test->card, size);
0181 }
0182 
0183 static bool mmc_test_card_cmd23(struct mmc_card *card)
0184 {
0185     return mmc_card_mmc(card) ||
0186            (mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT);
0187 }
0188 
0189 static void mmc_test_prepare_sbc(struct mmc_test_card *test,
0190                  struct mmc_request *mrq, unsigned int blocks)
0191 {
0192     struct mmc_card *card = test->card;
0193 
0194     if (!mrq->sbc || !mmc_host_cmd23(card->host) ||
0195         !mmc_test_card_cmd23(card) || !mmc_op_multi(mrq->cmd->opcode) ||
0196         (card->quirks & MMC_QUIRK_BLK_NO_CMD23)) {
0197         mrq->sbc = NULL;
0198         return;
0199     }
0200 
0201     mrq->sbc->opcode = MMC_SET_BLOCK_COUNT;
0202     mrq->sbc->arg = blocks;
0203     mrq->sbc->flags = MMC_RSP_R1 | MMC_CMD_AC;
0204 }
0205 
0206 /*
0207  * Fill in the mmc_request structure given a set of transfer parameters.
0208  */
0209 static void mmc_test_prepare_mrq(struct mmc_test_card *test,
0210     struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
0211     unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
0212 {
0213     if (WARN_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop))
0214         return;
0215 
0216     if (blocks > 1) {
0217         mrq->cmd->opcode = write ?
0218             MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
0219     } else {
0220         mrq->cmd->opcode = write ?
0221             MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
0222     }
0223 
0224     mrq->cmd->arg = dev_addr;
0225     if (!mmc_card_blockaddr(test->card))
0226         mrq->cmd->arg <<= 9;
0227 
0228     mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
0229 
0230     if (blocks == 1)
0231         mrq->stop = NULL;
0232     else {
0233         mrq->stop->opcode = MMC_STOP_TRANSMISSION;
0234         mrq->stop->arg = 0;
0235         mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
0236     }
0237 
0238     mrq->data->blksz = blksz;
0239     mrq->data->blocks = blocks;
0240     mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
0241     mrq->data->sg = sg;
0242     mrq->data->sg_len = sg_len;
0243 
0244     mmc_test_prepare_sbc(test, mrq, blocks);
0245 
0246     mmc_set_data_timeout(mrq->data, test->card);
0247 }
0248 
0249 static int mmc_test_busy(struct mmc_command *cmd)
0250 {
0251     return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
0252         (R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
0253 }
0254 
0255 /*
0256  * Wait for the card to finish the busy state
0257  */
0258 static int mmc_test_wait_busy(struct mmc_test_card *test)
0259 {
0260     int ret, busy;
0261     struct mmc_command cmd = {};
0262 
0263     busy = 0;
0264     do {
0265         memset(&cmd, 0, sizeof(struct mmc_command));
0266 
0267         cmd.opcode = MMC_SEND_STATUS;
0268         cmd.arg = test->card->rca << 16;
0269         cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
0270 
0271         ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
0272         if (ret)
0273             break;
0274 
0275         if (!busy && mmc_test_busy(&cmd)) {
0276             busy = 1;
0277             if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
0278                 pr_info("%s: Warning: Host did not wait for busy state to end.\n",
0279                     mmc_hostname(test->card->host));
0280         }
0281     } while (mmc_test_busy(&cmd));
0282 
0283     return ret;
0284 }
0285 
0286 /*
0287  * Transfer a single sector of kernel addressable data
0288  */
0289 static int mmc_test_buffer_transfer(struct mmc_test_card *test,
0290     u8 *buffer, unsigned addr, unsigned blksz, int write)
0291 {
0292     struct mmc_request mrq = {};
0293     struct mmc_command cmd = {};
0294     struct mmc_command stop = {};
0295     struct mmc_data data = {};
0296 
0297     struct scatterlist sg;
0298 
0299     mrq.cmd = &cmd;
0300     mrq.data = &data;
0301     mrq.stop = &stop;
0302 
0303     sg_init_one(&sg, buffer, blksz);
0304 
0305     mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
0306 
0307     mmc_wait_for_req(test->card->host, &mrq);
0308 
0309     if (cmd.error)
0310         return cmd.error;
0311     if (data.error)
0312         return data.error;
0313 
0314     return mmc_test_wait_busy(test);
0315 }
0316 
0317 static void mmc_test_free_mem(struct mmc_test_mem *mem)
0318 {
0319     if (!mem)
0320         return;
0321     while (mem->cnt--)
0322         __free_pages(mem->arr[mem->cnt].page,
0323                  mem->arr[mem->cnt].order);
0324     kfree(mem->arr);
0325     kfree(mem);
0326 }
0327 
0328 /*
0329  * Allocate a lot of memory, preferably max_sz but at least min_sz.  In case
0330  * there isn't much memory do not exceed 1/16th total lowmem pages.  Also do
0331  * not exceed a maximum number of segments and try not to make segments much
0332  * bigger than maximum segment size.
0333  */
0334 static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
0335                            unsigned long max_sz,
0336                            unsigned int max_segs,
0337                            unsigned int max_seg_sz)
0338 {
0339     unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
0340     unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
0341     unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
0342     unsigned long page_cnt = 0;
0343     unsigned long limit = nr_free_buffer_pages() >> 4;
0344     struct mmc_test_mem *mem;
0345 
0346     if (max_page_cnt > limit)
0347         max_page_cnt = limit;
0348     if (min_page_cnt > max_page_cnt)
0349         min_page_cnt = max_page_cnt;
0350 
0351     if (max_seg_page_cnt > max_page_cnt)
0352         max_seg_page_cnt = max_page_cnt;
0353 
0354     if (max_segs > max_page_cnt)
0355         max_segs = max_page_cnt;
0356 
0357     mem = kzalloc(sizeof(*mem), GFP_KERNEL);
0358     if (!mem)
0359         return NULL;
0360 
0361     mem->arr = kcalloc(max_segs, sizeof(*mem->arr), GFP_KERNEL);
0362     if (!mem->arr)
0363         goto out_free;
0364 
0365     while (max_page_cnt) {
0366         struct page *page;
0367         unsigned int order;
0368         gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
0369                 __GFP_NORETRY;
0370 
0371         order = get_order(max_seg_page_cnt << PAGE_SHIFT);
0372         while (1) {
0373             page = alloc_pages(flags, order);
0374             if (page || !order)
0375                 break;
0376             order -= 1;
0377         }
0378         if (!page) {
0379             if (page_cnt < min_page_cnt)
0380                 goto out_free;
0381             break;
0382         }
0383         mem->arr[mem->cnt].page = page;
0384         mem->arr[mem->cnt].order = order;
0385         mem->cnt += 1;
0386         if (max_page_cnt <= (1UL << order))
0387             break;
0388         max_page_cnt -= 1UL << order;
0389         page_cnt += 1UL << order;
0390         if (mem->cnt >= max_segs) {
0391             if (page_cnt < min_page_cnt)
0392                 goto out_free;
0393             break;
0394         }
0395     }
0396 
0397     return mem;
0398 
0399 out_free:
0400     mmc_test_free_mem(mem);
0401     return NULL;
0402 }
0403 
0404 /*
0405  * Map memory into a scatterlist.  Optionally allow the same memory to be
0406  * mapped more than once.
0407  */
0408 static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
0409                struct scatterlist *sglist, int repeat,
0410                unsigned int max_segs, unsigned int max_seg_sz,
0411                unsigned int *sg_len, int min_sg_len)
0412 {
0413     struct scatterlist *sg = NULL;
0414     unsigned int i;
0415     unsigned long sz = size;
0416 
0417     sg_init_table(sglist, max_segs);
0418     if (min_sg_len > max_segs)
0419         min_sg_len = max_segs;
0420 
0421     *sg_len = 0;
0422     do {
0423         for (i = 0; i < mem->cnt; i++) {
0424             unsigned long len = PAGE_SIZE << mem->arr[i].order;
0425 
0426             if (min_sg_len && (size / min_sg_len < len))
0427                 len = ALIGN(size / min_sg_len, 512);
0428             if (len > sz)
0429                 len = sz;
0430             if (len > max_seg_sz)
0431                 len = max_seg_sz;
0432             if (sg)
0433                 sg = sg_next(sg);
0434             else
0435                 sg = sglist;
0436             if (!sg)
0437                 return -EINVAL;
0438             sg_set_page(sg, mem->arr[i].page, len, 0);
0439             sz -= len;
0440             *sg_len += 1;
0441             if (!sz)
0442                 break;
0443         }
0444     } while (sz && repeat);
0445 
0446     if (sz)
0447         return -EINVAL;
0448 
0449     if (sg)
0450         sg_mark_end(sg);
0451 
0452     return 0;
0453 }
0454 
0455 /*
0456  * Map memory into a scatterlist so that no pages are contiguous.  Allow the
0457  * same memory to be mapped more than once.
0458  */
0459 static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
0460                        unsigned long sz,
0461                        struct scatterlist *sglist,
0462                        unsigned int max_segs,
0463                        unsigned int max_seg_sz,
0464                        unsigned int *sg_len)
0465 {
0466     struct scatterlist *sg = NULL;
0467     unsigned int i = mem->cnt, cnt;
0468     unsigned long len;
0469     void *base, *addr, *last_addr = NULL;
0470 
0471     sg_init_table(sglist, max_segs);
0472 
0473     *sg_len = 0;
0474     while (sz) {
0475         base = page_address(mem->arr[--i].page);
0476         cnt = 1 << mem->arr[i].order;
0477         while (sz && cnt) {
0478             addr = base + PAGE_SIZE * --cnt;
0479             if (last_addr && last_addr + PAGE_SIZE == addr)
0480                 continue;
0481             last_addr = addr;
0482             len = PAGE_SIZE;
0483             if (len > max_seg_sz)
0484                 len = max_seg_sz;
0485             if (len > sz)
0486                 len = sz;
0487             if (sg)
0488                 sg = sg_next(sg);
0489             else
0490                 sg = sglist;
0491             if (!sg)
0492                 return -EINVAL;
0493             sg_set_page(sg, virt_to_page(addr), len, 0);
0494             sz -= len;
0495             *sg_len += 1;
0496         }
0497         if (i == 0)
0498             i = mem->cnt;
0499     }
0500 
0501     if (sg)
0502         sg_mark_end(sg);
0503 
0504     return 0;
0505 }
0506 
0507 /*
0508  * Calculate transfer rate in bytes per second.
0509  */
0510 static unsigned int mmc_test_rate(uint64_t bytes, struct timespec64 *ts)
0511 {
0512     uint64_t ns;
0513 
0514     ns = timespec64_to_ns(ts);
0515     bytes *= 1000000000;
0516 
0517     while (ns > UINT_MAX) {
0518         bytes >>= 1;
0519         ns >>= 1;
0520     }
0521 
0522     if (!ns)
0523         return 0;
0524 
0525     do_div(bytes, (uint32_t)ns);
0526 
0527     return bytes;
0528 }
0529 
0530 /*
0531  * Save transfer results for future usage
0532  */
0533 static void mmc_test_save_transfer_result(struct mmc_test_card *test,
0534     unsigned int count, unsigned int sectors, struct timespec64 ts,
0535     unsigned int rate, unsigned int iops)
0536 {
0537     struct mmc_test_transfer_result *tr;
0538 
0539     if (!test->gr)
0540         return;
0541 
0542     tr = kmalloc(sizeof(*tr), GFP_KERNEL);
0543     if (!tr)
0544         return;
0545 
0546     tr->count = count;
0547     tr->sectors = sectors;
0548     tr->ts = ts;
0549     tr->rate = rate;
0550     tr->iops = iops;
0551 
0552     list_add_tail(&tr->link, &test->gr->tr_lst);
0553 }
0554 
0555 /*
0556  * Print the transfer rate.
