Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  *  linux/drivers/mmc/core/core.c
0004  *
0005  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
0006  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
0007  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
0008  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
0009  */
0010 #include <linux/module.h>
0011 #include <linux/init.h>
0012 #include <linux/interrupt.h>
0013 #include <linux/completion.h>
0014 #include <linux/device.h>
0015 #include <linux/delay.h>
0016 #include <linux/pagemap.h>
0017 #include <linux/err.h>
0018 #include <linux/leds.h>
0019 #include <linux/scatterlist.h>
0020 #include <linux/log2.h>
0021 #include <linux/pm_runtime.h>
0022 #include <linux/pm_wakeup.h>
0023 #include <linux/suspend.h>
0024 #include <linux/fault-inject.h>
0025 #include <linux/random.h>
0026 #include <linux/slab.h>
0027 #include <linux/of.h>
0028 
0029 #include <linux/mmc/card.h>
0030 #include <linux/mmc/host.h>
0031 #include <linux/mmc/mmc.h>
0032 #include <linux/mmc/sd.h>
0033 #include <linux/mmc/slot-gpio.h>
0034 
0035 #define CREATE_TRACE_POINTS
0036 #include <trace/events/mmc.h>
0037 
0038 #include "core.h"
0039 #include "card.h"
0040 #include "crypto.h"
0041 #include "bus.h"
0042 #include "host.h"
0043 #include "sdio_bus.h"
0044 #include "pwrseq.h"
0045 
0046 #include "mmc_ops.h"
0047 #include "sd_ops.h"
0048 #include "sdio_ops.h"
0049 
0050 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
0051 #define MMC_ERASE_TIMEOUT_MS    (60 * 1000) /* 60 s */
0052 #define SD_DISCARD_TIMEOUT_MS   (250)
0053 
0054 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
0055 
0056 /*
0057  * Enabling software CRCs on the data blocks can be a significant (30%)
0058  * performance cost, and for other reasons may not always be desired.
0059  * So we allow it it to be disabled.
0060  */
0061 bool use_spi_crc = 1;
0062 module_param(use_spi_crc, bool, 0);
0063 
0064 static int mmc_schedule_delayed_work(struct delayed_work *work,
0065                      unsigned long delay)
0066 {
0067     /*
0068      * We use the system_freezable_wq, because of two reasons.
0069      * First, it allows several works (not the same work item) to be
0070      * executed simultaneously. Second, the queue becomes frozen when
0071      * userspace becomes frozen during system PM.
0072      */
0073     return queue_delayed_work(system_freezable_wq, work, delay);
0074 }
0075 
0076 #ifdef CONFIG_FAIL_MMC_REQUEST
0077 
0078 /*
0079  * Internal function. Inject random data errors.
0080  * If mmc_data is NULL no errors are injected.
0081  */
0082 static void mmc_should_fail_request(struct mmc_host *host,
0083                     struct mmc_request *mrq)
0084 {
0085     struct mmc_command *cmd = mrq->cmd;
0086     struct mmc_data *data = mrq->data;
0087     static const int data_errors[] = {
0088         -ETIMEDOUT,
0089         -EILSEQ,
0090         -EIO,
0091     };
0092 
0093     if (!data)
0094         return;
0095 
0096     if ((cmd && cmd->error) || data->error ||
0097         !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
0098         return;
0099 
0100     data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
0101     data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
0102 }
0103 
0104 #else /* CONFIG_FAIL_MMC_REQUEST */
0105 
0106 static inline void mmc_should_fail_request(struct mmc_host *host,
0107                        struct mmc_request *mrq)
0108 {
0109 }
0110 
0111 #endif /* CONFIG_FAIL_MMC_REQUEST */
0112 
0113 static inline void mmc_complete_cmd(struct mmc_request *mrq)
0114 {
0115     if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
0116         complete_all(&mrq->cmd_completion);
0117 }
0118 
0119 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
0120 {
0121     if (!mrq->cap_cmd_during_tfr)
0122         return;
0123 
0124     mmc_complete_cmd(mrq);
0125 
0126     pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
0127          mmc_hostname(host), mrq->cmd->opcode);
0128 }
0129 EXPORT_SYMBOL(mmc_command_done);
0130 
0131 /**
0132  *  mmc_request_done - finish processing an MMC request
0133  *  @host: MMC host which completed request
0134  *  @mrq: MMC request which request
0135  *
0136  *  MMC drivers should call this function when they have completed
0137  *  their processing of a request.
0138  */
0139 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
0140 {
0141     struct mmc_command *cmd = mrq->cmd;
0142     int err = cmd->error;
0143 
0144     /* Flag re-tuning needed on CRC errors */
0145     if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
0146         cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
0147         !host->retune_crc_disable &&
0148         (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
0149         (mrq->data && mrq->data->error == -EILSEQ) ||
0150         (mrq->stop && mrq->stop->error == -EILSEQ)))
0151         mmc_retune_needed(host);
0152 
0153     if (err && cmd->retries && mmc_host_is_spi(host)) {
0154         if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
0155             cmd->retries = 0;
0156     }
0157 
0158     if (host->ongoing_mrq == mrq)
0159         host->ongoing_mrq = NULL;
0160 
0161     mmc_complete_cmd(mrq);
0162 
0163     trace_mmc_request_done(host, mrq);
0164 
0165     /*
0166      * We list various conditions for the command to be considered
0167      * properly done:
0168      *
0169      * - There was no error, OK fine then
0170      * - We are not doing some kind of retry
0171      * - The card was removed (...so just complete everything no matter
0172      *   if there are errors or retries)
0173      */
0174     if (!err || !cmd->retries || mmc_card_removed(host->card)) {
0175         mmc_should_fail_request(host, mrq);
0176 
0177         if (!host->ongoing_mrq)
0178             led_trigger_event(host->led, LED_OFF);
0179 
0180         if (mrq->sbc) {
0181             pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
0182                 mmc_hostname(host), mrq->sbc->opcode,
0183                 mrq->sbc->error,
0184                 mrq->sbc->resp[0], mrq->sbc->resp[1],
0185                 mrq->sbc->resp[2], mrq->sbc->resp[3]);
0186         }
0187 
0188         pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
0189             mmc_hostname(host), cmd->opcode, err,
0190             cmd->resp[0], cmd->resp[1],
0191             cmd->resp[2], cmd->resp[3]);
0192 
0193         if (mrq->data) {
0194             pr_debug("%s:     %d bytes transferred: %d\n",
0195                 mmc_hostname(host),
0196                 mrq->data->bytes_xfered, mrq->data->error);
0197         }
0198 
0199         if (mrq->stop) {
0200             pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
0201                 mmc_hostname(host), mrq->stop->opcode,
0202                 mrq->stop->error,
0203                 mrq->stop->resp[0], mrq->stop->resp[1],
0204                 mrq->stop->resp[2], mrq->stop->resp[3]);
0205         }
0206     }
0207     /*
0208      * Request starter must handle retries - see
0209      * mmc_wait_for_req_done().
0210      */
0211     if (mrq->done)
0212         mrq->done(mrq);
0213 }
0214 
0215 EXPORT_SYMBOL(mmc_request_done);
0216 
0217 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
0218 {
0219     int err;
0220 
0221     /* Assumes host controller has been runtime resumed by mmc_claim_host */
0222     err = mmc_retune(host);
0223     if (err) {
0224         mrq->cmd->error = err;
0225         mmc_request_done(host, mrq);
0226         return;
0227     }
0228 
0229     /*
0230      * For sdio rw commands we must wait for card busy otherwise some
0231      * sdio devices won't work properly.
0232      * And bypass I/O abort, reset and bus suspend operations.
0233      */
0234     if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
0235         host->ops->card_busy) {
0236         int tries = 500; /* Wait aprox 500ms at maximum */
0237 
0238         while (host->ops->card_busy(host) && --tries)
0239             mmc_delay(1);
0240 
0241         if (tries == 0) {
0242             mrq->cmd->error = -EBUSY;
0243             mmc_request_done(host, mrq);
0244             return;
0245         }
0246     }
0247 
0248     if (mrq->cap_cmd_during_tfr) {
0249         host->ongoing_mrq = mrq;
0250         /*
0251          * Retry path could come through here without having waiting on
0252          * cmd_completion, so ensure it is reinitialised.
