Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * DB8500 PRCM Unit driver
0004  *
0005  * Copyright (C) STMicroelectronics 2009
0006  * Copyright (C) ST-Ericsson SA 2010
0007  *
0008  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
0009  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
0010  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
0011  *
0012  * U8500 PRCM Unit interface driver
0013  */
0014 #include <linux/init.h>
0015 #include <linux/export.h>
0016 #include <linux/kernel.h>
0017 #include <linux/delay.h>
0018 #include <linux/errno.h>
0019 #include <linux/err.h>
0020 #include <linux/spinlock.h>
0021 #include <linux/io.h>
0022 #include <linux/slab.h>
0023 #include <linux/mutex.h>
0024 #include <linux/completion.h>
0025 #include <linux/irq.h>
0026 #include <linux/jiffies.h>
0027 #include <linux/bitops.h>
0028 #include <linux/fs.h>
0029 #include <linux/of.h>
0030 #include <linux/of_address.h>
0031 #include <linux/of_irq.h>
0032 #include <linux/platform_device.h>
0033 #include <linux/uaccess.h>
0034 #include <linux/mfd/core.h>
0035 #include <linux/mfd/dbx500-prcmu.h>
0036 #include <linux/mfd/abx500/ab8500.h>
0037 #include <linux/regulator/db8500-prcmu.h>
0038 #include <linux/regulator/machine.h>
0039 #include "db8500-prcmu-regs.h"
0040 
0041 /* Index of different voltages to be used when accessing AVSData */
0042 #define PRCM_AVS_BASE       0x2FC
0043 #define PRCM_AVS_VBB_RET    (PRCM_AVS_BASE + 0x0)
0044 #define PRCM_AVS_VBB_MAX_OPP    (PRCM_AVS_BASE + 0x1)
0045 #define PRCM_AVS_VBB_100_OPP    (PRCM_AVS_BASE + 0x2)
0046 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
0047 #define PRCM_AVS_VARM_MAX_OPP   (PRCM_AVS_BASE + 0x4)
0048 #define PRCM_AVS_VARM_100_OPP   (PRCM_AVS_BASE + 0x5)
0049 #define PRCM_AVS_VARM_50_OPP    (PRCM_AVS_BASE + 0x6)
0050 #define PRCM_AVS_VARM_RET   (PRCM_AVS_BASE + 0x7)
0051 #define PRCM_AVS_VAPE_100_OPP   (PRCM_AVS_BASE + 0x8)
0052 #define PRCM_AVS_VAPE_50_OPP    (PRCM_AVS_BASE + 0x9)
0053 #define PRCM_AVS_VMOD_100_OPP   (PRCM_AVS_BASE + 0xA)
0054 #define PRCM_AVS_VMOD_50_OPP    (PRCM_AVS_BASE + 0xB)
0055 #define PRCM_AVS_VSAFE      (PRCM_AVS_BASE + 0xC)
0056 
0057 #define PRCM_AVS_VOLTAGE        0
0058 #define PRCM_AVS_VOLTAGE_MASK       0x3f
0059 #define PRCM_AVS_ISSLOWSTARTUP      6
0060 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
0061 #define PRCM_AVS_ISMODEENABLE       7
0062 #define PRCM_AVS_ISMODEENABLE_MASK  (1 << PRCM_AVS_ISMODEENABLE)
0063 
0064 #define PRCM_BOOT_STATUS    0xFFF
0065 #define PRCM_ROMCODE_A2P    0xFFE
0066 #define PRCM_ROMCODE_P2A    0xFFD
0067 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
0068 
0069 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
0070 
0071 #define _PRCM_MBOX_HEADER       0xFE8 /* 16 bytes */
0072 #define PRCM_MBOX_HEADER_REQ_MB0    (_PRCM_MBOX_HEADER + 0x0)
0073 #define PRCM_MBOX_HEADER_REQ_MB1    (_PRCM_MBOX_HEADER + 0x1)
0074 #define PRCM_MBOX_HEADER_REQ_MB2    (_PRCM_MBOX_HEADER + 0x2)
0075 #define PRCM_MBOX_HEADER_REQ_MB3    (_PRCM_MBOX_HEADER + 0x3)
0076 #define PRCM_MBOX_HEADER_REQ_MB4    (_PRCM_MBOX_HEADER + 0x4)
0077 #define PRCM_MBOX_HEADER_REQ_MB5    (_PRCM_MBOX_HEADER + 0x5)
0078 #define PRCM_MBOX_HEADER_ACK_MB0    (_PRCM_MBOX_HEADER + 0x8)
0079 
0080 /* Req Mailboxes */
0081 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
0082 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
0083 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
0084 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
0085 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
0086 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
0087 
0088 /* Ack Mailboxes */
0089 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
0090 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
0091 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
0092 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
0093 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
0094 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
0095 
0096 /* Mailbox 0 headers */
0097 #define MB0H_POWER_STATE_TRANS      0
0098 #define MB0H_CONFIG_WAKEUPS_EXE     1
0099 #define MB0H_READ_WAKEUP_ACK        3
0100 #define MB0H_CONFIG_WAKEUPS_SLEEP   4
0101 
0102 #define MB0H_WAKEUP_EXE 2
0103 #define MB0H_WAKEUP_SLEEP 5
0104 
0105 /* Mailbox 0 REQs */
0106 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
0107 #define PRCM_REQ_MB0_AP_PLL_STATE   (PRCM_REQ_MB0 + 0x1)
0108 #define PRCM_REQ_MB0_ULP_CLOCK_STATE    (PRCM_REQ_MB0 + 0x2)
0109 #define PRCM_REQ_MB0_DO_NOT_WFI     (PRCM_REQ_MB0 + 0x3)
0110 #define PRCM_REQ_MB0_WAKEUP_8500    (PRCM_REQ_MB0 + 0x4)
0111 #define PRCM_REQ_MB0_WAKEUP_4500    (PRCM_REQ_MB0 + 0x8)
0112 
0113 /* Mailbox 0 ACKs */
0114 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS  (PRCM_ACK_MB0 + 0x0)
0115 #define PRCM_ACK_MB0_READ_POINTER   (PRCM_ACK_MB0 + 0x1)
0116 #define PRCM_ACK_MB0_WAKEUP_0_8500  (PRCM_ACK_MB0 + 0x4)
0117 #define PRCM_ACK_MB0_WAKEUP_0_4500  (PRCM_ACK_MB0 + 0x8)
0118 #define PRCM_ACK_MB0_WAKEUP_1_8500  (PRCM_ACK_MB0 + 0x1C)
0119 #define PRCM_ACK_MB0_WAKEUP_1_4500  (PRCM_ACK_MB0 + 0x20)
0120 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
0121 
0122 /* Mailbox 1 headers */
0123 #define MB1H_ARM_APE_OPP 0x0
0124 #define MB1H_RESET_MODEM 0x2
0125 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
0126 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
0127 #define MB1H_RELEASE_USB_WAKEUP 0x5
0128 #define MB1H_PLL_ON_OFF 0x6
0129 
0130 /* Mailbox 1 Requests */
0131 #define PRCM_REQ_MB1_ARM_OPP            (PRCM_REQ_MB1 + 0x0)
0132 #define PRCM_REQ_MB1_APE_OPP            (PRCM_REQ_MB1 + 0x1)
0133 #define PRCM_REQ_MB1_PLL_ON_OFF         (PRCM_REQ_MB1 + 0x4)
0134 #define PLL_SOC0_OFF    0x1
0135 #define PLL_SOC0_ON 0x2
0136 #define PLL_SOC1_OFF    0x4
0137 #define PLL_SOC1_ON 0x8
0138 
0139 /* Mailbox 1 ACKs */
0140 #define PRCM_ACK_MB1_CURRENT_ARM_OPP    (PRCM_ACK_MB1 + 0x0)
0141 #define PRCM_ACK_MB1_CURRENT_APE_OPP    (PRCM_ACK_MB1 + 0x1)
0142 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
0143 #define PRCM_ACK_MB1_DVFS_STATUS    (PRCM_ACK_MB1 + 0x3)
0144 
0145 /* Mailbox 2 headers */
0146 #define MB2H_DPS    0x0
0147 #define MB2H_AUTO_PWR   0x1
0148 
0149 /* Mailbox 2 REQs */
0150 #define PRCM_REQ_MB2_SVA_MMDSP      (PRCM_REQ_MB2 + 0x0)
0151 #define PRCM_REQ_MB2_SVA_PIPE       (PRCM_REQ_MB2 + 0x1)
0152 #define PRCM_REQ_MB2_SIA_MMDSP      (PRCM_REQ_MB2 + 0x2)
0153 #define PRCM_REQ_MB2_SIA_PIPE       (PRCM_REQ_MB2 + 0x3)
0154 #define PRCM_REQ_MB2_SGA        (PRCM_REQ_MB2 + 0x4)
0155 #define PRCM_REQ_MB2_B2R2_MCDE      (PRCM_REQ_MB2 + 0x5)
0156 #define PRCM_REQ_MB2_ESRAM12        (PRCM_REQ_MB2 + 0x6)
0157 #define PRCM_REQ_MB2_ESRAM34        (PRCM_REQ_MB2 + 0x7)
0158 #define PRCM_REQ_MB2_AUTO_PM_SLEEP  (PRCM_REQ_MB2 + 0x8)
0159 #define PRCM_REQ_MB2_AUTO_PM_IDLE   (PRCM_REQ_MB2 + 0xC)
0160 
0161 /* Mailbox 2 ACKs */
0162 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
0163 #define HWACC_PWR_ST_OK 0xFE
0164 
0165 /* Mailbox 3 headers */
0166 #define MB3H_ANC    0x0
0167 #define MB3H_SIDETONE   0x1
0168 #define MB3H_SYSCLK 0xE
0169 
0170 /* Mailbox 3 Requests */
0171 #define PRCM_REQ_MB3_ANC_FIR_COEFF  (PRCM_REQ_MB3 + 0x0)
0172 #define PRCM_REQ_MB3_ANC_IIR_COEFF  (PRCM_REQ_MB3 + 0x20)
0173 #define PRCM_REQ_MB3_ANC_SHIFTER    (PRCM_REQ_MB3 + 0x60)
0174 #define PRCM_REQ_MB3_ANC_WARP       (PRCM_REQ_MB3 + 0x64)
0175 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN  (PRCM_REQ_MB3 + 0x68)
0176 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
0177 #define PRCM_REQ_MB3_SYSCLK_MGT     (PRCM_REQ_MB3 + 0x16C)
0178 
0179 /* Mailbox 4 headers */
0180 #define MB4H_DDR_INIT   0x0
0181 #define MB4H_MEM_ST 0x1
0182 #define MB4H_HOTDOG 0x12
0183 #define MB4H_HOTMON 0x13
0184 #define MB4H_HOT_PERIOD 0x14
0185 #define MB4H_A9WDOG_CONF 0x16
0186 #define MB4H_A9WDOG_EN   0x17
0187 #define MB4H_A9WDOG_DIS  0x18
0188 #define MB4H_A9WDOG_LOAD 0x19
0189 #define MB4H_A9WDOG_KICK 0x20
0190 
0191 /* Mailbox 4 Requests */
0192 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE   (PRCM_REQ_MB4 + 0x0)
0193 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE    (PRCM_REQ_MB4 + 0x1)
0194 #define PRCM_REQ_MB4_ESRAM0_ST          (PRCM_REQ_MB4 + 0x3)
0195 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD       (PRCM_REQ_MB4 + 0x0)