0557  */
0558 static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
0559                 struct timespec64 *ts1, struct timespec64 *ts2)
0560 {
0561     unsigned int rate, iops, sectors = bytes >> 9;
0562     struct timespec64 ts;
0563 
0564     ts = timespec64_sub(*ts2, *ts1);
0565 
0566     rate = mmc_test_rate(bytes, &ts);
0567     iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
0568 
0569     pr_info("%s: Transfer of %u sectors (%u%s KiB) took %llu.%09u "
0570              "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
0571              mmc_hostname(test->card->host), sectors, sectors >> 1,
0572              (sectors & 1 ? ".5" : ""), (u64)ts.tv_sec,
0573              (u32)ts.tv_nsec, rate / 1000, rate / 1024,
0574              iops / 100, iops % 100);
0575 
0576     mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
0577 }
0578 
0579 /*
0580  * Print the average transfer rate.
0581  */
0582 static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
0583                     unsigned int count, struct timespec64 *ts1,
0584                     struct timespec64 *ts2)
0585 {
0586     unsigned int rate, iops, sectors = bytes >> 9;
0587     uint64_t tot = bytes * count;
0588     struct timespec64 ts;
0589 
0590     ts = timespec64_sub(*ts2, *ts1);
0591 
0592     rate = mmc_test_rate(tot, &ts);
0593     iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
0594 
0595     pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
0596              "%llu.%09u seconds (%u kB/s, %u KiB/s, "
0597              "%u.%02u IOPS, sg_len %d)\n",
0598              mmc_hostname(test->card->host), count, sectors, count,
0599              sectors >> 1, (sectors & 1 ? ".5" : ""),
0600              (u64)ts.tv_sec, (u32)ts.tv_nsec,
0601              rate / 1000, rate / 1024, iops / 100, iops % 100,
0602              test->area.sg_len);
0603 
0604     mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
0605 }
0606 
0607 /*
0608  * Return the card size in sectors.
0609  */
0610 static unsigned int mmc_test_capacity(struct mmc_card *card)
0611 {
0612     if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
0613         return card->ext_csd.sectors;
0614     else
0615         return card->csd.capacity << (card->csd.read_blkbits - 9);
0616 }
0617 
0618 /*******************************************************************/
0619 /*  Test preparation and cleanup                                   */
0620 /*******************************************************************/
0621 
0622 /*
0623  * Fill the first couple of sectors of the card with known data
0624  * so that bad reads/writes can be detected
0625  */
0626 static int __mmc_test_prepare(struct mmc_test_card *test, int write, int val)
0627 {
0628     int ret, i;
0629 
0630     ret = mmc_test_set_blksize(test, 512);
0631     if (ret)
0632         return ret;
0633 
0634     if (write)
0635         memset(test->buffer, val, 512);
0636     else {
0637         for (i = 0; i < 512; i++)
0638             test->buffer[i] = i;
0639     }
0640 
0641     for (i = 0; i < BUFFER_SIZE / 512; i++) {
0642         ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
0643         if (ret)
0644             return ret;
0645     }
0646 
0647     return 0;
0648 }
0649 
0650 static int mmc_test_prepare_write(struct mmc_test_card *test)
0651 {
0652     return __mmc_test_prepare(test, 1, 0xDF);
0653 }
0654 
0655 static int mmc_test_prepare_read(struct mmc_test_card *test)
0656 {
0657     return __mmc_test_prepare(test, 0, 0);
0658 }
0659 
0660 static int mmc_test_cleanup(struct mmc_test_card *test)
0661 {
0662     return __mmc_test_prepare(test, 1, 0);
0663 }
0664 
0665 /*******************************************************************/
0666 /*  Test execution helpers                                         */
0667 /*******************************************************************/
0668 
0669 /*
0670  * Modifies the mmc_request to perform the "short transfer" tests
0671  */
0672 static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
0673     struct mmc_request *mrq, int write)
0674 {
0675     if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
0676         return;
0677 
0678     if (mrq->data->blocks > 1) {
0679         mrq->cmd->opcode = write ?
0680             MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
0681         mrq->stop = NULL;
0682     } else {
0683         mrq->cmd->opcode = MMC_SEND_STATUS;
0684         mrq->cmd->arg = test->card->rca << 16;
0685     }
0686 }
0687 
0688 /*
0689  * Checks that a normal transfer didn't have any errors
0690  */
0691 static int mmc_test_check_result(struct mmc_test_card *test,
0692                  struct mmc_request *mrq)
0693 {
0694     int ret;
0695 
0696     if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
0697         return -EINVAL;
0698 
0699     ret = 0;
0700 
0701     if (mrq->sbc && mrq->sbc->error)
0702         ret = mrq->sbc->error;
0703     if (!ret && mrq->cmd->error)
0704         ret = mrq->cmd->error;
0705     if (!ret && mrq->data->error)
0706         ret = mrq->data->error;
0707     if (!ret && mrq->stop && mrq->stop->error)
0708         ret = mrq->stop->error;
0709     if (!ret && mrq->data->bytes_xfered !=
0710         mrq->data->blocks * mrq->data->blksz)
0711         ret = RESULT_FAIL;
0712 
0713     if (ret == -EINVAL)
0714         ret = RESULT_UNSUP_HOST;
0715 
0716     return ret;
0717 }
0718 
0719 /*
0720  * Checks that a "short transfer" behaved as expected
0721  */
0722 static int mmc_test_check_broken_result(struct mmc_test_card *test,
0723     struct mmc_request *mrq)
0724 {
0725     int ret;
0726 
0727     if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
0728         return -EINVAL;
0729 
0730     ret = 0;
0731 
0732     if (!ret && mrq->cmd->error)
0733         ret = mrq->cmd->error;
0734     if (!ret && mrq->data->error == 0)
0735         ret = RESULT_FAIL;
0736     if (!ret && mrq->data->error != -ETIMEDOUT)
0737         ret = mrq->data->error;
0738     if (!ret && mrq->stop && mrq->stop->error)
0739         ret = mrq->stop->error;
0740     if (mrq->data->blocks > 1) {
0741         if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
0742             ret = RESULT_FAIL;
0743     } else {
0744         if (!ret && mrq->data->bytes_xfered > 0)
0745             ret = RESULT_FAIL;
0746     }
0747 
0748     if (ret == -EINVAL)
0749         ret = RESULT_UNSUP_HOST;
0750 
0751     return ret;
0752 }
0753 
0754 struct mmc_test_req {
0755     struct mmc_request mrq;
0756     struct mmc_command sbc;
0757     struct mmc_command cmd;
0758     struct mmc_command stop;
0759     struct mmc_command status;
0760     struct mmc_data data;
0761 };
0762 
0763 /*
0764  * Tests nonblock transfer with certain parameters
0765  */
0766 static void mmc_test_req_reset(struct mmc_test_req *rq)
0767 {
0768     memset(rq, 0, sizeof(struct mmc_test_req));
0769 
0770     rq->mrq.cmd = &rq->cmd;
0771     rq->mrq.data = &rq->data;
0772     rq->mrq.stop = &rq->stop;
0773 }
0774 
0775 static struct mmc_test_req *mmc_test_req_alloc(void)
0776 {
0777     struct mmc_test_req *rq = kmalloc(sizeof(*rq), GFP_KERNEL);
0778 
0779     if (rq)
0780         mmc_test_req_reset(rq);
0781 
0782     return rq;
0783 }
0784 
0785 static void mmc_test_wait_done(struct mmc_request *mrq)
0786 {
0787     complete(&mrq->completion);
0788 }
0789 
0790 static int mmc_test_start_areq(struct mmc_test_card *test,
0791                    struct mmc_request *mrq,
0792                    struct mmc_request *prev_mrq)
0793 {
0794     struct mmc_host *host = test->card->host;
0795     int err = 0;
0796 
0797     if (mrq) {
0798         init_completion(&mrq->completion);
0799         mrq->done = mmc_test_wait_done;
0800         mmc_pre_req(host, mrq);
0801     }
0802 
0803     if (prev_mrq) {
0804         wait_for_completion(&prev_mrq->completion);
0805         err = mmc_test_wait_busy(test);
0806         if (!err)
0807             err = mmc_test_check_result(test, prev_mrq);
0808     }
0809 
0810     if (!err && mrq) {
0811         err = mmc_start_request(host, mrq);
0812         if (err)
0813             mmc_retune_release(host);
0814     }
0815 
0816     if (prev_mrq)
0817         mmc_post_req(host, prev_mrq, 0);
0818 
0819     if (err && mrq)
0820         mmc_post_req(host, mrq, err);
0821 
0822     return err;
0823 }
0824 
0825 static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
0826                       unsigned int dev_addr, int write,
0827                       int count)
0828 {
0829     struct mmc_test_req *rq1, *rq2;
0830     struct mmc_request *mrq, *prev_mrq;
0831     int i;
0832     int ret = RESULT_OK;
0833     struct mmc_test_area *t = &test->area;
0834     struct scatterlist *sg = t->sg;
0835     struct scatterlist *sg_areq = t->sg_areq;
0836 
0837     rq1 = mmc_test_req_alloc();
0838     rq2 = mmc_test_req_alloc();
0839     if (!rq1 || !rq2) {
0840         ret = RESULT_FAIL;
0841         goto err;
0842     }
0843 
0844     mrq = &rq1->mrq;
0845     prev_mrq = NULL;
0846 
0847     for (i = 0; i < count; i++) {
0848         mmc_test_req_reset(container_of(mrq, struct mmc_test_req, mrq));
0849         mmc_test_prepare_mrq(test, mrq, sg, t->sg_len, dev_addr,
0850                      t->blocks, 512, write);
0851         ret = mmc_test_start_areq(test, mrq, prev_mrq);
0852         if (ret)
0853             goto err;
0854 
0855         if (!prev_mrq)
0856             prev_mrq = &rq2->mrq;
0857 
0858         swap(mrq, prev_mrq);
0859         swap(sg, sg_areq);
0860         dev_addr += t->blocks;
0861     }
0862 
0863     ret = mmc_test_start_areq(test, NULL, prev_mrq);
0864 err:
0865     kfree(rq1);
0866     kfree(rq2);
0867     return ret;
0868 }
0869 
0870 /*
0871  * Tests a basic transfer with certain parameters
0872  */
0873 static int mmc_test_simple_transfer(struct mmc_test_card *test,
0874     struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
0875     unsigned blocks, unsigned blksz, int write)
0876 {
0877     struct mmc_request mrq = {};
0878     struct mmc_command cmd = {};
0879     struct mmc_command stop = {};
0880     struct mmc_data data = {};
0881 
0882     mrq.cmd = &cmd;
0883     mrq.data = &data;
0884     mrq.stop = &stop;
0885 
0886     mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
0887         blocks, blksz, write);
0888 
0889     mmc_wait_for_req(test->card->host, &mrq);
0890 
0891     mmc_test_wait_busy(test);
0892 
0893     return mmc_test_check_result(test, &mrq);
0894 }
0895 
0896 /*
0897  * Tests a transfer where the card will fail completely or partly
0898  */
0899 static int mmc_test_broken_transfer(struct mmc_test_card *test,
0900     unsigned blocks, unsigned blksz, int write)
0901 {
0902     struct mmc_request mrq = {};
0903     struct mmc_command cmd = {};
0904     struct mmc_command stop = {};
0905     struct mmc_data data = {};
0906 
0907     struct scatterlist sg;
0908 
0909     mrq.cmd = &cmd;
0910     mrq.data = &data;
0911     mrq.stop = &stop;
0912 
0913     sg_init_one(&sg, test->buffer, blocks * blksz);
0914 
0915     mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
0916     mmc_test_prepare_broken_mrq(test, &mrq, write);
0917 
0918     mmc_wait_for_req(test->card->host, &mrq);
0919 
0920     mmc_test_wait_busy(test);
0921 
0922     return mmc_test_check_broken_result(test, &mrq);
0923 }
0924 
0925 /*
0926  * Does a complete transfer test where data is also validated
0927  *
0928  * Note: mmc_test_prepare() must have been done before this call
0929  */
0930 static int mmc_test_transfer(struct mmc_test_card *test,
0931     struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
0932     unsigned blocks, unsigned blksz, int write)
0933 {
0934     int ret, i;
0935     unsigned long flags;
0936 
0937     if (write) {
0938         for (i = 0; i < blocks * blksz; i++)
0939             test->scratch[i] = i;
0940     } else {
0941         memset(test->scratch, 0, BUFFER_SIZE);
0942     }
0943     local_irq_save(flags);
0944     sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
0945     local_irq_restore(flags);
0946 
0947     ret = mmc_test_set_blksize(test, blksz);
0948     if (ret)
0949         return ret;
0950 
0951     ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
0952         blocks, blksz, write);
0953     if (ret)
