0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014 #include <linux/init.h>
0015 #include <linux/export.h>
0016 #include <linux/kernel.h>
0017 #include <linux/delay.h>
0018 #include <linux/errno.h>
0019 #include <linux/err.h>
0020 #include <linux/spinlock.h>
0021 #include <linux/io.h>
0022 #include <linux/slab.h>
0023 #include <linux/mutex.h>
0024 #include <linux/completion.h>
0025 #include <linux/irq.h>
0026 #include <linux/jiffies.h>
0027 #include <linux/bitops.h>
0028 #include <linux/fs.h>
0029 #include <linux/of.h>
0030 #include <linux/of_address.h>
0031 #include <linux/of_irq.h>
0032 #include <linux/platform_device.h>
0033 #include <linux/uaccess.h>
0034 #include <linux/mfd/core.h>
0035 #include <linux/mfd/dbx500-prcmu.h>
0036 #include <linux/mfd/abx500/ab8500.h>
0037 #include <linux/regulator/db8500-prcmu.h>
0038 #include <linux/regulator/machine.h>
0039 #include "db8500-prcmu-regs.h"
0040
0041
0042 #define PRCM_AVS_BASE 0x2FC
0043 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
0044 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
0045 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
0046 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
0047 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
0048 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
0049 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
0050 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
0051 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
0052 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
0053 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
0054 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
0055 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
0056
0057 #define PRCM_AVS_VOLTAGE 0
0058 #define PRCM_AVS_VOLTAGE_MASK 0x3f
0059 #define PRCM_AVS_ISSLOWSTARTUP 6
0060 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
0061 #define PRCM_AVS_ISMODEENABLE 7
0062 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
0063
0064 #define PRCM_BOOT_STATUS 0xFFF
0065 #define PRCM_ROMCODE_A2P 0xFFE
0066 #define PRCM_ROMCODE_P2A 0xFFD
0067 #define PRCM_XP70_CUR_PWR_STATE 0xFFC
0068
0069 #define PRCM_SW_RST_REASON 0xFF8
0070
0071 #define _PRCM_MBOX_HEADER 0xFE8
0072 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
0073 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
0074 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
0075 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
0076 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
0077 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
0078 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
0079
0080
0081 #define PRCM_REQ_MB0 0xFDC
0082 #define PRCM_REQ_MB1 0xFD0
0083 #define PRCM_REQ_MB2 0xFC0
0084 #define PRCM_REQ_MB3 0xE4C
0085 #define PRCM_REQ_MB4 0xE48
0086 #define PRCM_REQ_MB5 0xE44
0087
0088
0089 #define PRCM_ACK_MB0 0xE08
0090 #define PRCM_ACK_MB1 0xE04
0091 #define PRCM_ACK_MB2 0xE00
0092 #define PRCM_ACK_MB3 0xDFC
0093 #define PRCM_ACK_MB4 0xDF8
0094 #define PRCM_ACK_MB5 0xDF4
0095
0096
0097 #define MB0H_POWER_STATE_TRANS 0
0098 #define MB0H_CONFIG_WAKEUPS_EXE 1
0099 #define MB0H_READ_WAKEUP_ACK 3
0100 #define MB0H_CONFIG_WAKEUPS_SLEEP 4
0101
0102 #define MB0H_WAKEUP_EXE 2
0103 #define MB0H_WAKEUP_SLEEP 5
0104
0105
0106 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
0107 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
0108 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
0109 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
0110 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
0111 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
0112
0113
0114 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
0115 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
0116 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
0117 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
0118 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
0119 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
0120 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
0121
0122
0123 #define MB1H_ARM_APE_OPP 0x0
0124 #define MB1H_RESET_MODEM 0x2
0125 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
0126 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
0127 #define MB1H_RELEASE_USB_WAKEUP 0x5
0128 #define MB1H_PLL_ON_OFF 0x6
0129
0130
0131 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
0132 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
0133 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
0134 #define PLL_SOC0_OFF 0x1
0135 #define PLL_SOC0_ON 0x2
0136 #define PLL_SOC1_OFF 0x4
0137 #define PLL_SOC1_ON 0x8
0138
0139
0140 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
0141 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
0142 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
0143 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
0144
0145
0146 #define MB2H_DPS 0x0
0147 #define MB2H_AUTO_PWR 0x1
0148
0149
0150 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
0151 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
0152 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
0153 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
0154 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
0155 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
0156 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
0157 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
0158 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
0159 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
0160
0161
0162 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
0163 #define HWACC_PWR_ST_OK 0xFE
0164
0165
0166 #define MB3H_ANC 0x0
0167 #define MB3H_SIDETONE 0x1
0168 #define MB3H_SYSCLK 0xE
0169
0170
0171 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
0172 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
0173 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
0174 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
0175 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
0176 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
0177 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
0178
0179
0180 #define MB4H_DDR_INIT 0x0
0181 #define MB4H_MEM_ST 0x1
0182 #define MB4H_HOTDOG 0x12
0183 #define MB4H_HOTMON 0x13
0184 #define MB4H_HOT_PERIOD 0x14
0185 #define MB4H_A9WDOG_CONF 0x16
0186 #define MB4H_A9WDOG_EN 0x17
0187 #define MB4H_A9WDOG_DIS 0x18
0188 #define MB4H_A9WDOG_LOAD 0x19
0189 #define MB4H_A9WDOG_KICK 0x20
0190
0191
0192 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
0193 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
0194 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
0195 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
0196 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
0197 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
0198 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
0199 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
0200 #define HOTMON_CONFIG_LOW BIT(0)
0201 #define HOTMON_CONFIG_HIGH BIT(1)
0202 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
0203 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
0204 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
0205 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
0206 #define A9WDOG_AUTO_OFF_EN BIT(7)
0207 #define A9WDOG_AUTO_OFF_DIS 0
0208 #define A9WDOG_ID_MASK 0xf
0209
0210
0211 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
0212 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
0213 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
0214 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
0215 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
0216 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
0217 #define PRCMU_I2C_STOP_EN BIT(3)
0218
0219
0220 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
0221 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
0222 #define I2C_WR_OK 0x1
0223 #define I2C_RD_OK 0x2
0224
0225 #define NUM_MB 8
0226 #define MBOX_BIT BIT
0227 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
0228
0229
0230
0231
0232
0233 #define WAKEUP_BIT_RTC BIT(0)
0234 #define WAKEUP_BIT_RTT0 BIT(1)
0235 #define WAKEUP_BIT_RTT1 BIT(2)
0236 #define WAKEUP_BIT_HSI0 BIT(3)
0237 #define WAKEUP_BIT_HSI1 BIT(4)
0238 #define WAKEUP_BIT_CA_WAKE BIT(5)
0239 #define WAKEUP_BIT_USB BIT(6)
0240 #define WAKEUP_BIT_ABB BIT(7)
0241 #define WAKEUP_BIT_ABB_FIFO BIT(8)
0242 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
0243 #define WAKEUP_BIT_CA_SLEEP BIT(10)
0244 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
0245 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
0246 #define WAKEUP_BIT_ANC_OK BIT(13)
0247 #define WAKEUP_BIT_SW_ERROR BIT(14)
0248 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
0249 #define WAKEUP_BIT_ARM BIT(17)
0250 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
0251 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
0252 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
0253 #define WAKEUP_BIT_GPIO0 BIT(23)
0254 #define WAKEUP_BIT_GPIO1 BIT(24)
0255 #define WAKEUP_BIT_GPIO2 BIT(25)
0256 #define WAKEUP_BIT_GPIO3 BIT(26)
0257 #define WAKEUP_BIT_GPIO4 BIT(27)
0258 #define WAKEUP_BIT_GPIO5 BIT(28)
0259 #define WAKEUP_BIT_GPIO6 BIT(29)
0260 #define WAKEUP_BIT_GPIO7 BIT(30)
0261 #define WAKEUP_BIT_GPIO8 BIT(31)
0262
0263 static struct {
0264 bool valid;
0265 struct prcmu_fw_version version;
0266 } fw_info;
0267
0268 static struct irq_domain *db8500_irq_domain;
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
0279 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
0280
0281 #define IRQ_PRCMU_RTC 0
0282 #define IRQ_PRCMU_RTT0 1
0283 #define IRQ_PRCMU_RTT1 2
0284 #define IRQ_PRCMU_HSI0 3
0285 #define IRQ_PRCMU_HSI1 4
0286 #define IRQ_PRCMU_CA_WAKE 5
0287 #define IRQ_PRCMU_USB 6
0288 #define IRQ_PRCMU_ABB 7
0289 #define IRQ_PRCMU_ABB_FIFO 8
0290 #define IRQ_PRCMU_ARM 9
0291 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
0292 #define IRQ_PRCMU_GPIO0 11
0293 #define IRQ_PRCMU_GPIO1 12
0294 #define IRQ_PRCMU_GPIO2 13
0295 #define IRQ_PRCMU_GPIO3 14