0196 #define PRCM_REQ_MB4_HOTMON_LOW         (PRCM_REQ_MB4 + 0x0)
0197 #define PRCM_REQ_MB4_HOTMON_HIGH        (PRCM_REQ_MB4 + 0x1)
0198 #define PRCM_REQ_MB4_HOTMON_CONFIG      (PRCM_REQ_MB4 + 0x2)
0199 #define PRCM_REQ_MB4_HOT_PERIOD         (PRCM_REQ_MB4 + 0x0)
0200 #define HOTMON_CONFIG_LOW           BIT(0)
0201 #define HOTMON_CONFIG_HIGH          BIT(1)
0202 #define PRCM_REQ_MB4_A9WDOG_0           (PRCM_REQ_MB4 + 0x0)
0203 #define PRCM_REQ_MB4_A9WDOG_1           (PRCM_REQ_MB4 + 0x1)
0204 #define PRCM_REQ_MB4_A9WDOG_2           (PRCM_REQ_MB4 + 0x2)
0205 #define PRCM_REQ_MB4_A9WDOG_3           (PRCM_REQ_MB4 + 0x3)
0206 #define A9WDOG_AUTO_OFF_EN          BIT(7)
0207 #define A9WDOG_AUTO_OFF_DIS         0
0208 #define A9WDOG_ID_MASK              0xf
0209 
0210 /* Mailbox 5 Requests */
0211 #define PRCM_REQ_MB5_I2C_SLAVE_OP   (PRCM_REQ_MB5 + 0x0)
0212 #define PRCM_REQ_MB5_I2C_HW_BITS    (PRCM_REQ_MB5 + 0x1)
0213 #define PRCM_REQ_MB5_I2C_REG        (PRCM_REQ_MB5 + 0x2)
0214 #define PRCM_REQ_MB5_I2C_VAL        (PRCM_REQ_MB5 + 0x3)
0215 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
0216 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
0217 #define PRCMU_I2C_STOP_EN       BIT(3)
0218 
0219 /* Mailbox 5 ACKs */
0220 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
0221 #define PRCM_ACK_MB5_I2C_VAL    (PRCM_ACK_MB5 + 0x3)
0222 #define I2C_WR_OK 0x1
0223 #define I2C_RD_OK 0x2
0224 
0225 #define NUM_MB 8
0226 #define MBOX_BIT BIT
0227 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
0228 
0229 /*
0230  * Wakeups/IRQs
0231  */
0232 
0233 #define WAKEUP_BIT_RTC BIT(0)
0234 #define WAKEUP_BIT_RTT0 BIT(1)
0235 #define WAKEUP_BIT_RTT1 BIT(2)
0236 #define WAKEUP_BIT_HSI0 BIT(3)
0237 #define WAKEUP_BIT_HSI1 BIT(4)
0238 #define WAKEUP_BIT_CA_WAKE BIT(5)
0239 #define WAKEUP_BIT_USB BIT(6)
0240 #define WAKEUP_BIT_ABB BIT(7)
0241 #define WAKEUP_BIT_ABB_FIFO BIT(8)
0242 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
0243 #define WAKEUP_BIT_CA_SLEEP BIT(10)
0244 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
0245 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
0246 #define WAKEUP_BIT_ANC_OK BIT(13)
0247 #define WAKEUP_BIT_SW_ERROR BIT(14)
0248 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
0249 #define WAKEUP_BIT_ARM BIT(17)
0250 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
0251 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
0252 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
0253 #define WAKEUP_BIT_GPIO0 BIT(23)
0254 #define WAKEUP_BIT_GPIO1 BIT(24)
0255 #define WAKEUP_BIT_GPIO2 BIT(25)
0256 #define WAKEUP_BIT_GPIO3 BIT(26)
0257 #define WAKEUP_BIT_GPIO4 BIT(27)
0258 #define WAKEUP_BIT_GPIO5 BIT(28)
0259 #define WAKEUP_BIT_GPIO6 BIT(29)
0260 #define WAKEUP_BIT_GPIO7 BIT(30)
0261 #define WAKEUP_BIT_GPIO8 BIT(31)
0262 
0263 static struct {
0264     bool valid;
0265     struct prcmu_fw_version version;
0266 } fw_info;
0267 
0268 static struct irq_domain *db8500_irq_domain;
0269 
0270 /*
0271  * This vector maps irq numbers to the bits in the bit field used in
0272  * communication with the PRCMU firmware.
0273  *
0274  * The reason for having this is to keep the irq numbers contiguous even though
0275  * the bits in the bit field are not. (The bits also have a tendency to move
0276  * around, to further complicate matters.)
0277  */
0278 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
0279 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
0280 
0281 #define IRQ_PRCMU_RTC 0
0282 #define IRQ_PRCMU_RTT0 1
0283 #define IRQ_PRCMU_RTT1 2
0284 #define IRQ_PRCMU_HSI0 3
0285 #define IRQ_PRCMU_HSI1 4
0286 #define IRQ_PRCMU_CA_WAKE 5
0287 #define IRQ_PRCMU_USB 6
0288 #define IRQ_PRCMU_ABB 7
0289 #define IRQ_PRCMU_ABB_FIFO 8
0290 #define IRQ_PRCMU_ARM 9
0291 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
0292 #define IRQ_PRCMU_GPIO0 11
0293 #define IRQ_PRCMU_GPIO1 12
0294 #define IRQ_PRCMU_GPIO2 13
0295 #define IRQ_PRCMU_GPIO3 14
0296 #define IRQ_PRCMU_GPIO4 15
0297 #define IRQ_PRCMU_GPIO5 16
0298 #define IRQ_PRCMU_GPIO6 17
0299 #define IRQ_PRCMU_GPIO7 18
0300 #define IRQ_PRCMU_GPIO8 19
0301 #define IRQ_PRCMU_CA_SLEEP 20
0302 #define IRQ_PRCMU_HOTMON_LOW 21
0303 #define IRQ_PRCMU_HOTMON_HIGH 22
0304 #define NUM_PRCMU_WAKEUPS 23
0305 
0306 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
0307     IRQ_ENTRY(RTC),
0308     IRQ_ENTRY(RTT0),
0309     IRQ_ENTRY(RTT1),
0310     IRQ_ENTRY(HSI0),
0311     IRQ_ENTRY(HSI1),
0312     IRQ_ENTRY(CA_WAKE),
0313     IRQ_ENTRY(USB),
0314     IRQ_ENTRY(ABB),
0315     IRQ_ENTRY(ABB_FIFO),
0316     IRQ_ENTRY(CA_SLEEP),
0317     IRQ_ENTRY(ARM),
0318     IRQ_ENTRY(HOTMON_LOW),
0319     IRQ_ENTRY(HOTMON_HIGH),
0320     IRQ_ENTRY(MODEM_SW_RESET_REQ),
0321     IRQ_ENTRY(GPIO0),
0322     IRQ_ENTRY(GPIO1),
0323     IRQ_ENTRY(GPIO2),
0324     IRQ_ENTRY(GPIO3),
0325     IRQ_ENTRY(GPIO4),
0326     IRQ_ENTRY(GPIO5),
0327     IRQ_ENTRY(GPIO6),
0328     IRQ_ENTRY(GPIO7),
0329     IRQ_ENTRY(GPIO8)
0330 };
0331 
0332 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
0333 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
0334 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
0335     WAKEUP_ENTRY(RTC),
0336     WAKEUP_ENTRY(RTT0),
0337     WAKEUP_ENTRY(RTT1),
0338     WAKEUP_ENTRY(HSI0),
0339     WAKEUP_ENTRY(HSI1),
0340     WAKEUP_ENTRY(USB),
0341     WAKEUP_ENTRY(ABB),
0342     WAKEUP_ENTRY(ABB_FIFO),
0343     WAKEUP_ENTRY(ARM)
0344 };
0345 
0346 /*
0347  * mb0_transfer - state needed for mailbox 0 communication.
0348  * @lock:       The transaction lock.
0349  * @dbb_events_lock:    A lock used to handle concurrent access to (parts of)
0350  *          the request data.
0351  * @mask_work:      Work structure used for (un)masking wakeup interrupts.
0352  * @req:        Request data that need to persist between requests.
0353  */
0354 static struct {
0355     spinlock_t lock;
0356     spinlock_t dbb_irqs_lock;
0357     struct work_struct mask_work;
0358     struct mutex ac_wake_lock;
0359     struct completion ac_wake_work;
0360     struct {
0361         u32 dbb_irqs;
0362         u32 dbb_wakeups;
0363         u32 abb_events;
0364     } req;
0365 } mb0_transfer;
0366 
0367 /*
0368  * mb1_transfer - state needed for mailbox 1 communication.
0369  * @lock:   The transaction lock.
0370  * @work:   The transaction completion structure.
0371  * @ape_opp:    The current APE OPP.
0372  * @ack:    Reply ("acknowledge") data.
0373  */
0374 static struct {
0375     struct mutex lock;
0376     struct completion work;
0377     u8 ape_opp;
0378     struct {
0379         u8 header;
0380         u8 arm_opp;
0381         u8 ape_opp;
0382         u8 ape_voltage_status;
0383     } ack;
0384 } mb1_transfer;
0385 
0386 /*
0387  * mb2_transfer - state needed for mailbox 2 communication.
0388  * @lock:            The transaction lock.
0389  * @work:            The transaction completion structure.
0390  * @auto_pm_lock:    The autonomous power management configuration lock.
0391  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
0392  * @req:             Request data that need to persist between requests.
0393  * @ack:             Reply ("acknowledge") data.
0394  */
0395 static struct {
0396     struct mutex lock;
0397     struct completion work;
0398     spinlock_t auto_pm_lock;
0399     bool auto_pm_enabled;
0400     struct {
0401         u8 status;
0402     } ack;
0403 } mb2_transfer;
0404 
0405 /*
0406  * mb3_transfer - state needed for mailbox 3 communication.
0407  * @lock:       The request lock.
0408  * @sysclk_lock:    A lock used to handle concurrent sysclk requests.
0409  * @sysclk_work:    Work structure used for sysclk requests.
0410  */
0411 static struct {
0412     spinlock_t lock;
0413     struct mutex sysclk_lock;
0414     struct completion sysclk_work;
0415 } mb3_transfer;
0416 
0417 /*
0418  * mb4_transfer - state needed for mailbox 4 communication.
0419  * @lock:   The transaction lock.
0420  * @work:   The transaction completion structure.
0421  */
0422 static struct {
0423     struct mutex lock;
0424     struct completion work;
0425 } mb4_transfer;
0426 
0427 /*
0428  * mb5_transfer - state needed for mailbox 5 communication.
0429  * @lock:   The transaction lock.
0430  * @work:   The transaction completion structure.
0431  * @ack:    Reply ("acknowledge") data.
