Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * This file is part of the APDS990x sensor driver.
0004  * Chip is combined proximity and ambient light sensor.
0005  *
0006  * Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies).
0007  *
0008  * Contact: Samu Onkalo <samu.p.onkalo@nokia.com>
0009  */
0010 
0011 #include <linux/kernel.h>
0012 #include <linux/module.h>
0013 #include <linux/i2c.h>
0014 #include <linux/interrupt.h>
0015 #include <linux/mutex.h>
0016 #include <linux/regulator/consumer.h>
0017 #include <linux/pm_runtime.h>
0018 #include <linux/delay.h>
0019 #include <linux/wait.h>
0020 #include <linux/slab.h>
0021 #include <linux/platform_data/apds990x.h>
0022 
0023 /* Register map */
0024 #define APDS990X_ENABLE  0x00 /* Enable of states and interrupts */
0025 #define APDS990X_ATIME   0x01 /* ALS ADC time  */
0026 #define APDS990X_PTIME   0x02 /* Proximity ADC time  */
0027 #define APDS990X_WTIME   0x03 /* Wait time  */
0028 #define APDS990X_AILTL   0x04 /* ALS interrupt low threshold low byte */
0029 #define APDS990X_AILTH   0x05 /* ALS interrupt low threshold hi byte */
0030 #define APDS990X_AIHTL   0x06 /* ALS interrupt hi threshold low byte */
0031 #define APDS990X_AIHTH   0x07 /* ALS interrupt hi threshold hi byte */
0032 #define APDS990X_PILTL   0x08 /* Proximity interrupt low threshold low byte */
0033 #define APDS990X_PILTH   0x09 /* Proximity interrupt low threshold hi byte */
0034 #define APDS990X_PIHTL   0x0a /* Proximity interrupt hi threshold low byte */
0035 #define APDS990X_PIHTH   0x0b /* Proximity interrupt hi threshold hi byte */
0036 #define APDS990X_PERS    0x0c /* Interrupt persistence filters */
0037 #define APDS990X_CONFIG  0x0d /* Configuration */
0038 #define APDS990X_PPCOUNT 0x0e /* Proximity pulse count */
0039 #define APDS990X_CONTROL 0x0f /* Gain control register */
0040 #define APDS990X_REV     0x11 /* Revision Number */
0041 #define APDS990X_ID  0x12 /* Device ID */
0042 #define APDS990X_STATUS  0x13 /* Device status */
0043 #define APDS990X_CDATAL  0x14 /* Clear ADC low data register */
0044 #define APDS990X_CDATAH  0x15 /* Clear ADC high data register */
0045 #define APDS990X_IRDATAL 0x16 /* IR ADC low data register */
0046 #define APDS990X_IRDATAH 0x17 /* IR ADC high data register */
0047 #define APDS990X_PDATAL  0x18 /* Proximity ADC low data register */
0048 #define APDS990X_PDATAH  0x19 /* Proximity ADC high data register */
0049 
0050 /* Control */
0051 #define APDS990X_MAX_AGAIN  3
0052 
0053 /* Enable register */
0054 #define APDS990X_EN_PIEN    (0x1 << 5)
0055 #define APDS990X_EN_AIEN    (0x1 << 4)
0056 #define APDS990X_EN_WEN     (0x1 << 3)
0057 #define APDS990X_EN_PEN     (0x1 << 2)
0058 #define APDS990X_EN_AEN     (0x1 << 1)
0059 #define APDS990X_EN_PON     (0x1 << 0)
0060 #define APDS990X_EN_DISABLE_ALL 0
0061 
0062 /* Status register */
0063 #define APDS990X_ST_PINT    (0x1 << 5)
0064 #define APDS990X_ST_AINT    (0x1 << 4)
0065 
0066 /* I2C access types */
0067 #define APDS990x_CMD_TYPE_MASK  (0x03 << 5)
0068 #define APDS990x_CMD_TYPE_RB    (0x00 << 5) /* Repeated byte */
0069 #define APDS990x_CMD_TYPE_INC   (0x01 << 5) /* Auto increment */
0070 #define APDS990x_CMD_TYPE_SPE   (0x03 << 5) /* Special function */
0071 
0072 #define APDS990x_ADDR_SHIFT 0
0073 #define APDS990x_CMD        0x80
0074 
0075 /* Interrupt ack commands */
0076 #define APDS990X_INT_ACK_ALS    0x6
0077 #define APDS990X_INT_ACK_PS 0x5
0078 #define APDS990X_INT_ACK_BOTH   0x7
0079 
0080 /* ptime */
0081 #define APDS990X_PTIME_DEFAULT  0xff /* Recommended conversion time 2.7ms*/
0082 
0083 /* wtime */
0084 #define APDS990X_WTIME_DEFAULT  0xee /* ~50ms wait time */
0085 
0086 #define APDS990X_TIME_TO_ADC    1024 /* One timetick as ADC count value */
0087 
0088 /* Persistence */
0089 #define APDS990X_APERS_SHIFT    0
0090 #define APDS990X_PPERS_SHIFT    4
0091 
0092 /* Supported ID:s */
0093 #define APDS990X_ID_0       0x0
0094 #define APDS990X_ID_4       0x4
0095 #define APDS990X_ID_29      0x29
0096 
0097 /* pgain and pdiode settings */
0098 #define APDS_PGAIN_1X          0x0
0099 #define APDS_PDIODE_IR         0x2
0100 
0101 #define APDS990X_LUX_OUTPUT_SCALE 10
0102 
0103 /* Reverse chip factors for threshold calculation */
0104 struct reverse_factors {
0105     u32 afactor;
0106     int cf1;
0107     int irf1;
0108     int cf2;
0109     int irf2;
0110 };
0111 
0112 struct apds990x_chip {
0113     struct apds990x_platform_data   *pdata;
0114     struct i2c_client       *client;
0115     struct mutex            mutex; /* avoid parallel access */
0116     struct regulator_bulk_data  regs[2];
0117     wait_queue_head_t       wait;
0118 
0119     int prox_en;
0120     bool    prox_continuous_mode;
0121     bool    lux_wait_fresh_res;
0122 
0123     /* Chip parameters */
0124     struct  apds990x_chip_factors   cf;
0125     struct  reverse_factors     rcf;
0126     u16 atime;      /* als integration time */
0127     u16 arate;      /* als reporting rate */
0128     u16 a_max_result;   /* Max possible ADC value with current atime */
0129     u8  again_meas; /* Gain used in last measurement */