0296 #define IRQ_PRCMU_GPIO4 15
0297 #define IRQ_PRCMU_GPIO5 16
0298 #define IRQ_PRCMU_GPIO6 17
0299 #define IRQ_PRCMU_GPIO7 18
0300 #define IRQ_PRCMU_GPIO8 19
0301 #define IRQ_PRCMU_CA_SLEEP 20
0302 #define IRQ_PRCMU_HOTMON_LOW 21
0303 #define IRQ_PRCMU_HOTMON_HIGH 22
0304 #define NUM_PRCMU_WAKEUPS 23
0305
0306 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
0307 IRQ_ENTRY(RTC),
0308 IRQ_ENTRY(RTT0),
0309 IRQ_ENTRY(RTT1),
0310 IRQ_ENTRY(HSI0),
0311 IRQ_ENTRY(HSI1),
0312 IRQ_ENTRY(CA_WAKE),
0313 IRQ_ENTRY(USB),
0314 IRQ_ENTRY(ABB),
0315 IRQ_ENTRY(ABB_FIFO),
0316 IRQ_ENTRY(CA_SLEEP),
0317 IRQ_ENTRY(ARM),
0318 IRQ_ENTRY(HOTMON_LOW),
0319 IRQ_ENTRY(HOTMON_HIGH),
0320 IRQ_ENTRY(MODEM_SW_RESET_REQ),
0321 IRQ_ENTRY(GPIO0),
0322 IRQ_ENTRY(GPIO1),
0323 IRQ_ENTRY(GPIO2),
0324 IRQ_ENTRY(GPIO3),
0325 IRQ_ENTRY(GPIO4),
0326 IRQ_ENTRY(GPIO5),
0327 IRQ_ENTRY(GPIO6),
0328 IRQ_ENTRY(GPIO7),
0329 IRQ_ENTRY(GPIO8)
0330 };
0331
0332 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
0333 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
0334 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
0335 WAKEUP_ENTRY(RTC),
0336 WAKEUP_ENTRY(RTT0),
0337 WAKEUP_ENTRY(RTT1),
0338 WAKEUP_ENTRY(HSI0),
0339 WAKEUP_ENTRY(HSI1),
0340 WAKEUP_ENTRY(USB),
0341 WAKEUP_ENTRY(ABB),
0342 WAKEUP_ENTRY(ABB_FIFO),
0343 WAKEUP_ENTRY(ARM)
0344 };
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354 static struct {
0355 spinlock_t lock;
0356 spinlock_t dbb_irqs_lock;
0357 struct work_struct mask_work;
0358 struct mutex ac_wake_lock;
0359 struct completion ac_wake_work;
0360 struct {
0361 u32 dbb_irqs;
0362 u32 dbb_wakeups;
0363 u32 abb_events;
0364 } req;
0365 } mb0_transfer;
0366
0367
0368
0369
0370
0371
0372
0373
0374 static struct {
0375 struct mutex lock;
0376 struct completion work;
0377 u8 ape_opp;
0378 struct {
0379 u8 header;
0380 u8 arm_opp;
0381 u8 ape_opp;
0382 u8 ape_voltage_status;
0383 } ack;
0384 } mb1_transfer;
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395 static struct {
0396 struct mutex lock;
0397 struct completion work;
0398 spinlock_t auto_pm_lock;
0399 bool auto_pm_enabled;
0400 struct {
0401 u8 status;
0402 } ack;
0403 } mb2_transfer;
0404
0405
0406
0407
0408
0409
0410
0411 static struct {
0412 spinlock_t lock;
0413 struct mutex sysclk_lock;
0414 struct completion sysclk_work;
0415 } mb3_transfer;
0416
0417
0418
0419
0420
0421
0422 static struct {
0423 struct mutex lock;
0424 struct completion work;
0425 } mb4_transfer;
0426
0427
0428
0429
0430
0431
0432
0433 static struct {
0434 struct mutex lock;
0435 struct completion work;
0436 struct {
0437 u8 status;
0438 u8 value;
0439 } ack;
0440 } mb5_transfer;
0441
0442 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
0443
0444
0445 static DEFINE_SPINLOCK(prcmu_lock);
0446 static DEFINE_SPINLOCK(clkout_lock);
0447
0448
0449 static __iomem void *tcdm_base;
0450 static __iomem void *prcmu_base;
0451
0452 struct clk_mgt {
0453 u32 offset;
0454 u32 pllsw;
0455 int branch;
0456 bool clk38div;
0457 };
0458
0459 enum {
0460 PLL_RAW,
0461 PLL_FIX,
0462 PLL_DIV
0463 };
0464
0465 static DEFINE_SPINLOCK(clk_mgt_lock);
0466
0467 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
0468 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
0469 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
0470 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
0471 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
0472 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
0473 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
0474 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
0475 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
0476 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
0477 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
0478 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
0479 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
0480 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
0481 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
0482 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
0483 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
0484 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
0485 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
0486 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
0487 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
0488 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
0489 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
0490 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
0491 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
0492 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
0493 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
0494 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
0495 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
0496 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
0497 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
0498 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
0499 };
0500
0501 struct dsiclk {
0502 u32 divsel_mask;
0503 u32 divsel_shift;
0504 u32 divsel;
0505 };
0506
0507 static struct dsiclk dsiclk[2] = {
0508 {
0509 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
0510 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
0511 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
0512 },
0513 {
0514 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
0515 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
0516 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
0517 }
0518 };
0519
0520 struct dsiescclk {
0521 u32 en;
0522 u32 div_mask;
0523 u32 div_shift;
0524 };
0525
0526 static struct dsiescclk dsiescclk[3] = {
0527 {
0528 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
0529 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
0530 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
0531 },
0532 {
0533 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
0534 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
0535 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
0536 },
0537 {
0538 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
0539 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
0540 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
0541 }
0542 };
0543
0544 u32 db8500_prcmu_read(unsigned int reg)
0545 {
0546 return readl(prcmu_base + reg);
0547 }
0548
0549 void db8500_prcmu_write(unsigned int reg, u32 value)
0550 {
0551 unsigned long flags;
0552
0553 spin_lock_irqsave(&prcmu_lock, flags);
0554 writel(value, (prcmu_base + reg));
0555 spin_unlock_irqrestore(&prcmu_lock, flags);
0556 }
0557
0558 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
0559 {
0560 u32 val;
0561 unsigned long flags;
0562
0563 spin_lock_irqsave(&prcmu_lock, flags);
0564 val = readl(prcmu_base + reg);
0565 val = ((val & ~mask) | (value & mask));
0566 writel(val, (prcmu_base + reg));
0567 spin_unlock_irqrestore(&prcmu_lock, flags);
0568 }
0569
0570 struct prcmu_fw_version *prcmu_get_fw_version(void)
0571 {
0572 return fw_info.valid ? &fw_info.version : NULL;
0573 }
0574
0575 static bool prcmu_is_ulppll_disabled(void)
0576 {
0577 struct prcmu_fw_version *ver;
0578
0579 ver = prcmu_get_fw_version();
0580 return ver && ver->project == PRCMU_FW_PROJECT_U8420_SYSCLK;
0581 }
0582
0583 bool prcmu_has_arm_maxopp(void)
0584 {
0585 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
0586 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
0587 }
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597 int prcmu_set_rc_a2p(enum romcode_write val)
0598 {
0599 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
0600 return -EINVAL;
0601 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
0602 return 0;
0603 }
0604
0605
0606
0607
0608
0609
0610
0611
0612 enum romcode_read prcmu_get_rc_p2a(void)
0613 {
0614 return readb(tcdm_base + PRCM_ROMCODE_P2A);
0615 }
0616
0617
0618
0619
0620
0621
0622 enum ap_pwrst prcmu_get_xp70_current_state(void)
0623 {
0624 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
0625 }
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
0638 {
0639 static int requests[2];
0640 int r = 0;
0641 unsigned long flags;
0642 u32 val;
0643 u32 bits;
0644 u32 mask;
0645 u32 div_mask;
0646
0647 BUG_ON(clkout > 1);
0648 BUG_ON(div > 63);
0649 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
0650
0651 if (!div && !requests[clkout])
0652 return -EINVAL;
0653
0654 if (clkout == 0) {
0655 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
0656 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
0657 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
0658 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
0659 } else {
0660 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
0661 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
0662 PRCM_CLKOCR_CLK1TYPE);
0663 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
0664 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
0665 }
0666 bits &= mask;
0667
0668 spin_lock_irqsave(&clkout_lock, flags);
0669
0670 val = readl(PRCM_CLKOCR);
0671 if (val & div_mask) {
0672 if (div) {
0673 if ((val & mask) != bits) {
0674 r = -EBUSY;
0675 goto unlock_and_return;
0676 }
0677 } else {
0678 if ((val & mask & ~div_mask) != bits) {
0679 r = -EINVAL;
0680 goto unlock_and_return;
0681 }
0682 }
0683 }
0684 writel((bits | (val & ~mask)), PRCM_CLKOCR);
0685 requests[clkout] += (div ? 1 : -1);
0686
0687 unlock_and_return:
0688 spin_unlock_irqrestore(&clkout_lock, flags);
0689
0690 return r;
0691 }
0692
0693 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
0694 {
0695 unsigned long flags;
0696
0697 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
0698
0699 spin_lock_irqsave(&mb0_transfer.lock, flags);
0700
0701 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
0702 cpu_relax();
0703
0704 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
0705 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
0706 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
0707 writeb((keep_ulp_clk ? 1 : 0),
0708 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
0709 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