0954         return ret;
0955 
0956     if (write) {
0957         int sectors;
0958 
0959         ret = mmc_test_set_blksize(test, 512);
0960         if (ret)
0961             return ret;
0962 
0963         sectors = (blocks * blksz + 511) / 512;
0964         if ((sectors * 512) == (blocks * blksz))
0965             sectors++;
0966 
0967         if ((sectors * 512) > BUFFER_SIZE)
0968             return -EINVAL;
0969 
0970         memset(test->buffer, 0, sectors * 512);
0971 
0972         for (i = 0; i < sectors; i++) {
0973             ret = mmc_test_buffer_transfer(test,
0974                 test->buffer + i * 512,
0975                 dev_addr + i, 512, 0);
0976             if (ret)
0977                 return ret;
0978         }
0979 
0980         for (i = 0; i < blocks * blksz; i++) {
0981             if (test->buffer[i] != (u8)i)
0982                 return RESULT_FAIL;
0983         }
0984 
0985         for (; i < sectors * 512; i++) {
0986             if (test->buffer[i] != 0xDF)
0987                 return RESULT_FAIL;
0988         }
0989     } else {
0990         local_irq_save(flags);
0991         sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
0992         local_irq_restore(flags);
0993         for (i = 0; i < blocks * blksz; i++) {
0994             if (test->scratch[i] != (u8)i)
0995                 return RESULT_FAIL;
0996         }
0997     }
0998 
0999     return 0;
1000 }
1001 
1002 /*******************************************************************/
1003 /*  Tests                                                          */
1004 /*******************************************************************/
1005 
1006 struct mmc_test_case {
1007     const char *name;
1008 
1009     int (*prepare)(struct mmc_test_card *);
1010     int (*run)(struct mmc_test_card *);
1011     int (*cleanup)(struct mmc_test_card *);
1012 };
1013 
1014 static int mmc_test_basic_write(struct mmc_test_card *test)
1015 {
1016     int ret;
1017     struct scatterlist sg;
1018 
1019     ret = mmc_test_set_blksize(test, 512);
1020     if (ret)
1021         return ret;
1022 
1023     sg_init_one(&sg, test->buffer, 512);
1024 
1025     return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
1026 }
1027 
1028 static int mmc_test_basic_read(struct mmc_test_card *test)
1029 {
1030     int ret;
1031     struct scatterlist sg;
1032 
1033     ret = mmc_test_set_blksize(test, 512);
1034     if (ret)
1035         return ret;
1036 
1037     sg_init_one(&sg, test->buffer, 512);
1038 
1039     return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1040 }
1041 
1042 static int mmc_test_verify_write(struct mmc_test_card *test)
1043 {
1044     struct scatterlist sg;
1045 
1046     sg_init_one(&sg, test->buffer, 512);
1047 
1048     return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1049 }
1050 
1051 static int mmc_test_verify_read(struct mmc_test_card *test)
1052 {
1053     struct scatterlist sg;
1054 
1055     sg_init_one(&sg, test->buffer, 512);
1056 
1057     return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1058 }
1059 
1060 static int mmc_test_multi_write(struct mmc_test_card *test)
1061 {
1062     unsigned int size;
1063     struct scatterlist sg;
1064 
1065     if (test->card->host->max_blk_count == 1)
1066         return RESULT_UNSUP_HOST;
1067 
1068     size = PAGE_SIZE * 2;
1069     size = min(size, test->card->host->max_req_size);
1070     size = min(size, test->card->host->max_seg_size);
1071     size = min(size, test->card->host->max_blk_count * 512);
1072 
1073     if (size < 1024)
1074         return RESULT_UNSUP_HOST;
1075 
1076     sg_init_one(&sg, test->buffer, size);
1077 
1078     return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1079 }
1080 
1081 static int mmc_test_multi_read(struct mmc_test_card *test)
1082 {
1083     unsigned int size;
1084     struct scatterlist sg;
1085 
1086     if (test->card->host->max_blk_count == 1)
1087         return RESULT_UNSUP_HOST;
1088 
1089     size = PAGE_SIZE * 2;
1090     size = min(size, test->card->host->max_req_size);
1091     size = min(size, test->card->host->max_seg_size);
1092     size = min(size, test->card->host->max_blk_count * 512);
1093 
1094     if (size < 1024)
1095         return RESULT_UNSUP_HOST;
1096 
1097     sg_init_one(&sg, test->buffer, size);
1098 
1099     return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1100 }
1101 
1102 static int mmc_test_pow2_write(struct mmc_test_card *test)
1103 {
1104     int ret, i;
1105     struct scatterlist sg;
1106 
1107     if (!test->card->csd.write_partial)
1108         return RESULT_UNSUP_CARD;
1109 
1110     for (i = 1; i < 512; i <<= 1) {
1111         sg_init_one(&sg, test->buffer, i);
1112         ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1113         if (ret)
1114             return ret;
1115     }
1116 
1117     return 0;
1118 }
1119 
1120 static int mmc_test_pow2_read(struct mmc_test_card *test)
1121 {
1122     int ret, i;
1123     struct scatterlist sg;
1124 
1125     if (!test->card->csd.read_partial)
1126         return RESULT_UNSUP_CARD;
1127 
1128     for (i = 1; i < 512; i <<= 1) {
1129         sg_init_one(&sg, test->buffer, i);
1130         ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1131         if (ret)
1132             return ret;
1133     }
1134 
1135     return 0;
1136 }
1137 
1138 static int mmc_test_weird_write(struct mmc_test_card *test)
1139 {
1140     int ret, i;
1141     struct scatterlist sg;
1142 
1143     if (!test->card->csd.write_partial)
1144         return RESULT_UNSUP_CARD;
1145 
1146     for (i = 3; i < 512; i += 7) {
1147         sg_init_one(&sg, test->buffer, i);
1148         ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1149         if (ret)
1150             return ret;
1151     }
1152 
1153     return 0;
1154 }
1155 
1156 static int mmc_test_weird_read(struct mmc_test_card *test)
1157 {
1158     int ret, i;
1159     struct scatterlist sg;
1160 
1161     if (!test->card->csd.read_partial)
1162         return RESULT_UNSUP_CARD;
1163 
1164     for (i = 3; i < 512; i += 7) {
1165         sg_init_one(&sg, test->buffer, i);
1166         ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1167         if (ret)
1168             return ret;
1169     }
1170 
1171     return 0;
1172 }
1173 
1174 static int mmc_test_align_write(struct mmc_test_card *test)
1175 {
1176     int ret, i;
1177     struct scatterlist sg;
1178 
1179     for (i = 1; i < TEST_ALIGN_END; i++) {
1180         sg_init_one(&sg, test->buffer + i, 512);
1181         ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1182         if (ret)
1183             return ret;
1184     }
1185 
1186     return 0;
1187 }
1188 
1189 static int mmc_test_align_read(struct mmc_test_card *test)
1190 {
1191     int ret, i;
1192     struct scatterlist sg;
1193 
1194     for (i = 1; i < TEST_ALIGN_END; i++) {
1195         sg_init_one(&sg, test->buffer + i, 512);
1196         ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1197         if (ret)
1198             return ret;
1199     }
1200 
1201     return 0;
1202 }
1203 
1204 static int mmc_test_align_multi_write(struct mmc_test_card *test)
1205 {
1206     int ret, i;
1207     unsigned int size;
1208     struct scatterlist sg;
1209 
1210     if (test->card->host->max_blk_count == 1)
1211         return RESULT_UNSUP_HOST;
1212 
1213     size = PAGE_SIZE * 2;
1214     size = min(size, test->card->host->max_req_size);
1215     size = min(size, test->card->host->max_seg_size);
1216     size = min(size, test->card->host->max_blk_count * 512);
1217 
1218     if (size < 1024)
1219         return RESULT_UNSUP_HOST;
1220 
1221     for (i = 1; i < TEST_ALIGN_END; i++) {
1222         sg_init_one(&sg, test->buffer + i, size);
1223         ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1224         if (ret)
1225             return ret;
1226     }
1227 
1228     return 0;
1229 }
1230 
1231 static int mmc_test_align_multi_read(struct mmc_test_card *test)
1232 {
1233     int ret, i;
1234     unsigned int size;
1235     struct scatterlist sg;
1236 
1237     if (test->card->host->max_blk_count == 1)
1238         return RESULT_UNSUP_HOST;
1239 
1240     size = PAGE_SIZE * 2;
1241     size = min(size, test->card->host->max_req_size);
1242     size = min(size, test->card->host->max_seg_size);
1243     size = min(size, test->card->host->max_blk_count * 512);
1244 
1245     if (size < 1024)
1246         return RESULT_UNSUP_HOST;
1247 
1248     for (i = 1; i < TEST_ALIGN_END; i++) {
1249         sg_init_one(&sg, test->buffer + i, size);
1250         ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1251         if (ret)
1252             return ret;
1253     }
1254 
1255     return 0;
1256 }
1257 
1258 static int mmc_test_xfersize_write(struct mmc_test_card *test)
1259 {
1260     int ret;
1261 
1262     ret = mmc_test_set_blksize(test, 512);
1263     if (ret)
1264         return ret;
1265 
1266     return mmc_test_broken_transfer(test, 1, 512, 1);
1267 }
1268 
1269 static int mmc_test_xfersize_read(struct mmc_test_card *test)
1270 {
1271     int ret;
1272 
1273     ret = mmc_test_set_blksize(test, 512);
1274     if (ret)
1275         return ret;
1276 
1277     return mmc_test_broken_transfer(test, 1, 512, 0);
1278 }
1279 
1280 static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1281 {
1282     int ret;
1283 
1284     if (test->card->host->max_blk_count == 1)
1285         return RESULT_UNSUP_HOST;
1286 
1287     ret = mmc_test_set_blksize(test, 512);
1288     if (ret)
1289         return ret;
1290 
1291     return mmc_test_broken_transfer(test, 2, 512, 1);
1292 }
1293 
1294 static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1295 {
1296     int ret;
1297 
1298     if (test->card->host->max_blk_count == 1)
1299         return RESULT_UNSUP_HOST;
1300 
1301     ret = mmc_test_set_blksize(test, 512);
1302     if (ret)
1303         return ret;
1304 
1305     return mmc_test_broken_transfer(test, 2, 512, 0);
1306 }
1307 
1308 #ifdef CONFIG_HIGHMEM
1309 
1310 static int mmc_test_write_high(struct mmc_test_card *test)
1311 {
1312     struct scatterlist sg;
1313 
1314     sg_init_table(&sg, 1);
1315     sg_set_page(&sg, test->highmem, 512, 0);
1316 
1317     return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1318 }
1319 
1320 static int mmc_test_read_high(struct mmc_test_card *test)
1321 {
1322     struct scatterlist sg;
1323 
1324     sg_init_table(&sg, 1);
1325     sg_set_page(&sg, test->highmem, 512, 0);
1326 
1327     return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1328 }
1329 
1330 static int mmc_test_multi_write_high(struct mmc_test_card *test)
1331 {
1332     unsigned int size;
1333     struct scatterlist sg;
1334 
1335     if (test->card->host->max_blk_count == 1)
1336         return RESULT_UNSUP_HOST;
1337 
1338     size = PAGE_SIZE * 2;
1339     size = min(size, test->card->host->max_req_size);
1340     size = min(size, test->card->host->max_seg_size);
1341     size = min(size, test->card->host->max_blk_count * 512);
1342 
1343     if (size < 1024)
1344         return RESULT_UNSUP_HOST;
1345 
1346     sg_init_table(&sg, 1);
1347     sg_set_page(&sg, test->highmem, size, 0);
1348 
1349     return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1350 }
1351 
1352 static int mmc_test_multi_read_high(struct mmc_test_card *test)
1353 {
1354     unsigned int size;
1355     struct scatterlist sg;
1356 
1357     if (test->card->host->max_blk_count == 1)
1358         return RESULT_UNSUP_HOST;
1359 
1360     size = PAGE_SIZE * 2;
1361     size = min(size, test->card->host->max_req_size);
1362     size = min(size, test->card->host->max_seg_size);
1363     size = min(size, test->card->host->max_blk_count * 512);
1364 
1365     if (size < 1024)
1366         return RESULT_UNSUP_HOST;
1367 
1368     sg_init_table(&sg, 1);
1369     sg_set_page(&sg, test->highmem, size, 0);
1370 
1371     return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1372 }
1373 
1374 #else
1375 
1376 static int mmc_test_no_highmem(struct mmc_test_card *test)
1377 {
1378     pr_info("%s: Highmem not configured - test skipped\n",
1379            mmc_hostname(test->card->host));
1380     return 0;
1381 }
1382 
1383 #endif /* CONFIG_HIGHMEM */
1384 
1385 /*
1386  * Map sz bytes so that it can be transferred.