0253          */
0254         reinit_completion(&mrq->cmd_completion);
0255     }
0256 
0257     trace_mmc_request_start(host, mrq);
0258 
0259     if (host->cqe_on)
0260         host->cqe_ops->cqe_off(host);
0261 
0262     host->ops->request(host, mrq);
0263 }
0264 
0265 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
0266                  bool cqe)
0267 {
0268     if (mrq->sbc) {
0269         pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
0270              mmc_hostname(host), mrq->sbc->opcode,
0271              mrq->sbc->arg, mrq->sbc->flags);
0272     }
0273 
0274     if (mrq->cmd) {
0275         pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
0276              mmc_hostname(host), cqe ? "CQE direct " : "",
0277              mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
0278     } else if (cqe) {
0279         pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
0280              mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
0281     }
0282 
0283     if (mrq->data) {
0284         pr_debug("%s:     blksz %d blocks %d flags %08x "
0285             "tsac %d ms nsac %d\n",
0286             mmc_hostname(host), mrq->data->blksz,
0287             mrq->data->blocks, mrq->data->flags,
0288             mrq->data->timeout_ns / 1000000,
0289             mrq->data->timeout_clks);
0290     }
0291 
0292     if (mrq->stop) {
0293         pr_debug("%s:     CMD%u arg %08x flags %08x\n",
0294              mmc_hostname(host), mrq->stop->opcode,
0295              mrq->stop->arg, mrq->stop->flags);
0296     }
0297 }
0298 
0299 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
0300 {
0301     unsigned int i, sz = 0;
0302     struct scatterlist *sg;
0303 
0304     if (mrq->cmd) {
0305         mrq->cmd->error = 0;
0306         mrq->cmd->mrq = mrq;
0307         mrq->cmd->data = mrq->data;
0308     }
0309     if (mrq->sbc) {
0310         mrq->sbc->error = 0;
0311         mrq->sbc->mrq = mrq;
0312     }
0313     if (mrq->data) {
0314         if (mrq->data->blksz > host->max_blk_size ||
0315             mrq->data->blocks > host->max_blk_count ||
0316             mrq->data->blocks * mrq->data->blksz > host->max_req_size)
0317             return -EINVAL;
0318 
0319         for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
0320             sz += sg->length;
0321         if (sz != mrq->data->blocks * mrq->data->blksz)
0322             return -EINVAL;
0323 
0324         mrq->data->error = 0;
0325         mrq->data->mrq = mrq;
0326         if (mrq->stop) {
0327             mrq->data->stop = mrq->stop;
0328             mrq->stop->error = 0;
0329             mrq->stop->mrq = mrq;
0330         }
0331     }
0332 
0333     return 0;
0334 }
0335 
0336 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
0337 {
0338     int err;
0339 
0340     init_completion(&mrq->cmd_completion);
0341 
0342     mmc_retune_hold(host);
0343 
0344     if (mmc_card_removed(host->card))
0345         return -ENOMEDIUM;
0346 
0347     mmc_mrq_pr_debug(host, mrq, false);
0348 
0349     WARN_ON(!host->claimed);
0350 
0351     err = mmc_mrq_prep(host, mrq);
0352     if (err)
0353         return err;
0354 
0355     led_trigger_event(host->led, LED_FULL);
0356     __mmc_start_request(host, mrq);
0357 
0358     return 0;
0359 }
0360 EXPORT_SYMBOL(mmc_start_request);
0361 
0362 static void mmc_wait_done(struct mmc_request *mrq)
0363 {
0364     complete(&mrq->completion);
0365 }
0366 
0367 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
0368 {
0369     struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
0370 
0371     /*
0372      * If there is an ongoing transfer, wait for the command line to become
0373      * available.
0374      */
0375     if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
0376         wait_for_completion(&ongoing_mrq->cmd_completion);
0377 }
0378 
0379 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
0380 {
0381     int err;
0382 
0383     mmc_wait_ongoing_tfr_cmd(host);
0384 
0385     init_completion(&mrq->completion);
0386     mrq->done = mmc_wait_done;
0387 
0388     err = mmc_start_request(host, mrq);
0389     if (err) {
0390         mrq->cmd->error = err;
0391         mmc_complete_cmd(mrq);
0392         complete(&mrq->completion);
0393     }
0394 
0395     return err;
0396 }
0397 
0398 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
0399 {
0400     struct mmc_command *cmd;
0401 
0402     while (1) {
0403         wait_for_completion(&mrq->completion);
0404 
0405         cmd = mrq->cmd;
0406 
0407         if (!cmd->error || !cmd->retries ||
0408             mmc_card_removed(host->card))
0409             break;
0410 
0411         mmc_retune_recheck(host);
0412 
0413         pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
0414              mmc_hostname(host), cmd->opcode, cmd->error);
0415         cmd->retries--;
0416         cmd->error = 0;
0417         __mmc_start_request(host, mrq);
0418     }
0419 
0420     mmc_retune_release(host);
0421 }
0422 EXPORT_SYMBOL(mmc_wait_for_req_done);
0423 
0424 /*
0425  * mmc_cqe_start_req - Start a CQE request.
0426  * @host: MMC host to start the request
0427  * @mrq: request to start
0428  *
0429  * Start the request, re-tuning if needed and it is possible. Returns an error
0430  * code if the request fails to start or -EBUSY if CQE is busy.
0431  */
0432 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
0433 {
0434     int err;
0435 
0436     /*
0437      * CQE cannot process re-tuning commands. Caller must hold retuning
0438      * while CQE is in use.  Re-tuning can happen here only when CQE has no
0439      * active requests i.e. this is the first.  Note, re-tuning will call
0440      * ->cqe_off().
0441      */
0442     err = mmc_retune(host);
0443     if (err)
0444         goto out_err;
0445 
0446     mrq->host = host;
0447 
0448     mmc_mrq_pr_debug(host, mrq, true);
0449 
0450     err = mmc_mrq_prep(host, mrq);
0451     if (err)
0452         goto out_err;
0453 
0454     err = host->cqe_ops->cqe_request(host, mrq);
0455     if (err)
0456         goto out_err;
0457 
0458     trace_mmc_request_start(host, mrq);
0459 
0460     return 0;
0461 
0462 out_err:
0463     if (mrq->cmd) {
0464         pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
0465              mmc_hostname(host), mrq->cmd->opcode, err);
0466     } else {
0467         pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
0468              mmc_hostname(host), mrq->tag, err);
0469     }
0470     return err;
0471 }
0472 EXPORT_SYMBOL(mmc_cqe_start_req);
0473 
0474 /**
0475  *  mmc_cqe_request_done - CQE has finished processing an MMC request
0476  *  @host: MMC host which completed request
0477  *  @mrq: MMC request which completed
0478  *
0479  *  CQE drivers should call this function when they have completed
0480  *  their processing of a request.
0481  */
0482 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
0483 {
0484     mmc_should_fail_request(host, mrq);
0485 
0486     /* Flag re-tuning needed on CRC errors */
0487     if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
0488         (mrq->data && mrq->data->error == -EILSEQ))
0489         mmc_retune_needed(host);
0490 
0491     trace_mmc_request_done(host, mrq);
0492 
0493     if (mrq->cmd) {
0494         pr_debug("%s: CQE req done (direct CMD%u): %d\n",
0495              mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
0496     } else {
0497         pr_debug("%s: CQE transfer done tag %d\n",
0498              mmc_hostname(host), mrq->tag);
0499     }
0500 
0501     if (mrq->data) {
0502         pr_debug("%s:     %d bytes transferred: %d\n",
0503              mmc_hostname(host),
0504              mrq->data->bytes_xfered, mrq->data->error);
0505     }
0506 
0507     mrq->done(mrq);
0508 }
0509 EXPORT_SYMBOL(mmc_cqe_request_done);
0510 
0511 /**
0512  *  mmc_cqe_post_req - CQE post process of a completed MMC request
0513  *  @host: MMC host
0514  *  @mrq: MMC request to be processed
0515  */
0516 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
0517 {
0518     if (host->cqe_ops->cqe_post_req)
0519         host->cqe_ops->cqe_post_req(host, mrq);
0520 }
0521 EXPORT_SYMBOL(mmc_cqe_post_req);
0522 
0523 /* Arbitrary 1 second timeout */
0524 #define MMC_CQE_RECOVERY_TIMEOUT    1000
0525 
0526 /*
0527  * mmc_cqe_recovery - Recover from CQE errors.
0528  * @host: MMC host to recover
0529  *
0530  * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
0531  * in eMMC, and discarding the queue in CQE. CQE must call
0532  * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
0533  * fails to discard its queue.
0534  */
0535 int mmc_cqe_recovery(struct mmc_host *host)
0536 {
0537     struct mmc_command cmd;
0538     int err;
0539 
0540     mmc_retune_hold_now(host);
0541 
0542     /*
0543      * Recovery is expected seldom, if at all, but it reduces performance,
0544      * so make sure it is not completely silent.
0545      */
0546     pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
0547 
0548     host->cqe_ops->cqe_recovery_start(host);
0549 
0550     memset(&cmd, 0, sizeof(cmd));
0551     cmd.opcode       = MMC_STOP_TRANSMISSION;
0552     cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
0553     cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
0554     cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
0555     mmc_wait_for_cmd(host, &cmd, 0);
0556 
0557     memset(&cmd, 0, sizeof(cmd));
0558     cmd.opcode       = MMC_CMDQ_TASK_MGMT;
0559     cmd.arg          = 1; /* Discard entire queue */
0560     cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
0561     cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
0562     cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
0563     err = mmc_wait_for_cmd(host, &cmd, 0);
0564 
0565     host->cqe_ops->cqe_recovery_finish(host);
0566 
0567     mmc_retune_release(host);
0568 
0569     return err;
0570 }
0571 EXPORT_SYMBOL(mmc_cqe_recovery);
0572 
0573 /**
0574  *  mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
0575  *  @host: MMC host
0576  *  @mrq: MMC request
0577  *
0578  *  mmc_is_req_done() is used with requests that have
0579  *  mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
0580  *  starting a request and before waiting for it to complete. That is,
0581  *  either in between calls to mmc_start_req(), or after mmc_wait_for_req()
0582  *  and before mmc_wait_for_req_done(). If it is called at other times the
0583  *  result is not meaningful.