0710 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
0711
0712 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
0713
0714 return 0;
0715 }
0716
0717 u8 db8500_prcmu_get_power_state_result(void)
0718 {
0719 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
0720 }
0721
0722
0723 static void config_wakeups(void)
0724 {
0725 const u8 header[2] = {
0726 MB0H_CONFIG_WAKEUPS_EXE,
0727 MB0H_CONFIG_WAKEUPS_SLEEP
0728 };
0729 static u32 last_dbb_events;
0730 static u32 last_abb_events;
0731 u32 dbb_events;
0732 u32 abb_events;
0733 unsigned int i;
0734
0735 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
0736 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
0737
0738 abb_events = mb0_transfer.req.abb_events;
0739
0740 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
0741 return;
0742
0743 for (i = 0; i < 2; i++) {
0744 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
0745 cpu_relax();
0746 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
0747 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
0748 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
0749 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
0750 }
0751 last_dbb_events = dbb_events;
0752 last_abb_events = abb_events;
0753 }
0754
0755 void db8500_prcmu_enable_wakeups(u32 wakeups)
0756 {
0757 unsigned long flags;
0758 u32 bits;
0759 int i;
0760
0761 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
0762
0763 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
0764 if (wakeups & BIT(i))
0765 bits |= prcmu_wakeup_bit[i];
0766 }
0767
0768 spin_lock_irqsave(&mb0_transfer.lock, flags);
0769
0770 mb0_transfer.req.dbb_wakeups = bits;
0771 config_wakeups();
0772
0773 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
0774 }
0775
0776 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
0777 {
0778 unsigned long flags;
0779
0780 spin_lock_irqsave(&mb0_transfer.lock, flags);
0781
0782 mb0_transfer.req.abb_events = abb_events;
0783 config_wakeups();
0784
0785 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
0786 }
0787
0788 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
0789 {
0790 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
0791 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
0792 else
0793 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
0794 }
0795
0796
0797
0798
0799
0800
0801
0802
0803 int db8500_prcmu_set_arm_opp(u8 opp)
0804 {
0805 int r;
0806
0807 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
0808 return -EINVAL;
0809
0810 r = 0;
0811
0812 mutex_lock(&mb1_transfer.lock);
0813
0814 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
0815 cpu_relax();
0816
0817 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
0818 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
0819 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
0820
0821 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
0822 wait_for_completion(&mb1_transfer.work);
0823
0824 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
0825 (mb1_transfer.ack.arm_opp != opp))
0826 r = -EIO;
0827
0828 mutex_unlock(&mb1_transfer.lock);
0829
0830 return r;
0831 }
0832
0833
0834
0835
0836
0837
0838 int db8500_prcmu_get_arm_opp(void)
0839 {
0840 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
0841 }
0842
0843
0844
0845
0846
0847
0848 int db8500_prcmu_get_ddr_opp(void)
0849 {
0850 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
0851 }
0852
0853
0854 static void request_even_slower_clocks(bool enable)
0855 {
0856 u32 clock_reg[] = {
0857 PRCM_ACLK_MGT,
0858 PRCM_DMACLK_MGT
0859 };
0860 unsigned long flags;
0861 unsigned int i;
0862
0863 spin_lock_irqsave(&clk_mgt_lock, flags);
0864
0865
0866 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
0867 cpu_relax();
0868
0869 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
0870 u32 val;
0871 u32 div;
0872
0873 val = readl(prcmu_base + clock_reg[i]);
0874 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
0875 if (enable) {
0876 if ((div <= 1) || (div > 15)) {
0877 pr_err("prcmu: Bad clock divider %d in %s\n",
0878 div, __func__);
0879 goto unlock_and_return;
0880 }
0881 div <<= 1;
0882 } else {
0883 if (div <= 2)
0884 goto unlock_and_return;
0885 div >>= 1;
0886 }
0887 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
0888 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
0889 writel(val, prcmu_base + clock_reg[i]);
0890 }
0891
0892 unlock_and_return:
0893
0894 writel(0, PRCM_SEM);
0895
0896 spin_unlock_irqrestore(&clk_mgt_lock, flags);
0897 }
0898
0899
0900
0901
0902
0903
0904
0905
0906 int db8500_prcmu_set_ape_opp(u8 opp)
0907 {
0908 int r = 0;
0909
0910 if (opp == mb1_transfer.ape_opp)
0911 return 0;
0912
0913 mutex_lock(&mb1_transfer.lock);
0914
0915 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
0916 request_even_slower_clocks(false);
0917
0918 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
0919 goto skip_message;
0920
0921 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
0922 cpu_relax();
0923
0924 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
0925 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
0926 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
0927 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
0928
0929 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
0930 wait_for_completion(&mb1_transfer.work);
0931
0932 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
0933 (mb1_transfer.ack.ape_opp != opp))
0934 r = -EIO;
0935
0936 skip_message:
0937 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
0938 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
0939 request_even_slower_clocks(true);
0940 if (!r)
0941 mb1_transfer.ape_opp = opp;
0942
0943 mutex_unlock(&mb1_transfer.lock);
0944
0945 return r;
0946 }
0947
0948
0949
0950
0951
0952
0953 int db8500_prcmu_get_ape_opp(void)
0954 {
0955 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
0956 }
0957
0958
0959
0960
0961
0962
0963
0964 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
0965 {
0966 int r = 0;
0967 u8 header;
0968 static unsigned int requests;
0969
0970 mutex_lock(&mb1_transfer.lock);
0971
0972 if (enable) {
0973 if (0 != requests++)
0974 goto unlock_and_return;
0975 header = MB1H_REQUEST_APE_OPP_100_VOLT;
0976 } else {
0977 if (requests == 0) {
0978 r = -EIO;
0979 goto unlock_and_return;
0980 } else if (1 != requests--) {
0981 goto unlock_and_return;
0982 }
0983 header = MB1H_RELEASE_APE_OPP_100_VOLT;
0984 }
0985
0986 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
0987 cpu_relax();
0988
0989 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
0990
0991 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
0992 wait_for_completion(&mb1_transfer.work);
0993
0994 if ((mb1_transfer.ack.header != header) ||
0995 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
0996 r = -EIO;
0997
0998 unlock_and_return:
0999 mutex_unlock(&mb1_transfer.lock);
1000
1001 return r;
1002 }
1003
1004
1005
1006
1007
1008
1009 int prcmu_release_usb_wakeup_state(void)
1010 {
1011 int r = 0;
1012
1013 mutex_lock(&mb1_transfer.lock);
1014
1015 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1016 cpu_relax();
1017
1018 writeb(MB1H_RELEASE_USB_WAKEUP,
1019 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1020
1021 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1022 wait_for_completion(&mb1_transfer.work);
1023
1024 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1025 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1026 r = -EIO;
1027
1028 mutex_unlock(&mb1_transfer.lock);
1029
1030 return r;
1031 }
1032
1033 static int request_pll(u8 clock, bool enable)
1034 {
1035 int r = 0;
1036
1037 if (clock == PRCMU_PLLSOC0)
1038 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1039 else if (clock == PRCMU_PLLSOC1)
1040 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1041 else
1042 return -EINVAL;
1043
1044 mutex_lock(&mb1_transfer.lock);
1045
1046 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1047 cpu_relax();
1048
1049 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1050 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1051
1052 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1053 wait_for_completion(&mb1_transfer.work);
1054
1055 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1056 r = -EIO;
1057
1058 mutex_unlock(&mb1_transfer.lock);
1059
1060 return r;
1061 }
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1072 {
1073 int r = 0;
1074 bool ram_retention = false;
1075 int i;
1076
1077
1078 BUG_ON(epod_id >= NUM_EPOD_ID);
1079
1080
1081 switch (epod_id) {
1082 case EPOD_ID_SVAMMDSP:
1083 case EPOD_ID_SIAMMDSP:
1084 case EPOD_ID_ESRAM12:
1085 case EPOD_ID_ESRAM34:
1086 ram_retention = true;
1087 break;
1088 }
1089
1090
1091 BUG_ON(epod_state > EPOD_STATE_ON);
1092 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1093
1094
1095 mutex_lock(&mb2_transfer.lock);
1096
1097
1098 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1099 cpu_relax();
1100
1101
1102 for (i = 0; i < NUM_EPOD_ID; i++)
1103 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1104 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1105
1106 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1107
1108 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1109
1110
1111
1112
1113
1114
1115 if (!wait_for_completion_timeout(&mb2_transfer.work,
1116 msecs_to_jiffies(20000))) {
1117 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1118 __func__);
1119 r = -EIO;
1120 goto unlock_and_return;
1121 }
1122
1123 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1124 r = -EIO;
1125
1126 unlock_and_return:
1127 mutex_unlock(&mb2_transfer.lock);
1128 return r;
1129 }
1130
1131
1132
1133
1134
1135
1136 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1137 struct prcmu_auto_pm_config *idle)
1138 {
1139 u32 sleep_cfg;
1140 u32 idle_cfg;
1141 unsigned long flags;
1142
1143 BUG_ON((sleep == NULL) || (idle == NULL));
1144
1145 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1146 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1147 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1148 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1149 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1150 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1151