1387  */
1388 static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1389                  int max_scatter, int min_sg_len, bool nonblock)
1390 {
1391     struct mmc_test_area *t = &test->area;
1392     int err;
1393     unsigned int sg_len = 0;
1394 
1395     t->blocks = sz >> 9;
1396 
1397     if (max_scatter) {
1398         err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1399                           t->max_segs, t->max_seg_sz,
1400                        &t->sg_len);
1401     } else {
1402         err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1403                       t->max_seg_sz, &t->sg_len, min_sg_len);
1404     }
1405 
1406     if (err || !nonblock)
1407         goto err;
1408 
1409     if (max_scatter) {
1410         err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg_areq,
1411                           t->max_segs, t->max_seg_sz,
1412                           &sg_len);
1413     } else {
1414         err = mmc_test_map_sg(t->mem, sz, t->sg_areq, 1, t->max_segs,
1415                       t->max_seg_sz, &sg_len, min_sg_len);
1416     }
1417     if (!err && sg_len != t->sg_len)
1418         err = -EINVAL;
1419 
1420 err:
1421     if (err)
1422         pr_info("%s: Failed to map sg list\n",
1423                mmc_hostname(test->card->host));
1424     return err;
1425 }
1426 
1427 /*
1428  * Transfer bytes mapped by mmc_test_area_map().
1429  */
1430 static int mmc_test_area_transfer(struct mmc_test_card *test,
1431                   unsigned int dev_addr, int write)
1432 {
1433     struct mmc_test_area *t = &test->area;
1434 
1435     return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1436                     t->blocks, 512, write);
1437 }
1438 
1439 /*
1440  * Map and transfer bytes for multiple transfers.
1441  */
1442 static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1443                 unsigned int dev_addr, int write,
1444                 int max_scatter, int timed, int count,
1445                 bool nonblock, int min_sg_len)
1446 {
1447     struct timespec64 ts1, ts2;
1448     int ret = 0;
1449     int i;
1450 
1451     /*
1452      * In the case of a maximally scattered transfer, the maximum transfer
1453      * size is further limited by using PAGE_SIZE segments.
1454      */
1455     if (max_scatter) {
1456         struct mmc_test_area *t = &test->area;
1457         unsigned long max_tfr;
1458 
1459         if (t->max_seg_sz >= PAGE_SIZE)
1460             max_tfr = t->max_segs * PAGE_SIZE;
1461         else
1462             max_tfr = t->max_segs * t->max_seg_sz;
1463         if (sz > max_tfr)
1464             sz = max_tfr;
1465     }
1466 
1467     ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len, nonblock);
1468     if (ret)
1469         return ret;
1470 
1471     if (timed)
1472         ktime_get_ts64(&ts1);
1473     if (nonblock)
1474         ret = mmc_test_nonblock_transfer(test, dev_addr, write, count);
1475     else
1476         for (i = 0; i < count && ret == 0; i++) {
1477             ret = mmc_test_area_transfer(test, dev_addr, write);
1478             dev_addr += sz >> 9;
1479         }
1480 
1481     if (ret)
1482         return ret;
1483 
1484     if (timed)
1485         ktime_get_ts64(&ts2);
1486 
1487     if (timed)
1488         mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1489 
1490     return 0;
1491 }
1492 
1493 static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1494                 unsigned int dev_addr, int write, int max_scatter,
1495                 int timed)
1496 {
1497     return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1498                     timed, 1, false, 0);
1499 }
1500 
1501 /*
1502  * Write the test area entirely.
1503  */
1504 static int mmc_test_area_fill(struct mmc_test_card *test)
1505 {
1506     struct mmc_test_area *t = &test->area;
1507 
1508     return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1509 }
1510 
1511 /*
1512  * Erase the test area entirely.
1513  */
1514 static int mmc_test_area_erase(struct mmc_test_card *test)
1515 {
1516     struct mmc_test_area *t = &test->area;
1517 
1518     if (!mmc_can_erase(test->card))
1519         return 0;
1520 
1521     return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1522              MMC_ERASE_ARG);
1523 }
1524 
1525 /*
1526  * Cleanup struct mmc_test_area.
1527  */
1528 static int mmc_test_area_cleanup(struct mmc_test_card *test)
1529 {
1530     struct mmc_test_area *t = &test->area;
1531 
1532     kfree(t->sg);
1533     kfree(t->sg_areq);
1534     mmc_test_free_mem(t->mem);
1535 
1536     return 0;
1537 }
1538 
1539 /*
1540  * Initialize an area for testing large transfers.  The test area is set to the
1541  * middle of the card because cards may have different characteristics at the
1542  * front (for FAT file system optimization).  Optionally, the area is erased
1543  * (if the card supports it) which may improve write performance.  Optionally,
1544  * the area is filled with data for subsequent read tests.
1545  */
1546 static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1547 {
1548     struct mmc_test_area *t = &test->area;
1549     unsigned long min_sz = 64 * 1024, sz;
1550     int ret;
1551 
1552     ret = mmc_test_set_blksize(test, 512);
1553     if (ret)
1554         return ret;
1555 
1556     /* Make the test area size about 4MiB */
1557     sz = (unsigned long)test->card->pref_erase << 9;
1558     t->max_sz = sz;
1559     while (t->max_sz < 4 * 1024 * 1024)
1560         t->max_sz += sz;
1561     while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1562         t->max_sz -= sz;
1563 
1564     t->max_segs = test->card->host->max_segs;
1565     t->max_seg_sz = test->card->host->max_seg_size;
1566     t->max_seg_sz -= t->max_seg_sz % 512;
1567 
1568     t->max_tfr = t->max_sz;
1569     if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1570         t->max_tfr = test->card->host->max_blk_count << 9;
1571     if (t->max_tfr > test->card->host->max_req_size)
1572         t->max_tfr = test->card->host->max_req_size;
1573     if (t->max_tfr / t->max_seg_sz > t->max_segs)
1574         t->max_tfr = t->max_segs * t->max_seg_sz;
1575 
1576     /*
1577      * Try to allocate enough memory for a max. sized transfer.  Less is OK
1578      * because the same memory can be mapped into the scatterlist more than
1579      * once.  Also, take into account the limits imposed on scatterlist
1580      * segments by the host driver.
1581      */
1582     t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1583                     t->max_seg_sz);
1584     if (!t->mem)
1585         return -ENOMEM;
1586 
1587     t->sg = kmalloc_array(t->max_segs, sizeof(*t->sg), GFP_KERNEL);
1588     if (!t->sg) {
1589         ret = -ENOMEM;
1590         goto out_free;
1591     }
1592 
1593     t->sg_areq = kmalloc_array(t->max_segs, sizeof(*t->sg_areq),
1594                    GFP_KERNEL);
1595     if (!t->sg_areq) {
1596         ret = -ENOMEM;
1597         goto out_free;
1598     }
1599 
1600     t->dev_addr = mmc_test_capacity(test->card) / 2;
1601     t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1602 
1603     if (erase) {
1604         ret = mmc_test_area_erase(test);
1605         if (ret)
1606             goto out_free;
1607     }
1608 
1609     if (fill) {
1610         ret = mmc_test_area_fill(test);
1611         if (ret)
1612             goto out_free;
1613     }
1614 
1615     return 0;
1616 
1617 out_free:
1618     mmc_test_area_cleanup(test);
1619     return ret;
1620 }
1621 
1622 /*
1623  * Prepare for large transfers.  Do not erase the test area.
1624  */
1625 static int mmc_test_area_prepare(struct mmc_test_card *test)
1626 {
1627     return mmc_test_area_init(test, 0, 0);
1628 }
1629 
1630 /*
1631  * Prepare for large transfers.  Do erase the test area.
1632  */
1633 static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1634 {
1635     return mmc_test_area_init(test, 1, 0);
1636 }
1637 
1638 /*
1639  * Prepare for large transfers.  Erase and fill the test area.
1640  */
1641 static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1642 {
1643     return mmc_test_area_init(test, 1, 1);
1644 }
1645 
1646 /*
1647  * Test best-case performance.  Best-case performance is expected from
1648  * a single large transfer.
1649  *
1650  * An additional option (max_scatter) allows the measurement of the same
1651  * transfer but with no contiguous pages in the scatter list.  This tests
1652  * the efficiency of DMA to handle scattered pages.
1653  */
1654 static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1655                      int max_scatter)
1656 {
1657     struct mmc_test_area *t = &test->area;
1658 
1659     return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1660                 max_scatter, 1);
1661 }
1662 
1663 /*
1664  * Best-case read performance.
1665  */
1666 static int mmc_test_best_read_performance(struct mmc_test_card *test)
1667 {
1668     return mmc_test_best_performance(test, 0, 0);
1669 }
1670 
1671 /*
1672  * Best-case write performance.
1673  */
1674 static int mmc_test_best_write_performance(struct mmc_test_card *test)
1675 {
1676     return mmc_test_best_performance(test, 1, 0);
1677 }
1678 
1679 /*
1680  * Best-case read performance into scattered pages.
1681  */
1682 static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1683 {
1684     return mmc_test_best_performance(test, 0, 1);
1685 }
1686 
1687 /*
1688  * Best-case write performance from scattered pages.
1689  */
1690 static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1691 {
1692     return mmc_test_best_performance(test, 1, 1);
1693 }
1694 
1695 /*
1696  * Single read performance by transfer size.
1697  */
1698 static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1699 {
1700     struct mmc_test_area *t = &test->area;
1701     unsigned long sz;
1702     unsigned int dev_addr;
1703     int ret;
1704 
1705     for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1706         dev_addr = t->dev_addr + (sz >> 9);
1707         ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1708         if (ret)
1709             return ret;
1710     }
1711     sz = t->max_tfr;
1712     dev_addr = t->dev_addr;
1713     return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1714 }
1715 
1716 /*
1717  * Single write performance by transfer size.
1718  */
1719 static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1720 {
1721     struct mmc_test_area *t = &test->area;
1722     unsigned long sz;
1723     unsigned int dev_addr;
1724     int ret;
1725 
1726     ret = mmc_test_area_erase(test);
1727     if (ret)
1728         return ret;
1729     for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1730         dev_addr = t->dev_addr + (sz >> 9);
1731         ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1732         if (ret)
1733             return ret;
1734     }
1735     ret = mmc_test_area_erase(test);
1736     if (ret)
1737         return ret;
1738     sz = t->max_tfr;
1739     dev_addr = t->dev_addr;
1740     return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1741 }
1742 
1743 /*
1744  * Single trim performance by transfer size.