0584  */
0585 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
0586 {
0587     return completion_done(&mrq->completion);
0588 }
0589 EXPORT_SYMBOL(mmc_is_req_done);
0590 
0591 /**
0592  *  mmc_wait_for_req - start a request and wait for completion
0593  *  @host: MMC host to start command
0594  *  @mrq: MMC request to start
0595  *
0596  *  Start a new MMC custom command request for a host, and wait
0597  *  for the command to complete. In the case of 'cap_cmd_during_tfr'
0598  *  requests, the transfer is ongoing and the caller can issue further
0599  *  commands that do not use the data lines, and then wait by calling
0600  *  mmc_wait_for_req_done().
0601  *  Does not attempt to parse the response.
0602  */
0603 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
0604 {
0605     __mmc_start_req(host, mrq);
0606 
0607     if (!mrq->cap_cmd_during_tfr)
0608         mmc_wait_for_req_done(host, mrq);
0609 }
0610 EXPORT_SYMBOL(mmc_wait_for_req);
0611 
0612 /**
0613  *  mmc_wait_for_cmd - start a command and wait for completion
0614  *  @host: MMC host to start command
0615  *  @cmd: MMC command to start
0616  *  @retries: maximum number of retries
0617  *
0618  *  Start a new MMC command for a host, and wait for the command
0619  *  to complete.  Return any error that occurred while the command
0620  *  was executing.  Do not attempt to parse the response.
0621  */
0622 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
0623 {
0624     struct mmc_request mrq = {};
0625 
0626     WARN_ON(!host->claimed);
0627 
0628     memset(cmd->resp, 0, sizeof(cmd->resp));
0629     cmd->retries = retries;
0630 
0631     mrq.cmd = cmd;
0632     cmd->data = NULL;
0633 
0634     mmc_wait_for_req(host, &mrq);
0635 
0636     return cmd->error;
0637 }
0638 
0639 EXPORT_SYMBOL(mmc_wait_for_cmd);
0640 
0641 /**
0642  *  mmc_set_data_timeout - set the timeout for a data command
0643  *  @data: data phase for command
0644  *  @card: the MMC card associated with the data transfer
0645  *
0646  *  Computes the data timeout parameters according to the
0647  *  correct algorithm given the card type.
0648  */
0649 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
0650 {
0651     unsigned int mult;
0652 
0653     /*
0654      * SDIO cards only define an upper 1 s limit on access.
0655      */
0656     if (mmc_card_sdio(card)) {
0657         data->timeout_ns = 1000000000;
0658         data->timeout_clks = 0;
0659         return;
0660     }
0661 
0662     /*
0663      * SD cards use a 100 multiplier rather than 10
0664      */
0665     mult = mmc_card_sd(card) ? 100 : 10;
0666 
0667     /*
0668      * Scale up the multiplier (and therefore the timeout) by
0669      * the r2w factor for writes.
0670      */
0671     if (data->flags & MMC_DATA_WRITE)
0672         mult <<= card->csd.r2w_factor;
0673 
0674     data->timeout_ns = card->csd.taac_ns * mult;
0675     data->timeout_clks = card->csd.taac_clks * mult;
0676 
0677     /*
0678      * SD cards also have an upper limit on the timeout.
0679      */
0680     if (mmc_card_sd(card)) {
0681         unsigned int timeout_us, limit_us;
0682 
0683         timeout_us = data->timeout_ns / 1000;
0684         if (card->host->ios.clock)
0685             timeout_us += data->timeout_clks * 1000 /
0686                 (card->host->ios.clock / 1000);
0687 
0688         if (data->flags & MMC_DATA_WRITE)
0689             /*
0690              * The MMC spec "It is strongly recommended
0691              * for hosts to implement more than 500ms
0692              * timeout value even if the card indicates
0693              * the 250ms maximum busy length."  Even the
0694              * previous value of 300ms is known to be
0695              * insufficient for some cards.
0696              */
0697             limit_us = 3000000;
0698         else
0699             limit_us = 100000;
0700 
0701         /*
0702          * SDHC cards always use these fixed values.
0703          */
0704         if (timeout_us > limit_us) {
0705             data->timeout_ns = limit_us * 1000;
0706             data->timeout_clks = 0;
0707         }
0708 
0709         /* assign limit value if invalid */
0710         if (timeout_us == 0)
0711             data->timeout_ns = limit_us * 1000;
0712     }
0713 
0714     /*
0715      * Some cards require longer data read timeout than indicated in CSD.
0716      * Address this by setting the read timeout to a "reasonably high"
0717      * value. For the cards tested, 600ms has proven enough. If necessary,
0718      * this value can be increased if other problematic cards require this.
0719      */
0720     if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
0721         data->timeout_ns = 600000000;
0722         data->timeout_clks = 0;
0723     }
0724 
0725     /*
0726      * Some cards need very high timeouts if driven in SPI mode.
0727      * The worst observed timeout was 900ms after writing a
0728      * continuous stream of data until the internal logic
0729      * overflowed.
0730      */
0731     if (mmc_host_is_spi(card->host)) {
0732         if (data->flags & MMC_DATA_WRITE) {
0733             if (data->timeout_ns < 1000000000)
0734                 data->timeout_ns = 1000000000;  /* 1s */
0735         } else {
0736             if (data->timeout_ns < 100000000)
0737                 data->timeout_ns =  100000000;  /* 100ms */
0738         }
0739     }
0740 }
0741 EXPORT_SYMBOL(mmc_set_data_timeout);
0742 
0743 /*
0744  * Allow claiming an already claimed host if the context is the same or there is
0745  * no context but the task is the same.
0746  */
0747 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
0748                    struct task_struct *task)
0749 {
0750     return host->claimer == ctx ||
0751            (!ctx && task && host->claimer->task == task);
0752 }
0753 
0754 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
0755                        struct mmc_ctx *ctx,
0756                        struct task_struct *task)
0757 {
0758     if (!host->claimer) {
0759         if (ctx)
0760             host->claimer = ctx;
0761         else
0762             host->claimer = &host->default_ctx;
0763     }
0764     if (task)
0765         host->claimer->task = task;
0766 }
0767 
0768 /**
0769  *  __mmc_claim_host - exclusively claim a host
0770  *  @host: mmc host to claim
0771  *  @ctx: context that claims the host or NULL in which case the default
0772  *  context will be used
0773  *  @abort: whether or not the operation should be aborted
0774  *
0775  *  Claim a host for a set of operations.  If @abort is non null and
0776  *  dereference a non-zero value then this will return prematurely with
0777  *  that non-zero value without acquiring the lock.  Returns zero
0778  *  with the lock held otherwise.
0779  */
0780 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
0781              atomic_t *abort)
0782 {
0783     struct task_struct *task = ctx ? NULL : current;
0784     DECLARE_WAITQUEUE(wait, current);
0785     unsigned long flags;
0786     int stop;
0787     bool pm = false;
0788 
0789     might_sleep();
0790 
0791     add_wait_queue(&host->wq, &wait);
0792     spin_lock_irqsave(&host->lock, flags);
0793     while (1) {
0794         set_current_state(TASK_UNINTERRUPTIBLE);
0795         stop = abort ? atomic_read(abort) : 0;
0796         if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
0797             break;
0798         spin_unlock_irqrestore(&host->lock, flags);
0799         schedule();
0800         spin_lock_irqsave(&host->lock, flags);
0801     }
0802     set_current_state(TASK_RUNNING);
0803     if (!stop) {
0804         host->claimed = 1;
0805         mmc_ctx_set_claimer(host, ctx, task);
0806         host->claim_cnt += 1;
0807         if (host->claim_cnt == 1)
0808             pm = true;
0809     } else
0810         wake_up(&host->wq);
0811     spin_unlock_irqrestore(&host->lock, flags);
0812     remove_wait_queue(&host->wq, &wait);
0813 
0814     if (pm)
0815         pm_runtime_get_sync(mmc_dev(host));
0816 
0817     return stop;
0818 }
0819 EXPORT_SYMBOL(__mmc_claim_host);
0820 
0821 /**
0822  *  mmc_release_host - release a host
0823  *  @host: mmc host to release
0824  *
0825  *  Release a MMC host, allowing others to claim the host
0826  *  for their operations.
0827  */
0828 void mmc_release_host(struct mmc_host *host)
0829 {
0830     unsigned long flags;
0831 
0832     WARN_ON(!host->claimed);
0833 
0834     spin_lock_irqsave(&host->lock, flags);
0835     if (--host->claim_cnt) {
0836         /* Release for nested claim */
0837         spin_unlock_irqrestore(&host->lock, flags);
0838     } else {
0839         host->claimed = 0;
0840         host->claimer->task = NULL;
0841         host->claimer = NULL;
0842         spin_unlock_irqrestore(&host->lock, flags);
0843         wake_up(&host->wq);
0844         pm_runtime_mark_last_busy(mmc_dev(host));
0845         if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
0846             pm_runtime_put_sync_suspend(mmc_dev(host));
0847         else
0848             pm_runtime_put_autosuspend(mmc_dev(host));
0849     }
0850 }
0851 EXPORT_SYMBOL(mmc_release_host);
0852 
0853 /*
0854  * This is a helper function, which fetches a runtime pm reference for the
0855  * card device and also claims the host.