0130     u8  again_next; /* Next calculated gain */
0131     u8  pgain;
0132     u8  pdiode;
0133     u8  pdrive;
0134     u8  lux_persistence;
0135     u8  prox_persistence;
0136 
0137     u32 lux_raw;
0138     u32 lux;
0139     u16 lux_clear;
0140     u16 lux_ir;
0141     u16 lux_calib;
0142     u32 lux_thres_hi;
0143     u32 lux_thres_lo;
0144 
0145     u32 prox_thres;
0146     u16 prox_data;
0147     u16 prox_calib;
0148 
0149     char    chipname[10];
0150     u8  revision;
0151 };
0152 
0153 #define APDS_CALIB_SCALER       8192
0154 #define APDS_LUX_NEUTRAL_CALIB_VALUE    (1 * APDS_CALIB_SCALER)
0155 #define APDS_PROX_NEUTRAL_CALIB_VALUE   (1 * APDS_CALIB_SCALER)
0156 
0157 #define APDS_PROX_DEF_THRES     600
0158 #define APDS_PROX_HYSTERESIS        50
0159 #define APDS_LUX_DEF_THRES_HI       101
0160 #define APDS_LUX_DEF_THRES_LO       100
0161 #define APDS_DEFAULT_PROX_PERS      1
0162 
0163 #define APDS_TIMEOUT            2000
0164 #define APDS_STARTUP_DELAY      25000 /* us */
0165 #define APDS_RANGE          65535
0166 #define APDS_PROX_RANGE         1023
0167 #define APDS_LUX_GAIN_LO_LIMIT      100
0168 #define APDS_LUX_GAIN_LO_LIMIT_STRICT   25
0169 
0170 #define TIMESTEP            87 /* 2.7ms is about 87 / 32 */
0171 #define TIME_STEP_SCALER        32
0172 
0173 #define APDS_LUX_AVERAGING_TIME     50 /* tolerates 50/60Hz ripple */
0174 #define APDS_LUX_DEFAULT_RATE       200
0175 
0176 static const u8 again[] = {1, 8, 16, 120}; /* ALS gain steps */
0177 
0178 /* Following two tables must match i.e 10Hz rate means 1 as persistence value */
0179 static const u16 arates_hz[] = {10, 5, 2, 1};
0180 static const u8 apersis[] = {1, 2, 4, 5};
0181 
0182 /* Regulators */
0183 static const char reg_vcc[] = "Vdd";
0184 static const char reg_vled[] = "Vled";
0185 
0186 static int apds990x_read_byte(struct apds990x_chip *chip, u8 reg, u8 *data)
0187 {
0188     struct i2c_client *client = chip->client;
0189     s32 ret;
0190 
0191     reg &= ~APDS990x_CMD_TYPE_MASK;
0192     reg |= APDS990x_CMD | APDS990x_CMD_TYPE_RB;
0193 
0194     ret = i2c_smbus_read_byte_data(client, reg);
0195     *data = ret;
0196     return (int)ret;
0197 }
0198 
0199 static int apds990x_read_word(struct apds990x_chip *chip, u8 reg, u16 *data)
0200 {
0201     struct i2c_client *client = chip->client;
0202     s32 ret;
0203 
0204     reg &= ~APDS990x_CMD_TYPE_MASK;
0205     reg |= APDS990x_CMD | APDS990x_CMD_TYPE_INC;
0206 
0207     ret = i2c_smbus_read_word_data(client, reg);
0208     *data = ret;
0209     return (int)ret;
0210 }
0211 
0212 static int apds990x_write_byte(struct apds990x_chip *chip, u8 reg, u8 data)
0213 {
0214     struct i2c_client *client = chip->client;
0215     s32 ret;
0216 
0217     reg &= ~APDS990x_CMD_TYPE_MASK;
0218     reg |= APDS990x_CMD | APDS990x_CMD_TYPE_RB;
0219 
0220     ret = i2c_smbus_write_byte_data(client, reg, data);
0221     return (int)ret;
0222 }
0223 
0224 static int apds990x_write_word(struct apds990x_chip *chip, u8 reg, u16 data)
0225 {
0226     struct i2c_client *client = chip->client;
0227     s32 ret;
0228 
0229     reg &= ~APDS990x_CMD_TYPE_MASK;
0230     reg |= APDS990x_CMD | APDS990x_CMD_TYPE_INC;
0231 
0232     ret = i2c_smbus_write_word_data(client, reg, data);
0233     return (int)ret;
0234 }
0235 
0236 static int apds990x_mode_on(struct apds990x_chip *chip)
0237 {
0238     /* ALS is mandatory, proximity optional */
0239     u8 reg = APDS990X_EN_AIEN | APDS990X_EN_PON | APDS990X_EN_AEN |
0240         APDS990X_EN_WEN;
0241 
0242     if (chip->prox_en)
0243         reg |= APDS990X_EN_PIEN | APDS990X_EN_PEN;
0244 
0245     return apds990x_write_byte(chip, APDS990X_ENABLE, reg);
0246 }
0247 
0248 static u16 apds990x_lux_to_threshold(struct apds990x_chip *chip, u32 lux)
0249 {
0250     u32 thres;
0251     u32 cpl;
0252     u32 ir;
0253 
0254     if (lux == 0)
0255         return 0;
0256     else if (lux == APDS_RANGE)
0257         return APDS_RANGE;
0258 
0259     /*
0260      * Reported LUX value is a combination of the IR and CLEAR channel
0261      * values. However, interrupt threshold is only for clear channel.
0262      * This function approximates needed HW threshold value for a given
0263      * LUX value in the current lightning type.
0264      * IR level compared to visible light varies heavily depending on the
0265      * source of the light
0266      *
0267      * Calculate threshold value for the next measurement period.
0268      * Math: threshold = lux * cpl where
0269      * cpl = atime * again / (glass_attenuation * device_factor)
0270      * (count-per-lux)
0271      *
0272      * First remove calibration. Division by four is to avoid overflow
0273      */
0274     lux = lux * (APDS_CALIB_SCALER / 4) / (chip->lux_calib / 4);
0275 
0276     /* Multiplication by 64 is to increase accuracy */
0277     cpl = ((u32)chip->atime * (u32)again[chip->again_next] *
0278         APDS_PARAM_SCALE * 64) / (chip->cf.ga * chip->cf.df);
0279 
0280     thres = lux * cpl / 64;
0281     /*
0282      * Convert IR light from the latest result to match with
0283      * new gain step. This helps to adapt with the current
0284      * source of light.