1745  */
1746 static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1747 {
1748     struct mmc_test_area *t = &test->area;
1749     unsigned long sz;
1750     unsigned int dev_addr;
1751     struct timespec64 ts1, ts2;
1752     int ret;
1753 
1754     if (!mmc_can_trim(test->card))
1755         return RESULT_UNSUP_CARD;
1756 
1757     if (!mmc_can_erase(test->card))
1758         return RESULT_UNSUP_HOST;
1759 
1760     for (sz = 512; sz < t->max_sz; sz <<= 1) {
1761         dev_addr = t->dev_addr + (sz >> 9);
1762         ktime_get_ts64(&ts1);
1763         ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1764         if (ret)
1765             return ret;
1766         ktime_get_ts64(&ts2);
1767         mmc_test_print_rate(test, sz, &ts1, &ts2);
1768     }
1769     dev_addr = t->dev_addr;
1770     ktime_get_ts64(&ts1);
1771     ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1772     if (ret)
1773         return ret;
1774     ktime_get_ts64(&ts2);
1775     mmc_test_print_rate(test, sz, &ts1, &ts2);
1776     return 0;
1777 }
1778 
1779 static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1780 {
1781     struct mmc_test_area *t = &test->area;
1782     unsigned int dev_addr, i, cnt;
1783     struct timespec64 ts1, ts2;
1784     int ret;
1785 
1786     cnt = t->max_sz / sz;
1787     dev_addr = t->dev_addr;
1788     ktime_get_ts64(&ts1);
1789     for (i = 0; i < cnt; i++) {
1790         ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1791         if (ret)
1792             return ret;
1793         dev_addr += (sz >> 9);
1794     }
1795     ktime_get_ts64(&ts2);
1796     mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1797     return 0;
1798 }
1799 
1800 /*
1801  * Consecutive read performance by transfer size.
1802  */
1803 static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1804 {
1805     struct mmc_test_area *t = &test->area;
1806     unsigned long sz;
1807     int ret;
1808 
1809     for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1810         ret = mmc_test_seq_read_perf(test, sz);
1811         if (ret)
1812             return ret;
1813     }
1814     sz = t->max_tfr;
1815     return mmc_test_seq_read_perf(test, sz);
1816 }
1817 
1818 static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1819 {
1820     struct mmc_test_area *t = &test->area;
1821     unsigned int dev_addr, i, cnt;
1822     struct timespec64 ts1, ts2;
1823     int ret;
1824 
1825     ret = mmc_test_area_erase(test);
1826     if (ret)
1827         return ret;
1828     cnt = t->max_sz / sz;
1829     dev_addr = t->dev_addr;
1830     ktime_get_ts64(&ts1);
1831     for (i = 0; i < cnt; i++) {
1832         ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1833         if (ret)
1834             return ret;
1835         dev_addr += (sz >> 9);
1836     }
1837     ktime_get_ts64(&ts2);
1838     mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1839     return 0;
1840 }
1841 
1842 /*
1843  * Consecutive write performance by transfer size.
1844  */
1845 static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1846 {
1847     struct mmc_test_area *t = &test->area;
1848     unsigned long sz;
1849     int ret;
1850 
1851     for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1852         ret = mmc_test_seq_write_perf(test, sz);
1853         if (ret)
1854             return ret;
1855     }
1856     sz = t->max_tfr;
1857     return mmc_test_seq_write_perf(test, sz);
1858 }
1859 
1860 /*
1861  * Consecutive trim performance by transfer size.
1862  */
1863 static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1864 {
1865     struct mmc_test_area *t = &test->area;
1866     unsigned long sz;
1867     unsigned int dev_addr, i, cnt;
1868     struct timespec64 ts1, ts2;
1869     int ret;
1870 
1871     if (!mmc_can_trim(test->card))
1872         return RESULT_UNSUP_CARD;
1873 
1874     if (!mmc_can_erase(test->card))
1875         return RESULT_UNSUP_HOST;
1876 
1877     for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1878         ret = mmc_test_area_erase(test);
1879         if (ret)
1880             return ret;
1881         ret = mmc_test_area_fill(test);
1882         if (ret)
1883             return ret;
1884         cnt = t->max_sz / sz;
1885         dev_addr = t->dev_addr;
1886         ktime_get_ts64(&ts1);
1887         for (i = 0; i < cnt; i++) {
1888             ret = mmc_erase(test->card, dev_addr, sz >> 9,
1889                     MMC_TRIM_ARG);
1890             if (ret)
1891                 return ret;
1892             dev_addr += (sz >> 9);
1893         }
1894         ktime_get_ts64(&ts2);
1895         mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1896     }
1897     return 0;
1898 }
1899 
1900 static unsigned int rnd_next = 1;
1901 
1902 static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1903 {
1904     uint64_t r;
1905 
1906     rnd_next = rnd_next * 1103515245 + 12345;
1907     r = (rnd_next >> 16) & 0x7fff;
1908     return (r * rnd_cnt) >> 15;
1909 }
1910 
1911 static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1912                  unsigned long sz)
1913 {
1914     unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1915     unsigned int ssz;
1916     struct timespec64 ts1, ts2, ts;
1917     int ret;
1918 
1919     ssz = sz >> 9;
1920 
1921     rnd_addr = mmc_test_capacity(test->card) / 4;
1922     range1 = rnd_addr / test->card->pref_erase;
1923     range2 = range1 / ssz;
1924 
1925     ktime_get_ts64(&ts1);
1926     for (cnt = 0; cnt < UINT_MAX; cnt++) {
1927         ktime_get_ts64(&ts2);
1928         ts = timespec64_sub(ts2, ts1);
1929         if (ts.tv_sec >= 10)
1930             break;
1931         ea = mmc_test_rnd_num(range1);
1932         if (ea == last_ea)
1933             ea -= 1;
1934         last_ea = ea;
1935         dev_addr = rnd_addr + test->card->pref_erase * ea +
1936                ssz * mmc_test_rnd_num(range2);
1937         ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1938         if (ret)
1939             return ret;
1940     }
1941     if (print)
1942         mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1943     return 0;
1944 }
1945 
1946 static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1947 {
1948     struct mmc_test_area *t = &test->area;
1949     unsigned int next;
1950     unsigned long sz;
1951     int ret;
1952 
1953     for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1954         /*
1955          * When writing, try to get more consistent results by running
1956          * the test twice with exactly the same I/O but outputting the
1957          * results only for the 2nd run.
1958          */
1959         if (write) {
1960             next = rnd_next;
1961             ret = mmc_test_rnd_perf(test, write, 0, sz);
1962             if (ret)
1963                 return ret;
1964             rnd_next = next;
1965         }
1966         ret = mmc_test_rnd_perf(test, write, 1, sz);
1967         if (ret)
1968             return ret;
1969     }
1970     sz = t->max_tfr;
1971     if (write) {
1972         next = rnd_next;
1973         ret = mmc_test_rnd_perf(test, write, 0, sz);
1974         if (ret)
1975             return ret;
1976         rnd_next = next;
1977     }
1978     return mmc_test_rnd_perf(test, write, 1, sz);
1979 }
1980 
1981 /*
1982  * Random read performance by transfer size.
1983  */
1984 static int mmc_test_random_read_perf(struct mmc_test_card *test)
1985 {
1986     return mmc_test_random_perf(test, 0);
1987 }
1988 
1989 /*
1990  * Random write performance by transfer size.
1991  */
1992 static int mmc_test_random_write_perf(struct mmc_test_card *test)
1993 {
1994     return mmc_test_random_perf(test, 1);
1995 }
1996 
1997 static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
1998                  unsigned int tot_sz, int max_scatter)
1999 {
2000     struct mmc_test_area *t = &test->area;
2001     unsigned int dev_addr, i, cnt, sz, ssz;
2002     struct timespec64 ts1, ts2;
2003     int ret;
2004 
2005     sz = t->max_tfr;
2006 
2007     /*
2008      * In the case of a maximally scattered transfer, the maximum transfer
2009      * size is further limited by using PAGE_SIZE segments.
2010      */
2011     if (max_scatter) {
2012         unsigned long max_tfr;
2013 
2014         if (t->max_seg_sz >= PAGE_SIZE)
2015             max_tfr = t->max_segs * PAGE_SIZE;
2016         else
2017             max_tfr = t->max_segs * t->max_seg_sz;
2018         if (sz > max_tfr)
2019             sz = max_tfr;
2020     }
2021 
2022     ssz = sz >> 9;
2023     dev_addr = mmc_test_capacity(test->card) / 4;
2024     if (tot_sz > dev_addr << 9)
2025         tot_sz = dev_addr << 9;
2026     cnt = tot_sz / sz;
2027     dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2028 
2029     ktime_get_ts64(&ts1);
2030     for (i = 0; i < cnt; i++) {
2031         ret = mmc_test_area_io(test, sz, dev_addr, write,
2032                        max_scatter, 0);
2033         if (ret)
2034             return ret;
2035         dev_addr += ssz;
2036     }
2037     ktime_get_ts64(&ts2);
2038 
2039     mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2040 
2041     return 0;
2042 }
2043 
2044 static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2045 {
2046     int ret, i;
2047 
2048     for (i = 0; i < 10; i++) {
2049         ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2050         if (ret)
2051             return ret;
2052     }
2053     for (i = 0; i < 5; i++) {
2054         ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2055         if (ret)
2056             return ret;
2057     }
2058     for (i = 0; i < 3; i++) {
2059         ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2060         if (ret)
2061             return ret;
2062     }
2063 
2064     return ret;
2065 }
2066 
2067 /*
2068  * Large sequential read performance.
2069  */
2070 static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2071 {
2072     return mmc_test_large_seq_perf(test, 0);
2073 }
2074 
2075 /*
2076  * Large sequential write performance.