0856  */
0857 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
0858 {
0859     pm_runtime_get_sync(&card->dev);
0860     __mmc_claim_host(card->host, ctx, NULL);
0861 }
0862 EXPORT_SYMBOL(mmc_get_card);
0863 
0864 /*
0865  * This is a helper function, which releases the host and drops the runtime
0866  * pm reference for the card device.
0867  */
0868 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
0869 {
0870     struct mmc_host *host = card->host;
0871 
0872     WARN_ON(ctx && host->claimer != ctx);
0873 
0874     mmc_release_host(host);
0875     pm_runtime_mark_last_busy(&card->dev);
0876     pm_runtime_put_autosuspend(&card->dev);
0877 }
0878 EXPORT_SYMBOL(mmc_put_card);
0879 
0880 /*
0881  * Internal function that does the actual ios call to the host driver,
0882  * optionally printing some debug output.
0883  */
0884 static inline void mmc_set_ios(struct mmc_host *host)
0885 {
0886     struct mmc_ios *ios = &host->ios;
0887 
0888     pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
0889         "width %u timing %u\n",
0890          mmc_hostname(host), ios->clock, ios->bus_mode,
0891          ios->power_mode, ios->chip_select, ios->vdd,
0892          1 << ios->bus_width, ios->timing);
0893 
0894     host->ops->set_ios(host, ios);
0895 }
0896 
0897 /*
0898  * Control chip select pin on a host.
0899  */
0900 void mmc_set_chip_select(struct mmc_host *host, int mode)
0901 {
0902     host->ios.chip_select = mode;
0903     mmc_set_ios(host);
0904 }
0905 
0906 /*
0907  * Sets the host clock to the highest possible frequency that
0908  * is below "hz".
0909  */
0910 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
0911 {
0912     WARN_ON(hz && hz < host->f_min);
0913 
0914     if (hz > host->f_max)
0915         hz = host->f_max;
0916 
0917     host->ios.clock = hz;
0918     mmc_set_ios(host);
0919 }
0920 
0921 int mmc_execute_tuning(struct mmc_card *card)
0922 {
0923     struct mmc_host *host = card->host;
0924     u32 opcode;
0925     int err;
0926 
0927     if (!host->ops->execute_tuning)
0928         return 0;
0929 
0930     if (host->cqe_on)
0931         host->cqe_ops->cqe_off(host);
0932 
0933     if (mmc_card_mmc(card))
0934         opcode = MMC_SEND_TUNING_BLOCK_HS200;
0935     else
0936         opcode = MMC_SEND_TUNING_BLOCK;
0937 
0938     err = host->ops->execute_tuning(host, opcode);
0939     if (!err) {
0940         mmc_retune_clear(host);
0941         mmc_retune_enable(host);
0942         return 0;
0943     }
0944 
0945     /* Only print error when we don't check for card removal */
0946     if (!host->detect_change) {
0947         pr_err("%s: tuning execution failed: %d\n",
0948             mmc_hostname(host), err);
0949         mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
0950     }
0951 
0952     return err;
0953 }
0954 
0955 /*
0956  * Change the bus mode (open drain/push-pull) of a host.
0957  */
0958 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
0959 {
0960     host->ios.bus_mode = mode;
0961     mmc_set_ios(host);
0962 }
0963 
0964 /*
0965  * Change data bus width of a host.
0966  */
0967 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
0968 {
0969     host->ios.bus_width = width;
0970     mmc_set_ios(host);
0971 }
0972 
0973 /*
0974  * Set initial state after a power cycle or a hw_reset.
0975  */
0976 void mmc_set_initial_state(struct mmc_host *host)
0977 {
0978     if (host->cqe_on)
0979         host->cqe_ops->cqe_off(host);
0980 
0981     mmc_retune_disable(host);
0982 
0983     if (mmc_host_is_spi(host))
0984         host->ios.chip_select = MMC_CS_HIGH;
0985     else
0986         host->ios.chip_select = MMC_CS_DONTCARE;
0987     host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
0988     host->ios.bus_width = MMC_BUS_WIDTH_1;
0989     host->ios.timing = MMC_TIMING_LEGACY;
0990     host->ios.drv_type = 0;
0991     host->ios.enhanced_strobe = false;
0992 
0993     /*
0994      * Make sure we are in non-enhanced strobe mode before we
0995      * actually enable it in ext_csd.
0996      */
0997     if ((host->caps2 & MMC_CAP2_HS400_ES) &&
0998          host->ops->hs400_enhanced_strobe)
0999         host->ops->hs400_enhanced_strobe(host, &host->ios);
1000 
1001     mmc_set_ios(host);
1002 
1003     mmc_crypto_set_initial_state(host);
1004 }
1005 
1006 /**
1007  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1008  * @vdd:    voltage (mV)
1009  * @low_bits:   prefer low bits in boundary cases
1010  *
1011  * This function returns the OCR bit number according to the provided @vdd
1012  * value. If conversion is not possible a negative errno value returned.
1013  *
1014  * Depending on the @low_bits flag the function prefers low or high OCR bits
1015  * on boundary voltages. For example,
1016  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1017  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1018  *
1019  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1020  */
1021 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1022 {
1023     const int max_bit = ilog2(MMC_VDD_35_36);
1024     int bit;
1025 
1026     if (vdd < 1650 || vdd > 3600)
1027         return -EINVAL;
1028 
1029     if (vdd >= 1650 && vdd <= 1950)
1030         return ilog2(MMC_VDD_165_195);
1031 
1032     if (low_bits)
1033         vdd -= 1;
1034 
1035     /* Base 2000 mV, step 100 mV, bit's base 8. */
1036     bit = (vdd - 2000) / 100 + 8;
1037     if (bit > max_bit)
1038         return max_bit;
1039     return bit;
1040 }
1041 
1042 /**
1043  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1044  * @vdd_min:    minimum voltage value (mV)
1045  * @vdd_max:    maximum voltage value (mV)
1046  *
1047  * This function returns the OCR mask bits according to the provided @vdd_min
1048  * and @vdd_max values. If conversion is not possible the function returns 0.
1049  *
1050  * Notes wrt boundary cases:
1051  * This function sets the OCR bits for all boundary voltages, for example
1052  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1053  * MMC_VDD_34_35 mask.
1054  */
1055 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1056 {
1057     u32 mask = 0;
1058 
1059     if (vdd_max < vdd_min)
1060         return 0;
1061 
1062     /* Prefer high bits for the boundary vdd_max values. */
1063     vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1064     if (vdd_max < 0)
1065         return 0;
1066 
1067     /* Prefer low bits for the boundary vdd_min values. */
1068     vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1069     if (vdd_min < 0)
1070         return 0;
1071 
1072     /* Fill the mask, from max bit to min bit. */
1073     while (vdd_max >= vdd_min)
1074         mask |= 1 << vdd_max--;
1075 
1076     return mask;
1077 }
1078 
1079 static int mmc_of_get_func_num(struct device_node *node)
1080 {
1081     u32 reg;
1082     int ret;
1083 
1084     ret = of_property_read_u32(node, "reg", &reg);
1085     if (ret < 0)
1086         return ret;
1087 
1088     return reg;
1089 }
1090 
1091 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1092         unsigned func_num)
1093 {
1094     struct device_node *node;
1095 
1096     if (!host->parent || !host->parent->of_node)
1097         return NULL;
1098 
1099     for_each_child_of_node(host->parent->of_node, node) {
1100         if (mmc_of_get_func_num(node) == func_num)
1101             return node;
1102     }
1103 
1104     return NULL;
1105 }
1106 
1107 /*
1108  * Mask off any voltages we don't support and select
1109  * the lowest voltage
1110  */
1111 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1112 {
1113     int bit;
1114 
1115     /*
1116      * Sanity check the voltages that the card claims to
1117      * support.