1152 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1153 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1154 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1155 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1156 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1157 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1158
1159 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1160
1161
1162
1163
1164
1165
1166 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1167 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1168
1169 mb2_transfer.auto_pm_enabled =
1170 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1171 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1172 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1173 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1174
1175 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1176 }
1177 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1178
1179 bool prcmu_is_auto_pm_enabled(void)
1180 {
1181 return mb2_transfer.auto_pm_enabled;
1182 }
1183
1184 static int request_sysclk(bool enable)
1185 {
1186 int r;
1187 unsigned long flags;
1188
1189 r = 0;
1190
1191 mutex_lock(&mb3_transfer.sysclk_lock);
1192
1193 spin_lock_irqsave(&mb3_transfer.lock, flags);
1194
1195 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1196 cpu_relax();
1197
1198 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1199
1200 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1201 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1202
1203 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1204
1205
1206
1207
1208
1209 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1210 msecs_to_jiffies(20000))) {
1211 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1212 __func__);
1213 r = -EIO;
1214 }
1215
1216 mutex_unlock(&mb3_transfer.sysclk_lock);
1217
1218 return r;
1219 }
1220
1221 static int request_timclk(bool enable)
1222 {
1223 u32 val;
1224
1225
1226
1227
1228
1229
1230 if (prcmu_is_ulppll_disabled())
1231 val = 0;
1232 else
1233 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1234
1235 if (!enable)
1236 val |= PRCM_TCR_STOP_TIMERS |
1237 PRCM_TCR_DOZE_MODE |
1238 PRCM_TCR_TENSEL_MASK;
1239
1240 writel(val, PRCM_TCR);
1241
1242 return 0;
1243 }
1244
1245 static int request_clock(u8 clock, bool enable)
1246 {
1247 u32 val;
1248 unsigned long flags;
1249
1250 spin_lock_irqsave(&clk_mgt_lock, flags);
1251
1252
1253 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1254 cpu_relax();
1255
1256 val = readl(prcmu_base + clk_mgt[clock].offset);
1257 if (enable) {
1258 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1259 } else {
1260 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1261 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1262 }
1263 writel(val, prcmu_base + clk_mgt[clock].offset);
1264
1265
1266 writel(0, PRCM_SEM);
1267
1268 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1269
1270 return 0;
1271 }
1272
1273 static int request_sga_clock(u8 clock, bool enable)
1274 {
1275 u32 val;
1276 int ret;
1277
1278 if (enable) {
1279 val = readl(PRCM_CGATING_BYPASS);
1280 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1281 }
1282
1283 ret = request_clock(clock, enable);
1284
1285 if (!ret && !enable) {
1286 val = readl(PRCM_CGATING_BYPASS);
1287 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1288 }
1289
1290 return ret;
1291 }
1292
1293 static inline bool plldsi_locked(void)
1294 {
1295 return (readl(PRCM_PLLDSI_LOCKP) &
1296 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1297 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1298 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1299 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1300 }
1301
1302 static int request_plldsi(bool enable)
1303 {
1304 int r = 0;
1305 u32 val;
1306
1307 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1308 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1309 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1310
1311 val = readl(PRCM_PLLDSI_ENABLE);
1312 if (enable)
1313 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1314 else
1315 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1316 writel(val, PRCM_PLLDSI_ENABLE);
1317
1318 if (enable) {
1319 unsigned int i;
1320 bool locked = plldsi_locked();
1321
1322 for (i = 10; !locked && (i > 0); --i) {
1323 udelay(100);
1324 locked = plldsi_locked();
1325 }
1326 if (locked) {
1327 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1328 PRCM_APE_RESETN_SET);
1329 } else {
1330 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1331 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1332 PRCM_MMIP_LS_CLAMP_SET);
1333 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1334 writel(val, PRCM_PLLDSI_ENABLE);
1335 r = -EAGAIN;
1336 }
1337 } else {
1338 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1339 }
1340 return r;
1341 }
1342
1343 static int request_dsiclk(u8 n, bool enable)
1344 {
1345 u32 val;
1346
1347 val = readl(PRCM_DSI_PLLOUT_SEL);
1348 val &= ~dsiclk[n].divsel_mask;
1349 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1350 dsiclk[n].divsel_shift);
1351 writel(val, PRCM_DSI_PLLOUT_SEL);
1352 return 0;
1353 }
1354
1355 static int request_dsiescclk(u8 n, bool enable)
1356 {
1357 u32 val;
1358
1359 val = readl(PRCM_DSITVCLK_DIV);
1360 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1361 writel(val, PRCM_DSITVCLK_DIV);
1362 return 0;
1363 }
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373 int db8500_prcmu_request_clock(u8 clock, bool enable)
1374 {
1375 if (clock == PRCMU_SGACLK)
1376 return request_sga_clock(clock, enable);
1377 else if (clock < PRCMU_NUM_REG_CLOCKS)
1378 return request_clock(clock, enable);
1379 else if (clock == PRCMU_TIMCLK)
1380 return request_timclk(enable);
1381 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1382 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1383 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1384 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1385 else if (clock == PRCMU_PLLDSI)
1386 return request_plldsi(enable);
1387 else if (clock == PRCMU_SYSCLK)
1388 return request_sysclk(enable);
1389 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1390 return request_pll(clock, enable);
1391 else
1392 return -EINVAL;
1393 }
1394
1395 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1396 int branch)
1397 {
1398 u64 rate;
1399 u32 val;
1400 u32 d;
1401 u32 div = 1;
1402
1403 val = readl(reg);
1404
1405 rate = src_rate;
1406 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1407
1408 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1409 if (d > 1)
1410 div *= d;
1411
1412 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1413 if (d > 1)
1414 div *= d;
1415
1416 if (val & PRCM_PLL_FREQ_SELDIV2)
1417 div *= 2;
1418
1419 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1420 (val & PRCM_PLL_FREQ_DIV2EN) &&
1421 ((reg == PRCM_PLLSOC0_FREQ) ||
1422 (reg == PRCM_PLLARM_FREQ) ||
1423 (reg == PRCM_PLLDDR_FREQ))))
1424 div *= 2;
1425
1426 (void)do_div(rate, div);
1427
1428 return (unsigned long)rate;
1429 }
1430
1431 #define ROOT_CLOCK_RATE 38400000
1432
1433 static unsigned long clock_rate(u8 clock)
1434 {
1435 u32 val;
1436 u32 pllsw;
1437 unsigned long rate = ROOT_CLOCK_RATE;
1438
1439 val = readl(prcmu_base + clk_mgt[clock].offset);
1440
1441 if (val & PRCM_CLK_MGT_CLK38) {
1442 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1443 rate /= 2;
1444 return rate;
1445 }
1446
1447 val |= clk_mgt[clock].pllsw;
1448 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1449
1450 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1451 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1452 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1453 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1454 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1455 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1456 else
1457 return 0;
1458
1459 if ((clock == PRCMU_SGACLK) &&
1460 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1461 u64 r = (rate * 10);
1462
1463 (void)do_div(r, 25);
1464 return (unsigned long)r;
1465 }
1466 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1467 if (val)
1468 return rate / val;
1469 else
1470 return 0;
1471 }
1472
1473 static unsigned long armss_rate(void)
1474 {
1475 u32 r;
1476 unsigned long rate;
1477
1478 r = readl(PRCM_ARM_CHGCLKREQ);
1479
1480 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1481
1482
1483 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1484
1485
1486 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1487 rate /= 2;
1488
1489
1490 r = readl(PRCM_ARMCLKFIX_MGT);
1491 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1492 rate /= r;
1493
1494 } else {
1495 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1496 }
1497
1498 return rate;
1499 }
1500
1501 static unsigned long dsiclk_rate(u8 n)
1502 {
1503 u32 divsel;
1504 u32 div = 1;
1505
1506 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1507 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1508
1509 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1510 divsel = dsiclk[n].divsel;
1511 else
1512 dsiclk[n].divsel = divsel;
1513
1514 switch (divsel) {
1515 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1516 div *= 2;
1517 fallthrough;
1518 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1519 div *= 2;
1520 fallthrough;
1521 case PRCM_DSI_PLLOUT_SEL_PHI:
1522 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1523 PLL_RAW) / div;
1524 default:
1525 return 0;
1526 }
1527 }
1528
1529 static unsigned long dsiescclk_rate(u8 n)
1530 {
1531 u32 div;
1532
1533 div = readl(PRCM_DSITVCLK_DIV);
1534 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1535 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1536 }
1537
1538 unsigned long prcmu_clock_rate(u8 clock)
1539 {
1540 if (clock < PRCMU_NUM_REG_CLOCKS)
1541 return clock_rate(clock);
1542 else if (clock == PRCMU_TIMCLK)
1543 return prcmu_is_ulppll_disabled() ?