2077  */
2078 static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2079 {
2080     return mmc_test_large_seq_perf(test, 1);
2081 }
2082 
2083 static int mmc_test_rw_multiple(struct mmc_test_card *test,
2084                 struct mmc_test_multiple_rw *tdata,
2085                 unsigned int reqsize, unsigned int size,
2086                 int min_sg_len)
2087 {
2088     unsigned int dev_addr;
2089     struct mmc_test_area *t = &test->area;
2090     int ret = 0;
2091 
2092     /* Set up test area */
2093     if (size > mmc_test_capacity(test->card) / 2 * 512)
2094         size = mmc_test_capacity(test->card) / 2 * 512;
2095     if (reqsize > t->max_tfr)
2096         reqsize = t->max_tfr;
2097     dev_addr = mmc_test_capacity(test->card) / 4;
2098     if ((dev_addr & 0xffff0000))
2099         dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2100     else
2101         dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2102     if (!dev_addr)
2103         goto err;
2104 
2105     if (reqsize > size)
2106         return 0;
2107 
2108     /* prepare test area */
2109     if (mmc_can_erase(test->card) &&
2110         tdata->prepare & MMC_TEST_PREP_ERASE) {
2111         ret = mmc_erase(test->card, dev_addr,
2112                 size / 512, test->card->erase_arg);
2113         if (ret)
2114             ret = mmc_erase(test->card, dev_addr,
2115                     size / 512, MMC_ERASE_ARG);
2116         if (ret)
2117             goto err;
2118     }
2119 
2120     /* Run test */
2121     ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2122                    tdata->do_write, 0, 1, size / reqsize,
2123                    tdata->do_nonblock_req, min_sg_len);
2124     if (ret)
2125         goto err;
2126 
2127     return ret;
2128  err:
2129     pr_info("[%s] error\n", __func__);
2130     return ret;
2131 }
2132 
2133 static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2134                      struct mmc_test_multiple_rw *rw)
2135 {
2136     int ret = 0;
2137     int i;
2138     void *pre_req = test->card->host->ops->pre_req;
2139     void *post_req = test->card->host->ops->post_req;
2140 
2141     if (rw->do_nonblock_req &&
2142         ((!pre_req && post_req) || (pre_req && !post_req))) {
2143         pr_info("error: only one of pre/post is defined\n");
2144         return -EINVAL;
2145     }
2146 
2147     for (i = 0 ; i < rw->len && ret == 0; i++) {
2148         ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2149         if (ret)
2150             break;
2151     }
2152     return ret;
2153 }
2154 
2155 static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2156                        struct mmc_test_multiple_rw *rw)
2157 {
2158     int ret = 0;
2159     int i;
2160 
2161     for (i = 0 ; i < rw->len && ret == 0; i++) {
2162         ret = mmc_test_rw_multiple(test, rw, 512 * 1024, rw->size,
2163                        rw->sg_len[i]);
2164         if (ret)
2165             break;
2166     }
2167     return ret;
2168 }
2169 
2170 /*
2171  * Multiple blocking write 4k to 4 MB chunks
2172  */
2173 static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2174 {
2175     unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2176                  1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2177     struct mmc_test_multiple_rw test_data = {
2178         .bs = bs,
2179         .size = TEST_AREA_MAX_SIZE,
2180         .len = ARRAY_SIZE(bs),
2181         .do_write = true,
2182         .do_nonblock_req = false,
2183         .prepare = MMC_TEST_PREP_ERASE,
2184     };
2185 
2186     return mmc_test_rw_multiple_size(test, &test_data);
2187 };
2188 
2189 /*
2190  * Multiple non-blocking write 4k to 4 MB chunks
2191  */
2192 static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2193 {
2194     unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2195                  1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2196     struct mmc_test_multiple_rw test_data = {
2197         .bs = bs,
2198         .size = TEST_AREA_MAX_SIZE,
2199         .len = ARRAY_SIZE(bs),
2200         .do_write = true,
2201         .do_nonblock_req = true,
2202         .prepare = MMC_TEST_PREP_ERASE,
2203     };
2204 
2205     return mmc_test_rw_multiple_size(test, &test_data);
2206 }
2207 
2208 /*
2209  * Multiple blocking read 4k to 4 MB chunks
2210  */
2211 static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2212 {
2213     unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2214                  1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2215     struct mmc_test_multiple_rw test_data = {
2216         .bs = bs,
2217         .size = TEST_AREA_MAX_SIZE,
2218         .len = ARRAY_SIZE(bs),
2219         .do_write = false,
2220         .do_nonblock_req = false,
2221         .prepare = MMC_TEST_PREP_NONE,
2222     };
2223 
2224     return mmc_test_rw_multiple_size(test, &test_data);
2225 }
2226 
2227 /*
2228  * Multiple non-blocking read 4k to 4 MB chunks
2229  */
2230 static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2231 {
2232     unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2233                  1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2234     struct mmc_test_multiple_rw test_data = {
2235         .bs = bs,
2236         .size = TEST_AREA_MAX_SIZE,
2237         .len = ARRAY_SIZE(bs),
2238         .do_write = false,
2239         .do_nonblock_req = true,
2240         .prepare = MMC_TEST_PREP_NONE,
2241     };
2242 
2243     return mmc_test_rw_multiple_size(test, &test_data);
2244 }
2245 
2246 /*
2247  * Multiple blocking write 1 to 512 sg elements
2248  */
2249 static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2250 {
2251     unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2252                  1 << 7, 1 << 8, 1 << 9};
2253     struct mmc_test_multiple_rw test_data = {
2254         .sg_len = sg_len,
2255         .size = TEST_AREA_MAX_SIZE,
2256         .len = ARRAY_SIZE(sg_len),
2257         .do_write = true,
2258         .do_nonblock_req = false,
2259         .prepare = MMC_TEST_PREP_ERASE,
2260     };
2261 
2262     return mmc_test_rw_multiple_sg_len(test, &test_data);
2263 };
2264 
2265 /*
2266  * Multiple non-blocking write 1 to 512 sg elements
2267  */
2268 static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2269 {
2270     unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2271                  1 << 7, 1 << 8, 1 << 9};
2272     struct mmc_test_multiple_rw test_data = {
2273         .sg_len = sg_len,
2274         .size = TEST_AREA_MAX_SIZE,
2275         .len = ARRAY_SIZE(sg_len),
2276         .do_write = true,
2277         .do_nonblock_req = true,
2278         .prepare = MMC_TEST_PREP_ERASE,
2279     };
2280 
2281     return mmc_test_rw_multiple_sg_len(test, &test_data);
2282 }
2283 
2284 /*
2285  * Multiple blocking read 1 to 512 sg elements
2286  */
2287 static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2288 {
2289     unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2290                  1 << 7, 1 << 8, 1 << 9};
2291     struct mmc_test_multiple_rw test_data = {
2292         .sg_len = sg_len,
2293         .size = TEST_AREA_MAX_SIZE,
2294         .len = ARRAY_SIZE(sg_len),
2295         .do_write = false,
2296         .do_nonblock_req = false,
2297         .prepare = MMC_TEST_PREP_NONE,
2298     };
2299 
2300     return mmc_test_rw_multiple_sg_len(test, &test_data);
2301 }
2302 
2303 /*
2304  * Multiple non-blocking read 1 to 512 sg elements
2305  */
2306 static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2307 {
2308     unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2309                  1 << 7, 1 << 8, 1 << 9};
2310     struct mmc_test_multiple_rw test_data = {
2311         .sg_len = sg_len,
2312         .size = TEST_AREA_MAX_SIZE,
2313         .len = ARRAY_SIZE(sg_len),
2314         .do_write = false,
2315         .do_nonblock_req = true,
2316         .prepare = MMC_TEST_PREP_NONE,
2317     };
2318 
2319     return mmc_test_rw_multiple_sg_len(test, &test_data);
2320 }
2321 
2322 /*
2323  * eMMC hardware reset.
2324  */
2325 static int mmc_test_reset(struct mmc_test_card *test)
2326 {
2327     struct mmc_card *card = test->card;
2328     int err;
2329 
2330     err = mmc_hw_reset(card);
2331     if (!err) {
2332         /*
2333          * Reset will re-enable the card's command queue, but tests
2334          * expect it to be disabled.
2335          */
2336         if (card->ext_csd.cmdq_en)
2337             mmc_cmdq_disable(card);
2338         return RESULT_OK;
2339     } else if (err == -EOPNOTSUPP) {
2340         return RESULT_UNSUP_HOST;
2341     }
2342 
2343     return RESULT_FAIL;
2344 }
2345 
2346 static int mmc_test_send_status(struct mmc_test_card *test,
2347                 struct mmc_command *cmd)
2348 {
2349     memset(cmd, 0, sizeof(*cmd));
2350 
2351     cmd->opcode = MMC_SEND_STATUS;
2352     if (!mmc_host_is_spi(test->card->host))
2353         cmd->arg = test->card->rca << 16;
2354     cmd->flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2355 
2356     return mmc_wait_for_cmd(test->card->host, cmd, 0);
2357 }
2358 
2359 static int mmc_test_ongoing_transfer(struct mmc_test_card *test,
2360                      unsigned int dev_addr, int use_sbc,
2361                      int repeat_cmd, int write, int use_areq)
2362 {
2363     struct mmc_test_req *rq = mmc_test_req_alloc();
2364     struct mmc_host *host = test->card->host;
2365     struct mmc_test_area *t = &test->area;
2366     struct mmc_request *mrq;
2367     unsigned long timeout;
2368     bool expired = false;
2369     int ret = 0, cmd_ret;
2370     u32 status = 0;
2371     int count = 0;
2372 
2373     if (!rq)
2374         return -ENOMEM;
2375 
2376     mrq = &rq->mrq;
2377     if (use_sbc)
2378         mrq->sbc = &rq->sbc;
2379     mrq->cap_cmd_during_tfr = true;
2380 
2381     mmc_test_prepare_mrq(test, mrq, t->sg, t->sg_len, dev_addr, t->blocks,
2382                  512, write);
2383 
2384     if (use_sbc && t->blocks > 1 && !mrq->sbc) {
2385         ret =  mmc_host_cmd23(host) ?
2386                RESULT_UNSUP_CARD :
2387                RESULT_UNSUP_HOST;
2388         goto out_free;
2389     }
2390 
2391     /* Start ongoing data request */
2392     if (use_areq) {
2393         ret = mmc_test_start_areq(test, mrq, NULL);
2394         if (ret)
2395             goto out_free;
2396     } else {
2397         mmc_wait_for_req(host, mrq);
2398     }
2399 
2400     timeout = jiffies + msecs_to_jiffies(3000);
2401     do {
2402         count += 1;
2403 
2404         /* Send status command while data transfer in progress */
2405         cmd_ret = mmc_test_send_status(test, &rq->status);
2406         if (cmd_ret)
2407             break;
2408 
2409         status = rq->status.resp[0];
2410         if (status & R1_ERROR) {
2411             cmd_ret = -EIO;
2412             break;
2413         }
2414 
2415         if (mmc_is_req_done(host, mrq))
2416             break;
2417 
2418         expired = time_after(jiffies, timeout);
2419         if (expired) {
2420             pr_info("%s: timeout waiting for Tran state status %#x\n",
2421                 mmc_hostname(host), status);
2422             cmd_ret = -ETIMEDOUT;
2423             break;
2424         }
2425     } while (repeat_cmd && R1_CURRENT_STATE(status) != R1_STATE_TRAN);
2426 
2427     /* Wait for data request to complete */
2428     if (use_areq) {
2429         ret = mmc_test_start_areq(test, NULL, mrq);
2430     } else {
2431         mmc_wait_for_req_done(test->card->host, mrq);
2432     }
2433 
2434     /*
2435      * For cap_cmd_during_tfr request, upper layer must send stop if
2436      * required.
2437      */
2438     if (mrq->data->stop && (mrq->data->error || !mrq->sbc)) {
2439         if (ret)
2440             mmc_wait_for_cmd(host, mrq->data->stop, 0);
2441         else
2442             ret = mmc_wait_for_cmd(host, mrq->data->stop, 0);
2443     }
2444 
2445     if (ret)
2446         goto out_free;
2447 
2448     if (cmd_ret) {
2449         pr_info("%s: Send Status failed: status %#x, error %d\n",
2450             mmc_hostname(test->card->host), status, cmd_ret);
2451     }
2452 
2453     ret = mmc_test_check_result(test, mrq);
2454     if (ret)
2455         goto out_free;
2456 
2457     ret = mmc_test_wait_busy(test);
2458     if (ret)
2459         goto out_free;
2460 
2461     if (repeat_cmd && (t->blocks + 1) << 9 > t->max_tfr)
2462         pr_info("%s: %d commands completed during transfer of %u blocks\n",
2463             mmc_hostname(test->card->host), count, t->blocks);
2464 
2465     if (cmd_ret)
2466         ret = cmd_ret;
2467 out_free:
2468     kfree(rq);
2469 
2470     return ret;
2471 }
2472 
2473 static int __mmc_test_cmds_during_tfr(struct mmc_test_card *test,
2474                       unsigned long sz, int use_sbc, int write,
2475                       int use_areq)
2476 {
2477     struct mmc_test_area *t = &test->area;
2478     int ret;
2479 
2480     if (!(test->card->host->caps & MMC_CAP_CMD_DURING_TFR))
2481         return RESULT_UNSUP_HOST;
2482 
2483     ret = mmc_test_area_map(test, sz, 0, 0, use_areq);
2484     if (ret)
2485         return ret;
2486 
2487     ret = mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 0, write,
2488                     use_areq);
2489     if (ret)
2490         return ret;
2491 
2492     return mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 1, write,
2493                      use_areq);
2494 }
2495 
2496 static int mmc_test_cmds_during_tfr(struct mmc_test_card *test, int use_sbc,
2497                     int write, int use_areq)
2498 {
2499     struct mmc_test_area *t = &test->area;
2500     unsigned long sz;
2501     int ret;
2502 
2503     for (sz = 512; sz <= t->max_tfr; sz += 512) {
2504         ret = __mmc_test_cmds_during_tfr(test, sz, use_sbc, write,
2505                          use_areq);
2506         if (ret)
2507             return ret;
2508     }
2509     return 0;
2510 }
2511 
2512 /*
2513  * Commands during read - no Set Block Count (CMD23).
2514  */
2515 static int mmc_test_cmds_during_read(struct mmc_test_card *test)
2516 {
2517     return mmc_test_cmds_during_tfr(test, 0, 0, 0);
2518 }
2519 
2520 /*
2521  * Commands during write - no Set Block Count (CMD23).
2522  */
2523 static int mmc_test_cmds_during_write(struct mmc_test_card *test)
2524 {
2525     return mmc_test_cmds_during_tfr(test, 0, 1, 0);
2526 }
2527 
2528 /*
2529  * Commands during read - use Set Block Count (CMD23).
2530  */
2531 static int mmc_test_cmds_during_read_cmd23(struct mmc_test_card *test)
2532 {
2533     return mmc_test_cmds_during_tfr(test, 1, 0, 0);
2534 }
2535 
2536 /*
2537  * Commands during write - use Set Block Count (CMD23).