0432  */
0433 static struct {
0434     struct mutex lock;
0435     struct completion work;
0436     struct {
0437         u8 status;
0438         u8 value;
0439     } ack;
0440 } mb5_transfer;
0441 
0442 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
0443 
0444 /* Spinlocks */
0445 static DEFINE_SPINLOCK(prcmu_lock);
0446 static DEFINE_SPINLOCK(clkout_lock);
0447 
0448 /* Global var to runtime determine TCDM base for v2 or v1 */
0449 static __iomem void *tcdm_base;
0450 static __iomem void *prcmu_base;
0451 
0452 struct clk_mgt {
0453     u32 offset;
0454     u32 pllsw;
0455     int branch;
0456     bool clk38div;
0457 };
0458 
0459 enum {
0460     PLL_RAW,
0461     PLL_FIX,
0462     PLL_DIV
0463 };
0464 
0465 static DEFINE_SPINLOCK(clk_mgt_lock);
0466 
0467 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
0468     { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
0469 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
0470     CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
0471     CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
0472     CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
0473     CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
0474     CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
0475     CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
0476     CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
0477     CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
0478     CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
0479     CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
0480     CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
0481     CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
0482     CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
0483     CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
0484     CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
0485     CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
0486     CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
0487     CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
0488     CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
0489     CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
0490     CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
0491     CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
0492     CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
0493     CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
0494     CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
0495     CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
0496     CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
0497     CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
0498     CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
0499 };
0500 
0501 struct dsiclk {
0502     u32 divsel_mask;
0503     u32 divsel_shift;
0504     u32 divsel;
0505 };
0506 
0507 static struct dsiclk dsiclk[2] = {
0508     {
0509         .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
0510         .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
0511         .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
0512     },
0513     {
0514         .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
0515         .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
0516         .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
0517     }
0518 };
0519 
0520 struct dsiescclk {
0521     u32 en;
0522     u32 div_mask;
0523     u32 div_shift;
0524 };
0525 
0526 static struct dsiescclk dsiescclk[3] = {
0527     {
0528         .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
0529         .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
0530         .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
0531     },
0532     {
0533         .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
0534         .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
0535         .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
0536     },
0537     {
0538         .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
0539         .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
0540         .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
0541     }
0542 };
0543 
0544 u32 db8500_prcmu_read(unsigned int reg)
0545 {
0546     return readl(prcmu_base + reg);
0547 }
0548 
0549 void db8500_prcmu_write(unsigned int reg, u32 value)
0550 {
0551     unsigned long flags;
0552 
0553     spin_lock_irqsave(&prcmu_lock, flags);
0554     writel(value, (prcmu_base + reg));
0555     spin_unlock_irqrestore(&prcmu_lock, flags);
0556 }
0557 
0558 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
0559 {
0560     u32 val;
0561     unsigned long flags;
0562 
0563     spin_lock_irqsave(&prcmu_lock, flags);
0564     val = readl(prcmu_base + reg);
0565     val = ((val & ~mask) | (value & mask));
0566     writel(val, (prcmu_base + reg));
0567     spin_unlock_irqrestore(&prcmu_lock, flags);
0568 }
0569 
0570 struct prcmu_fw_version *prcmu_get_fw_version(void)
0571 {
0572     return fw_info.valid ? &fw_info.version : NULL;
0573 }
0574 
0575 static bool prcmu_is_ulppll_disabled(void)
0576 {
0577     struct prcmu_fw_version *ver;
0578 
0579     ver = prcmu_get_fw_version();
0580     return ver && ver->project == PRCMU_FW_PROJECT_U8420_SYSCLK;
0581 }
0582 
0583 bool prcmu_has_arm_maxopp(void)
0584 {
0585     return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
0586         PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
0587 }
0588 
0589 /**
0590  * prcmu_set_rc_a2p - This function is used to run few power state sequences
0591  * @val: Value to be set, i.e. transition requested
0592  * Returns: 0 on success, -EINVAL on invalid argument
0593  *
0594  * This function is used to run the following power state sequences -
0595  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
0596  */
0597 int prcmu_set_rc_a2p(enum romcode_write val)
0598 {
0599     if (val < RDY_2_DS || val > RDY_2_XP70_RST)
0600         return -EINVAL;
0601     writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
0602     return 0;
0603 }
0604 
0605 /**
0606  * prcmu_get_rc_p2a - This function is used to get power state sequences
0607  * Returns: the power transition that has last happened
0608  *
0609  * This function can return the following transitions-
0610  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
0611  */
0612 enum romcode_read prcmu_get_rc_p2a(void)
0613 {
0614     return readb(tcdm_base + PRCM_ROMCODE_P2A);
0615 }
0616 
0617 /**
0618  * prcmu_get_xp70_current_state - Return the current XP70 power mode
0619  * Returns: Returns the current AP(ARM) power mode: init,
0620  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
0621  */
0622 enum ap_pwrst prcmu_get_xp70_current_state(void)
0623 {
0624     return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
0625 }
0626 
0627 /**
0628  * prcmu_config_clkout - Configure one of the programmable clock outputs.
0629  * @clkout: The CLKOUT number (0 or 1).
0630  * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
0631  * @div:    The divider to be applied.
0632  *
0633  * Configures one of the programmable clock outputs (CLKOUTs).
0634  * @div should be in the range [1,63] to request a configuration, or 0 to
0635  * inform that the configuration is no longer requested.
0636  */
0637 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
0638 {
0639     static int requests[2];
0640     int r = 0;
0641     unsigned long flags;
0642     u32 val;
0643     u32 bits;
0644     u32 mask;
0645     u32 div_mask;
0646 
0647     BUG_ON(clkout > 1);
0648     BUG_ON(div > 63);
0649     BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
0650 
0651     if (!div && !requests[clkout])
0652         return -EINVAL;
0653 
0654     if (clkout == 0) {
0655         div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
0656         mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
0657         bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
0658             (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
0659     } else {
0660         div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
0661         mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
0662             PRCM_CLKOCR_CLK1TYPE);
0663         bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
0664             (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
0665     }
0666     bits &= mask;
0667 
0668     spin_lock_irqsave(&clkout_lock, flags);
0669 
0670     val = readl(PRCM_CLKOCR);
0671     if (val & div_mask) {
0672         if (div) {
0673             if ((val & mask) != bits) {
0674                 r = -EBUSY;
0675                 goto unlock_and_return;
0676             }
0677         } else {
0678             if ((val & mask & ~div_mask) != bits) {
0679                 r = -EINVAL;
0680                 goto unlock_and_return;
0681             }
0682         }
0683     }
0684     writel((bits | (val & ~mask)), PRCM_CLKOCR);
0685     requests[clkout] += (div ? 1 : -1);
0686 
0687 unlock_and_return:
0688     spin_unlock_irqrestore(&clkout_lock, flags);
0689 
0690     return r;
0691 }
0692 
0693 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
0694 {
0695     unsigned long flags;
0696 
0697     BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
0698 
0699     spin_lock_irqsave(&mb0_transfer.lock, flags);
0700 
0701     while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
0702         cpu_relax();
0703 
0704     writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
0705     writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
0706     writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
0707     writeb((keep_ulp_clk ? 1 : 0),
0708         (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
0709     writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
0710     writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
0711 
0712     spin_unlock_irqrestore(&mb0_transfer.lock, flags);
0713 
0714     return 0;
0715 }
0716 
0717 u8 db8500_prcmu_get_power_state_result(void)
0718 {
0719     return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
0720 }
0721 
0722 /* This function should only be called while mb0_transfer.lock is held. */
0723 static void config_wakeups(void)
0724 {
0725     const u8 header[2] = {
0726         MB0H_CONFIG_WAKEUPS_EXE,
0727         MB0H_CONFIG_WAKEUPS_SLEEP
0728     };
0729     static u32 last_dbb_events;
0730     static u32 last_abb_events;
0731     u32 dbb_events;
0732     u32 abb_events;
0733     unsigned int i;
0734 
0735     dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
0736     dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
0737 
0738     abb_events = mb0_transfer.req.abb_events;
0739 
0740     if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
0741         return;
0742 
0743     for (i = 0; i < 2; i++) {
0744         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
0745             cpu_relax();
0746         writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
0747         writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
0748         writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
0749         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
0750     }
0751     last_dbb_events = dbb_events;
0752     last_abb_events = abb_events;
0753 }
0754 
0755 void db8500_prcmu_enable_wakeups(u32 wakeups)
0756 {
0757     unsigned long flags;
0758     u32 bits;
0759     int i;
0760 
0761     BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
0762 
0763     for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
0764         if (wakeups & BIT(i))
0765             bits |= prcmu_wakeup_bit[i];
0766     }
0767 
0768     spin_lock_irqsave(&mb0_transfer.lock, flags);
0769 
0770     mb0_transfer.req.dbb_wakeups = bits;
0771     config_wakeups();
0772 
0773     spin_unlock_irqrestore(&mb0_transfer.lock, flags);
0774 }
0775 
0776 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
0777 {
0778     unsigned long flags;
0779 
0780     spin_lock_irqsave(&mb0_transfer.lock, flags);
0781 
0782     mb0_transfer.req.abb_events = abb_events;
0783     config_wakeups();
0784 
0785     spin_unlock_irqrestore(&mb0_transfer.lock, flags);
0786 }
0787 
0788 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
0789 {
0790     if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
0791         *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
0792     else
0793         *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
0794 }
0795 
0796 /**
0797  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
0798  * @opp: The new ARM operating point to which transition is to be made
0799  * Returns: 0 on success, non-zero on failure
0800  *
0801  * This function sets the operating point of the ARM.
0802  */
0803 int db8500_prcmu_set_arm_opp(u8 opp)
0804 {
0805     int r;
0806 
0807     if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
0808         return -EINVAL;
0809 
0810     r = 0;
0811 
0812     mutex_lock(&mb1_transfer.lock);
0813 
0814     while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
0815         cpu_relax();
0816 
0817     writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
0818     writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
0819     writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
0820 
0821     writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
0822     wait_for_completion(&mb1_transfer.work);
0823 
0824     if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
0825         (mb1_transfer.ack.arm_opp != opp))
0826         r = -EIO;
0827 
0828     mutex_unlock(&mb1_transfer.lock);
0829 
0830     return r;
0831 }
0832 
0833 /**
0834  * db8500_prcmu_get_arm_opp - get the current ARM OPP
0835  *
0836  * Returns: the current ARM OPP
0837  */
0838 int db8500_prcmu_get_arm_opp(void)
0839 {
0840     return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
0841 }
0842 
0843 /**
0844  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
0845  *
0846  * Returns: the current DDR OPP
0847  */
0848 int db8500_prcmu_get_ddr_opp(void)
0849 {
0850     return readb(PRCM_DDR_SUBSYS_APE_MINBW);
0851 }
0852 
0853 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
0854 static void request_even_slower_clocks(bool enable)
0855 {
0856     u32 clock_reg[] = {
0857         PRCM_ACLK_MGT,
0858         PRCM_DMACLK_MGT
0859     };
0860     unsigned long flags;
0861     unsigned int i;
0862 
0863     spin_lock_irqsave(&clk_mgt_lock, flags);
0864 
0865     /* Grab the HW semaphore. */
0866     while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
0867         cpu_relax();
0868 
0869     for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
0870         u32 val;
0871         u32 div;
0872 
0873         val = readl(prcmu_base + clock_reg[i]);
0874         div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
0875         if (enable) {
0876             if ((div <= 1) || (div > 15)) {
0877                 pr_err("prcmu: Bad clock divider %d in %s\n",
0878                     div, __func__);
0879                 goto unlock_and_return;
0880             }
0881             div <<= 1;
0882         } else {
0883             if (div <= 2)
0884                 goto unlock_and_return;
0885             div >>= 1;
0886         }
0887         val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
0888             (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
0889         writel(val, prcmu_base + clock_reg[i]);
0890     }
0891 
0892 unlock_and_return:
0893     /* Release the HW semaphore. */
0894     writel(0, PRCM_SEM);
0895 
0896     spin_unlock_irqrestore(&clk_mgt_lock, flags);
0897 }
0898 
0899 /**
0900  * db8500_prcmu_set_ape_opp - set the appropriate APE OPP
0901  * @opp: The new APE operating point to which transition is to be made
0902  * Returns: 0 on success, non-zero on failure
0903  *
0904  * This function sets the operating point of the APE.