1544 32768 : ROOT_CLOCK_RATE / 16;
1545 else if (clock == PRCMU_SYSCLK)
1546 return ROOT_CLOCK_RATE;
1547 else if (clock == PRCMU_PLLSOC0)
1548 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1549 else if (clock == PRCMU_PLLSOC1)
1550 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1551 else if (clock == PRCMU_ARMSS)
1552 return armss_rate();
1553 else if (clock == PRCMU_PLLDDR)
1554 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1555 else if (clock == PRCMU_PLLDSI)
1556 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1557 PLL_RAW);
1558 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1559 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1560 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1561 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1562 else
1563 return 0;
1564 }
1565
1566 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1567 {
1568 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1569 return ROOT_CLOCK_RATE;
1570 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1571 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1572 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1573 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1574 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1575 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1576 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1577 else
1578 return 0;
1579 }
1580
1581 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1582 {
1583 u32 div;
1584
1585 div = (src_rate / rate);
1586 if (div == 0)
1587 return 1;
1588 if (rate < (src_rate / div))
1589 div++;
1590 return div;
1591 }
1592
1593 static long round_clock_rate(u8 clock, unsigned long rate)
1594 {
1595 u32 val;
1596 u32 div;
1597 unsigned long src_rate;
1598 long rounded_rate;
1599
1600 val = readl(prcmu_base + clk_mgt[clock].offset);
1601 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1602 clk_mgt[clock].branch);
1603 div = clock_divider(src_rate, rate);
1604 if (val & PRCM_CLK_MGT_CLK38) {
1605 if (clk_mgt[clock].clk38div) {
1606 if (div > 2)
1607 div = 2;
1608 } else {
1609 div = 1;
1610 }
1611 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1612 u64 r = (src_rate * 10);
1613
1614 (void)do_div(r, 25);
1615 if (r <= rate)
1616 return (unsigned long)r;
1617 }
1618 rounded_rate = (src_rate / min(div, (u32)31));
1619
1620 return rounded_rate;
1621 }
1622
1623 static const unsigned long db8500_armss_freqs[] = {
1624 199680000,
1625 399360000,
1626 798720000,
1627 998400000
1628 };
1629
1630
1631 static const unsigned long db8520_armss_freqs[] = {
1632 199680000,
1633 399360000,
1634 798720000,
1635 1152000000
1636 };
1637
1638 static long round_armss_rate(unsigned long rate)
1639 {
1640 unsigned long freq = 0;
1641 const unsigned long *freqs;
1642 int nfreqs;
1643 int i;
1644
1645 if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1646 freqs = db8520_armss_freqs;
1647 nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1648 } else {
1649 freqs = db8500_armss_freqs;
1650 nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1651 }
1652
1653
1654 for (i = 0; i < nfreqs; i++) {
1655 freq = freqs[i];
1656 if (rate <= freq)
1657 break;
1658 }
1659
1660
1661 return freq;
1662 }
1663
1664 #define MIN_PLL_VCO_RATE 600000000ULL
1665 #define MAX_PLL_VCO_RATE 1680640000ULL
1666
1667 static long round_plldsi_rate(unsigned long rate)
1668 {
1669 long rounded_rate = 0;
1670 unsigned long src_rate;
1671 unsigned long rem;
1672 u32 r;
1673
1674 src_rate = clock_rate(PRCMU_HDMICLK);
1675 rem = rate;
1676
1677 for (r = 7; (rem > 0) && (r > 0); r--) {
1678 u64 d;
1679
1680 d = (r * rate);
1681 (void)do_div(d, src_rate);
1682 if (d < 6)
1683 d = 6;
1684 else if (d > 255)
1685 d = 255;
1686 d *= src_rate;
1687 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1688 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1689 continue;
1690 (void)do_div(d, r);
1691 if (rate < d) {
1692 if (rounded_rate == 0)
1693 rounded_rate = (long)d;
1694 break;
1695 }
1696 if ((rate - d) < rem) {
1697 rem = (rate - d);
1698 rounded_rate = (long)d;
1699 }
1700 }
1701 return rounded_rate;
1702 }
1703
1704 static long round_dsiclk_rate(unsigned long rate)
1705 {
1706 u32 div;
1707 unsigned long src_rate;
1708 long rounded_rate;
1709
1710 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1711 PLL_RAW);
1712 div = clock_divider(src_rate, rate);
1713 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1714
1715 return rounded_rate;
1716 }
1717
1718 static long round_dsiescclk_rate(unsigned long rate)
1719 {
1720 u32 div;
1721 unsigned long src_rate;
1722 long rounded_rate;
1723
1724 src_rate = clock_rate(PRCMU_TVCLK);
1725 div = clock_divider(src_rate, rate);
1726 rounded_rate = (src_rate / min(div, (u32)255));
1727
1728 return rounded_rate;
1729 }
1730
1731 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1732 {
1733 if (clock < PRCMU_NUM_REG_CLOCKS)
1734 return round_clock_rate(clock, rate);
1735 else if (clock == PRCMU_ARMSS)
1736 return round_armss_rate(rate);
1737 else if (clock == PRCMU_PLLDSI)
1738 return round_plldsi_rate(rate);
1739 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1740 return round_dsiclk_rate(rate);
1741 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1742 return round_dsiescclk_rate(rate);
1743 else
1744 return (long)prcmu_clock_rate(clock);
1745 }
1746
1747 static void set_clock_rate(u8 clock, unsigned long rate)
1748 {
1749 u32 val;
1750 u32 div;
1751 unsigned long src_rate;
1752 unsigned long flags;
1753
1754 spin_lock_irqsave(&clk_mgt_lock, flags);
1755
1756
1757 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1758 cpu_relax();
1759
1760 val = readl(prcmu_base + clk_mgt[clock].offset);
1761 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1762 clk_mgt[clock].branch);
1763 div = clock_divider(src_rate, rate);
1764 if (val & PRCM_CLK_MGT_CLK38) {
1765 if (clk_mgt[clock].clk38div) {
1766 if (div > 1)
1767 val |= PRCM_CLK_MGT_CLK38DIV;
1768 else
1769 val &= ~PRCM_CLK_MGT_CLK38DIV;
1770 }
1771 } else if (clock == PRCMU_SGACLK) {
1772 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1773 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1774 if (div == 3) {
1775 u64 r = (src_rate * 10);
1776
1777 (void)do_div(r, 25);
1778 if (r <= rate) {
1779 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1780 div = 0;
1781 }
1782 }
1783 val |= min(div, (u32)31);
1784 } else {
1785 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1786 val |= min(div, (u32)31);
1787 }
1788 writel(val, prcmu_base + clk_mgt[clock].offset);
1789
1790
1791 writel(0, PRCM_SEM);
1792
1793 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1794 }
1795
1796 static int set_armss_rate(unsigned long rate)
1797 {
1798 unsigned long freq;
1799 u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1800 const unsigned long *freqs;
1801 int nfreqs;
1802 int i;
1803
1804 if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1805 freqs = db8520_armss_freqs;
1806 nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1807 } else {
1808 freqs = db8500_armss_freqs;
1809 nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1810 }
1811
1812
1813 for (i = 0; i < nfreqs; i++) {
1814 freq = freqs[i];
1815 if (rate == freq)
1816 break;
1817 }
1818
1819 if (rate != freq)
1820 return -EINVAL;
1821
1822
1823 pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1824 return db8500_prcmu_set_arm_opp(opps[i]);
1825 }
1826
1827 static int set_plldsi_rate(unsigned long rate)
1828 {
1829 unsigned long src_rate;
1830 unsigned long rem;
1831 u32 pll_freq = 0;
1832 u32 r;
1833
1834 src_rate = clock_rate(PRCMU_HDMICLK);
1835 rem = rate;
1836
1837 for (r = 7; (rem > 0) && (r > 0); r--) {
1838 u64 d;
1839 u64 hwrate;
1840
1841 d = (r * rate);
1842 (void)do_div(d, src_rate);
1843 if (d < 6)
1844 d = 6;
1845 else if (d > 255)
1846 d = 255;
1847 hwrate = (d * src_rate);
1848 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1849 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1850 continue;
1851 (void)do_div(hwrate, r);
1852 if (rate < hwrate) {
1853 if (pll_freq == 0)
1854 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1855 (r << PRCM_PLL_FREQ_R_SHIFT));
1856 break;
1857 }
1858 if ((rate - hwrate) < rem) {
1859 rem = (rate - hwrate);
1860 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1861 (r << PRCM_PLL_FREQ_R_SHIFT));
1862 }
1863 }
1864 if (pll_freq == 0)
1865 return -EINVAL;
1866
1867 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1868 writel(pll_freq, PRCM_PLLDSI_FREQ);
1869
1870 return 0;
1871 }
1872
1873 static void set_dsiclk_rate(u8 n, unsigned long rate)
1874 {
1875 u32 val;
1876 u32 div;
1877
1878 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1879 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1880
1881 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1882 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1883 PRCM_DSI_PLLOUT_SEL_PHI_4;
1884
1885 val = readl(PRCM_DSI_PLLOUT_SEL);
1886 val &= ~dsiclk[n].divsel_mask;
1887 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1888 writel(val, PRCM_DSI_PLLOUT_SEL);
1889 }
1890
1891 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1892 {
1893 u32 val;
1894 u32 div;
1895
1896 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1897 val = readl(PRCM_DSITVCLK_DIV);
1898 val &= ~dsiescclk[n].div_mask;
1899 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1900 writel(val, PRCM_DSITVCLK_DIV);
1901 }
1902
1903 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1904 {
1905 if (clock < PRCMU_NUM_REG_CLOCKS)
1906 set_clock_rate(clock, rate);
1907 else if (clock == PRCMU_ARMSS)
1908 return set_armss_rate(rate);
1909 else if (clock == PRCMU_PLLDSI)
1910 return set_plldsi_rate(rate);
1911 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1912 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1913 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1914 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1915 return 0;
1916 }
1917
1918 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1919 {
1920 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1921 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1922 return -EINVAL;
1923
1924 mutex_lock(&mb4_transfer.lock);
1925
1926 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1927 cpu_relax();
1928