2538  */
2539 static int mmc_test_cmds_during_write_cmd23(struct mmc_test_card *test)
2540 {
2541     return mmc_test_cmds_during_tfr(test, 1, 1, 0);
2542 }
2543 
2544 /*
2545  * Commands during non-blocking read - use Set Block Count (CMD23).
2546  */
2547 static int mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card *test)
2548 {
2549     return mmc_test_cmds_during_tfr(test, 1, 0, 1);
2550 }
2551 
2552 /*
2553  * Commands during non-blocking write - use Set Block Count (CMD23).
2554  */
2555 static int mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card *test)
2556 {
2557     return mmc_test_cmds_during_tfr(test, 1, 1, 1);
2558 }
2559 
2560 static const struct mmc_test_case mmc_test_cases[] = {
2561     {
2562         .name = "Basic write (no data verification)",
2563         .run = mmc_test_basic_write,
2564     },
2565 
2566     {
2567         .name = "Basic read (no data verification)",
2568         .run = mmc_test_basic_read,
2569     },
2570 
2571     {
2572         .name = "Basic write (with data verification)",
2573         .prepare = mmc_test_prepare_write,
2574         .run = mmc_test_verify_write,
2575         .cleanup = mmc_test_cleanup,
2576     },
2577 
2578     {
2579         .name = "Basic read (with data verification)",
2580         .prepare = mmc_test_prepare_read,
2581         .run = mmc_test_verify_read,
2582         .cleanup = mmc_test_cleanup,
2583     },
2584 
2585     {
2586         .name = "Multi-block write",
2587         .prepare = mmc_test_prepare_write,
2588         .run = mmc_test_multi_write,
2589         .cleanup = mmc_test_cleanup,
2590     },
2591 
2592     {
2593         .name = "Multi-block read",
2594         .prepare = mmc_test_prepare_read,
2595         .run = mmc_test_multi_read,
2596         .cleanup = mmc_test_cleanup,
2597     },
2598 
2599     {
2600         .name = "Power of two block writes",
2601         .prepare = mmc_test_prepare_write,
2602         .run = mmc_test_pow2_write,
2603         .cleanup = mmc_test_cleanup,
2604     },
2605 
2606     {
2607         .name = "Power of two block reads",
2608         .prepare = mmc_test_prepare_read,
2609         .run = mmc_test_pow2_read,
2610         .cleanup = mmc_test_cleanup,
2611     },
2612 
2613     {
2614         .name = "Weird sized block writes",
2615         .prepare = mmc_test_prepare_write,
2616         .run = mmc_test_weird_write,
2617         .cleanup = mmc_test_cleanup,
2618     },
2619 
2620     {
2621         .name = "Weird sized block reads",
2622         .prepare = mmc_test_prepare_read,
2623         .run = mmc_test_weird_read,
2624         .cleanup = mmc_test_cleanup,
2625     },
2626 
2627     {
2628         .name = "Badly aligned write",
2629         .prepare = mmc_test_prepare_write,
2630         .run = mmc_test_align_write,
2631         .cleanup = mmc_test_cleanup,
2632     },
2633 
2634     {
2635         .name = "Badly aligned read",
2636         .prepare = mmc_test_prepare_read,
2637         .run = mmc_test_align_read,
2638         .cleanup = mmc_test_cleanup,
2639     },
2640 
2641     {
2642         .name = "Badly aligned multi-block write",
2643         .prepare = mmc_test_prepare_write,
2644         .run = mmc_test_align_multi_write,
2645         .cleanup = mmc_test_cleanup,
2646     },
2647 
2648     {
2649         .name = "Badly aligned multi-block read",
2650         .prepare = mmc_test_prepare_read,
2651         .run = mmc_test_align_multi_read,
2652         .cleanup = mmc_test_cleanup,
2653     },
2654 
2655     {
2656         .name = "Proper xfer_size at write (start failure)",
2657         .run = mmc_test_xfersize_write,
2658     },
2659 
2660     {
2661         .name = "Proper xfer_size at read (start failure)",
2662         .run = mmc_test_xfersize_read,
2663     },
2664 
2665     {
2666         .name = "Proper xfer_size at write (midway failure)",
2667         .run = mmc_test_multi_xfersize_write,
2668     },
2669 
2670     {
2671         .name = "Proper xfer_size at read (midway failure)",
2672         .run = mmc_test_multi_xfersize_read,
2673     },
2674 
2675 #ifdef CONFIG_HIGHMEM
2676 
2677     {
2678         .name = "Highmem write",
2679         .prepare = mmc_test_prepare_write,
2680         .run = mmc_test_write_high,
2681         .cleanup = mmc_test_cleanup,
2682     },
2683 
2684     {
2685         .name = "Highmem read",
2686         .prepare = mmc_test_prepare_read,
2687         .run = mmc_test_read_high,
2688         .cleanup = mmc_test_cleanup,
2689     },
2690 
2691     {
2692         .name = "Multi-block highmem write",
2693         .prepare = mmc_test_prepare_write,
2694         .run = mmc_test_multi_write_high,
2695         .cleanup = mmc_test_cleanup,
2696     },
2697 
2698     {
2699         .name = "Multi-block highmem read",
2700         .prepare = mmc_test_prepare_read,
2701         .run = mmc_test_multi_read_high,
2702         .cleanup = mmc_test_cleanup,
2703     },
2704 
2705 #else
2706 
2707     {
2708         .name = "Highmem write",
2709         .run = mmc_test_no_highmem,
2710     },
2711 
2712     {
2713         .name = "Highmem read",
2714         .run = mmc_test_no_highmem,
2715     },
2716 
2717     {
2718         .name = "Multi-block highmem write",
2719         .run = mmc_test_no_highmem,
2720     },
2721 
2722     {
2723         .name = "Multi-block highmem read",
2724         .run = mmc_test_no_highmem,
2725     },
2726 
2727 #endif /* CONFIG_HIGHMEM */
2728 
2729     {
2730         .name = "Best-case read performance",
2731         .prepare = mmc_test_area_prepare_fill,
2732         .run = mmc_test_best_read_performance,
2733         .cleanup = mmc_test_area_cleanup,
2734     },
2735 
2736     {
2737         .name = "Best-case write performance",
2738         .prepare = mmc_test_area_prepare_erase,
2739         .run = mmc_test_best_write_performance,
2740         .cleanup = mmc_test_area_cleanup,
2741     },
2742 
2743     {
2744         .name = "Best-case read performance into scattered pages",
2745         .prepare = mmc_test_area_prepare_fill,
2746         .run = mmc_test_best_read_perf_max_scatter,
2747         .cleanup = mmc_test_area_cleanup,
2748     },
2749 
2750     {
2751         .name = "Best-case write performance from scattered pages",
2752         .prepare = mmc_test_area_prepare_erase,
2753         .run = mmc_test_best_write_perf_max_scatter,
2754         .cleanup = mmc_test_area_cleanup,
2755     },
2756 
2757     {
2758         .name = "Single read performance by transfer size",
2759         .prepare = mmc_test_area_prepare_fill,
2760         .run = mmc_test_profile_read_perf,
2761         .cleanup = mmc_test_area_cleanup,
2762     },
2763 
2764     {
2765         .name = "Single write performance by transfer size",
2766         .prepare = mmc_test_area_prepare,
2767         .run = mmc_test_profile_write_perf,
2768         .cleanup = mmc_test_area_cleanup,
2769     },
2770 
2771     {
2772         .name = "Single trim performance by transfer size",
2773         .prepare = mmc_test_area_prepare_fill,
2774         .run = mmc_test_profile_trim_perf,
2775         .cleanup = mmc_test_area_cleanup,
2776     },
2777 
2778     {
2779         .name = "Consecutive read performance by transfer size",
2780         .prepare = mmc_test_area_prepare_fill,
2781         .run = mmc_test_profile_seq_read_perf,
2782         .cleanup = mmc_test_area_cleanup,
2783     },
2784 
2785     {
2786         .name = "Consecutive write performance by transfer size",
2787         .prepare = mmc_test_area_prepare,
2788         .run = mmc_test_profile_seq_write_perf,
2789         .cleanup = mmc_test_area_cleanup,
2790     },
2791 
2792     {
2793         .name = "Consecutive trim performance by transfer size",
2794         .prepare = mmc_test_area_prepare,
2795         .run = mmc_test_profile_seq_trim_perf,
2796         .cleanup = mmc_test_area_cleanup,
2797     },
2798 
2799     {
2800         .name = "Random read performance by transfer size",
2801         .prepare = mmc_test_area_prepare,
2802         .run = mmc_test_random_read_perf,
2803         .cleanup = mmc_test_area_cleanup,
2804     },
2805 
2806     {
2807         .name = "Random write performance by transfer size",
2808         .prepare = mmc_test_area_prepare,
2809         .run = mmc_test_random_write_perf,
2810         .cleanup = mmc_test_area_cleanup,
2811     },
2812 
2813     {
2814         .name = "Large sequential read into scattered pages",
2815         .prepare = mmc_test_area_prepare,
2816         .run = mmc_test_large_seq_read_perf,
2817         .cleanup = mmc_test_area_cleanup,
2818     },
2819 
2820     {
2821         .name = "Large sequential write from scattered pages",
2822         .prepare = mmc_test_area_prepare,
2823         .run = mmc_test_large_seq_write_perf,
2824         .cleanup = mmc_test_area_cleanup,
2825     },
2826 
2827     {
2828         .name = "Write performance with blocking req 4k to 4MB",
2829         .prepare = mmc_test_area_prepare,
2830         .run = mmc_test_profile_mult_write_blocking_perf,
2831         .cleanup = mmc_test_area_cleanup,
2832     },
2833 
2834     {
2835         .name = "Write performance with non-blocking req 4k to 4MB",
2836         .prepare = mmc_test_area_prepare,
2837         .run = mmc_test_profile_mult_write_nonblock_perf,
2838         .cleanup = mmc_test_area_cleanup,
2839     },
2840 
2841     {
2842         .name = "Read performance with blocking req 4k to 4MB",
2843         .prepare = mmc_test_area_prepare,
2844         .run = mmc_test_profile_mult_read_blocking_perf,
2845         .cleanup = mmc_test_area_cleanup,
2846     },
2847 
2848     {
2849         .name = "Read performance with non-blocking req 4k to 4MB",
2850         .prepare = mmc_test_area_prepare,
2851         .run = mmc_test_profile_mult_read_nonblock_perf,
2852         .cleanup = mmc_test_area_cleanup,
2853     },
2854 
2855     {
2856         .name = "Write performance blocking req 1 to 512 sg elems",
2857         .prepare = mmc_test_area_prepare,
2858         .run = mmc_test_profile_sglen_wr_blocking_perf,
2859         .cleanup = mmc_test_area_cleanup,
2860     },
2861 
2862     {
2863         .name = "Write performance non-blocking req 1 to 512 sg elems",
2864         .prepare = mmc_test_area_prepare,
2865         .run = mmc_test_profile_sglen_wr_nonblock_perf,
2866         .cleanup = mmc_test_area_cleanup,
2867     },
2868 
2869     {
2870         .name = "Read performance blocking req 1 to 512 sg elems",
2871         .prepare = mmc_test_area_prepare,
2872         .run = mmc_test_profile_sglen_r_blocking_perf,
2873         .cleanup = mmc_test_area_cleanup,
2874     },
2875 
2876     {
2877         .name = "Read performance non-blocking req 1 to 512 sg elems",
2878         .prepare = mmc_test_area_prepare,
2879         .run = mmc_test_profile_sglen_r_nonblock_perf,
2880         .cleanup = mmc_test_area_cleanup,
2881     },
2882 
2883     {
2884         .name = "Reset test",
2885         .run = mmc_test_reset,
2886     },
2887 
2888     {
2889         .name = "Commands during read - no Set Block Count (CMD23)",
2890         .prepare = mmc_test_area_prepare,
2891         .run = mmc_test_cmds_during_read,
2892         .cleanup = mmc_test_area_cleanup,
2893     },
2894 
2895     {
2896         .name = "Commands during write - no Set Block Count (CMD23)",
2897         .prepare = mmc_test_area_prepare,
2898         .run = mmc_test_cmds_during_write,
2899         .cleanup = mmc_test_area_cleanup,
2900     },
2901 
2902     {
2903         .name = "Commands during read - use Set Block Count (CMD23)",
2904         .prepare = mmc_test_area_prepare,
2905         .run = mmc_test_cmds_during_read_cmd23,
2906         .cleanup = mmc_test_area_cleanup,
2907     },
2908 
2909     {
2910         .name = "Commands during write - use Set Block Count (CMD23)",
2911         .prepare = mmc_test_area_prepare,
2912         .run = mmc_test_cmds_during_write_cmd23,
2913         .cleanup = mmc_test_area_cleanup,
2914     },
2915 
2916     {
2917         .name = "Commands during non-blocking read - use Set Block Count (CMD23)",
2918         .prepare = mmc_test_area_prepare,
2919         .run = mmc_test_cmds_during_read_cmd23_nonblock,
2920         .cleanup = mmc_test_area_cleanup,
2921     },
2922 
2923     {
2924         .name = "Commands during non-blocking write - use Set Block Count (CMD23)",
2925         .prepare = mmc_test_area_prepare,
2926         .run = mmc_test_cmds_during_write_cmd23_nonblock,
2927         .cleanup = mmc_test_area_cleanup,
2928     },
2929 };
2930 
2931 static DEFINE_MUTEX(mmc_test_lock);
2932 
2933 static LIST_HEAD(mmc_test_result);
2934 
2935 static void mmc_test_run(struct mmc_test_card *test, int testcase)
2936 {
2937     int i, ret;
2938 
2939     pr_info("%s: Starting tests of card %s...\n",
2940         mmc_hostname(test->card->host), mmc_card_id(test->card));
2941 
2942     mmc_claim_host(test->card->host);
2943 
2944     for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++) {
2945         struct mmc_test_general_result *gr;
2946 
2947         if (testcase && ((i + 1) != testcase))
2948             continue;
2949 
2950         pr_info("%s: Test case %d. %s...\n",
2951             mmc_hostname(test->card->host), i + 1,
2952             mmc_test_cases[i].name);
2953 
2954         if (mmc_test_cases[i].prepare) {
2955             ret = mmc_test_cases[i].prepare(test);
2956             if (ret) {
2957                 pr_info("%s: Result: Prepare stage failed! (%d)\n",
2958                     mmc_hostname(test->card->host),
2959                     ret);
2960                 continue;
2961             }
2962         }
2963 
2964         gr = kzalloc(sizeof(*gr), GFP_KERNEL);
2965         if (gr) {
2966             INIT_LIST_HEAD(&gr->tr_lst);
2967 
2968             /* Assign data what we know already */
2969             gr->card = test->card;
2970             gr->testcase = i;
2971 
2972             /* Append container to global one */
2973             list_add_tail(&gr->link, &mmc_test_result);
2974 
2975             /*
2976              * Save the pointer to created container in our private
2977              * structure.