0905  */
0906 int db8500_prcmu_set_ape_opp(u8 opp)
0907 {
0908     int r = 0;
0909 
0910     if (opp == mb1_transfer.ape_opp)
0911         return 0;
0912 
0913     mutex_lock(&mb1_transfer.lock);
0914 
0915     if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
0916         request_even_slower_clocks(false);
0917 
0918     if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
0919         goto skip_message;
0920 
0921     while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
0922         cpu_relax();
0923 
0924     writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
0925     writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
0926     writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
0927         (tcdm_base + PRCM_REQ_MB1_APE_OPP));
0928 
0929     writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
0930     wait_for_completion(&mb1_transfer.work);
0931 
0932     if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
0933         (mb1_transfer.ack.ape_opp != opp))
0934         r = -EIO;
0935 
0936 skip_message:
0937     if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
0938         (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
0939         request_even_slower_clocks(true);
0940     if (!r)
0941         mb1_transfer.ape_opp = opp;
0942 
0943     mutex_unlock(&mb1_transfer.lock);
0944 
0945     return r;
0946 }
0947 
0948 /**
0949  * db8500_prcmu_get_ape_opp - get the current APE OPP
0950  *
0951  * Returns: the current APE OPP
0952  */
0953 int db8500_prcmu_get_ape_opp(void)
0954 {
0955     return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
0956 }
0957 
0958 /**
0959  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
0960  * @enable: true to request the higher voltage, false to drop a request.
0961  *
0962  * Calls to this function to enable and disable requests must be balanced.
0963  */
0964 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
0965 {
0966     int r = 0;
0967     u8 header;
0968     static unsigned int requests;
0969 
0970     mutex_lock(&mb1_transfer.lock);
0971 
0972     if (enable) {
0973         if (0 != requests++)
0974             goto unlock_and_return;
0975         header = MB1H_REQUEST_APE_OPP_100_VOLT;
0976     } else {
0977         if (requests == 0) {
0978             r = -EIO;
0979             goto unlock_and_return;
0980         } else if (1 != requests--) {
0981             goto unlock_and_return;
0982         }
0983         header = MB1H_RELEASE_APE_OPP_100_VOLT;
0984     }
0985 
0986     while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
0987         cpu_relax();
0988 
0989     writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
0990 
0991     writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
0992     wait_for_completion(&mb1_transfer.work);
0993 
0994     if ((mb1_transfer.ack.header != header) ||
0995         ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
0996         r = -EIO;
0997 
0998 unlock_and_return:
0999     mutex_unlock(&mb1_transfer.lock);
1000 
1001     return r;
1002 }
1003 
1004 /**
1005  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1006  *
1007  * This function releases the power state requirements of a USB wakeup.
1008  */
1009 int prcmu_release_usb_wakeup_state(void)
1010 {
1011     int r = 0;
1012 
1013     mutex_lock(&mb1_transfer.lock);
1014 
1015     while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1016         cpu_relax();
1017 
1018     writeb(MB1H_RELEASE_USB_WAKEUP,
1019         (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1020 
1021     writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1022     wait_for_completion(&mb1_transfer.work);
1023 
1024     if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1025         ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1026         r = -EIO;
1027 
1028     mutex_unlock(&mb1_transfer.lock);
1029 
1030     return r;
1031 }
1032 
1033 static int request_pll(u8 clock, bool enable)
1034 {
1035     int r = 0;
1036 
1037     if (clock == PRCMU_PLLSOC0)
1038         clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1039     else if (clock == PRCMU_PLLSOC1)
1040         clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1041     else
1042         return -EINVAL;
1043 
1044     mutex_lock(&mb1_transfer.lock);
1045 
1046     while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1047         cpu_relax();
1048 
1049     writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1050     writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1051 
1052     writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1053     wait_for_completion(&mb1_transfer.work);
1054 
1055     if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1056         r = -EIO;
1057 
1058     mutex_unlock(&mb1_transfer.lock);
1059 
1060     return r;
1061 }
1062 
1063 /**
1064  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1065  * @epod_id: The EPOD to set
1066  * @epod_state: The new EPOD state
1067  *
1068  * This function sets the state of a EPOD (power domain). It may not be called
1069  * from interrupt context.
1070  */
1071 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1072 {
1073     int r = 0;
1074     bool ram_retention = false;
1075     int i;
1076 
1077     /* check argument */
1078     BUG_ON(epod_id >= NUM_EPOD_ID);
1079 
1080     /* set flag if retention is possible */
1081     switch (epod_id) {
1082     case EPOD_ID_SVAMMDSP:
1083     case EPOD_ID_SIAMMDSP:
1084     case EPOD_ID_ESRAM12:
1085     case EPOD_ID_ESRAM34:
1086         ram_retention = true;
1087         break;
1088     }
1089 
1090     /* check argument */
1091     BUG_ON(epod_state > EPOD_STATE_ON);
1092     BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1093 
1094     /* get lock */
1095     mutex_lock(&mb2_transfer.lock);
1096 
1097     /* wait for mailbox */
1098     while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1099         cpu_relax();
1100 
1101     /* fill in mailbox */
1102     for (i = 0; i < NUM_EPOD_ID; i++)
1103         writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1104     writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1105 
1106     writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1107 
1108     writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1109 
1110     /*
1111      * The current firmware version does not handle errors correctly,
1112      * and we cannot recover if there is an error.
1113      * This is expected to change when the firmware is updated.
1114      */
1115     if (!wait_for_completion_timeout(&mb2_transfer.work,
1116             msecs_to_jiffies(20000))) {
1117         pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1118             __func__);
1119         r = -EIO;
1120         goto unlock_and_return;
1121     }
1122 
1123     if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1124         r = -EIO;
1125 
1126 unlock_and_return:
1127     mutex_unlock(&mb2_transfer.lock);
1128     return r;
1129 }
1130 
1131 /**
1132  * prcmu_configure_auto_pm - Configure autonomous power management.
1133  * @sleep: Configuration for ApSleep.
1134  * @idle:  Configuration for ApIdle.
1135  */
1136 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1137     struct prcmu_auto_pm_config *idle)
1138 {
1139     u32 sleep_cfg;
1140     u32 idle_cfg;
1141     unsigned long flags;
1142 
1143     BUG_ON((sleep == NULL) || (idle == NULL));
1144 
1145     sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1146     sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1147     sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1148     sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1149     sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1150     sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1151 
1152     idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1153     idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1154     idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1155     idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1156     idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1157     idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1158 
1159     spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1160 
1161     /*
1162      * The autonomous power management configuration is done through
1163      * fields in mailbox 2, but these fields are only used as shared
1164      * variables - i.e. there is no need to send a message.
1165      */
1166     writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1167     writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1168 
1169     mb2_transfer.auto_pm_enabled =
1170         ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1171          (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1172          (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1173          (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1174 
1175     spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1176 }
1177 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1178 
1179 bool prcmu_is_auto_pm_enabled(void)
1180 {
1181     return mb2_transfer.auto_pm_enabled;
1182 }
1183 
1184 static int request_sysclk(bool enable)
1185 {
1186     int r;
1187     unsigned long flags;
1188 
1189     r = 0;
1190 
1191     mutex_lock(&mb3_transfer.sysclk_lock);
1192 
1193     spin_lock_irqsave(&mb3_transfer.lock, flags);
1194 
1195     while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1196         cpu_relax();
1197 
1198     writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1199 
1200     writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1201     writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1202 
1203     spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1204 
1205     /*
1206      * The firmware only sends an ACK if we want to enable the
1207      * SysClk, and it succeeds.
1208      */
1209     if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1210             msecs_to_jiffies(20000))) {
1211         pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1212             __func__);
1213         r = -EIO;
1214     }
1215 
1216     mutex_unlock(&mb3_transfer.sysclk_lock);
1217 
1218     return r;
1219 }
1220 
1221 static int request_timclk(bool enable)
1222 {
1223     u32 val;
1224 
1225     /*
1226      * On the U8420_CLKSEL firmware, the ULP (Ultra Low Power)
1227      * PLL is disabled so we cannot use doze mode, this will
1228      * stop the clock on this firmware.
1229      */
1230     if (prcmu_is_ulppll_disabled())
1231         val = 0;
1232     else
1233         val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1234 
1235     if (!enable)
1236         val |= PRCM_TCR_STOP_TIMERS |
1237             PRCM_TCR_DOZE_MODE |
1238             PRCM_TCR_TENSEL_MASK;
1239 
1240     writel(val, PRCM_TCR);
1241 
1242     return 0;
1243 }
1244 
1245 static int request_clock(u8 clock, bool enable)
1246 {
1247     u32 val;
1248     unsigned long flags;
1249 
1250     spin_lock_irqsave(&clk_mgt_lock, flags);
1251 
1252     /* Grab the HW semaphore. */
1253     while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1254         cpu_relax();
1255 
1256     val = readl(prcmu_base + clk_mgt[clock].offset);
1257     if (enable) {
1258         val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1259     } else {
1260         clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1261         val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1262     }
1263     writel(val, prcmu_base + clk_mgt[clock].offset);
1264 
1265     /* Release the HW semaphore. */
1266     writel(0, PRCM_SEM);
1267 
1268     spin_unlock_irqrestore(&clk_mgt_lock, flags);
1269 
1270     return 0;
1271 }
1272 
1273 static int request_sga_clock(u8 clock, bool enable)
1274 {
1275     u32 val;
1276     int ret;
1277 
1278     if (enable) {
1279         val = readl(PRCM_CGATING_BYPASS);
1280         writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1281     }
1282 
1283     ret = request_clock(clock, enable);
1284 
1285     if (!ret && !enable) {
1286         val = readl(PRCM_CGATING_BYPASS);
1287         writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1288     }
1289 
1290     return ret;
1291 }
1292 
1293 static inline bool plldsi_locked(void)
1294 {
1295     return (readl(PRCM_PLLDSI_LOCKP) &
1296         (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1297          PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1298         (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1299          PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1300 }
1301 
1302 static int request_plldsi(bool enable)
1303 {
1304     int r = 0;
1305     u32 val;
1306 
1307     writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1308         PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1309         PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1310 
1311     val = readl(PRCM_PLLDSI_ENABLE);
1312     if (enable)
1313         val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1314     else
1315         val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1316     writel(val, PRCM_PLLDSI_ENABLE);
1317 
1318     if (enable) {
1319         unsigned int i;
1320         bool locked = plldsi_locked();
1321 
1322         for (i = 10; !locked && (i > 0); --i) {
1323             udelay(100);
1324             locked = plldsi_locked();
1325         }
1326         if (locked) {
1327             writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1328                 PRCM_APE_RESETN_SET);
1329         } else {
1330             writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1331                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1332                 PRCM_MMIP_LS_CLAMP_SET);
1333             val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1334             writel(val, PRCM_PLLDSI_ENABLE);
1335             r = -EAGAIN;
1336         }
1337     } else {
1338         writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1339     }
1340     return r;
1341 }
1342 
1343 static int request_dsiclk(u8 n, bool enable)
1344 {
1345     u32 val;
1346 
1347     val = readl(PRCM_DSI_PLLOUT_SEL);
1348     val &= ~dsiclk[n].divsel_mask;
1349     val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1350         dsiclk[n].divsel_shift);
1351     writel(val, PRCM_DSI_PLLOUT_SEL);
1352     return 0;
1353 }
1354 
1355 static int request_dsiescclk(u8 n, bool enable)
1356 {
1357     u32 val;
1358 
1359     val = readl(PRCM_DSITVCLK_DIV);
1360     enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1361     writel(val, PRCM_DSITVCLK_DIV);
1362     return 0;
1363 }
1364 
1365 /**
1366  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1367  * @clock:      The clock for which the request is made.