1929 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1930 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1931 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1932 writeb(DDR_PWR_STATE_ON,
1933 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1934 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1935
1936 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1937 wait_for_completion(&mb4_transfer.work);
1938
1939 mutex_unlock(&mb4_transfer.lock);
1940
1941 return 0;
1942 }
1943
1944 int db8500_prcmu_config_hotdog(u8 threshold)
1945 {
1946 mutex_lock(&mb4_transfer.lock);
1947
1948 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1949 cpu_relax();
1950
1951 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1952 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1953
1954 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1955 wait_for_completion(&mb4_transfer.work);
1956
1957 mutex_unlock(&mb4_transfer.lock);
1958
1959 return 0;
1960 }
1961
1962 int db8500_prcmu_config_hotmon(u8 low, u8 high)
1963 {
1964 mutex_lock(&mb4_transfer.lock);
1965
1966 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1967 cpu_relax();
1968
1969 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1970 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1971 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1972 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1973 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1974
1975 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1976 wait_for_completion(&mb4_transfer.work);
1977
1978 mutex_unlock(&mb4_transfer.lock);
1979
1980 return 0;
1981 }
1982 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
1983
1984 static int config_hot_period(u16 val)
1985 {
1986 mutex_lock(&mb4_transfer.lock);
1987
1988 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1989 cpu_relax();
1990
1991 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1992 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1993
1994 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1995 wait_for_completion(&mb4_transfer.work);
1996
1997 mutex_unlock(&mb4_transfer.lock);
1998
1999 return 0;
2000 }
2001
2002 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2003 {
2004 if (cycles32k == 0xFFFF)
2005 return -EINVAL;
2006
2007 return config_hot_period(cycles32k);
2008 }
2009 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2010
2011 int db8500_prcmu_stop_temp_sense(void)
2012 {
2013 return config_hot_period(0xFFFF);
2014 }
2015 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2016
2017 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2018 {
2019
2020 mutex_lock(&mb4_transfer.lock);
2021
2022 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2023 cpu_relax();
2024
2025 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2026 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2027 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2028 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2029
2030 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2031
2032 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2033 wait_for_completion(&mb4_transfer.work);
2034
2035 mutex_unlock(&mb4_transfer.lock);
2036
2037 return 0;
2038
2039 }
2040
2041 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2042 {
2043 BUG_ON(num == 0 || num > 0xf);
2044 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2045 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2046 A9WDOG_AUTO_OFF_DIS);
2047 }
2048 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2049
2050 int db8500_prcmu_enable_a9wdog(u8 id)
2051 {
2052 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2053 }
2054 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2055
2056 int db8500_prcmu_disable_a9wdog(u8 id)
2057 {
2058 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2059 }
2060 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2061
2062 int db8500_prcmu_kick_a9wdog(u8 id)
2063 {
2064 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2065 }
2066 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2067
2068
2069
2070
2071 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2072 {
2073 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2074 (id & A9WDOG_ID_MASK) |
2075
2076
2077
2078
2079 (u8)((timeout << 4) & 0xf0),
2080 (u8)((timeout >> 4) & 0xff),
2081 (u8)((timeout >> 12) & 0xff),
2082 (u8)((timeout >> 20) & 0xff));
2083 }
2084 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2097 {
2098 int r;
2099
2100 if (size != 1)
2101 return -EINVAL;
2102
2103 mutex_lock(&mb5_transfer.lock);
2104
2105 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2106 cpu_relax();
2107
2108 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2109 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2110 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2111 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2112 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2113
2114 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2115
2116 if (!wait_for_completion_timeout(&mb5_transfer.work,
2117 msecs_to_jiffies(20000))) {
2118 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2119 __func__);
2120 r = -EIO;
2121 } else {
2122 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2123 }
2124
2125 if (!r)
2126 *value = mb5_transfer.ack.value;
2127
2128 mutex_unlock(&mb5_transfer.lock);
2129
2130 return r;
2131 }
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2147 {
2148 int r;
2149
2150 if (size != 1)
2151 return -EINVAL;
2152
2153 mutex_lock(&mb5_transfer.lock);
2154
2155 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2156 cpu_relax();
2157
2158 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2159 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2160 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2161 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2162 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2163
2164 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2165
2166 if (!wait_for_completion_timeout(&mb5_transfer.work,
2167 msecs_to_jiffies(20000))) {
2168 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2169 __func__);
2170 r = -EIO;
2171 } else {
2172 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2173 }
2174
2175 mutex_unlock(&mb5_transfer.lock);
2176
2177 return r;
2178 }
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2191 {
2192 u8 mask = ~0;
2193
2194 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2195 }
2196
2197
2198
2199
2200 int prcmu_ac_wake_req(void)
2201 {
2202 u32 val;
2203 int ret = 0;
2204
2205 mutex_lock(&mb0_transfer.ac_wake_lock);
2206
2207 val = readl(PRCM_HOSTACCESS_REQ);
2208 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2209 goto unlock_and_return;
2210
2211 atomic_set(&ac_wake_req_state, 1);
2212
2213
2214
2215
2216
2217
2218 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2219 writel(val, PRCM_HOSTACCESS_REQ);
2220
2221 udelay(31);
2222
2223 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2224 writel(val, PRCM_HOSTACCESS_REQ);
2225
2226 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2227 msecs_to_jiffies(5000))) {
2228 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2229 __func__);
2230 ret = -EFAULT;
2231 }
2232
2233 unlock_and_return:
2234 mutex_unlock(&mb0_transfer.ac_wake_lock);
2235 return ret;
2236 }
2237
2238
2239
2240
2241 void prcmu_ac_sleep_req(void)
2242 {
2243 u32 val;
2244
2245 mutex_lock(&mb0_transfer.ac_wake_lock);
2246
2247 val = readl(PRCM_HOSTACCESS_REQ);
2248 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2249 goto unlock_and_return;
2250
2251 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2252 PRCM_HOSTACCESS_REQ);
2253
2254 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2255 msecs_to_jiffies(5000))) {
2256 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2257 __func__);
2258 }
2259
2260 atomic_set(&ac_wake_req_state, 0);
2261
2262 unlock_and_return:
2263 mutex_unlock(&mb0_transfer.ac_wake_lock);
2264 }
2265
2266 bool db8500_prcmu_is_ac_wake_requested(void)
2267 {
2268 return (atomic_read(&ac_wake_req_state) != 0);
2269 }
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279 void db8500_prcmu_system_reset(u16 reset_code)
2280 {
2281 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2282 writel(1, PRCM_APE_SOFTRST);
2283 }
2284
2285
2286
2287
2288
2289
2290
2291 u16 db8500_prcmu_get_reset_code(void)
2292 {
2293 return readw(tcdm_base + PRCM_SW_RST_REASON);
2294 }
2295
2296
2297
2298
2299 void db8500_prcmu_modem_reset(void)
2300 {
2301 mutex_lock(&mb1_transfer.lock);
2302
2303 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2304 cpu_relax();
2305
2306 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2307 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2308 wait_for_completion(&mb1_transfer.work);
2309
2310
2311
2312
2313
2314
2315 mutex_unlock(&mb1_transfer.lock);
2316 }
2317
2318 static void ack_dbb_wakeup(void)
2319 {
2320 unsigned long flags;
2321
2322 spin_lock_irqsave(&mb0_transfer.lock, flags);
2323
2324 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2325 cpu_relax();
2326
2327 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2328 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2329
2330 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2331 }
2332
2333 static inline void print_unknown_header_warning(u8 n, u8 header)
2334 {
2335 pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2336 header, n);
2337 }
2338
2339 static bool read_mailbox_0(void)
2340 {
2341 bool r;
2342 u32 ev;
2343 unsigned int n;
2344 u8 header;
2345
2346 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2347 switch (header) {
2348 case MB0H_WAKEUP_EXE:
2349 case MB0H_WAKEUP_SLEEP:
2350 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2351 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2352 else
2353 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2354
2355 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2356 complete(&mb0_transfer.ac_wake_work);
2357 if (ev & WAKEUP_BIT_SYSCLK_OK)
2358 complete(&mb3_transfer.sysclk_work);
2359
2360 ev &= mb0_transfer.req.dbb_irqs;
2361
2362 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2363 if (ev & prcmu_irq_bit[n])
2364 generic_handle_domain_irq(db8500_irq_domain, n);
2365 }
2366 r = true;