1118      */
1119     if (ocr & 0x7F) {
1120         dev_warn(mmc_dev(host),
1121         "card claims to support voltages below defined range\n");
1122         ocr &= ~0x7F;
1123     }
1124 
1125     ocr &= host->ocr_avail;
1126     if (!ocr) {
1127         dev_warn(mmc_dev(host), "no support for card's volts\n");
1128         return 0;
1129     }
1130 
1131     if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1132         bit = ffs(ocr) - 1;
1133         ocr &= 3 << bit;
1134         mmc_power_cycle(host, ocr);
1135     } else {
1136         bit = fls(ocr) - 1;
1137         ocr &= 3 << bit;
1138         if (bit != host->ios.vdd)
1139             dev_warn(mmc_dev(host), "exceeding card's volts\n");
1140     }
1141 
1142     return ocr;
1143 }
1144 
1145 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1146 {
1147     int err = 0;
1148     int old_signal_voltage = host->ios.signal_voltage;
1149 
1150     host->ios.signal_voltage = signal_voltage;
1151     if (host->ops->start_signal_voltage_switch)
1152         err = host->ops->start_signal_voltage_switch(host, &host->ios);
1153 
1154     if (err)
1155         host->ios.signal_voltage = old_signal_voltage;
1156 
1157     return err;
1158 
1159 }
1160 
1161 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1162 {
1163     /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1164     if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1165         dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1166     else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1167         dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1168     else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1169         dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1170 }
1171 
1172 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1173 {
1174     u32 clock;
1175 
1176     /*
1177      * During a signal voltage level switch, the clock must be gated
1178      * for 5 ms according to the SD spec
1179      */
1180     clock = host->ios.clock;
1181     host->ios.clock = 0;
1182     mmc_set_ios(host);
1183 
1184     if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1185         return -EAGAIN;
1186 
1187     /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1188     mmc_delay(10);
1189     host->ios.clock = clock;
1190     mmc_set_ios(host);
1191 
1192     return 0;
1193 }
1194 
1195 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1196 {
1197     struct mmc_command cmd = {};
1198     int err = 0;
1199 
1200     /*
1201      * If we cannot switch voltages, return failure so the caller
1202      * can continue without UHS mode
1203      */
1204     if (!host->ops->start_signal_voltage_switch)
1205         return -EPERM;
1206     if (!host->ops->card_busy)
1207         pr_warn("%s: cannot verify signal voltage switch\n",
1208             mmc_hostname(host));
1209 
1210     cmd.opcode = SD_SWITCH_VOLTAGE;
1211     cmd.arg = 0;
1212     cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1213 
1214     err = mmc_wait_for_cmd(host, &cmd, 0);
1215     if (err)
1216         goto power_cycle;
1217 
1218     if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1219         return -EIO;
1220 
1221     /*
1222      * The card should drive cmd and dat[0:3] low immediately
1223      * after the response of cmd11, but wait 1 ms to be sure
1224      */
1225     mmc_delay(1);
1226     if (host->ops->card_busy && !host->ops->card_busy(host)) {
1227         err = -EAGAIN;
1228         goto power_cycle;
1229     }
1230 
1231     if (mmc_host_set_uhs_voltage(host)) {
1232         /*
1233          * Voltages may not have been switched, but we've already
1234          * sent CMD11, so a power cycle is required anyway
1235          */
1236         err = -EAGAIN;
1237         goto power_cycle;
1238     }
1239 
1240     /* Wait for at least 1 ms according to spec */
1241     mmc_delay(1);
1242 
1243     /*
1244      * Failure to switch is indicated by the card holding
1245      * dat[0:3] low
1246      */
1247     if (host->ops->card_busy && host->ops->card_busy(host))
1248         err = -EAGAIN;
1249 
1250 power_cycle:
1251     if (err) {
1252         pr_debug("%s: Signal voltage switch failed, "
1253             "power cycling card\n", mmc_hostname(host));
1254         mmc_power_cycle(host, ocr);
1255     }
1256 
1257     return err;
1258 }
1259 
1260 /*
1261  * Select timing parameters for host.
1262  */
1263 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1264 {
1265     host->ios.timing = timing;
1266     mmc_set_ios(host);
1267 }
1268 
1269 /*
1270  * Select appropriate driver type for host.
1271  */
1272 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1273 {
1274     host->ios.drv_type = drv_type;
1275     mmc_set_ios(host);
1276 }
1277 
1278 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1279                   int card_drv_type, int *drv_type)
1280 {
1281     struct mmc_host *host = card->host;
1282     int host_drv_type = SD_DRIVER_TYPE_B;
1283 
1284     *drv_type = 0;
1285 
1286     if (!host->ops->select_drive_strength)
1287         return 0;
1288 
1289     /* Use SD definition of driver strength for hosts */
1290     if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1291         host_drv_type |= SD_DRIVER_TYPE_A;
1292 
1293     if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1294         host_drv_type |= SD_DRIVER_TYPE_C;
1295 
1296     if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1297         host_drv_type |= SD_DRIVER_TYPE_D;
1298 
1299     /*
1300      * The drive strength that the hardware can support
1301      * depends on the board design.  Pass the appropriate
1302      * information and let the hardware specific code
1303      * return what is possible given the options
1304      */
1305     return host->ops->select_drive_strength(card, max_dtr,
1306                         host_drv_type,
1307                         card_drv_type,
1308                         drv_type);
1309 }
1310 
1311 /*
1312  * Apply power to the MMC stack.  This is a two-stage process.
1313  * First, we enable power to the card without the clock running.
1314  * We then wait a bit for the power to stabilise.  Finally,
1315  * enable the bus drivers and clock to the card.
1316  *
1317  * We must _NOT_ enable the clock prior to power stablising.
1318  *
1319  * If a host does all the power sequencing itself, ignore the
1320  * initial MMC_POWER_UP stage.
1321  */
1322 void mmc_power_up(struct mmc_host *host, u32 ocr)
1323 {
1324     if (host->ios.power_mode == MMC_POWER_ON)
1325         return;
1326 
1327     mmc_pwrseq_pre_power_on(host);
1328 
1329     host->ios.vdd = fls(ocr) - 1;
1330     host->ios.power_mode = MMC_POWER_UP;
1331     /* Set initial state and call mmc_set_ios */
1332     mmc_set_initial_state(host);
1333 
1334     mmc_set_initial_signal_voltage(host);
1335 
1336     /*
1337      * This delay should be sufficient to allow the power supply
1338      * to reach the minimum voltage.
1339      */
1340     mmc_delay(host->ios.power_delay_ms);
1341 
1342     mmc_pwrseq_post_power_on(host);
1343 
1344     host->ios.clock = host->f_init;
1345 
1346     host->ios.power_mode = MMC_POWER_ON;
1347     mmc_set_ios(host);
1348 
1349     /*
1350      * This delay must be at least 74 clock sizes, or 1 ms, or the
1351      * time required to reach a stable voltage.
1352      */
1353     mmc_delay(host->ios.power_delay_ms);
1354 }
1355 
1356 void mmc_power_off(struct mmc_host *host)
1357 {
1358     if (host->ios.power_mode == MMC_POWER_OFF)
1359         return;
1360 
1361     mmc_pwrseq_power_off(host);
1362 
1363     host->ios.clock = 0;
1364     host->ios.vdd = 0;
1365 
1366     host->ios.power_mode = MMC_POWER_OFF;
1367     /* Set initial state and call mmc_set_ios */
1368     mmc_set_initial_state(host);
1369 
1370     /*
1371      * Some configurations, such as the 802.11 SDIO card in the OLPC
1372      * XO-1.5, require a short delay after poweroff before the card
1373      * can be successfully turned on again.
1374      */
1375     mmc_delay(1);
1376 }
1377 
1378 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1379 {
1380     mmc_power_off(host);
1381     /* Wait at least 1 ms according to SD spec */
1382     mmc_delay(1);
1383     mmc_power_up(host, ocr);
1384 }
1385 
1386 /*
1387  * Assign a mmc bus handler to a host. Only one bus handler may control a
1388  * host at any given time.
1389  */
1390 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1391 {
1392     host->bus_ops = ops;
1393 }
1394 
1395 /*
1396  * Remove the current bus handler from a host.
1397  */
1398 void mmc_detach_bus(struct mmc_host *host)
1399 {
1400     host->bus_ops = NULL;
1401 }
1402 
1403 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1404 {
1405     /*
1406      * Prevent system sleep for 5s to allow user space to consume the
1407      * corresponding uevent. This is especially useful, when CD irq is used
1408      * as a system wakeup, but doesn't hurt in other cases.
1409      */
1410     if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1411         __pm_wakeup_event(host->ws, 5000);
1412 
1413     host->detect_change = 1;
1414     mmc_schedule_delayed_work(&host->detect, delay);
1415 }
1416 
1417 /**
1418  *  mmc_detect_change - process change of state on a MMC socket
1419  *  @host: host which changed state.
1420  *  @delay: optional delay to wait before detection (jiffies)
1421  *
1422  *  MMC drivers should call this when they detect a card has been
1423  *  inserted or removed. The MMC layer will confirm that any
1424  *  present card is still functional, and initialize any newly
1425  *  inserted.
1426  */
1427 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1428 {
1429     _mmc_detect_change(host, delay, true);
1430 }
1431 EXPORT_SYMBOL(mmc_detect_change);
1432 
1433 void mmc_init_erase(struct mmc_card *card)
1434 {
1435     unsigned int sz;
1436 
1437     if (is_power_of_2(card->erase_size))
1438         card->erase_shift = ffs(card->erase_size) - 1;
1439     else
1440         card->erase_shift = 0;
1441 
1442     /*
1443      * It is possible to erase an arbitrarily large area of an SD or MMC
1444      * card.  That is not desirable because it can take a long time
1445      * (minutes) potentially delaying more important I/O, and also the
1446      * timeout calculations become increasingly hugely over-estimated.
1447      * Consequently, 'pref_erase' is defined as a guide to limit erases
1448      * to that size and alignment.
1449      *
1450      * For SD cards that define Allocation Unit size, limit erases to one
1451      * Allocation Unit at a time.
1452      * For MMC, have a stab at ai good value and for modern cards it will
1453      * end up being 4MiB. Note that if the value is too small, it can end
1454      * up taking longer to erase. Also note, erase_size is already set to
1455      * High Capacity Erase Size if available when this function is called.