1368  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1369  *
1370  * This function should only be used by the clock implementation.
1371  * Do not use it from any other place!
1372  */
1373 int db8500_prcmu_request_clock(u8 clock, bool enable)
1374 {
1375     if (clock == PRCMU_SGACLK)
1376         return request_sga_clock(clock, enable);
1377     else if (clock < PRCMU_NUM_REG_CLOCKS)
1378         return request_clock(clock, enable);
1379     else if (clock == PRCMU_TIMCLK)
1380         return request_timclk(enable);
1381     else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1382         return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1383     else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1384         return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1385     else if (clock == PRCMU_PLLDSI)
1386         return request_plldsi(enable);
1387     else if (clock == PRCMU_SYSCLK)
1388         return request_sysclk(enable);
1389     else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1390         return request_pll(clock, enable);
1391     else
1392         return -EINVAL;
1393 }
1394 
1395 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1396     int branch)
1397 {
1398     u64 rate;
1399     u32 val;
1400     u32 d;
1401     u32 div = 1;
1402 
1403     val = readl(reg);
1404 
1405     rate = src_rate;
1406     rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1407 
1408     d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1409     if (d > 1)
1410         div *= d;
1411 
1412     d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1413     if (d > 1)
1414         div *= d;
1415 
1416     if (val & PRCM_PLL_FREQ_SELDIV2)
1417         div *= 2;
1418 
1419     if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1420         (val & PRCM_PLL_FREQ_DIV2EN) &&
1421         ((reg == PRCM_PLLSOC0_FREQ) ||
1422          (reg == PRCM_PLLARM_FREQ) ||
1423          (reg == PRCM_PLLDDR_FREQ))))
1424         div *= 2;
1425 
1426     (void)do_div(rate, div);
1427 
1428     return (unsigned long)rate;
1429 }
1430 
1431 #define ROOT_CLOCK_RATE 38400000
1432 
1433 static unsigned long clock_rate(u8 clock)
1434 {
1435     u32 val;
1436     u32 pllsw;
1437     unsigned long rate = ROOT_CLOCK_RATE;
1438 
1439     val = readl(prcmu_base + clk_mgt[clock].offset);
1440 
1441     if (val & PRCM_CLK_MGT_CLK38) {
1442         if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1443             rate /= 2;
1444         return rate;
1445     }
1446 
1447     val |= clk_mgt[clock].pllsw;
1448     pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1449 
1450     if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1451         rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1452     else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1453         rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1454     else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1455         rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1456     else
1457         return 0;
1458 
1459     if ((clock == PRCMU_SGACLK) &&
1460         (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1461         u64 r = (rate * 10);
1462 
1463         (void)do_div(r, 25);
1464         return (unsigned long)r;
1465     }
1466     val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1467     if (val)
1468         return rate / val;
1469     else
1470         return 0;
1471 }
1472 
1473 static unsigned long armss_rate(void)
1474 {
1475     u32 r;
1476     unsigned long rate;
1477 
1478     r = readl(PRCM_ARM_CHGCLKREQ);
1479 
1480     if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1481         /* External ARMCLKFIX clock */
1482 
1483         rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1484 
1485         /* Check PRCM_ARM_CHGCLKREQ divider */
1486         if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1487             rate /= 2;
1488 
1489         /* Check PRCM_ARMCLKFIX_MGT divider */
1490         r = readl(PRCM_ARMCLKFIX_MGT);
1491         r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1492         rate /= r;
1493 
1494     } else {/* ARM PLL */
1495         rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1496     }
1497 
1498     return rate;
1499 }
1500 
1501 static unsigned long dsiclk_rate(u8 n)
1502 {
1503     u32 divsel;
1504     u32 div = 1;
1505 
1506     divsel = readl(PRCM_DSI_PLLOUT_SEL);
1507     divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1508 
1509     if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1510         divsel = dsiclk[n].divsel;
1511     else
1512         dsiclk[n].divsel = divsel;
1513 
1514     switch (divsel) {
1515     case PRCM_DSI_PLLOUT_SEL_PHI_4:
1516         div *= 2;
1517         fallthrough;
1518     case PRCM_DSI_PLLOUT_SEL_PHI_2:
1519         div *= 2;
1520         fallthrough;
1521     case PRCM_DSI_PLLOUT_SEL_PHI:
1522         return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1523             PLL_RAW) / div;
1524     default:
1525         return 0;
1526     }
1527 }
1528 
1529 static unsigned long dsiescclk_rate(u8 n)
1530 {
1531     u32 div;
1532 
1533     div = readl(PRCM_DSITVCLK_DIV);
1534     div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1535     return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1536 }
1537 
1538 unsigned long prcmu_clock_rate(u8 clock)
1539 {
1540     if (clock < PRCMU_NUM_REG_CLOCKS)
1541         return clock_rate(clock);
1542     else if (clock == PRCMU_TIMCLK)
1543         return prcmu_is_ulppll_disabled() ?
1544             32768 : ROOT_CLOCK_RATE / 16;
1545     else if (clock == PRCMU_SYSCLK)
1546         return ROOT_CLOCK_RATE;
1547     else if (clock == PRCMU_PLLSOC0)
1548         return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1549     else if (clock == PRCMU_PLLSOC1)
1550         return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1551     else if (clock == PRCMU_ARMSS)
1552         return armss_rate();
1553     else if (clock == PRCMU_PLLDDR)
1554         return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1555     else if (clock == PRCMU_PLLDSI)
1556         return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1557             PLL_RAW);
1558     else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1559         return dsiclk_rate(clock - PRCMU_DSI0CLK);
1560     else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1561         return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1562     else
1563         return 0;
1564 }
1565 
1566 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1567 {
1568     if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1569         return ROOT_CLOCK_RATE;
1570     clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1571     if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1572         return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1573     else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1574         return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1575     else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1576         return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1577     else
1578         return 0;
1579 }
1580 
1581 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1582 {
1583     u32 div;
1584 
1585     div = (src_rate / rate);
1586     if (div == 0)
1587         return 1;
1588     if (rate < (src_rate / div))
1589         div++;
1590     return div;
1591 }
1592 
1593 static long round_clock_rate(u8 clock, unsigned long rate)
1594 {
1595     u32 val;
1596     u32 div;
1597     unsigned long src_rate;
1598     long rounded_rate;
1599 
1600     val = readl(prcmu_base + clk_mgt[clock].offset);
1601     src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1602         clk_mgt[clock].branch);
1603     div = clock_divider(src_rate, rate);
1604     if (val & PRCM_CLK_MGT_CLK38) {
1605         if (clk_mgt[clock].clk38div) {
1606             if (div > 2)
1607                 div = 2;
1608         } else {
1609             div = 1;
1610         }
1611     } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1612         u64 r = (src_rate * 10);
1613 
1614         (void)do_div(r, 25);
1615         if (r <= rate)
1616             return (unsigned long)r;
1617     }
1618     rounded_rate = (src_rate / min(div, (u32)31));
1619 
1620     return rounded_rate;
1621 }
1622 
1623 static const unsigned long db8500_armss_freqs[] = {
1624     199680000,
1625     399360000,
1626     798720000,
1627     998400000
1628 };
1629 
1630 /* The DB8520 has slightly higher ARMSS max frequency */
1631 static const unsigned long db8520_armss_freqs[] = {
1632     199680000,
1633     399360000,
1634     798720000,
1635     1152000000
1636 };
1637 
1638 static long round_armss_rate(unsigned long rate)
1639 {
1640     unsigned long freq = 0;
1641     const unsigned long *freqs;
1642     int nfreqs;
1643     int i;
1644 
1645     if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1646         freqs = db8520_armss_freqs;
1647         nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1648     } else {
1649         freqs = db8500_armss_freqs;
1650         nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1651     }
1652 
1653     /* Find the corresponding arm opp from the cpufreq table. */
1654     for (i = 0; i < nfreqs; i++) {
1655         freq = freqs[i];
1656         if (rate <= freq)
1657             break;
1658     }
1659 
1660     /* Return the last valid value, even if a match was not found. */
1661     return freq;
1662 }
1663 
1664 #define MIN_PLL_VCO_RATE 600000000ULL
1665 #define MAX_PLL_VCO_RATE 1680640000ULL
1666 
1667 static long round_plldsi_rate(unsigned long rate)
1668 {
1669     long rounded_rate = 0;
1670     unsigned long src_rate;
1671     unsigned long rem;
1672     u32 r;
1673 
1674     src_rate = clock_rate(PRCMU_HDMICLK);
1675     rem = rate;
1676 
1677     for (r = 7; (rem > 0) && (r > 0); r--) {
1678         u64 d;
1679 
1680         d = (r * rate);
1681         (void)do_div(d, src_rate);
1682         if (d < 6)
1683             d = 6;
1684         else if (d > 255)
1685             d = 255;
1686         d *= src_rate;
1687         if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1688             ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1689             continue;
1690         (void)do_div(d, r);
1691         if (rate < d) {
1692             if (rounded_rate == 0)
1693                 rounded_rate = (long)d;
1694             break;
1695         }
1696         if ((rate - d) < rem) {
1697             rem = (rate - d);
1698             rounded_rate = (long)d;
1699         }
1700     }
1701     return rounded_rate;
1702 }
1703 
1704 static long round_dsiclk_rate(unsigned long rate)
1705 {
1706     u32 div;
1707     unsigned long src_rate;
1708     long rounded_rate;
1709 
1710     src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1711         PLL_RAW);
1712     div = clock_divider(src_rate, rate);
1713     rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1714 
1715     return rounded_rate;
1716 }
1717 
1718 static long round_dsiescclk_rate(unsigned long rate)
1719 {
1720     u32 div;
1721     unsigned long src_rate;
1722     long rounded_rate;
1723 
1724     src_rate = clock_rate(PRCMU_TVCLK);
1725     div = clock_divider(src_rate, rate);
1726     rounded_rate = (src_rate / min(div, (u32)255));
1727 
1728     return rounded_rate;
1729 }
1730 
1731 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1732 {
1733     if (clock < PRCMU_NUM_REG_CLOCKS)
1734         return round_clock_rate(clock, rate);
1735     else if (clock == PRCMU_ARMSS)
1736         return round_armss_rate(rate);
1737     else if (clock == PRCMU_PLLDSI)
1738         return round_plldsi_rate(rate);
1739     else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1740         return round_dsiclk_rate(rate);
1741     else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1742         return round_dsiescclk_rate(rate);
1743     else
1744         return (long)prcmu_clock_rate(clock);
1745 }
1746 
1747 static void set_clock_rate(u8 clock, unsigned long rate)
1748 {
1749     u32 val;
1750     u32 div;
1751     unsigned long src_rate;
1752     unsigned long flags;
1753 
1754     spin_lock_irqsave(&clk_mgt_lock, flags);
1755 
1756     /* Grab the HW semaphore. */
1757     while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1758         cpu_relax();
1759 
1760     val = readl(prcmu_base + clk_mgt[clock].offset);
1761     src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1762         clk_mgt[clock].branch);
1763     div = clock_divider(src_rate, rate);
1764     if (val & PRCM_CLK_MGT_CLK38) {
1765         if (clk_mgt[clock].clk38div) {
1766             if (div > 1)
1767                 val |= PRCM_CLK_MGT_CLK38DIV;
1768             else
1769                 val &= ~PRCM_CLK_MGT_CLK38DIV;
1770         }
1771     } else if (clock == PRCMU_SGACLK) {
1772         val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1773             PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1774         if (div == 3) {
1775             u64 r = (src_rate * 10);
1776 
1777             (void)do_div(r, 25);
1778             if (r <= rate) {
1779                 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1780                 div = 0;
1781             }
1782         }
1783         val |= min(div, (u32)31);
1784     } else {
1785         val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1786         val |= min(div, (u32)31);
1787     }
1788     writel(val, prcmu_base + clk_mgt[clock].offset);
1789 
1790     /* Release the HW semaphore. */
1791     writel(0, PRCM_SEM);
1792 
1793     spin_unlock_irqrestore(&clk_mgt_lock, flags);
1794 }
1795 
1796 static int set_armss_rate(unsigned long rate)
1797 {
1798     unsigned long freq;