2367 break;
2368 default:
2369 print_unknown_header_warning(0, header);
2370 r = false;
2371 break;
2372 }
2373 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2374 return r;
2375 }
2376
2377 static bool read_mailbox_1(void)
2378 {
2379 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2380 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2381 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2382 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2383 PRCM_ACK_MB1_CURRENT_APE_OPP);
2384 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2385 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2386 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2387 complete(&mb1_transfer.work);
2388 return false;
2389 }
2390
2391 static bool read_mailbox_2(void)
2392 {
2393 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2394 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2395 complete(&mb2_transfer.work);
2396 return false;
2397 }
2398
2399 static bool read_mailbox_3(void)
2400 {
2401 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2402 return false;
2403 }
2404
2405 static bool read_mailbox_4(void)
2406 {
2407 u8 header;
2408 bool do_complete = true;
2409
2410 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2411 switch (header) {
2412 case MB4H_MEM_ST:
2413 case MB4H_HOTDOG:
2414 case MB4H_HOTMON:
2415 case MB4H_HOT_PERIOD:
2416 case MB4H_A9WDOG_CONF:
2417 case MB4H_A9WDOG_EN:
2418 case MB4H_A9WDOG_DIS:
2419 case MB4H_A9WDOG_LOAD:
2420 case MB4H_A9WDOG_KICK:
2421 break;
2422 default:
2423 print_unknown_header_warning(4, header);
2424 do_complete = false;
2425 break;
2426 }
2427
2428 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2429
2430 if (do_complete)
2431 complete(&mb4_transfer.work);
2432
2433 return false;
2434 }
2435
2436 static bool read_mailbox_5(void)
2437 {
2438 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2439 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2440 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2441 complete(&mb5_transfer.work);
2442 return false;
2443 }
2444
2445 static bool read_mailbox_6(void)
2446 {
2447 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2448 return false;
2449 }
2450
2451 static bool read_mailbox_7(void)
2452 {
2453 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2454 return false;
2455 }
2456
2457 static bool (* const read_mailbox[NUM_MB])(void) = {
2458 read_mailbox_0,
2459 read_mailbox_1,
2460 read_mailbox_2,
2461 read_mailbox_3,
2462 read_mailbox_4,
2463 read_mailbox_5,
2464 read_mailbox_6,
2465 read_mailbox_7
2466 };
2467
2468 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2469 {
2470 u32 bits;
2471 u8 n;
2472 irqreturn_t r;
2473
2474 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2475 if (unlikely(!bits))
2476 return IRQ_NONE;
2477
2478 r = IRQ_HANDLED;
2479 for (n = 0; bits; n++) {
2480 if (bits & MBOX_BIT(n)) {
2481 bits -= MBOX_BIT(n);
2482 if (read_mailbox[n]())
2483 r = IRQ_WAKE_THREAD;
2484 }
2485 }
2486 return r;
2487 }
2488
2489 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2490 {
2491 ack_dbb_wakeup();
2492 return IRQ_HANDLED;
2493 }
2494
2495 static void prcmu_mask_work(struct work_struct *work)
2496 {
2497 unsigned long flags;
2498
2499 spin_lock_irqsave(&mb0_transfer.lock, flags);
2500
2501 config_wakeups();
2502
2503 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2504 }
2505
2506 static void prcmu_irq_mask(struct irq_data *d)
2507 {
2508 unsigned long flags;
2509
2510 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2511
2512 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2513
2514 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2515
2516 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2517 schedule_work(&mb0_transfer.mask_work);
2518 }
2519
2520 static void prcmu_irq_unmask(struct irq_data *d)
2521 {
2522 unsigned long flags;
2523
2524 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2525
2526 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2527
2528 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2529
2530 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2531 schedule_work(&mb0_transfer.mask_work);
2532 }
2533
2534 static void noop(struct irq_data *d)
2535 {
2536 }
2537
2538 static struct irq_chip prcmu_irq_chip = {
2539 .name = "prcmu",
2540 .irq_disable = prcmu_irq_mask,
2541 .irq_ack = noop,
2542 .irq_mask = prcmu_irq_mask,
2543 .irq_unmask = prcmu_irq_unmask,
2544 };
2545
2546 static char *fw_project_name(u32 project)
2547 {
2548 switch (project) {
2549 case PRCMU_FW_PROJECT_U8500:
2550 return "U8500";
2551 case PRCMU_FW_PROJECT_U8400:
2552 return "U8400";
2553 case PRCMU_FW_PROJECT_U9500:
2554 return "U9500";
2555 case PRCMU_FW_PROJECT_U8500_MBB:
2556 return "U8500 MBB";
2557 case PRCMU_FW_PROJECT_U8500_C1:
2558 return "U8500 C1";
2559 case PRCMU_FW_PROJECT_U8500_C2:
2560 return "U8500 C2";
2561 case PRCMU_FW_PROJECT_U8500_C3:
2562 return "U8500 C3";
2563 case PRCMU_FW_PROJECT_U8500_C4:
2564 return "U8500 C4";
2565 case PRCMU_FW_PROJECT_U9500_MBL:
2566 return "U9500 MBL";
2567 case PRCMU_FW_PROJECT_U8500_SSG1:
2568 return "U8500 Samsung 1";
2569 case PRCMU_FW_PROJECT_U8500_MBL2:
2570 return "U8500 MBL2";
2571 case PRCMU_FW_PROJECT_U8520:
2572 return "U8520 MBL";
2573 case PRCMU_FW_PROJECT_U8420:
2574 return "U8420";
2575 case PRCMU_FW_PROJECT_U8500_SSG2:
2576 return "U8500 Samsung 2";
2577 case PRCMU_FW_PROJECT_U8420_SYSCLK:
2578 return "U8420-sysclk";
2579 case PRCMU_FW_PROJECT_U9540:
2580 return "U9540";
2581 case PRCMU_FW_PROJECT_A9420:
2582 return "A9420";
2583 case PRCMU_FW_PROJECT_L8540:
2584 return "L8540";
2585 case PRCMU_FW_PROJECT_L8580:
2586 return "L8580";
2587 default:
2588 return "Unknown";
2589 }
2590 }
2591
2592 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2593 irq_hw_number_t hwirq)
2594 {
2595 irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2596 handle_simple_irq);
2597
2598 return 0;
2599 }
2600
2601 static const struct irq_domain_ops db8500_irq_ops = {
2602 .map = db8500_irq_map,
2603 .xlate = irq_domain_xlate_twocell,
2604 };
2605
2606 static int db8500_irq_init(struct device_node *np)
2607 {
2608 int i;
2609
2610 db8500_irq_domain = irq_domain_add_simple(
2611 np, NUM_PRCMU_WAKEUPS, 0,
2612 &db8500_irq_ops, NULL);
2613
2614 if (!db8500_irq_domain) {
2615 pr_err("Failed to create irqdomain\n");
2616 return -ENOSYS;
2617 }
2618
2619
2620 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2621 irq_create_mapping(db8500_irq_domain, i);
2622
2623 return 0;
2624 }
2625
2626 static void dbx500_fw_version_init(struct device_node *np)
2627 {
2628 void __iomem *tcpm_base;
2629 u32 version;
2630
2631 tcpm_base = of_iomap(np, 1);
2632 if (!tcpm_base) {
2633 pr_err("no prcmu tcpm mem region provided\n");
2634 return;
2635 }
2636
2637 version = readl(tcpm_base + DB8500_PRCMU_FW_VERSION_OFFSET);
2638 fw_info.version.project = (version & 0xFF);
2639 fw_info.version.api_version = (version >> 8) & 0xFF;
2640 fw_info.version.func_version = (version >> 16) & 0xFF;
2641 fw_info.version.errata = (version >> 24) & 0xFF;
2642 strncpy(fw_info.version.project_name,
2643 fw_project_name(fw_info.version.project),
2644 PRCMU_FW_PROJECT_NAME_LEN);
2645 fw_info.valid = true;
2646 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2647 fw_info.version.project_name,
2648 fw_info.version.project,
2649 fw_info.version.api_version,
2650 fw_info.version.func_version,
2651 fw_info.version.errata);
2652 iounmap(tcpm_base);
2653 }
2654
2655 void __init db8500_prcmu_early_init(void)
2656 {
2657
2658
2659
2660
2661
2662
2663
2664 struct device_node *np;
2665
2666 np = of_find_compatible_node(NULL, NULL, "stericsson,db8500-prcmu");
2667 prcmu_base = of_iomap(np, 0);
2668 if (!prcmu_base) {
2669 of_node_put(np);
2670 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2671 return;
2672 }
2673 dbx500_fw_version_init(np);
2674 of_node_put(np);
2675
2676 spin_lock_init(&mb0_transfer.lock);
2677 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2678 mutex_init(&mb0_transfer.ac_wake_lock);
2679 init_completion(&mb0_transfer.ac_wake_work);
2680 mutex_init(&mb1_transfer.lock);
2681 init_completion(&mb1_transfer.work);
2682 mb1_transfer.ape_opp = APE_NO_CHANGE;
2683 mutex_init(&mb2_transfer.lock);
2684 init_completion(&mb2_transfer.work);
2685 spin_lock_init(&mb2_transfer.auto_pm_lock);
2686 spin_lock_init(&mb3_transfer.lock);
2687 mutex_init(&mb3_transfer.sysclk_lock);
2688 init_completion(&mb3_transfer.sysclk_work);
2689 mutex_init(&mb4_transfer.lock);
2690 init_completion(&mb4_transfer.work);
2691 mutex_init(&mb5_transfer.lock);
2692 init_completion(&mb5_transfer.work);
2693
2694 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2695 }
2696
2697 static void init_prcm_registers(void)
2698 {
2699 u32 val;
2700
2701 val = readl(PRCM_A9PL_FORCE_CLKEN);
2702 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2703 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2704 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2705 }
2706
2707
2708
2709
2710 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2711 REGULATOR_SUPPLY("v-ape", NULL),
2712 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2713 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2714 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2715 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2716 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2717
2718 REGULATOR_SUPPLY("vcore", "sdi0"),
2719 REGULATOR_SUPPLY("vcore", "sdi1"),
2720 REGULATOR_SUPPLY("vcore", "sdi2"),
2721 REGULATOR_SUPPLY("vcore", "sdi3"),
2722 REGULATOR_SUPPLY("vcore", "sdi4"),
2723 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2724 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2725
2726 REGULATOR_SUPPLY("vcore", "uart0"),
2727 REGULATOR_SUPPLY("vcore", "uart1"),
2728 REGULATOR_SUPPLY("vcore", "uart2"),
2729 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2730 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2731 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2732 };
2733
2734 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2735 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2736
2737 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2738 };
2739
2740 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2741 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2742 REGULATOR_SUPPLY("vsupply", "mcde"),