1456      */
1457     if (mmc_card_sd(card) && card->ssr.au) {
1458         card->pref_erase = card->ssr.au;
1459         card->erase_shift = ffs(card->ssr.au) - 1;
1460     } else if (card->erase_size) {
1461         sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1462         if (sz < 128)
1463             card->pref_erase = 512 * 1024 / 512;
1464         else if (sz < 512)
1465             card->pref_erase = 1024 * 1024 / 512;
1466         else if (sz < 1024)
1467             card->pref_erase = 2 * 1024 * 1024 / 512;
1468         else
1469             card->pref_erase = 4 * 1024 * 1024 / 512;
1470         if (card->pref_erase < card->erase_size)
1471             card->pref_erase = card->erase_size;
1472         else {
1473             sz = card->pref_erase % card->erase_size;
1474             if (sz)
1475                 card->pref_erase += card->erase_size - sz;
1476         }
1477     } else
1478         card->pref_erase = 0;
1479 }
1480 
1481 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1482                           unsigned int arg, unsigned int qty)
1483 {
1484     unsigned int erase_timeout;
1485 
1486     if (arg == MMC_DISCARD_ARG ||
1487         (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1488         erase_timeout = card->ext_csd.trim_timeout;
1489     } else if (card->ext_csd.erase_group_def & 1) {
1490         /* High Capacity Erase Group Size uses HC timeouts */
1491         if (arg == MMC_TRIM_ARG)
1492             erase_timeout = card->ext_csd.trim_timeout;
1493         else
1494             erase_timeout = card->ext_csd.hc_erase_timeout;
1495     } else {
1496         /* CSD Erase Group Size uses write timeout */
1497         unsigned int mult = (10 << card->csd.r2w_factor);
1498         unsigned int timeout_clks = card->csd.taac_clks * mult;
1499         unsigned int timeout_us;
1500 
1501         /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1502         if (card->csd.taac_ns < 1000000)
1503             timeout_us = (card->csd.taac_ns * mult) / 1000;
1504         else
1505             timeout_us = (card->csd.taac_ns / 1000) * mult;
1506 
1507         /*
1508          * ios.clock is only a target.  The real clock rate might be
1509          * less but not that much less, so fudge it by multiplying by 2.
1510          */
1511         timeout_clks <<= 1;
1512         timeout_us += (timeout_clks * 1000) /
1513                   (card->host->ios.clock / 1000);
1514 
1515         erase_timeout = timeout_us / 1000;
1516 
1517         /*
1518          * Theoretically, the calculation could underflow so round up
1519          * to 1ms in that case.
1520          */
1521         if (!erase_timeout)
1522             erase_timeout = 1;
1523     }
1524 
1525     /* Multiplier for secure operations */
1526     if (arg & MMC_SECURE_ARGS) {
1527         if (arg == MMC_SECURE_ERASE_ARG)
1528             erase_timeout *= card->ext_csd.sec_erase_mult;
1529         else
1530             erase_timeout *= card->ext_csd.sec_trim_mult;
1531     }
1532 
1533     erase_timeout *= qty;
1534 
1535     /*
1536      * Ensure at least a 1 second timeout for SPI as per
1537      * 'mmc_set_data_timeout()'
1538      */
1539     if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1540         erase_timeout = 1000;
1541 
1542     return erase_timeout;
1543 }
1544 
1545 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1546                      unsigned int arg,
1547                      unsigned int qty)
1548 {
1549     unsigned int erase_timeout;
1550 
1551     /* for DISCARD none of the below calculation applies.
1552      * the busy timeout is 250msec per discard command.
1553      */
1554     if (arg == SD_DISCARD_ARG)
1555         return SD_DISCARD_TIMEOUT_MS;
1556 
1557     if (card->ssr.erase_timeout) {
1558         /* Erase timeout specified in SD Status Register (SSR) */
1559         erase_timeout = card->ssr.erase_timeout * qty +
1560                 card->ssr.erase_offset;
1561     } else {
1562         /*
1563          * Erase timeout not specified in SD Status Register (SSR) so
1564          * use 250ms per write block.
1565          */
1566         erase_timeout = 250 * qty;
1567     }
1568 
1569     /* Must not be less than 1 second */
1570     if (erase_timeout < 1000)
1571         erase_timeout = 1000;
1572 
1573     return erase_timeout;
1574 }
1575 
1576 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1577                       unsigned int arg,
1578                       unsigned int qty)
1579 {
1580     if (mmc_card_sd(card))
1581         return mmc_sd_erase_timeout(card, arg, qty);
1582     else
1583         return mmc_mmc_erase_timeout(card, arg, qty);
1584 }
1585 
1586 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1587             unsigned int to, unsigned int arg)
1588 {
1589     struct mmc_command cmd = {};
1590     unsigned int qty = 0, busy_timeout = 0;
1591     bool use_r1b_resp;
1592     int err;
1593 
1594     mmc_retune_hold(card->host);
1595 
1596     /*
1597      * qty is used to calculate the erase timeout which depends on how many
1598      * erase groups (or allocation units in SD terminology) are affected.
1599      * We count erasing part of an erase group as one erase group.
1600      * For SD, the allocation units are always a power of 2.  For MMC, the
1601      * erase group size is almost certainly also power of 2, but it does not
1602      * seem to insist on that in the JEDEC standard, so we fall back to
1603      * division in that case.  SD may not specify an allocation unit size,
1604      * in which case the timeout is based on the number of write blocks.
1605      *
1606      * Note that the timeout for secure trim 2 will only be correct if the
1607      * number of erase groups specified is the same as the total of all
1608      * preceding secure trim 1 commands.  Since the power may have been
1609      * lost since the secure trim 1 commands occurred, it is generally
1610      * impossible to calculate the secure trim 2 timeout correctly.
1611      */
1612     if (card->erase_shift)
1613         qty += ((to >> card->erase_shift) -
1614             (from >> card->erase_shift)) + 1;
1615     else if (mmc_card_sd(card))
1616         qty += to - from + 1;
1617     else
1618         qty += ((to / card->erase_size) -
1619             (from / card->erase_size)) + 1;
1620 
1621     if (!mmc_card_blockaddr(card)) {
1622         from <<= 9;
1623         to <<= 9;
1624     }
1625 
1626     if (mmc_card_sd(card))
1627         cmd.opcode = SD_ERASE_WR_BLK_START;
1628     else
1629         cmd.opcode = MMC_ERASE_GROUP_START;
1630     cmd.arg = from;
1631     cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1632     err = mmc_wait_for_cmd(card->host, &cmd, 0);
1633     if (err) {
1634         pr_err("mmc_erase: group start error %d, "
1635                "status %#x\n", err, cmd.resp[0]);
1636         err = -EIO;
1637         goto out;
1638     }
1639 
1640     memset(&cmd, 0, sizeof(struct mmc_command));
1641     if (mmc_card_sd(card))
1642         cmd.opcode = SD_ERASE_WR_BLK_END;
1643     else
1644         cmd.opcode = MMC_ERASE_GROUP_END;
1645     cmd.arg = to;
1646     cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1647     err = mmc_wait_for_cmd(card->host, &cmd, 0);
1648     if (err) {
1649         pr_err("mmc_erase: group end error %d, status %#x\n",
1650                err, cmd.resp[0]);
1651         err = -EIO;
1652         goto out;
1653     }
1654 
1655     memset(&cmd, 0, sizeof(struct mmc_command));
1656     cmd.opcode = MMC_ERASE;
1657     cmd.arg = arg;
1658     busy_timeout = mmc_erase_timeout(card, arg, qty);
1659     use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1660 
1661     err = mmc_wait_for_cmd(card->host, &cmd, 0);
1662     if (err) {
1663         pr_err("mmc_erase: erase error %d, status %#x\n",
1664                err, cmd.resp[0]);
1665         err = -EIO;
1666         goto out;
1667     }
1668 
1669     if (mmc_host_is_spi(card->host))
1670         goto out;
1671 
1672     /*
1673      * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1674      * shall be avoided.
1675      */
1676     if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1677         goto out;
1678 
1679     /* Let's poll to find out when the erase operation completes. */
1680     err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1681 
1682 out:
1683     mmc_retune_release(card->host);
1684     return err;
1685 }
1686 
1687 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1688                      unsigned int *from,
1689                      unsigned int *to,
1690                      unsigned int nr)
1691 {
1692     unsigned int from_new = *from, nr_new = nr, rem;
1693 
1694     /*
1695      * When the 'card->erase_size' is power of 2, we can use round_up/down()
1696      * to align the erase size efficiently.
1697      */
1698     if (is_power_of_2(card->erase_size)) {
1699         unsigned int temp = from_new;
1700 
1701         from_new = round_up(temp, card->erase_size);
1702         rem = from_new - temp;
1703 
1704         if (nr_new > rem)
1705             nr_new -= rem;
1706         else
1707             return 0;
1708 
1709         nr_new = round_down(nr_new, card->erase_size);
1710     } else {
1711         rem = from_new % card->erase_size;
1712         if (rem) {
1713             rem = card->erase_size - rem;
1714             from_new += rem;
1715             if (nr_new > rem)
1716                 nr_new -= rem;
1717             else
1718                 return 0;
1719         }
1720 
1721         rem = nr_new % card->erase_size;
1722         if (rem)
1723             nr_new -= rem;
1724     }
1725 
1726     if (nr_new == 0)
1727         return 0;
1728 
1729     *to = from_new + nr_new;
1730     *from = from_new;
1731 
1732     return nr_new;
1733 }
1734 
1735 /**
1736  * mmc_erase - erase sectors.
1737  * @card: card to erase
1738  * @from: first sector to erase
1739  * @nr: number of sectors to erase
1740  * @arg: erase command argument
1741  *
1742  * Caller must claim host before calling this function.