1799     u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1800     const unsigned long *freqs;
1801     int nfreqs;
1802     int i;
1803 
1804     if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1805         freqs = db8520_armss_freqs;
1806         nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1807     } else {
1808         freqs = db8500_armss_freqs;
1809         nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1810     }
1811 
1812     /* Find the corresponding arm opp from the cpufreq table. */
1813     for (i = 0; i < nfreqs; i++) {
1814         freq = freqs[i];
1815         if (rate == freq)
1816             break;
1817     }
1818 
1819     if (rate != freq)
1820         return -EINVAL;
1821 
1822     /* Set the new arm opp. */
1823     pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1824     return db8500_prcmu_set_arm_opp(opps[i]);
1825 }
1826 
1827 static int set_plldsi_rate(unsigned long rate)
1828 {
1829     unsigned long src_rate;
1830     unsigned long rem;
1831     u32 pll_freq = 0;
1832     u32 r;
1833 
1834     src_rate = clock_rate(PRCMU_HDMICLK);
1835     rem = rate;
1836 
1837     for (r = 7; (rem > 0) && (r > 0); r--) {
1838         u64 d;
1839         u64 hwrate;
1840 
1841         d = (r * rate);
1842         (void)do_div(d, src_rate);
1843         if (d < 6)
1844             d = 6;
1845         else if (d > 255)
1846             d = 255;
1847         hwrate = (d * src_rate);
1848         if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1849             ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1850             continue;
1851         (void)do_div(hwrate, r);
1852         if (rate < hwrate) {
1853             if (pll_freq == 0)
1854                 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1855                     (r << PRCM_PLL_FREQ_R_SHIFT));
1856             break;
1857         }
1858         if ((rate - hwrate) < rem) {
1859             rem = (rate - hwrate);
1860             pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1861                 (r << PRCM_PLL_FREQ_R_SHIFT));
1862         }
1863     }
1864     if (pll_freq == 0)
1865         return -EINVAL;
1866 
1867     pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1868     writel(pll_freq, PRCM_PLLDSI_FREQ);
1869 
1870     return 0;
1871 }
1872 
1873 static void set_dsiclk_rate(u8 n, unsigned long rate)
1874 {
1875     u32 val;
1876     u32 div;
1877 
1878     div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1879             clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1880 
1881     dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1882                (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1883                /* else */   PRCM_DSI_PLLOUT_SEL_PHI_4;
1884 
1885     val = readl(PRCM_DSI_PLLOUT_SEL);
1886     val &= ~dsiclk[n].divsel_mask;
1887     val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1888     writel(val, PRCM_DSI_PLLOUT_SEL);
1889 }
1890 
1891 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1892 {
1893     u32 val;
1894     u32 div;
1895 
1896     div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1897     val = readl(PRCM_DSITVCLK_DIV);
1898     val &= ~dsiescclk[n].div_mask;
1899     val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1900     writel(val, PRCM_DSITVCLK_DIV);
1901 }
1902 
1903 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1904 {
1905     if (clock < PRCMU_NUM_REG_CLOCKS)
1906         set_clock_rate(clock, rate);
1907     else if (clock == PRCMU_ARMSS)
1908         return set_armss_rate(rate);
1909     else if (clock == PRCMU_PLLDSI)
1910         return set_plldsi_rate(rate);
1911     else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1912         set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1913     else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1914         set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1915     return 0;
1916 }
1917 
1918 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1919 {
1920     if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1921         (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1922         return -EINVAL;
1923 
1924     mutex_lock(&mb4_transfer.lock);
1925 
1926     while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1927         cpu_relax();
1928 
1929     writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1930     writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1931            (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1932     writeb(DDR_PWR_STATE_ON,
1933            (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1934     writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1935 
1936     writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1937     wait_for_completion(&mb4_transfer.work);
1938 
1939     mutex_unlock(&mb4_transfer.lock);
1940 
1941     return 0;
1942 }
1943 
1944 int db8500_prcmu_config_hotdog(u8 threshold)
1945 {
1946     mutex_lock(&mb4_transfer.lock);
1947 
1948     while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1949         cpu_relax();
1950 
1951     writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1952     writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1953 
1954     writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1955     wait_for_completion(&mb4_transfer.work);
1956 
1957     mutex_unlock(&mb4_transfer.lock);
1958 
1959     return 0;
1960 }
1961 
1962 int db8500_prcmu_config_hotmon(u8 low, u8 high)
1963 {
1964     mutex_lock(&mb4_transfer.lock);
1965 
1966     while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1967         cpu_relax();
1968 
1969     writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1970     writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1971     writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1972         (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1973     writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1974 
1975     writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1976     wait_for_completion(&mb4_transfer.work);
1977 
1978     mutex_unlock(&mb4_transfer.lock);
1979 
1980     return 0;
1981 }
1982 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
1983 
1984 static int config_hot_period(u16 val)
1985 {
1986     mutex_lock(&mb4_transfer.lock);
1987 
1988     while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1989         cpu_relax();
1990 
1991     writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1992     writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1993 
1994     writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1995     wait_for_completion(&mb4_transfer.work);
1996 
1997     mutex_unlock(&mb4_transfer.lock);
1998 
1999     return 0;
2000 }
2001 
2002 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2003 {
2004     if (cycles32k == 0xFFFF)
2005         return -EINVAL;
2006 
2007     return config_hot_period(cycles32k);
2008 }
2009 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2010 
2011 int db8500_prcmu_stop_temp_sense(void)
2012 {
2013     return config_hot_period(0xFFFF);
2014 }
2015 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2016 
2017 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2018 {
2019 
2020     mutex_lock(&mb4_transfer.lock);
2021 
2022     while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2023         cpu_relax();
2024 
2025     writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2026     writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2027     writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2028     writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2029 
2030     writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2031 
2032     writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2033     wait_for_completion(&mb4_transfer.work);
2034 
2035     mutex_unlock(&mb4_transfer.lock);
2036 
2037     return 0;
2038 
2039 }
2040 
2041 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2042 {
2043     BUG_ON(num == 0 || num > 0xf);
2044     return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2045                 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2046                 A9WDOG_AUTO_OFF_DIS);
2047 }
2048 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2049 
2050 int db8500_prcmu_enable_a9wdog(u8 id)
2051 {
2052     return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2053 }
2054 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2055 
2056 int db8500_prcmu_disable_a9wdog(u8 id)
2057 {
2058     return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2059 }
2060 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2061 
2062 int db8500_prcmu_kick_a9wdog(u8 id)
2063 {
2064     return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2065 }
2066 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2067 
2068 /*
2069  * timeout is 28 bit, in ms.
2070  */
2071 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2072 {
2073     return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2074                 (id & A9WDOG_ID_MASK) |
2075                 /*
2076                  * Put the lowest 28 bits of timeout at
2077                  * offset 4. Four first bits are used for id.
2078                  */
2079                 (u8)((timeout << 4) & 0xf0),
2080                 (u8)((timeout >> 4) & 0xff),
2081                 (u8)((timeout >> 12) & 0xff),
2082                 (u8)((timeout >> 20) & 0xff));
2083 }
2084 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2085 
2086 /**
2087  * prcmu_abb_read() - Read register value(s) from the ABB.
2088  * @slave:  The I2C slave address.
2089  * @reg:    The (start) register address.
2090  * @value:  The read out value(s).
2091  * @size:   The number of registers to read.
2092  *
2093  * Reads register value(s) from the ABB.
2094  * @size has to be 1 for the current firmware version.
2095  */
2096 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2097 {
2098     int r;
2099 
2100     if (size != 1)
2101         return -EINVAL;
2102 
2103     mutex_lock(&mb5_transfer.lock);
2104 
2105     while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2106         cpu_relax();
2107 
2108     writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2109     writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2110     writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2111     writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2112     writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2113 
2114     writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2115 
2116     if (!wait_for_completion_timeout(&mb5_transfer.work,
2117                 msecs_to_jiffies(20000))) {
2118         pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2119             __func__);
2120         r = -EIO;
2121     } else {
2122         r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2123     }
2124 
2125     if (!r)
2126         *value = mb5_transfer.ack.value;
2127 
2128     mutex_unlock(&mb5_transfer.lock);
2129 
2130     return r;
2131 }
2132 
2133 /**
2134  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2135  * @slave:  The I2C slave address.
2136  * @reg:    The (start) register address.
2137  * @value:  The value(s) to write.
2138  * @mask:   The mask(s) to use.
2139  * @size:   The number of registers to write.
2140  *
2141  * Writes masked register value(s) to the ABB.
2142  * For each @value, only the bits set to 1 in the corresponding @mask
2143  * will be written. The other bits are not changed.
2144  * @size has to be 1 for the current firmware version.
2145  */
2146 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2147 {
2148     int r;
2149 
2150     if (size != 1)
2151         return -EINVAL;
2152 
2153     mutex_lock(&mb5_transfer.lock);
2154 
2155     while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2156         cpu_relax();
2157 
2158     writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2159     writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2160     writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2161     writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2162     writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2163 
2164     writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2165 
2166     if (!wait_for_completion_timeout(&mb5_transfer.work,
2167                 msecs_to_jiffies(20000))) {
2168         pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2169             __func__);
2170         r = -EIO;
2171     } else {
2172         r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2173     }
2174 
2175     mutex_unlock(&mb5_transfer.lock);
2176 
2177     return r;
2178 }
2179 
2180 /**
2181  * prcmu_abb_write() - Write register value(s) to the ABB.
2182  * @slave:  The I2C slave address.
2183  * @reg:    The (start) register address.
2184  * @value:  The value(s) to write.
2185  * @size:   The number of registers to write.
2186  *
2187  * Writes register value(s) to the ABB.
2188  * @size has to be 1 for the current firmware version.
2189  */
2190 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2191 {
2192     u8 mask = ~0;
2193 
2194     return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2195 }
2196 
2197 /**
2198  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2199  */
2200 int prcmu_ac_wake_req(void)
2201 {
2202     u32 val;
2203     int ret = 0;
2204 
2205     mutex_lock(&mb0_transfer.ac_wake_lock);
2206 
2207     val = readl(PRCM_HOSTACCESS_REQ);
2208     if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2209         goto unlock_and_return;
2210 
2211     atomic_set(&ac_wake_req_state, 1);
2212 
2213     /*
2214      * Force Modem Wake-up before hostaccess_req ping-pong.
2215      * It prevents Modem to enter in Sleep while acking the hostaccess
2216      * request. The 31us delay has been calculated by HWI.