0285      */
0286     ir = (u32)chip->lux_ir * (u32)again[chip->again_next] /
0287         (u32)again[chip->again_meas];
0288 
0289     /*
0290      * Compensate count with IR light impact
0291      * IAC1 > IAC2 (see apds990x_get_lux for formulas)
0292      */
0293     if (chip->lux_clear * APDS_PARAM_SCALE >=
0294         chip->rcf.afactor * chip->lux_ir)
0295         thres = (chip->rcf.cf1 * thres + chip->rcf.irf1 * ir) /
0296             APDS_PARAM_SCALE;
0297     else
0298         thres = (chip->rcf.cf2 * thres + chip->rcf.irf2 * ir) /
0299             APDS_PARAM_SCALE;
0300 
0301     if (thres >= chip->a_max_result)
0302         thres = chip->a_max_result - 1;
0303     return thres;
0304 }
0305 
0306 static inline int apds990x_set_atime(struct apds990x_chip *chip, u32 time_ms)
0307 {
0308     u8 reg_value;
0309 
0310     chip->atime = time_ms;
0311     /* Formula is specified in the data sheet */
0312     reg_value = 256 - ((time_ms * TIME_STEP_SCALER) / TIMESTEP);
0313     /* Calculate max ADC value for given integration time */
0314     chip->a_max_result = (u16)(256 - reg_value) * APDS990X_TIME_TO_ADC;
0315     return apds990x_write_byte(chip, APDS990X_ATIME, reg_value);
0316 }
0317 
0318 /* Called always with mutex locked */
0319 static int apds990x_refresh_pthres(struct apds990x_chip *chip, int data)
0320 {
0321     int ret, lo, hi;
0322 
0323     /* If the chip is not in use, don't try to access it */
0324     if (pm_runtime_suspended(&chip->client->dev))
0325         return 0;
0326 
0327     if (data < chip->prox_thres) {
0328         lo = 0;
0329         hi = chip->prox_thres;
0330     } else {
0331         lo = chip->prox_thres - APDS_PROX_HYSTERESIS;
0332         if (chip->prox_continuous_mode)
0333             hi = chip->prox_thres;
0334         else
0335             hi = APDS_RANGE;
0336     }
0337 
0338     ret = apds990x_write_word(chip, APDS990X_PILTL, lo);
0339     ret |= apds990x_write_word(chip, APDS990X_PIHTL, hi);
0340     return ret;
0341 }
0342 
0343 /* Called always with mutex locked */
0344 static int apds990x_refresh_athres(struct apds990x_chip *chip)
0345 {
0346     int ret;
0347     /* If the chip is not in use, don't try to access it */
0348     if (pm_runtime_suspended(&chip->client->dev))
0349         return 0;
0350 
0351     ret = apds990x_write_word(chip, APDS990X_AILTL,
0352             apds990x_lux_to_threshold(chip, chip->lux_thres_lo));
0353     ret |= apds990x_write_word(chip, APDS990X_AIHTL,
0354             apds990x_lux_to_threshold(chip, chip->lux_thres_hi));
0355 
0356     return ret;
0357 }
0358 
0359 /* Called always with mutex locked */
0360 static void apds990x_force_a_refresh(struct apds990x_chip *chip)
0361 {
0362     /* This will force ALS interrupt after the next measurement. */
0363     apds990x_write_word(chip, APDS990X_AILTL, APDS_LUX_DEF_THRES_LO);
0364     apds990x_write_word(chip, APDS990X_AIHTL, APDS_LUX_DEF_THRES_HI);
0365 }
0366 
0367 /* Called always with mutex locked */
0368 static void apds990x_force_p_refresh(struct apds990x_chip *chip)
0369 {
0370     /* This will force proximity interrupt after the next measurement. */
0371     apds990x_write_word(chip, APDS990X_PILTL, APDS_PROX_DEF_THRES - 1);
0372     apds990x_write_word(chip, APDS990X_PIHTL, APDS_PROX_DEF_THRES);
0373 }
0374 
0375 /* Called always with mutex locked */
0376 static int apds990x_calc_again(struct apds990x_chip *chip)
0377 {
0378     int curr_again = chip->again_meas;
0379     int next_again = chip->again_meas;
0380     int ret = 0;
0381 
0382     /* Calculate suitable als gain */
0383     if (chip->lux_clear == chip->a_max_result)
0384         next_again -= 2; /* ALS saturated. Decrease gain by 2 steps */
0385     else if (chip->lux_clear > chip->a_max_result / 2)
0386         next_again--;
0387     else if (chip->lux_clear < APDS_LUX_GAIN_LO_LIMIT_STRICT)
0388         next_again += 2; /* Too dark. Increase gain by 2 steps */
0389     else if (chip->lux_clear < APDS_LUX_GAIN_LO_LIMIT)
0390         next_again++;
0391 
0392     /* Limit gain to available range */
0393     if (next_again < 0)
0394         next_again = 0;
0395     else if (next_again > APDS990X_MAX_AGAIN)
0396         next_again = APDS990X_MAX_AGAIN;
0397 
0398     /* Let's check can we trust the measured result */
0399     if (chip->lux_clear == chip->a_max_result)
0400         /* Result can be totally garbage due to saturation */
0401         ret = -ERANGE;
0402     else if (next_again != curr_again &&
0403         chip->lux_clear < APDS_LUX_GAIN_LO_LIMIT_STRICT)
0404         /*
0405          * Gain is changed and measurement result is very small.
0406          * Result can be totally garbage due to underflow
0407          */
0408         ret = -ERANGE;
0409 
0410     chip->again_next = next_again;
0411     apds990x_write_byte(chip, APDS990X_CONTROL,
0412             (chip->pdrive << 6) |
0413             (chip->pdiode << 4) |
0414             (chip->pgain << 2) |
0415             (chip->again_next << 0));
0416 
0417     /*
0418      * Error means bad result -> re-measurement is needed. The forced
0419      * refresh uses fastest possible persistence setting to get result
0420      * as soon as possible.