1743  */
1744 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1745           unsigned int arg)
1746 {
1747     unsigned int rem, to = from + nr;
1748     int err;
1749 
1750     if (!(card->csd.cmdclass & CCC_ERASE))
1751         return -EOPNOTSUPP;
1752 
1753     if (!card->erase_size)
1754         return -EOPNOTSUPP;
1755 
1756     if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1757         return -EOPNOTSUPP;
1758 
1759     if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1760         !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1761         return -EOPNOTSUPP;
1762 
1763     if (mmc_card_mmc(card) && (arg & MMC_TRIM_ARGS) &&
1764         !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1765         return -EOPNOTSUPP;
1766 
1767     if (arg == MMC_SECURE_ERASE_ARG) {
1768         if (from % card->erase_size || nr % card->erase_size)
1769             return -EINVAL;
1770     }
1771 
1772     if (arg == MMC_ERASE_ARG)
1773         nr = mmc_align_erase_size(card, &from, &to, nr);
1774 
1775     if (nr == 0)
1776         return 0;
1777 
1778     if (to <= from)
1779         return -EINVAL;
1780 
1781     /* 'from' and 'to' are inclusive */
1782     to -= 1;
1783 
1784     /*
1785      * Special case where only one erase-group fits in the timeout budget:
1786      * If the region crosses an erase-group boundary on this particular
1787      * case, we will be trimming more than one erase-group which, does not
1788      * fit in the timeout budget of the controller, so we need to split it
1789      * and call mmc_do_erase() twice if necessary. This special case is
1790      * identified by the card->eg_boundary flag.
1791      */
1792     rem = card->erase_size - (from % card->erase_size);
1793     if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
1794         err = mmc_do_erase(card, from, from + rem - 1, arg);
1795         from += rem;
1796         if ((err) || (to <= from))
1797             return err;
1798     }
1799 
1800     return mmc_do_erase(card, from, to, arg);
1801 }
1802 EXPORT_SYMBOL(mmc_erase);
1803 
1804 int mmc_can_erase(struct mmc_card *card)
1805 {
1806     if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1807         return 1;
1808     return 0;
1809 }
1810 EXPORT_SYMBOL(mmc_can_erase);
1811 
1812 int mmc_can_trim(struct mmc_card *card)
1813 {
1814     if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1815         (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1816         return 1;
1817     return 0;
1818 }
1819 EXPORT_SYMBOL(mmc_can_trim);
1820 
1821 int mmc_can_discard(struct mmc_card *card)
1822 {
1823     /*
1824      * As there's no way to detect the discard support bit at v4.5
1825      * use the s/w feature support filed.
1826      */
1827     if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1828         return 1;
1829     return 0;
1830 }
1831 EXPORT_SYMBOL(mmc_can_discard);
1832 
1833 int mmc_can_sanitize(struct mmc_card *card)
1834 {
1835     if (!mmc_can_trim(card) && !mmc_can_erase(card))
1836         return 0;
1837     if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1838         return 1;
1839     return 0;
1840 }
1841 
1842 int mmc_can_secure_erase_trim(struct mmc_card *card)
1843 {
1844     if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1845         !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1846         return 1;
1847     return 0;
1848 }
1849 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1850 
1851 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1852                 unsigned int nr)
1853 {
1854     if (!card->erase_size)
1855         return 0;
1856     if (from % card->erase_size || nr % card->erase_size)
1857         return 0;
1858     return 1;
1859 }
1860 EXPORT_SYMBOL(mmc_erase_group_aligned);
1861 
1862 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1863                         unsigned int arg)
1864 {
1865     struct mmc_host *host = card->host;
1866     unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1867     unsigned int last_timeout = 0;
1868     unsigned int max_busy_timeout = host->max_busy_timeout ?
1869             host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1870 
1871     if (card->erase_shift) {
1872         max_qty = UINT_MAX >> card->erase_shift;
1873         min_qty = card->pref_erase >> card->erase_shift;
1874     } else if (mmc_card_sd(card)) {
1875         max_qty = UINT_MAX;
1876         min_qty = card->pref_erase;
1877     } else {
1878         max_qty = UINT_MAX / card->erase_size;
1879         min_qty = card->pref_erase / card->erase_size;
1880     }
1881 
1882     /*
1883      * We should not only use 'host->max_busy_timeout' as the limitation
1884      * when deciding the max discard sectors. We should set a balance value
1885      * to improve the erase speed, and it can not get too long timeout at
1886      * the same time.
1887      *
1888      * Here we set 'card->pref_erase' as the minimal discard sectors no
1889      * matter what size of 'host->max_busy_timeout', but if the
1890      * 'host->max_busy_timeout' is large enough for more discard sectors,
1891      * then we can continue to increase the max discard sectors until we
1892      * get a balance value. In cases when the 'host->max_busy_timeout'
1893      * isn't specified, use the default max erase timeout.
1894      */
1895     do {
1896         y = 0;
1897         for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1898             timeout = mmc_erase_timeout(card, arg, qty + x);
1899 
1900             if (qty + x > min_qty && timeout > max_busy_timeout)
1901                 break;
1902 
1903             if (timeout < last_timeout)
1904                 break;
1905             last_timeout = timeout;
1906             y = x;
1907         }
1908         qty += y;
1909     } while (y);
1910 
1911     if (!qty)
1912         return 0;
1913 
1914     /*
1915      * When specifying a sector range to trim, chances are we might cross
1916      * an erase-group boundary even if the amount of sectors is less than
1917      * one erase-group.
1918      * If we can only fit one erase-group in the controller timeout budget,
1919      * we have to care that erase-group boundaries are not crossed by a
1920      * single trim operation. We flag that special case with "eg_boundary".
1921      * In all other cases we can just decrement qty and pretend that we
1922      * always touch (qty + 1) erase-groups as a simple optimization.
1923      */
1924     if (qty == 1)
1925         card->eg_boundary = 1;
1926     else
1927         qty--;
1928 
1929     /* Convert qty to sectors */
1930     if (card->erase_shift)
1931         max_discard = qty << card->erase_shift;
1932     else if (mmc_card_sd(card))
1933         max_discard = qty + 1;
1934     else
1935         max_discard = qty * card->erase_size;
1936 
1937     return max_discard;
1938 }
1939 
1940 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1941 {
1942     struct mmc_host *host = card->host;
1943     unsigned int max_discard, max_trim;
1944 
1945     /*
1946      * Without erase_group_def set, MMC erase timeout depends on clock
1947      * frequence which can change.  In that case, the best choice is
1948      * just the preferred erase size.
1949      */
1950     if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1951         return card->pref_erase;
1952 
1953     max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1954     if (mmc_can_trim(card)) {
1955         max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1956         if (max_trim < max_discard || max_discard == 0)
1957             max_discard = max_trim;
1958     } else if (max_discard < card->erase_size) {
1959         max_discard = 0;
1960     }
1961     pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1962         mmc_hostname(host), max_discard, host->max_busy_timeout ?
1963         host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1964     return max_discard;
1965 }
1966 EXPORT_SYMBOL(mmc_calc_max_discard);
1967 
1968 bool mmc_card_is_blockaddr(struct mmc_card *card)
1969 {
1970     return card ? mmc_card_blockaddr(card) : false;
1971 }
1972 EXPORT_SYMBOL(mmc_card_is_blockaddr);
1973 
1974 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1975 {
1976     struct mmc_command cmd = {};
1977 
1978     if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
1979         mmc_card_hs400(card) || mmc_card_hs400es(card))
1980         return 0;
1981 
1982     cmd.opcode = MMC_SET_BLOCKLEN;
1983     cmd.arg = blocklen;
1984     cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1985     return mmc_wait_for_cmd(card->host, &cmd, 5);
1986 }
1987 EXPORT_SYMBOL(mmc_set_blocklen);
1988 
1989 static void mmc_hw_reset_for_init(struct mmc_host *host)
1990 {
1991     mmc_pwrseq_reset(host);
1992 
1993     if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
1994         return;
1995     host->ops->card_hw_reset(host);
1996 }
1997 
1998 /**
1999  * mmc_hw_reset - reset the card in hardware
2000  * @card: card to be reset
2001  *
2002  * Hard reset the card. This function is only for upper layers, like the
2003  * block layer or card drivers. You cannot use it in host drivers (struct
2004  * mmc_card might be gone then).
2005  *
2006  * Return: 0 on success, -errno on failure
2007  */
2008 int mmc_hw_reset(struct mmc_card *card)
2009 {
2010     struct mmc_host *host = card->host;
2011     int ret;
2012 
2013     ret = host->bus_ops->hw_reset(host);
2014     if (ret < 0)
2015         pr_warn("%s: tried to HW reset card, got error %d\n",
2016             mmc_hostname(host), ret);
2017 
2018     return ret;
2019 }
2020 EXPORT_SYMBOL(mmc_hw_reset);
2021 
2022 int mmc_sw_reset(struct mmc_card *card)
2023 {
2024     struct mmc_host *host = card->host;
2025     int ret;
2026 
2027     if (!host->bus_ops->sw_reset)
2028         return -EOPNOTSUPP;
2029 
2030     ret = host->bus_ops->sw_reset(host);
2031     if (ret)
2032         pr_warn("%s: tried to SW reset card, got error %d\n",
2033             mmc_hostname(host), ret);
2034 
2035     return ret;
2036 }
2037 EXPORT_SYMBOL(mmc_sw_reset);
2038 
2039 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2040 {
2041     host->f_init = freq;
2042 
2043     pr_debug("%s: %s: trying to init card at %u Hz\n",
2044         mmc_hostname(host), __func__, host->f_init);
2045 
2046     mmc_power_up(host, host->ocr_avail);
2047 
2048     /*
2049      * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2050      * do a hardware reset if possible.