2217      */
2218     val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2219     writel(val, PRCM_HOSTACCESS_REQ);
2220 
2221     udelay(31);
2222 
2223     val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2224     writel(val, PRCM_HOSTACCESS_REQ);
2225 
2226     if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2227             msecs_to_jiffies(5000))) {
2228         pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2229             __func__);
2230         ret = -EFAULT;
2231     }
2232 
2233 unlock_and_return:
2234     mutex_unlock(&mb0_transfer.ac_wake_lock);
2235     return ret;
2236 }
2237 
2238 /**
2239  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2240  */
2241 void prcmu_ac_sleep_req(void)
2242 {
2243     u32 val;
2244 
2245     mutex_lock(&mb0_transfer.ac_wake_lock);
2246 
2247     val = readl(PRCM_HOSTACCESS_REQ);
2248     if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2249         goto unlock_and_return;
2250 
2251     writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2252         PRCM_HOSTACCESS_REQ);
2253 
2254     if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2255             msecs_to_jiffies(5000))) {
2256         pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2257             __func__);
2258     }
2259 
2260     atomic_set(&ac_wake_req_state, 0);
2261 
2262 unlock_and_return:
2263     mutex_unlock(&mb0_transfer.ac_wake_lock);
2264 }
2265 
2266 bool db8500_prcmu_is_ac_wake_requested(void)
2267 {
2268     return (atomic_read(&ac_wake_req_state) != 0);
2269 }
2270 
2271 /**
2272  * db8500_prcmu_system_reset - System reset
2273  *
2274  * Saves the reset reason code and then sets the APE_SOFTRST register which
2275  * fires interrupt to fw
2276  *
2277  * @reset_code: The reason for system reset
2278  */
2279 void db8500_prcmu_system_reset(u16 reset_code)
2280 {
2281     writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2282     writel(1, PRCM_APE_SOFTRST);
2283 }
2284 
2285 /**
2286  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2287  *
2288  * Retrieves the reset reason code stored by prcmu_system_reset() before
2289  * last restart.
2290  */
2291 u16 db8500_prcmu_get_reset_code(void)
2292 {
2293     return readw(tcdm_base + PRCM_SW_RST_REASON);
2294 }
2295 
2296 /**
2297  * db8500_prcmu_modem_reset - ask the PRCMU to reset modem
2298  */
2299 void db8500_prcmu_modem_reset(void)
2300 {
2301     mutex_lock(&mb1_transfer.lock);
2302 
2303     while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2304         cpu_relax();
2305 
2306     writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2307     writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2308     wait_for_completion(&mb1_transfer.work);
2309 
2310     /*
2311      * No need to check return from PRCMU as modem should go in reset state
2312      * This state is already managed by upper layer
2313      */
2314 
2315     mutex_unlock(&mb1_transfer.lock);
2316 }
2317 
2318 static void ack_dbb_wakeup(void)
2319 {
2320     unsigned long flags;
2321 
2322     spin_lock_irqsave(&mb0_transfer.lock, flags);
2323 
2324     while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2325         cpu_relax();
2326 
2327     writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2328     writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2329 
2330     spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2331 }
2332 
2333 static inline void print_unknown_header_warning(u8 n, u8 header)
2334 {
2335     pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2336         header, n);
2337 }
2338 
2339 static bool read_mailbox_0(void)
2340 {
2341     bool r;
2342     u32 ev;
2343     unsigned int n;
2344     u8 header;
2345 
2346     header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2347     switch (header) {
2348     case MB0H_WAKEUP_EXE:
2349     case MB0H_WAKEUP_SLEEP:
2350         if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2351             ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2352         else
2353             ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2354 
2355         if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2356             complete(&mb0_transfer.ac_wake_work);
2357         if (ev & WAKEUP_BIT_SYSCLK_OK)
2358             complete(&mb3_transfer.sysclk_work);
2359 
2360         ev &= mb0_transfer.req.dbb_irqs;
2361 
2362         for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2363             if (ev & prcmu_irq_bit[n])
2364                 generic_handle_domain_irq(db8500_irq_domain, n);
2365         }
2366         r = true;
2367         break;
2368     default:
2369         print_unknown_header_warning(0, header);
2370         r = false;
2371         break;
2372     }
2373     writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2374     return r;
2375 }
2376 
2377 static bool read_mailbox_1(void)
2378 {
2379     mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2380     mb1_transfer.ack.arm_opp = readb(tcdm_base +
2381         PRCM_ACK_MB1_CURRENT_ARM_OPP);
2382     mb1_transfer.ack.ape_opp = readb(tcdm_base +
2383         PRCM_ACK_MB1_CURRENT_APE_OPP);
2384     mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2385         PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2386     writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2387     complete(&mb1_transfer.work);
2388     return false;
2389 }
2390 
2391 static bool read_mailbox_2(void)
2392 {
2393     mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2394     writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2395     complete(&mb2_transfer.work);
2396     return false;
2397 }
2398 
2399 static bool read_mailbox_3(void)
2400 {
2401     writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2402     return false;
2403 }
2404 
2405 static bool read_mailbox_4(void)
2406 {
2407     u8 header;
2408     bool do_complete = true;
2409 
2410     header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2411     switch (header) {
2412     case MB4H_MEM_ST:
2413     case MB4H_HOTDOG:
2414     case MB4H_HOTMON:
2415     case MB4H_HOT_PERIOD:
2416     case MB4H_A9WDOG_CONF:
2417     case MB4H_A9WDOG_EN:
2418     case MB4H_A9WDOG_DIS:
2419     case MB4H_A9WDOG_LOAD:
2420     case MB4H_A9WDOG_KICK:
2421         break;
2422     default:
2423         print_unknown_header_warning(4, header);
2424         do_complete = false;
2425         break;
2426     }
2427 
2428     writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2429 
2430     if (do_complete)
2431         complete(&mb4_transfer.work);
2432 
2433     return false;
2434 }
2435 
2436 static bool read_mailbox_5(void)
2437 {
2438     mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2439     mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2440     writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2441     complete(&mb5_transfer.work);
2442     return false;
2443 }
2444 
2445 static bool read_mailbox_6(void)
2446 {
2447     writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2448     return false;
2449 }
2450 
2451 static bool read_mailbox_7(void)
2452 {
2453     writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2454     return false;
2455 }
2456 
2457 static bool (* const read_mailbox[NUM_MB])(void) = {
2458     read_mailbox_0,
2459     read_mailbox_1,
2460     read_mailbox_2,
2461     read_mailbox_3,
2462     read_mailbox_4,
2463     read_mailbox_5,
2464     read_mailbox_6,
2465     read_mailbox_7
2466 };
2467 
2468 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2469 {
2470     u32 bits;
2471     u8 n;
2472     irqreturn_t r;
2473 
2474     bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2475     if (unlikely(!bits))
2476         return IRQ_NONE;
2477 
2478     r = IRQ_HANDLED;
2479     for (n = 0; bits; n++) {
2480         if (bits & MBOX_BIT(n)) {
2481             bits -= MBOX_BIT(n);
2482             if (read_mailbox[n]())
2483                 r = IRQ_WAKE_THREAD;
2484         }
2485     }
2486     return r;
2487 }
2488 
2489 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2490 {
2491     ack_dbb_wakeup();
2492     return IRQ_HANDLED;
2493 }
2494 
2495 static void prcmu_mask_work(struct work_struct *work)
2496 {
2497     unsigned long flags;
2498 
2499     spin_lock_irqsave(&mb0_transfer.lock, flags);
2500 
2501     config_wakeups();
2502 
2503     spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2504 }
2505 
2506 static void prcmu_irq_mask(struct irq_data *d)
2507 {
2508     unsigned long flags;
2509 
2510     spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2511 
2512     mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2513 
2514     spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2515 
2516     if (d->irq != IRQ_PRCMU_CA_SLEEP)
2517         schedule_work(&mb0_transfer.mask_work);
2518 }
2519 
2520 static void prcmu_irq_unmask(struct irq_data *d)
2521 {
2522     unsigned long flags;
2523 
2524     spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2525 
2526     mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2527 
2528     spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2529 
2530     if (d->irq != IRQ_PRCMU_CA_SLEEP)
2531         schedule_work(&mb0_transfer.mask_work);
2532 }
2533 
2534 static void noop(struct irq_data *d)
2535 {
2536 }
2537 
2538 static struct irq_chip prcmu_irq_chip = {
2539     .name       = "prcmu",
2540     .irq_disable    = prcmu_irq_mask,
2541     .irq_ack    = noop,
2542     .irq_mask   = prcmu_irq_mask,
2543     .irq_unmask = prcmu_irq_unmask,
2544 };
2545 
2546 static char *fw_project_name(u32 project)
2547 {
2548     switch (project) {
2549     case PRCMU_FW_PROJECT_U8500:
2550         return "U8500";
2551     case PRCMU_FW_PROJECT_U8400:
2552         return "U8400";
2553     case PRCMU_FW_PROJECT_U9500:
2554         return "U9500";
2555     case PRCMU_FW_PROJECT_U8500_MBB:
2556         return "U8500 MBB";
2557     case PRCMU_FW_PROJECT_U8500_C1:
2558         return "U8500 C1";
2559     case PRCMU_FW_PROJECT_U8500_C2:
2560         return "U8500 C2";
2561     case PRCMU_FW_PROJECT_U8500_C3:
2562         return "U8500 C3";
2563     case PRCMU_FW_PROJECT_U8500_C4:
2564         return "U8500 C4";
2565     case PRCMU_FW_PROJECT_U9500_MBL:
2566         return "U9500 MBL";
2567     case PRCMU_FW_PROJECT_U8500_SSG1:
2568         return "U8500 Samsung 1";
2569     case PRCMU_FW_PROJECT_U8500_MBL2:
2570         return "U8500 MBL2";
2571     case PRCMU_FW_PROJECT_U8520:
2572         return "U8520 MBL";
2573     case PRCMU_FW_PROJECT_U8420:
2574         return "U8420";
2575     case PRCMU_FW_PROJECT_U8500_SSG2:
2576         return "U8500 Samsung 2";
2577     case PRCMU_FW_PROJECT_U8420_SYSCLK:
2578         return "U8420-sysclk";
2579     case PRCMU_FW_PROJECT_U9540:
2580         return "U9540";
2581     case PRCMU_FW_PROJECT_A9420:
2582         return "A9420";
2583     case PRCMU_FW_PROJECT_L8540:
2584         return "L8540";
2585     case PRCMU_FW_PROJECT_L8580:
2586         return "L8580";
2587     default:
2588         return "Unknown";
2589     }
2590 }
2591 
2592 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2593                 irq_hw_number_t hwirq)
2594 {
2595     irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2596                 handle_simple_irq);
2597 
2598     return 0;
2599 }
2600 
2601 static const struct irq_domain_ops db8500_irq_ops = {
2602     .map    = db8500_irq_map,
2603     .xlate  = irq_domain_xlate_twocell,
2604 };
2605 
2606 static int db8500_irq_init(struct device_node *np)
2607 {
2608     int i;
2609 
2610     db8500_irq_domain = irq_domain_add_simple(
2611         np, NUM_PRCMU_WAKEUPS, 0,
2612         &db8500_irq_ops, NULL);
2613 
2614     if (!db8500_irq_domain) {
2615         pr_err("Failed to create irqdomain\n");
2616         return -ENOSYS;
2617     }
2618 
2619     /* All wakeups will be used, so create mappings for all */
2620     for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2621         irq_create_mapping(db8500_irq_domain, i);
2622 
2623     return 0;
2624 }
2625 
2626 static void dbx500_fw_version_init(struct device_node *np)
2627 {
2628     void __iomem *tcpm_base;
2629     u32 version;
2630 
2631     tcpm_base = of_iomap(np, 1);
2632     if (!tcpm_base) {
2633         pr_err("no prcmu tcpm mem region provided\n");
2634         return;
2635     }
2636 
2637     version = readl(tcpm_base + DB8500_PRCMU_FW_VERSION_OFFSET);
2638     fw_info.version.project = (version & 0xFF);
2639     fw_info.version.api_version = (version >> 8) & 0xFF;
2640     fw_info.version.func_version = (version >> 16) & 0xFF;
2641     fw_info.version.errata = (version >> 24) & 0xFF;
2642     strncpy(fw_info.version.project_name,
2643         fw_project_name(fw_info.version.project),
2644         PRCMU_FW_PROJECT_NAME_LEN);
2645     fw_info.valid = true;
2646     pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2647         fw_info.version.project_name,
2648         fw_info.version.project,
2649         fw_info.version.api_version,
2650         fw_info.version.func_version,
2651         fw_info.version.errata);
2652     iounmap(tcpm_base);
2653 }
2654 
2655 void __init db8500_prcmu_early_init(void)
2656 {
2657     /*
2658      * This is a temporary remap to bring up the clocks. It is
2659      * subsequently replaces with a real remap. After the merge of
2660      * the mailbox subsystem all of this early code goes away, and the
2661      * clock driver can probe independently. An early initcall will
2662      * still be needed, but it can be diverted into drivers/clk/ux500.