0421      */
0422     if (ret < 0)
0423         apds990x_force_a_refresh(chip);
0424     else
0425         apds990x_refresh_athres(chip);
0426 
0427     return ret;
0428 }
0429 
0430 /* Called always with mutex locked */
0431 static int apds990x_get_lux(struct apds990x_chip *chip, int clear, int ir)
0432 {
0433     int iac, iac1, iac2; /* IR adjusted counts */
0434     u32 lpc; /* Lux per count */
0435 
0436     /* Formulas:
0437      * iac1 = CF1 * CLEAR_CH - IRF1 * IR_CH
0438      * iac2 = CF2 * CLEAR_CH - IRF2 * IR_CH
0439      */
0440     iac1 = (chip->cf.cf1 * clear - chip->cf.irf1 * ir) / APDS_PARAM_SCALE;
0441     iac2 = (chip->cf.cf2 * clear - chip->cf.irf2 * ir) / APDS_PARAM_SCALE;
0442 
0443     iac = max(iac1, iac2);
0444     iac = max(iac, 0);
0445 
0446     lpc = APDS990X_LUX_OUTPUT_SCALE * (chip->cf.df * chip->cf.ga) /
0447         (u32)(again[chip->again_meas] * (u32)chip->atime);
0448 
0449     return (iac * lpc) / APDS_PARAM_SCALE;
0450 }
0451 
0452 static int apds990x_ack_int(struct apds990x_chip *chip, u8 mode)
0453 {
0454     struct i2c_client *client = chip->client;
0455     s32 ret;
0456     u8 reg = APDS990x_CMD | APDS990x_CMD_TYPE_SPE;
0457 
0458     switch (mode & (APDS990X_ST_AINT | APDS990X_ST_PINT)) {
0459     case APDS990X_ST_AINT:
0460         reg |= APDS990X_INT_ACK_ALS;
0461         break;
0462     case APDS990X_ST_PINT:
0463         reg |= APDS990X_INT_ACK_PS;
0464         break;
0465     default:
0466         reg |= APDS990X_INT_ACK_BOTH;
0467         break;
0468     }
0469 
0470     ret = i2c_smbus_read_byte_data(client, reg);
0471     return (int)ret;
0472 }
0473 
0474 static irqreturn_t apds990x_irq(int irq, void *data)
0475 {
0476     struct apds990x_chip *chip = data;
0477     u8 status;
0478 
0479     apds990x_read_byte(chip, APDS990X_STATUS, &status);
0480     apds990x_ack_int(chip, status);
0481 
0482     mutex_lock(&chip->mutex);
0483     if (!pm_runtime_suspended(&chip->client->dev)) {
0484         if (status & APDS990X_ST_AINT) {
0485             apds990x_read_word(chip, APDS990X_CDATAL,
0486                     &chip->lux_clear);
0487             apds990x_read_word(chip, APDS990X_IRDATAL,
0488                     &chip->lux_ir);
0489             /* Store used gain for calculations */
0490             chip->again_meas = chip->again_next;
0491 
0492             chip->lux_raw = apds990x_get_lux(chip,
0493                             chip->lux_clear,
0494                             chip->lux_ir);
0495 
0496             if (apds990x_calc_again(chip) == 0) {
0497                 /* Result is valid */
0498                 chip->lux = chip->lux_raw;
0499                 chip->lux_wait_fresh_res = false;
0500                 wake_up(&chip->wait);
0501                 sysfs_notify(&chip->client->dev.kobj,
0502                     NULL, "lux0_input");
0503             }
0504         }
0505 
0506         if ((status & APDS990X_ST_PINT) && chip->prox_en) {
0507             u16 clr_ch;
0508 
0509             apds990x_read_word(chip, APDS990X_CDATAL, &clr_ch);
0510             /*
0511              * If ALS channel is saturated at min gain,
0512              * proximity gives false posivite values.
0513              * Just ignore them.
0514              */
0515             if (chip->again_meas == 0 &&
0516                 clr_ch == chip->a_max_result)
0517                 chip->prox_data = 0;
0518             else
0519                 apds990x_read_word(chip,
0520                         APDS990X_PDATAL,
0521                         &chip->prox_data);
0522 
0523             apds990x_refresh_pthres(chip, chip->prox_data);
0524             if (chip->prox_data < chip->prox_thres)
0525                 chip->prox_data = 0;
0526             else if (!chip->prox_continuous_mode)
0527                 chip->prox_data = APDS_PROX_RANGE;
0528             sysfs_notify(&chip->client->dev.kobj,
0529                 NULL, "prox0_raw");
0530         }
0531     }
0532     mutex_unlock(&chip->mutex);
0533     return IRQ_HANDLED;
0534 }
0535 
0536 static int apds990x_configure(struct apds990x_chip *chip)
0537 {
0538     /* It is recommended to use disabled mode during these operations */
0539     apds990x_write_byte(chip, APDS990X_ENABLE, APDS990X_EN_DISABLE_ALL);
0540 
0541     /* conversion and wait times for different state machince states */
0542     apds990x_write_byte(chip, APDS990X_PTIME, APDS990X_PTIME_DEFAULT);
0543     apds990x_write_byte(chip, APDS990X_WTIME, APDS990X_WTIME_DEFAULT);
0544     apds990x_set_atime(chip, APDS_LUX_AVERAGING_TIME);
0545 
0546     apds990x_write_byte(chip, APDS990X_CONFIG, 0);
0547 
0548     /* Persistence levels */
0549     apds990x_write_byte(chip, APDS990X_PERS,
0550             (chip->lux_persistence << APDS990X_APERS_SHIFT) |
0551             (chip->prox_persistence << APDS990X_PPERS_SHIFT));
0552 
0553     apds990x_write_byte(chip, APDS990X_PPCOUNT, chip->pdata->ppcount);
0554 
0555     /* Start with relatively small gain */
0556     chip->again_meas = 1;
0557     chip->again_next = 1;
0558     apds990x_write_byte(chip, APDS990X_CONTROL,
0559             (chip->pdrive << 6) |
0560             (chip->pdiode << 4) |
0561             (chip->pgain << 2) |
0562             (chip->again_next << 0));
0563     return 0;
0564 }
0565 
0566 static int apds990x_detect(struct apds990x_chip *chip)
0567 {
0568     struct i2c_client *client = chip->client;
0569     int ret;
0570     u8 id;