2978              */
2979             test->gr = gr;
2980         }
2981 
2982         ret = mmc_test_cases[i].run(test);
2983         switch (ret) {
2984         case RESULT_OK:
2985             pr_info("%s: Result: OK\n",
2986                 mmc_hostname(test->card->host));
2987             break;
2988         case RESULT_FAIL:
2989             pr_info("%s: Result: FAILED\n",
2990                 mmc_hostname(test->card->host));
2991             break;
2992         case RESULT_UNSUP_HOST:
2993             pr_info("%s: Result: UNSUPPORTED (by host)\n",
2994                 mmc_hostname(test->card->host));
2995             break;
2996         case RESULT_UNSUP_CARD:
2997             pr_info("%s: Result: UNSUPPORTED (by card)\n",
2998                 mmc_hostname(test->card->host));
2999             break;
3000         default:
3001             pr_info("%s: Result: ERROR (%d)\n",
3002                 mmc_hostname(test->card->host), ret);
3003         }
3004 
3005         /* Save the result */
3006         if (gr)
3007             gr->result = ret;
3008 
3009         if (mmc_test_cases[i].cleanup) {
3010             ret = mmc_test_cases[i].cleanup(test);
3011             if (ret) {
3012                 pr_info("%s: Warning: Cleanup stage failed! (%d)\n",
3013                     mmc_hostname(test->card->host),
3014                     ret);
3015             }
3016         }
3017     }
3018 
3019     mmc_release_host(test->card->host);
3020 
3021     pr_info("%s: Tests completed.\n",
3022         mmc_hostname(test->card->host));
3023 }
3024 
3025 static void mmc_test_free_result(struct mmc_card *card)
3026 {
3027     struct mmc_test_general_result *gr, *grs;
3028 
3029     mutex_lock(&mmc_test_lock);
3030 
3031     list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
3032         struct mmc_test_transfer_result *tr, *trs;
3033 
3034         if (card && gr->card != card)
3035             continue;
3036 
3037         list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
3038             list_del(&tr->link);
3039             kfree(tr);
3040         }
3041 
3042         list_del(&gr->link);
3043         kfree(gr);
3044     }
3045 
3046     mutex_unlock(&mmc_test_lock);
3047 }
3048 
3049 static LIST_HEAD(mmc_test_file_test);
3050 
3051 static int mtf_test_show(struct seq_file *sf, void *data)
3052 {
3053     struct mmc_card *card = (struct mmc_card *)sf->private;
3054     struct mmc_test_general_result *gr;
3055 
3056     mutex_lock(&mmc_test_lock);
3057 
3058     list_for_each_entry(gr, &mmc_test_result, link) {
3059         struct mmc_test_transfer_result *tr;
3060 
3061         if (gr->card != card)
3062             continue;
3063 
3064         seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
3065 
3066         list_for_each_entry(tr, &gr->tr_lst, link) {
3067             seq_printf(sf, "%u %d %llu.%09u %u %u.%02u\n",
3068                 tr->count, tr->sectors,
3069                 (u64)tr->ts.tv_sec, (u32)tr->ts.tv_nsec,
3070                 tr->rate, tr->iops / 100, tr->iops % 100);
3071         }
3072     }
3073 
3074     mutex_unlock(&mmc_test_lock);
3075 
3076     return 0;
3077 }
3078 
3079 static int mtf_test_open(struct inode *inode, struct file *file)
3080 {
3081     return single_open(file, mtf_test_show, inode->i_private);
3082 }
3083 
3084 static ssize_t mtf_test_write(struct file *file, const char __user *buf,
3085     size_t count, loff_t *pos)
3086 {
3087     struct seq_file *sf = (struct seq_file *)file->private_data;
3088     struct mmc_card *card = (struct mmc_card *)sf->private;
3089     struct mmc_test_card *test;
3090     long testcase;
3091     int ret;
3092 
3093     ret = kstrtol_from_user(buf, count, 10, &testcase);
3094     if (ret)
3095         return ret;
3096 
3097     test = kzalloc(sizeof(*test), GFP_KERNEL);
3098     if (!test)
3099         return -ENOMEM;
3100 
3101     /*
3102      * Remove all test cases associated with given card. Thus we have only
3103      * actual data of the last run.
3104      */
3105     mmc_test_free_result(card);
3106 
3107     test->card = card;
3108 
3109     test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
3110 #ifdef CONFIG_HIGHMEM
3111     test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
3112 #endif
3113 
3114 #ifdef CONFIG_HIGHMEM
3115     if (test->buffer && test->highmem) {
3116 #else
3117     if (test->buffer) {
3118 #endif
3119         mutex_lock(&mmc_test_lock);
3120         mmc_test_run(test, testcase);
3121         mutex_unlock(&mmc_test_lock);
3122     }
3123 
3124 #ifdef CONFIG_HIGHMEM
3125     __free_pages(test->highmem, BUFFER_ORDER);
3126 #endif
3127     kfree(test->buffer);
3128     kfree(test);
3129 
3130     return count;
3131 }
3132 
3133 static const struct file_operations mmc_test_fops_test = {
3134     .open       = mtf_test_open,
3135     .read       = seq_read,
3136     .write      = mtf_test_write,
3137     .llseek     = seq_lseek,
3138     .release    = single_release,
3139 };
3140 
3141 static int mtf_testlist_show(struct seq_file *sf, void *data)
3142 {
3143     int i;
3144 
3145     mutex_lock(&mmc_test_lock);
3146 
3147     seq_puts(sf, "0:\tRun all tests\n");
3148     for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
3149         seq_printf(sf, "%d:\t%s\n", i + 1, mmc_test_cases[i].name);
3150 
3151     mutex_unlock(&mmc_test_lock);
3152 
3153     return 0;
3154 }
3155 
3156 DEFINE_SHOW_ATTRIBUTE(mtf_testlist);
3157 
3158 static void mmc_test_free_dbgfs_file(struct mmc_card *card)
3159 {
3160     struct mmc_test_dbgfs_file *df, *dfs;
3161 
3162     mutex_lock(&mmc_test_lock);
3163 
3164     list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
3165         if (card && df->card != card)
3166             continue;
3167         debugfs_remove(df->file);
3168         list_del(&df->link);
3169         kfree(df);
3170     }
3171 
3172     mutex_unlock(&mmc_test_lock);
3173 }
3174 
3175 static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
3176     const char *name, umode_t mode, const struct file_operations *fops)
3177 {
3178     struct dentry *file = NULL;
3179     struct mmc_test_dbgfs_file *df;
3180 
3181     if (card->debugfs_root)
3182         debugfs_create_file(name, mode, card->debugfs_root, card, fops);
3183 
3184     df = kmalloc(sizeof(*df), GFP_KERNEL);
3185     if (!df) {
3186         debugfs_remove(file);
3187         return -ENOMEM;
3188     }
3189 
3190     df->card = card;
3191     df->file = file;
3192 
3193     list_add(&df->link, &mmc_test_file_test);
3194     return 0;
3195 }
3196 
3197 static int mmc_test_register_dbgfs_file(struct mmc_card *card)
3198 {
3199     int ret;
3200 
3201     mutex_lock(&mmc_test_lock);
3202 
3203     ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
3204         &mmc_test_fops_test);
3205     if (ret)
3206         goto err;
3207 
3208     ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
3209         &mtf_testlist_fops);
3210     if (ret)
3211         goto err;
3212 
3213 err:
3214     mutex_unlock(&mmc_test_lock);
3215 
3216     return ret;
3217 }
3218 
3219 static int mmc_test_probe(struct mmc_card *card)
3220 {
3221     int ret;
3222 
3223     if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3224         return -ENODEV;
3225 
3226     ret = mmc_test_register_dbgfs_file(card);
3227     if (ret)
3228         return ret;
3229 
3230     if (card->ext_csd.cmdq_en) {
3231         mmc_claim_host(card->host);
3232         ret = mmc_cmdq_disable(card);
3233         mmc_release_host(card->host);
3234         if (ret)
3235             return ret;
3236     }
3237 
3238     dev_info(&card->dev, "Card claimed for testing.\n");
3239 
3240     return 0;
3241 }
3242 
3243 static void mmc_test_remove(struct mmc_card *card)
3244 {
3245     if (card->reenable_cmdq) {
3246         mmc_claim_host(card->host);
3247         mmc_cmdq_enable(card);
3248         mmc_release_host(card->host);
3249     }
3250     mmc_test_free_result(card);
3251     mmc_test_free_dbgfs_file(card);
3252 }
3253 
3254 static struct mmc_driver mmc_driver = {
3255     .drv        = {
3256         .name   = "mmc_test",
3257     },
3258     .probe      = mmc_test_probe,
3259     .remove     = mmc_test_remove,
3260 };
3261 
3262 static int __init mmc_test_init(void)
3263 {
3264     return mmc_register_driver(&mmc_driver);
3265 }
3266 
3267 static void __exit mmc_test_exit(void)
3268 {
3269     /* Clear stalled data if card is still plugged */
3270     mmc_test_free_result(NULL);
3271     mmc_test_free_dbgfs_file(NULL);
3272 
3273     mmc_unregister_driver(&mmc_driver);
3274 }
3275 
3276 module_init(mmc_test_init);
3277 module_exit(mmc_test_exit);
3278 
3279 MODULE_LICENSE("GPL");
3280 MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3281 MODULE_AUTHOR("Pierre Ossman");