2743 };
2744
2745
2746 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2747 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2748 };
2749
2750
2751 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2752 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2753 };
2754
2755
2756 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2757 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2758 };
2759
2760
2761 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2762 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2763 };
2764
2765 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2766 REGULATOR_SUPPLY("v-mali", NULL),
2767 };
2768
2769
2770 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2771 REGULATOR_SUPPLY("esram12", "cm_control"),
2772 };
2773
2774
2775 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2776 REGULATOR_SUPPLY("v-esram34", "mcde"),
2777 REGULATOR_SUPPLY("esram34", "cm_control"),
2778 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2779 };
2780
2781 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2782 [DB8500_REGULATOR_VAPE] = {
2783 .constraints = {
2784 .name = "db8500-vape",
2785 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2786 .always_on = true,
2787 },
2788 .consumer_supplies = db8500_vape_consumers,
2789 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2790 },
2791 [DB8500_REGULATOR_VARM] = {
2792 .constraints = {
2793 .name = "db8500-varm",
2794 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2795 },
2796 },
2797 [DB8500_REGULATOR_VMODEM] = {
2798 .constraints = {
2799 .name = "db8500-vmodem",
2800 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2801 },
2802 },
2803 [DB8500_REGULATOR_VPLL] = {
2804 .constraints = {
2805 .name = "db8500-vpll",
2806 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2807 },
2808 },
2809 [DB8500_REGULATOR_VSMPS1] = {
2810 .constraints = {
2811 .name = "db8500-vsmps1",
2812 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2813 },
2814 },
2815 [DB8500_REGULATOR_VSMPS2] = {
2816 .constraints = {
2817 .name = "db8500-vsmps2",
2818 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2819 },
2820 .consumer_supplies = db8500_vsmps2_consumers,
2821 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2822 },
2823 [DB8500_REGULATOR_VSMPS3] = {
2824 .constraints = {
2825 .name = "db8500-vsmps3",
2826 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2827 },
2828 },
2829 [DB8500_REGULATOR_VRF1] = {
2830 .constraints = {
2831 .name = "db8500-vrf1",
2832 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2833 },
2834 },
2835 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2836
2837 .constraints = {
2838 .name = "db8500-sva-mmdsp",
2839 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2840 },
2841 .consumer_supplies = db8500_svammdsp_consumers,
2842 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2843 },
2844 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2845 .constraints = {
2846
2847 .name = "db8500-sva-mmdsp-ret",
2848 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2849 },
2850 },
2851 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2852
2853 .constraints = {
2854 .name = "db8500-sva-pipe",
2855 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2856 },
2857 .consumer_supplies = db8500_svapipe_consumers,
2858 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2859 },
2860 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2861
2862 .constraints = {
2863 .name = "db8500-sia-mmdsp",
2864 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2865 },
2866 .consumer_supplies = db8500_siammdsp_consumers,
2867 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2868 },
2869 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2870 .constraints = {
2871 .name = "db8500-sia-mmdsp-ret",
2872 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2873 },
2874 },
2875 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2876
2877 .constraints = {
2878 .name = "db8500-sia-pipe",
2879 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2880 },
2881 .consumer_supplies = db8500_siapipe_consumers,
2882 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2883 },
2884 [DB8500_REGULATOR_SWITCH_SGA] = {
2885 .supply_regulator = "db8500-vape",
2886 .constraints = {
2887 .name = "db8500-sga",
2888 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2889 },
2890 .consumer_supplies = db8500_sga_consumers,
2891 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2892
2893 },
2894 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2895 .supply_regulator = "db8500-vape",
2896 .constraints = {
2897 .name = "db8500-b2r2-mcde",
2898 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2899 },
2900 .consumer_supplies = db8500_b2r2_mcde_consumers,
2901 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2902 },
2903 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2904
2905
2906
2907
2908 .constraints = {
2909 .name = "db8500-esram12",
2910 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2911 },
2912 .consumer_supplies = db8500_esram12_consumers,
2913 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2914 },
2915 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2916 .constraints = {
2917 .name = "db8500-esram12-ret",
2918 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2919 },
2920 },
2921 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2922
2923
2924
2925
2926 .constraints = {
2927 .name = "db8500-esram34",
2928 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2929 },
2930 .consumer_supplies = db8500_esram34_consumers,
2931 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2932 },
2933 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2934 .constraints = {
2935 .name = "db8500-esram34-ret",
2936 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937 },
2938 },
2939 };
2940
2941 static const struct mfd_cell common_prcmu_devs[] = {
2942 MFD_CELL_NAME("db8500_wdt"),
2943 MFD_CELL_NAME("db8500-cpuidle"),
2944 };
2945
2946 static const struct mfd_cell db8500_prcmu_devs[] = {
2947 MFD_CELL_OF("db8500-prcmu-regulators", NULL,
2948 &db8500_regulators, sizeof(db8500_regulators), 0,
2949 "stericsson,db8500-prcmu-regulator"),
2950 MFD_CELL_OF("db8500-thermal",
2951 NULL, NULL, 0, 0, "stericsson,db8500-thermal"),
2952 };
2953
2954 static int db8500_prcmu_register_ab8500(struct device *parent)
2955 {
2956 struct device_node *np;
2957 struct resource ab850x_resource;
2958 const struct mfd_cell ab8500_cell = {
2959 .name = "ab8500-core",
2960 .of_compatible = "stericsson,ab8500",
2961 .id = AB8500_VERSION_AB8500,
2962 .resources = &ab850x_resource,
2963 .num_resources = 1,
2964 };
2965 const struct mfd_cell ab8505_cell = {
2966 .name = "ab8505-core",
2967 .of_compatible = "stericsson,ab8505",
2968 .id = AB8500_VERSION_AB8505,
2969 .resources = &ab850x_resource,
2970 .num_resources = 1,
2971 };
2972 const struct mfd_cell *ab850x_cell;
2973
2974 if (!parent->of_node)
2975 return -ENODEV;
2976
2977
2978 for_each_child_of_node(parent->of_node, np) {
2979 if (of_device_is_compatible(np, ab8500_cell.of_compatible)) {
2980 ab850x_cell = &ab8500_cell;
2981 break;
2982 }
2983 if (of_device_is_compatible(np, ab8505_cell.of_compatible)) {
2984 ab850x_cell = &ab8505_cell;
2985 break;
2986 }
2987 }
2988 if (!np) {
2989 dev_info(parent, "could not find AB850X node in the device tree\n");
2990 return -ENODEV;
2991 }
2992 of_irq_to_resource_table(np, &ab850x_resource, 1);
2993
2994 return mfd_add_devices(parent, 0, ab850x_cell, 1, NULL, 0, NULL);
2995 }
2996
2997 static int db8500_prcmu_probe(struct platform_device *pdev)
2998 {
2999 struct device_node *np = pdev->dev.of_node;
3000 int irq = 0, err = 0;
3001 struct resource *res;
3002
3003 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3004 if (!res) {
3005 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3006 return -EINVAL;
3007 }
3008 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3009 if (!prcmu_base) {
3010 dev_err(&pdev->dev,
3011 "failed to ioremap prcmu register memory\n");
3012 return -ENOMEM;
3013 }
3014 init_prcm_registers();
3015 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3016 if (!res) {
3017 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3018 return -EINVAL;
3019 }
3020 tcdm_base = devm_ioremap(&pdev->dev, res->start,
3021 resource_size(res));
3022 if (!tcdm_base) {
3023 dev_err(&pdev->dev,
3024 "failed to ioremap prcmu-tcdm register memory\n");
3025 return -ENOMEM;
3026 }
3027
3028
3029 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3030
3031 irq = platform_get_irq(pdev, 0);
3032 if (irq <= 0)
3033 return irq;
3034
3035 err = request_threaded_irq(irq, prcmu_irq_handler,
3036 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3037 if (err < 0) {
3038 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3039 return err;
3040 }
3041
3042 db8500_irq_init(np);
3043
3044 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3045
3046 err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3047 ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3048 if (err) {
3049 pr_err("prcmu: Failed to add subdevices\n");
3050 return err;
3051 }
3052
3053
3054 if (!of_machine_is_compatible("st-ericsson,u8540")) {
3055 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3056 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3057 db8500_irq_domain);
3058 if (err) {
3059 mfd_remove_devices(&pdev->dev);
3060 pr_err("prcmu: Failed to add subdevices\n");
3061 return err;
3062 }
3063 }
3064
3065 err = db8500_prcmu_register_ab8500(&pdev->dev);
3066 if (err) {
3067 mfd_remove_devices(&pdev->dev);
3068 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3069 return err;
3070 }
3071
3072 pr_info("DB8500 PRCMU initialized\n");
3073 return err;
3074 }
3075 static const struct of_device_id db8500_prcmu_match[] = {
3076 { .compatible = "stericsson,db8500-prcmu"},
3077 { },
3078 };
3079
3080 static struct platform_driver db8500_prcmu_driver = {
3081 .driver = {
3082 .name = "db8500-prcmu",
3083 .of_match_table = db8500_prcmu_match,
3084 },
3085 .probe = db8500_prcmu_probe,
3086 };
3087
3088 static int __init db8500_prcmu_init(void)
3089 {
3090 return platform_driver_register(&db8500_prcmu_driver);
3091 }
3092 core_initcall(db8500_prcmu_init);