0571 
0572     ret = apds990x_read_byte(chip, APDS990X_ID, &id);
0573     if (ret < 0) {
0574         dev_err(&client->dev, "ID read failed\n");
0575         return ret;
0576     }
0577 
0578     ret = apds990x_read_byte(chip, APDS990X_REV, &chip->revision);
0579     if (ret < 0) {
0580         dev_err(&client->dev, "REV read failed\n");
0581         return ret;
0582     }
0583 
0584     switch (id) {
0585     case APDS990X_ID_0:
0586     case APDS990X_ID_4:
0587     case APDS990X_ID_29:
0588         snprintf(chip->chipname, sizeof(chip->chipname), "APDS-990x");
0589         break;
0590     default:
0591         ret = -ENODEV;
0592         break;
0593     }
0594     return ret;
0595 }
0596 
0597 #ifdef CONFIG_PM
0598 static int apds990x_chip_on(struct apds990x_chip *chip)
0599 {
0600     int err  = regulator_bulk_enable(ARRAY_SIZE(chip->regs),
0601                     chip->regs);
0602     if (err < 0)
0603         return err;
0604 
0605     usleep_range(APDS_STARTUP_DELAY, 2 * APDS_STARTUP_DELAY);
0606 
0607     /* Refresh all configs in case of regulators were off */
0608     chip->prox_data = 0;
0609     apds990x_configure(chip);
0610     apds990x_mode_on(chip);
0611     return 0;
0612 }
0613 #endif
0614 
0615 static int apds990x_chip_off(struct apds990x_chip *chip)
0616 {
0617     apds990x_write_byte(chip, APDS990X_ENABLE, APDS990X_EN_DISABLE_ALL);
0618     regulator_bulk_disable(ARRAY_SIZE(chip->regs), chip->regs);
0619     return 0;
0620 }
0621 
0622 static ssize_t apds990x_lux_show(struct device *dev,
0623                  struct device_attribute *attr, char *buf)
0624 {
0625     struct apds990x_chip *chip = dev_get_drvdata(dev);
0626     ssize_t ret;
0627     u32 result;
0628     long timeout;
0629 
0630     if (pm_runtime_suspended(dev))
0631         return -EIO;
0632 
0633     timeout = wait_event_interruptible_timeout(chip->wait,
0634                         !chip->lux_wait_fresh_res,
0635                         msecs_to_jiffies(APDS_TIMEOUT));
0636     if (!timeout)
0637         return -EIO;
0638 
0639     mutex_lock(&chip->mutex);
0640     result = (chip->lux * chip->lux_calib) / APDS_CALIB_SCALER;
0641     if (result > (APDS_RANGE * APDS990X_LUX_OUTPUT_SCALE))
0642         result = APDS_RANGE * APDS990X_LUX_OUTPUT_SCALE;
0643 
0644     ret = sprintf(buf, "%d.%d\n",
0645         result / APDS990X_LUX_OUTPUT_SCALE,
0646         result % APDS990X_LUX_OUTPUT_SCALE);
0647     mutex_unlock(&chip->mutex);
0648     return ret;
0649 }
0650 
0651 static DEVICE_ATTR(lux0_input, S_IRUGO, apds990x_lux_show, NULL);
0652 
0653 static ssize_t apds990x_lux_range_show(struct device *dev,
0654                  struct device_attribute *attr, char *buf)
0655 {
0656     return sprintf(buf, "%u\n", APDS_RANGE);
0657 }
0658 
0659 static DEVICE_ATTR(lux0_sensor_range, S_IRUGO, apds990x_lux_range_show, NULL);
0660 
0661 static ssize_t apds990x_lux_calib_format_show(struct device *dev,
0662                  struct device_attribute *attr, char *buf)
0663 {
0664     return sprintf(buf, "%u\n", APDS_CALIB_SCALER);
0665 }
0666 
0667 static DEVICE_ATTR(lux0_calibscale_default, S_IRUGO,
0668         apds990x_lux_calib_format_show, NULL);
0669 
0670 static ssize_t apds990x_lux_calib_show(struct device *dev,
0671                  struct device_attribute *attr, char *buf)
0672 {
0673     struct apds990x_chip *chip = dev_get_drvdata(dev);
0674 
0675     return sprintf(buf, "%u\n", chip->lux_calib);
0676 }
0677 
0678 static ssize_t apds990x_lux_calib_store(struct device *dev,
0679                   struct device_attribute *attr,
0680                   const char *buf, size_t len)
0681 {
0682     struct apds990x_chip *chip = dev_get_drvdata(dev);
0683     unsigned long value;
0684     int ret;
0685 
0686     ret = kstrtoul(buf, 0, &value);
0687     if (ret)
0688         return ret;
0689 
0690     chip->lux_calib = value;
0691 
0692     return len;
0693 }
0694 
0695 static DEVICE_ATTR(lux0_calibscale, S_IRUGO | S_IWUSR, apds990x_lux_calib_show,
0696         apds990x_lux_calib_store);
0697 
0698 static ssize_t apds990x_rate_avail(struct device *dev,
0699                    struct device_attribute *attr, char *buf)
0700 {
0701     int i;
0702     int pos = 0;
0703 
0704     for (i = 0; i < ARRAY_SIZE(arates_hz); i++)
0705         pos += sprintf(buf + pos, "%d ", arates_hz[i]);
0706     sprintf(buf + pos - 1, "\n");
0707     return pos;
0708 }
0709 
0710 static ssize_t apds990x_rate_show(struct device *dev,
0711                    struct device_attribute *attr, char *buf)
0712 {
0713     struct apds990x_chip *chip =  dev_get_drvdata(dev);
0714 
0715     return sprintf(buf, "%d\n", chip->arate);
0716 }
0717 
0718 static int apds990x_set_arate(struct apds990x_chip *chip, int rate)
0719 {
0720     int i;
0721 
0722     for (i = 0; i < ARRAY_SIZE(arates_hz); i++)
0723         if (rate >= arates_hz[i])
0724             break;
0725 
0726     if (i == ARRAY_SIZE(arates_hz))
0727         return -EINVAL;
0728 
0729     /* Pick up corresponding persistence value */
0730     chip->lux_persistence = apersis[i];
0731     chip->arate = arates_hz[i];
0732 
0733     /* If the chip is not in use, don't try to access it */
0734     if (pm_runtime_suspended(&chip->client->dev))
0735         return 0;
0736 
0737     /* Persistence levels */
0738     return apds990x_write_byte(chip, APDS990X_PERS,
0739             (chip->lux_persistence << APDS990X_APERS_SHIFT) |