2051      */
2052     mmc_hw_reset_for_init(host);
2053 
2054     /*
2055      * sdio_reset sends CMD52 to reset card.  Since we do not know
2056      * if the card is being re-initialized, just send it.  CMD52
2057      * should be ignored by SD/eMMC cards.
2058      * Skip it if we already know that we do not support SDIO commands
2059      */
2060     if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2061         sdio_reset(host);
2062 
2063     mmc_go_idle(host);
2064 
2065     if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2066         if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2067             goto out;
2068         if (mmc_card_sd_express(host))
2069             return 0;
2070     }
2071 
2072     /* Order's important: probe SDIO, then SD, then MMC */
2073     if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2074         if (!mmc_attach_sdio(host))
2075             return 0;
2076 
2077     if (!(host->caps2 & MMC_CAP2_NO_SD))
2078         if (!mmc_attach_sd(host))
2079             return 0;
2080 
2081     if (!(host->caps2 & MMC_CAP2_NO_MMC))
2082         if (!mmc_attach_mmc(host))
2083             return 0;
2084 
2085 out:
2086     mmc_power_off(host);
2087     return -EIO;
2088 }
2089 
2090 int _mmc_detect_card_removed(struct mmc_host *host)
2091 {
2092     int ret;
2093 
2094     if (!host->card || mmc_card_removed(host->card))
2095         return 1;
2096 
2097     ret = host->bus_ops->alive(host);
2098 
2099     /*
2100      * Card detect status and alive check may be out of sync if card is
2101      * removed slowly, when card detect switch changes while card/slot
2102      * pads are still contacted in hardware (refer to "SD Card Mechanical
2103      * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2104      * detect work 200ms later for this case.
2105      */
2106     if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2107         mmc_detect_change(host, msecs_to_jiffies(200));
2108         pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2109     }
2110 
2111     if (ret) {
2112         mmc_card_set_removed(host->card);
2113         pr_debug("%s: card remove detected\n", mmc_hostname(host));
2114     }
2115 
2116     return ret;
2117 }
2118 
2119 int mmc_detect_card_removed(struct mmc_host *host)
2120 {
2121     struct mmc_card *card = host->card;
2122     int ret;
2123 
2124     WARN_ON(!host->claimed);
2125 
2126     if (!card)
2127         return 1;
2128 
2129     if (!mmc_card_is_removable(host))
2130         return 0;
2131 
2132     ret = mmc_card_removed(card);
2133     /*
2134      * The card will be considered unchanged unless we have been asked to
2135      * detect a change or host requires polling to provide card detection.
2136      */
2137     if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2138         return ret;
2139 
2140     host->detect_change = 0;
2141     if (!ret) {
2142         ret = _mmc_detect_card_removed(host);
2143         if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2144             /*
2145              * Schedule a detect work as soon as possible to let a
2146              * rescan handle the card removal.
2147              */
2148             cancel_delayed_work(&host->detect);
2149             _mmc_detect_change(host, 0, false);
2150         }
2151     }
2152 
2153     return ret;
2154 }
2155 EXPORT_SYMBOL(mmc_detect_card_removed);
2156 
2157 int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2158 {
2159     unsigned int boot_sectors_num;
2160 
2161     if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2162         return -EOPNOTSUPP;
2163 
2164     /* filter out unrelated cards */
2165     if (card->ext_csd.rev < 3 ||
2166         !mmc_card_mmc(card) ||
2167         !mmc_card_is_blockaddr(card) ||
2168          mmc_card_is_removable(card->host))
2169         return -ENOENT;
2170 
2171     /*
2172      * eMMC storage has two special boot partitions in addition to the
2173      * main one.  NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2174      * accesses, this means that the partition table addresses are shifted
2175      * by the size of boot partitions.  In accordance with the eMMC
2176      * specification, the boot partition size is calculated as follows:
2177      *
2178      *  boot partition size = 128K byte x BOOT_SIZE_MULT
2179      *
2180      * Calculate number of sectors occupied by the both boot partitions.
2181      */
2182     boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2183                SZ_512 * MMC_NUM_BOOT_PARTITION;
2184 
2185     /* Defined by NVIDIA and used by Android devices. */
2186     *gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2187 
2188     return 0;
2189 }
2190 EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2191 
2192 void mmc_rescan(struct work_struct *work)
2193 {
2194     struct mmc_host *host =
2195         container_of(work, struct mmc_host, detect.work);
2196     int i;
2197 
2198     if (host->rescan_disable)
2199         return;
2200 
2201     /* If there is a non-removable card registered, only scan once */
2202     if (!mmc_card_is_removable(host) && host->rescan_entered)
2203         return;
2204     host->rescan_entered = 1;
2205 
2206     if (host->trigger_card_event && host->ops->card_event) {
2207         mmc_claim_host(host);
2208         host->ops->card_event(host);
2209         mmc_release_host(host);
2210         host->trigger_card_event = false;
2211     }
2212 
2213     /* Verify a registered card to be functional, else remove it. */
2214     if (host->bus_ops)
2215         host->bus_ops->detect(host);
2216 
2217     host->detect_change = 0;
2218 
2219     /* if there still is a card present, stop here */
2220     if (host->bus_ops != NULL)
2221         goto out;
2222 
2223     mmc_claim_host(host);
2224     if (mmc_card_is_removable(host) && host->ops->get_cd &&
2225             host->ops->get_cd(host) == 0) {
2226         mmc_power_off(host);
2227         mmc_release_host(host);
2228         goto out;
2229     }
2230 
2231     /* If an SD express card is present, then leave it as is. */
2232     if (mmc_card_sd_express(host)) {
2233         mmc_release_host(host);
2234         goto out;
2235     }
2236 
2237     for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2238         unsigned int freq = freqs[i];
2239         if (freq > host->f_max) {
2240             if (i + 1 < ARRAY_SIZE(freqs))
2241                 continue;
2242             freq = host->f_max;
2243         }
2244         if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2245             break;
2246         if (freqs[i] <= host->f_min)
2247             break;
2248     }
2249 
2250     /*
2251      * Ignore the command timeout errors observed during
2252      * the card init as those are excepted.
2253      */
2254     host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2255     mmc_release_host(host);
2256 
2257  out:
2258     if (host->caps & MMC_CAP_NEEDS_POLL)
2259         mmc_schedule_delayed_work(&host->detect, HZ);
2260 }
2261 
2262 void mmc_start_host(struct mmc_host *host)
2263 {
2264     host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2265     host->rescan_disable = 0;
2266 
2267     if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2268         mmc_claim_host(host);
2269         mmc_power_up(host, host->ocr_avail);
2270         mmc_release_host(host);
2271     }
2272 
2273     mmc_gpiod_request_cd_irq(host);
2274     _mmc_detect_change(host, 0, false);
2275 }
2276 
2277 void __mmc_stop_host(struct mmc_host *host)
2278 {
2279     if (host->slot.cd_irq >= 0) {
2280         mmc_gpio_set_cd_wake(host, false);
2281         disable_irq(host->slot.cd_irq);
2282     }
2283 
2284     host->rescan_disable = 1;
2285     cancel_delayed_work_sync(&host->detect);
2286 }
2287 
2288 void mmc_stop_host(struct mmc_host *host)
2289 {
2290     __mmc_stop_host(host);
2291 
2292     /* clear pm flags now and let card drivers set them as needed */
2293     host->pm_flags = 0;
2294 
2295     if (host->bus_ops) {
2296         /* Calling bus_ops->remove() with a claimed host can deadlock */
2297         host->bus_ops->remove(host);
2298         mmc_claim_host(host);
2299         mmc_detach_bus(host);
2300         mmc_power_off(host);
2301         mmc_release_host(host);
2302         return;
2303     }
2304 
2305     mmc_claim_host(host);
2306     mmc_power_off(host);
2307     mmc_release_host(host);
2308 }
2309 
2310 static int __init mmc_init(void)
2311 {
2312     int ret;
2313 
2314     ret = mmc_register_bus();
2315     if (ret)
2316         return ret;
2317 
2318     ret = mmc_register_host_class();
2319     if (ret)
2320         goto unregister_bus;
2321 
2322     ret = sdio_register_bus();
2323     if (ret)
2324         goto unregister_host_class;
2325 
2326     return 0;
2327 
2328 unregister_host_class:
2329     mmc_unregister_host_class();
2330 unregister_bus:
2331     mmc_unregister_bus();
2332     return ret;
2333 }
2334 
2335 static void __exit mmc_exit(void)
2336 {
2337     sdio_unregister_bus();
2338     mmc_unregister_host_class();
2339     mmc_unregister_bus();
2340 }
2341 
2342 subsys_initcall(mmc_init);
2343 module_exit(mmc_exit);
2344 
2345 MODULE_LICENSE("GPL");