0740             (chip->prox_persistence << APDS990X_PPERS_SHIFT));
0741 }
0742 
0743 static ssize_t apds990x_rate_store(struct device *dev,
0744                   struct device_attribute *attr,
0745                   const char *buf, size_t len)
0746 {
0747     struct apds990x_chip *chip =  dev_get_drvdata(dev);
0748     unsigned long value;
0749     int ret;
0750 
0751     ret = kstrtoul(buf, 0, &value);
0752     if (ret)
0753         return ret;
0754 
0755     mutex_lock(&chip->mutex);
0756     ret = apds990x_set_arate(chip, value);
0757     mutex_unlock(&chip->mutex);
0758 
0759     if (ret < 0)
0760         return ret;
0761     return len;
0762 }
0763 
0764 static DEVICE_ATTR(lux0_rate_avail, S_IRUGO, apds990x_rate_avail, NULL);
0765 
0766 static DEVICE_ATTR(lux0_rate, S_IRUGO | S_IWUSR, apds990x_rate_show,
0767                          apds990x_rate_store);
0768 
0769 static ssize_t apds990x_prox_show(struct device *dev,
0770                  struct device_attribute *attr, char *buf)
0771 {
0772     ssize_t ret;
0773     struct apds990x_chip *chip =  dev_get_drvdata(dev);
0774 
0775     if (pm_runtime_suspended(dev) || !chip->prox_en)
0776         return -EIO;
0777 
0778     mutex_lock(&chip->mutex);
0779     ret = sprintf(buf, "%d\n", chip->prox_data);
0780     mutex_unlock(&chip->mutex);
0781     return ret;
0782 }
0783 
0784 static DEVICE_ATTR(prox0_raw, S_IRUGO, apds990x_prox_show, NULL);
0785 
0786 static ssize_t apds990x_prox_range_show(struct device *dev,
0787                  struct device_attribute *attr, char *buf)
0788 {
0789     return sprintf(buf, "%u\n", APDS_PROX_RANGE);
0790 }
0791 
0792 static DEVICE_ATTR(prox0_sensor_range, S_IRUGO, apds990x_prox_range_show, NULL);
0793 
0794 static ssize_t apds990x_prox_enable_show(struct device *dev,
0795                    struct device_attribute *attr, char *buf)
0796 {
0797     struct apds990x_chip *chip =  dev_get_drvdata(dev);
0798 
0799     return sprintf(buf, "%d\n", chip->prox_en);
0800 }
0801 
0802 static ssize_t apds990x_prox_enable_store(struct device *dev,
0803                   struct device_attribute *attr,
0804                   const char *buf, size_t len)
0805 {
0806     struct apds990x_chip *chip =  dev_get_drvdata(dev);
0807     unsigned long value;
0808     int ret;
0809 
0810     ret = kstrtoul(buf, 0, &value);
0811     if (ret)
0812         return ret;
0813 
0814     mutex_lock(&chip->mutex);
0815 
0816     if (!chip->prox_en)
0817         chip->prox_data = 0;
0818 
0819     if (value)
0820         chip->prox_en++;
0821     else if (chip->prox_en > 0)
0822         chip->prox_en--;
0823 
0824     if (!pm_runtime_suspended(dev))
0825         apds990x_mode_on(chip);
0826     mutex_unlock(&chip->mutex);
0827     return len;
0828 }
0829 
0830 static DEVICE_ATTR(prox0_raw_en, S_IRUGO | S_IWUSR, apds990x_prox_enable_show,
0831                            apds990x_prox_enable_store);
0832 
0833 static const char *reporting_modes[] = {"trigger", "periodic"};
0834 
0835 static ssize_t apds990x_prox_reporting_mode_show(struct device *dev,
0836                    struct device_attribute *attr, char *buf)
0837 {
0838     struct apds990x_chip *chip =  dev_get_drvdata(dev);
0839 
0840     return sprintf(buf, "%s\n",
0841         reporting_modes[!!chip->prox_continuous_mode]);
0842 }
0843 
0844 static ssize_t apds990x_prox_reporting_mode_store(struct device *dev,
0845                   struct device_attribute *attr,
0846                   const char *buf, size_t len)
0847 {
0848     struct apds990x_chip *chip =  dev_get_drvdata(dev);
0849     int ret;
0850 
0851     ret = sysfs_match_string(reporting_modes, buf);
0852     if (ret < 0)
0853         return ret;
0854 
0855     chip->prox_continuous_mode = ret;
0856     return len;
0857 }
0858 
0859 static DEVICE_ATTR(prox0_reporting_mode, S_IRUGO | S_IWUSR,
0860         apds990x_prox_reporting_mode_show,
0861         apds990x_prox_reporting_mode_store);
0862 
0863 static ssize_t apds990x_prox_reporting_avail_show(struct device *dev,
0864                    struct device_attribute *attr, char *buf)
0865 {
0866     return sprintf(buf, "%s %s\n", reporting_modes[0], reporting_modes[1]);
0867 }
0868 
0869 static DEVICE_ATTR(prox0_reporting_mode_avail, S_IRUGO | S_IWUSR,
0870         apds990x_prox_reporting_avail_show, NULL);
0871 
0872 
0873 static ssize_t apds990x_lux_thresh_above_show(struct device *dev,
0874                    struct device_attribute *attr, char *buf)
0875 {
0876     struct apds990x_chip *chip =  dev_get_drvdata(dev);
0877 
0878     return sprintf(buf, "%d\n", chip->lux_thres_hi);
0879 }
0880 
0881 static ssize_t apds990x_lux_thresh_below_show(struct device *dev,
0882                    struct device_attribute *attr, char *buf)
0883 {
0884     struct apds990x_chip *chip =  dev_get_drvdata(dev);
0885 
0886     return sprintf(buf, "%d\n", chip->lux_thres_lo);
0887 }
0888 
0889 static ssize_t apds990x_set_lux_thresh(struct apds990x_chip *chip, u32 *target,
0890                 const char *buf)
0891 {
0892     unsigned long thresh;
0893     int ret;
0894 
0895     ret = kstrtoul(buf, 0, &thresh);
0896     if (ret)
0897         return ret;
0898 
0899     if (thresh > APDS_RANGE)
0900         return -EINVAL;
0901 
0902     mutex_lock(&chip->mutex);
0903     *target = thresh;
0904     /*
0905      * Don't update values in HW if we are still waiting for
0906      * first interrupt to come after device handle open call.
0907      */
0908     if (!chip->lux_wait_fresh_res)
0909         apds990x_refresh_athres(chip);
0910     mutex_unlock(&chip->mutex);
0911     return ret;
0912 
0913 }
0914 
0915 static ssize_t apds990x_lux_thresh_above_store(struct device *dev,
0916                   struct device_attribute *attr,
0917                   const char *buf, size_t len)
0918 {
0919     struct apds990x_chip *chip =  dev_get_drvdata(dev);
0920     int ret = apds990x_set_lux_thresh(chip, &chip->lux_thres_hi, buf);
0921 
0922     if (ret < 0)
0923         return ret;
0924     return len;
0925 }
0926 
0927 static ssize_t apds990x_lux_thresh_below_store(struct device *dev,
0928                   struct device_attribute *attr,
0929                   const char *buf, size_t len)
0930 {
0931     struct apds990x_chip *chip =  dev_get_drvdata(dev);
0932     int ret = apds990x_set_lux_thresh(chip, &chip->lux_thres_lo, buf);
0933 
0934     if (ret < 0)
0935         return ret;
0936     return len;
0937 }
0938 
0939 static DEVICE_ATTR(lux0_thresh_above_value, S_IRUGO | S_IWUSR,
0940         apds990x_lux_thresh_above_show,
0941         apds990x_lux_thresh_above_store);
0942 
0943 static DEVICE_ATTR(lux0_thresh_below_value, S_IRUGO | S_IWUSR,
0944         apds990x_lux_thresh_below_show,
0945         apds990x_lux_thresh_below_store);
0946 
0947 static ssize_t apds990x_prox_threshold_show(struct device *dev,
0948                    struct device_attribute *attr, char *buf)
0949 {
0950     struct apds990x_chip *chip =  dev_get_drvdata(dev);
0951 
0952     return sprintf(buf, "%d\n", chip->prox_thres);
0953 }
0954 
0955 static ssize_t apds990x_prox_threshold_store(struct device *dev,
0956                   struct device_attribute *attr,
0957                   const char *buf, size_t len)
0958 {
0959     struct apds990x_chip *chip =  dev_get_drvdata(dev);
0960     unsigned long value;
0961     int ret;
0962 
0963     ret = kstrtoul(buf, 0, &value);
0964     if (ret)
0965         return ret;
0966 
0967     if ((value > APDS_RANGE) || (value == 0) ||
0968         (value < APDS_PROX_HYSTERESIS))
0969         return -EINVAL;
0970 
0971     mutex_lock(&chip->mutex);
0972     chip->prox_thres = value;
0973 
0974     apds990x_force_p_refresh(chip);
0975     mutex_unlock(&chip->mutex);
0976     return len;
0977 }
0978 
0979 static DEVICE_ATTR(prox0_thresh_above_value, S_IRUGO | S_IWUSR,
0980         apds990x_prox_threshold_show,
0981         apds990x_prox_threshold_store);
0982 
0983 static ssize_t apds990x_power_state_show(struct device *dev,
0984                    struct device_attribute *attr, char *buf)
0985 {
0986     return sprintf(buf, "%d\n", !pm_runtime_suspended(dev));
0987     return 0;
0988 }
0989 
0990 static ssize_t apds990x_power_state_store(struct device *dev,
0991                   struct device_attribute *attr,
0992                   const char *buf, size_t len)
0993 {
0994     struct apds990x_chip *chip =  dev_get_drvdata(dev);
0995     unsigned long value;
0996     int ret;
0997 
0998     ret = kstrtoul(buf, 0, &value);
0999     if (ret)
1000         return ret;
1001 
1002     if (value) {
1003         pm_runtime_get_sync(dev);
1004         mutex_lock(&chip->mutex);
1005         chip->lux_wait_fresh_res = true;
1006         apds990x_force_a_refresh(chip);
1007         apds990x_force_p_refresh(chip);
1008         mutex_unlock(&chip->mutex);
1009     } else {
1010         if (!pm_runtime_suspended(dev))
1011             pm_runtime_put(dev);
1012     }
1013     return len;
1014 }
1015 
1016 static DEVICE_ATTR(power_state, S_IRUGO | S_IWUSR,
1017         apds990x_power_state_show,
1018         apds990x_power_state_store);
1019 
1020 static ssize_t apds990x_chip_id_show(struct device *dev,
1021                    struct device_attribute *attr, char *buf)
1022 {
1023     struct apds990x_chip *chip =  dev_get_drvdata(dev);
1024 
1025     return sprintf(buf, "%s %d\n", chip->chipname, chip->revision);
1026 }
1027 
1028 static DEVICE_ATTR(chip_id, S_IRUGO, apds990x_chip_id_show, NULL);
1029 
1030 static struct attribute *sysfs_attrs_ctrl[] = {
1031     &dev_attr_lux0_calibscale.attr,
1032     &dev_attr_lux0_calibscale_default.attr,
1033     &dev_attr_lux0_input.attr,
1034     &dev_attr_lux0_sensor_range.attr,
1035     &dev_attr_lux0_rate.attr,
1036     &dev_attr_lux0_rate_avail.attr,
1037     &dev_attr_lux0_thresh_above_value.attr,
1038     &dev_attr_lux0_thresh_below_value.attr,
1039     &dev_attr_prox0_raw_en.attr,
1040     &dev_attr_prox0_raw.attr,
1041     &dev_attr_prox0_sensor_range.attr,
1042     &dev_attr_prox0_thresh_above_value.attr,
1043     &dev_attr_prox0_reporting_mode.attr,
1044     &dev_attr_prox0_reporting_mode_avail.attr,
1045     &dev_attr_chip_id.attr,
1046     &dev_attr_power_state.attr,
1047     NULL
1048 };
1049 
1050 static const struct attribute_group apds990x_attribute_group[] = {
1051     {.attrs = sysfs_attrs_ctrl },
1052 };
1053 
1054 static int apds990x_probe(struct i2c_client *client,
1055                 const struct i2c_device_id *id)
1056 {
1057     struct apds990x_chip *chip;
1058     int err;
1059 
1060     chip = kzalloc(sizeof *chip, GFP_KERNEL);
1061     if (!chip)
1062         return -ENOMEM;
1063 
1064     i2c_set_clientdata(client, chip);
1065     chip->client  = client;
1066 
1067     init_waitqueue_head(&chip->wait);
1068     mutex_init(&chip->mutex);
1069     chip->pdata = client->dev.platform_data;
1070 
1071     if (chip->pdata == NULL) {
1072         dev_err(&client->dev, "platform data is mandatory\n");
1073         err = -EINVAL;
1074         goto fail1;
1075     }
1076 
1077     if (chip->pdata->cf.ga == 0) {
1078         /* set uncovered sensor default parameters */
1079         chip->cf.ga = 1966; /* 0.48 * APDS_PARAM_SCALE */
1080         chip->cf.cf1 = 4096; /* 1.00 * APDS_PARAM_SCALE */
1081         chip->cf.irf1 = 9134; /* 2.23 * APDS_PARAM_SCALE */
1082         chip->cf.cf2 = 2867; /* 0.70 * APDS_PARAM_SCALE */
1083         chip->cf.irf2 = 5816; /* 1.42 * APDS_PARAM_SCALE */
1084         chip->cf.df = 52;
1085     } else {
1086         chip->cf = chip->pdata->cf;
1087     }
1088 
1089     /* precalculate inverse chip factors for threshold control */
1090     chip->rcf.afactor =
1091         (chip->cf.irf1 - chip->cf.irf2) * APDS_PARAM_SCALE /
1092         (chip->cf.cf1 - chip->cf.cf2);
1093     chip->rcf.cf1 = APDS_PARAM_SCALE * APDS_PARAM_SCALE /
1094         chip->cf.cf1;
1095     chip->rcf.irf1 = chip->cf.irf1 * APDS_PARAM_SCALE /
1096         chip->cf.cf1;
1097     chip->rcf.cf2 = APDS_PARAM_SCALE * APDS_PARAM_SCALE /
1098         chip->cf.cf2;
1099     chip->rcf.irf2 = chip->cf.irf2 * APDS_PARAM_SCALE /
1100         chip->cf.cf2;
1101 
1102     /* Set something to start with */
1103     chip->lux_thres_hi = APDS_LUX_DEF_THRES_HI;
1104     chip->lux_thres_lo = APDS_LUX_DEF_THRES_LO;
1105     chip->lux_calib = APDS_LUX_NEUTRAL_CALIB_VALUE;
1106 
1107     chip->prox_thres = APDS_PROX_DEF_THRES;
1108     chip->pdrive = chip->pdata->pdrive;
1109     chip->pdiode = APDS_PDIODE_IR;
1110     chip->pgain = APDS_PGAIN_1X;
1111     chip->prox_calib = APDS_PROX_NEUTRAL_CALIB_VALUE;
1112     chip->prox_persistence = APDS_DEFAULT_PROX_PERS;
1113     chip->prox_continuous_mode = false;
1114 
1115     chip->regs[0].supply = reg_vcc;
1116     chip->regs[1].supply = reg_vled;
1117 
1118     err = regulator_bulk_get(&client->dev,
1119                  ARRAY_SIZE(chip->regs), chip->regs);
1120     if (err < 0) {
1121         dev_err(&client->dev, "Cannot get regulators\n");
1122         goto fail1;
1123     }
1124 
1125     err = regulator_bulk_enable(ARRAY_SIZE(chip->regs), chip->regs);
1126     if (err < 0) {
1127         dev_err(&client->dev, "Cannot enable regulators\n");
1128         goto fail2;
1129     }
1130 
1131     usleep_range(APDS_STARTUP_DELAY, 2 * APDS_STARTUP_DELAY);
1132 
1133     err = apds990x_detect(chip);
1134     if (err < 0) {
1135         dev_err(&client->dev, "APDS990X not found\n");
1136         goto fail3;
1137     }
1138 
1139     pm_runtime_set_active(&client->dev);
1140 
1141     apds990x_configure(chip);
1142     apds990x_set_arate(chip, APDS_LUX_DEFAULT_RATE);
1143     apds990x_mode_on(chip);
1144 
1145     pm_runtime_enable(&client->dev);
1146 
1147     if (chip->pdata->setup_resources) {
1148         err = chip->pdata->setup_resources();
1149         if (err) {
1150             err = -EINVAL;
1151             goto fail3;
1152         }
1153     }
1154 
1155     err = sysfs_create_group(&chip->client->dev.kobj,
1156                 apds990x_attribute_group);
1157     if (err < 0) {
1158         dev_err(&chip->client->dev, "Sysfs registration failed\n");
1159         goto fail4;
1160     }
1161 
1162     err = request_threaded_irq(client->irq, NULL,
1163                 apds990x_irq,
1164                 IRQF_TRIGGER_FALLING | IRQF_TRIGGER_LOW |
1165                 IRQF_ONESHOT,
1166                 "apds990x", chip);
1167     if (err) {
1168         dev_err(&client->dev, "could not get IRQ %d\n",
1169             client->irq);
1170         goto fail5;
1171     }
1172     return err;
1173 fail5:
1174     sysfs_remove_group(&chip->client->dev.kobj,
1175             &apds990x_attribute_group[0]);
1176 fail4:
1177     if (chip->pdata && chip->pdata->release_resources)
1178         chip->pdata->release_resources();
1179 fail3:
1180     regulator_bulk_disable(ARRAY_SIZE(chip->regs), chip->regs);
1181 fail2:
1182     regulator_bulk_free(ARRAY_SIZE(chip->regs), chip->regs);
1183 fail1:
1184     kfree(chip);
1185     return err;
1186 }
1187 
1188 static int apds990x_remove(struct i2c_client *client)
1189 {
1190     struct apds990x_chip *chip = i2c_get_clientdata(client);
1191 
1192     free_irq(client->irq, chip);
1193     sysfs_remove_group(&chip->client->dev.kobj,
1194             apds990x_attribute_group);
1195 
1196     if (chip->pdata && chip->pdata->release_resources)
1197         chip->pdata->release_resources();
1198 
1199     if (!pm_runtime_suspended(&client->dev))
1200         apds990x_chip_off(chip);
1201 
1202     pm_runtime_disable(&client->dev);
1203     pm_runtime_set_suspended(&client->dev);
1204 
1205     regulator_bulk_free(ARRAY_SIZE(chip->regs), chip->regs);
1206 
1207     kfree(chip);
1208     return 0;
1209 }
1210 
1211 #ifdef CONFIG_PM_SLEEP
1212 static int apds990x_suspend(struct device *dev)
1213 {
1214     struct i2c_client *client = to_i2c_client(dev);
1215     struct apds990x_chip *chip = i2c_get_clientdata(client);
1216 
1217     apds990x_chip_off(chip);
1218     return 0;
1219 }
1220 
1221 static int apds990x_resume(struct device *dev)
1222 {
1223     struct i2c_client *client = to_i2c_client(dev);
1224     struct apds990x_chip *chip = i2c_get_clientdata(client);
1225 
1226     /*
1227      * If we were enabled at suspend time, it is expected
1228      * everything works nice and smoothly. Chip_on is enough
1229      */
1230     apds990x_chip_on(chip);
1231 
1232     return 0;
1233 }
1234 #endif
1235 
1236 #ifdef CONFIG_PM
1237 static int apds990x_runtime_suspend(struct device *dev)
1238 {
1239     struct i2c_client *client = to_i2c_client(dev);
1240     struct apds990x_chip *chip = i2c_get_clientdata(client);
1241 
1242     apds990x_chip_off(chip);
1243     return 0;
1244 }
1245 
1246 static int apds990x_runtime_resume(struct device *dev)
1247 {
1248     struct i2c_client *client = to_i2c_client(dev);
1249     struct apds990x_chip *chip = i2c_get_clientdata(client);
1250 
1251     apds990x_chip_on(chip);
1252     return 0;
1253 }
1254 
1255 #endif
1256 
1257 static const struct i2c_device_id apds990x_id[] = {
1258     {"apds990x", 0 },
1259     {}
1260 };
1261 
1262 MODULE_DEVICE_TABLE(i2c, apds990x_id);
1263 
1264 static const struct dev_pm_ops apds990x_pm_ops = {
1265     SET_SYSTEM_SLEEP_PM_OPS(apds990x_suspend, apds990x_resume)
1266     SET_RUNTIME_PM_OPS(apds990x_runtime_suspend,
1267             apds990x_runtime_resume,
1268             NULL)
1269 };
1270 
1271 static struct i2c_driver apds990x_driver = {
1272     .driver  = {
1273         .name   = "apds990x",
1274         .pm = &apds990x_pm_ops,
1275     },
1276     .probe    = apds990x_probe,
1277     .remove   = apds990x_remove,
1278     .id_table = apds990x_id,
1279 };
1280 
1281 module_i2c_driver(apds990x_driver);
1282 
1283 MODULE_DESCRIPTION("APDS990X combined ALS and proximity sensor");
1284 MODULE_AUTHOR("Samu Onkalo, Nokia Corporation");
1285 MODULE_LICENSE("GPL v2");