2663      */
2664     struct device_node *np;
2665 
2666     np = of_find_compatible_node(NULL, NULL, "stericsson,db8500-prcmu");
2667     prcmu_base = of_iomap(np, 0);
2668     if (!prcmu_base) {
2669         of_node_put(np);
2670         pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2671         return;
2672     }
2673     dbx500_fw_version_init(np);
2674     of_node_put(np);
2675 
2676     spin_lock_init(&mb0_transfer.lock);
2677     spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2678     mutex_init(&mb0_transfer.ac_wake_lock);
2679     init_completion(&mb0_transfer.ac_wake_work);
2680     mutex_init(&mb1_transfer.lock);
2681     init_completion(&mb1_transfer.work);
2682     mb1_transfer.ape_opp = APE_NO_CHANGE;
2683     mutex_init(&mb2_transfer.lock);
2684     init_completion(&mb2_transfer.work);
2685     spin_lock_init(&mb2_transfer.auto_pm_lock);
2686     spin_lock_init(&mb3_transfer.lock);
2687     mutex_init(&mb3_transfer.sysclk_lock);
2688     init_completion(&mb3_transfer.sysclk_work);
2689     mutex_init(&mb4_transfer.lock);
2690     init_completion(&mb4_transfer.work);
2691     mutex_init(&mb5_transfer.lock);
2692     init_completion(&mb5_transfer.work);
2693 
2694     INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2695 }
2696 
2697 static void init_prcm_registers(void)
2698 {
2699     u32 val;
2700 
2701     val = readl(PRCM_A9PL_FORCE_CLKEN);
2702     val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2703         PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2704     writel(val, (PRCM_A9PL_FORCE_CLKEN));
2705 }
2706 
2707 /*
2708  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2709  */
2710 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2711     REGULATOR_SUPPLY("v-ape", NULL),
2712     REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2713     REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2714     REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2715     REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2716     REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2717     /* "v-mmc" changed to "vcore" in the mainline kernel */
2718     REGULATOR_SUPPLY("vcore", "sdi0"),
2719     REGULATOR_SUPPLY("vcore", "sdi1"),
2720     REGULATOR_SUPPLY("vcore", "sdi2"),
2721     REGULATOR_SUPPLY("vcore", "sdi3"),
2722     REGULATOR_SUPPLY("vcore", "sdi4"),
2723     REGULATOR_SUPPLY("v-dma", "dma40.0"),
2724     REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2725     /* "v-uart" changed to "vcore" in the mainline kernel */
2726     REGULATOR_SUPPLY("vcore", "uart0"),
2727     REGULATOR_SUPPLY("vcore", "uart1"),
2728     REGULATOR_SUPPLY("vcore", "uart2"),
2729     REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2730     REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2731     REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2732 };
2733 
2734 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2735     REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2736     /* AV8100 regulator */
2737     REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2738 };
2739 
2740 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2741     REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2742     REGULATOR_SUPPLY("vsupply", "mcde"),
2743 };
2744 
2745 /* SVA MMDSP regulator switch */
2746 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2747     REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2748 };
2749 
2750 /* SVA pipe regulator switch */
2751 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2752     REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2753 };
2754 
2755 /* SIA MMDSP regulator switch */
2756 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2757     REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2758 };
2759 
2760 /* SIA pipe regulator switch */
2761 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2762     REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2763 };
2764 
2765 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2766     REGULATOR_SUPPLY("v-mali", NULL),
2767 };
2768 
2769 /* ESRAM1 and 2 regulator switch */
2770 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2771     REGULATOR_SUPPLY("esram12", "cm_control"),
2772 };
2773 
2774 /* ESRAM3 and 4 regulator switch */
2775 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2776     REGULATOR_SUPPLY("v-esram34", "mcde"),
2777     REGULATOR_SUPPLY("esram34", "cm_control"),
2778     REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2779 };
2780 
2781 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2782     [DB8500_REGULATOR_VAPE] = {
2783         .constraints = {
2784             .name = "db8500-vape",
2785             .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2786             .always_on = true,
2787         },
2788         .consumer_supplies = db8500_vape_consumers,
2789         .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2790     },
2791     [DB8500_REGULATOR_VARM] = {
2792         .constraints = {
2793             .name = "db8500-varm",
2794             .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2795         },
2796     },
2797     [DB8500_REGULATOR_VMODEM] = {
2798         .constraints = {
2799             .name = "db8500-vmodem",
2800             .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2801         },
2802     },
2803     [DB8500_REGULATOR_VPLL] = {
2804         .constraints = {
2805             .name = "db8500-vpll",
2806             .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2807         },
2808     },
2809     [DB8500_REGULATOR_VSMPS1] = {
2810         .constraints = {
2811             .name = "db8500-vsmps1",
2812             .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2813         },
2814     },
2815     [DB8500_REGULATOR_VSMPS2] = {
2816         .constraints = {
2817             .name = "db8500-vsmps2",
2818             .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2819         },
2820         .consumer_supplies = db8500_vsmps2_consumers,
2821         .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2822     },
2823     [DB8500_REGULATOR_VSMPS3] = {
2824         .constraints = {
2825             .name = "db8500-vsmps3",
2826             .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2827         },
2828     },
2829     [DB8500_REGULATOR_VRF1] = {
2830         .constraints = {
2831             .name = "db8500-vrf1",
2832             .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2833         },
2834     },
2835     [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2836         /* dependency to u8500-vape is handled outside regulator framework */
2837         .constraints = {
2838             .name = "db8500-sva-mmdsp",
2839             .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2840         },
2841         .consumer_supplies = db8500_svammdsp_consumers,
2842         .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2843     },
2844     [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2845         .constraints = {
2846             /* "ret" means "retention" */
2847             .name = "db8500-sva-mmdsp-ret",
2848             .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2849         },
2850     },
2851     [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2852         /* dependency to u8500-vape is handled outside regulator framework */
2853         .constraints = {
2854             .name = "db8500-sva-pipe",
2855             .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2856         },
2857         .consumer_supplies = db8500_svapipe_consumers,
2858         .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2859     },
2860     [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2861         /* dependency to u8500-vape is handled outside regulator framework */
2862         .constraints = {
2863             .name = "db8500-sia-mmdsp",
2864             .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2865         },
2866         .consumer_supplies = db8500_siammdsp_consumers,
2867         .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2868     },
2869     [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2870         .constraints = {
2871             .name = "db8500-sia-mmdsp-ret",
2872             .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2873         },
2874     },
2875     [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2876         /* dependency to u8500-vape is handled outside regulator framework */
2877         .constraints = {
2878             .name = "db8500-sia-pipe",
2879             .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2880         },
2881         .consumer_supplies = db8500_siapipe_consumers,
2882         .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2883     },
2884     [DB8500_REGULATOR_SWITCH_SGA] = {
2885         .supply_regulator = "db8500-vape",
2886         .constraints = {
2887             .name = "db8500-sga",
2888             .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2889         },
2890         .consumer_supplies = db8500_sga_consumers,
2891         .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2892 
2893     },
2894     [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2895         .supply_regulator = "db8500-vape",
2896         .constraints = {
2897             .name = "db8500-b2r2-mcde",
2898             .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2899         },
2900         .consumer_supplies = db8500_b2r2_mcde_consumers,
2901         .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2902     },
2903     [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2904         /*
2905          * esram12 is set in retention and supplied by Vsafe when Vape is off,
2906          * no need to hold Vape
2907          */
2908         .constraints = {
2909             .name = "db8500-esram12",
2910             .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2911         },
2912         .consumer_supplies = db8500_esram12_consumers,
2913         .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2914     },
2915     [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2916         .constraints = {
2917             .name = "db8500-esram12-ret",
2918             .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2919         },
2920     },
2921     [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2922         /*
2923          * esram34 is set in retention and supplied by Vsafe when Vape is off,
2924          * no need to hold Vape
2925          */
2926         .constraints = {
2927             .name = "db8500-esram34",
2928             .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2929         },
2930         .consumer_supplies = db8500_esram34_consumers,
2931         .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2932     },
2933     [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2934         .constraints = {
2935             .name = "db8500-esram34-ret",
2936             .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937         },
2938     },
2939 };
2940 
2941 static const struct mfd_cell common_prcmu_devs[] = {
2942     MFD_CELL_NAME("db8500_wdt"),
2943     MFD_CELL_NAME("db8500-cpuidle"),
2944 };
2945 
2946 static const struct mfd_cell db8500_prcmu_devs[] = {
2947     MFD_CELL_OF("db8500-prcmu-regulators", NULL,
2948             &db8500_regulators, sizeof(db8500_regulators), 0,
2949             "stericsson,db8500-prcmu-regulator"),
2950     MFD_CELL_OF("db8500-thermal",
2951             NULL, NULL, 0, 0, "stericsson,db8500-thermal"),
2952 };
2953 
2954 static int db8500_prcmu_register_ab8500(struct device *parent)
2955 {
2956     struct device_node *np;
2957     struct resource ab850x_resource;
2958     const struct mfd_cell ab8500_cell = {
2959         .name = "ab8500-core",
2960         .of_compatible = "stericsson,ab8500",
2961         .id = AB8500_VERSION_AB8500,
2962         .resources = &ab850x_resource,
2963         .num_resources = 1,
2964     };
2965     const struct mfd_cell ab8505_cell = {
2966         .name = "ab8505-core",
2967         .of_compatible = "stericsson,ab8505",
2968         .id = AB8500_VERSION_AB8505,
2969         .resources = &ab850x_resource,
2970         .num_resources = 1,
2971     };
2972     const struct mfd_cell *ab850x_cell;
2973 
2974     if (!parent->of_node)
2975         return -ENODEV;
2976 
2977     /* Look up the device node, sneak the IRQ out of it */
2978     for_each_child_of_node(parent->of_node, np) {
2979         if (of_device_is_compatible(np, ab8500_cell.of_compatible)) {
2980             ab850x_cell = &ab8500_cell;
2981             break;
2982         }
2983         if (of_device_is_compatible(np, ab8505_cell.of_compatible)) {
2984             ab850x_cell = &ab8505_cell;
2985             break;
2986         }
2987     }
2988     if (!np) {
2989         dev_info(parent, "could not find AB850X node in the device tree\n");
2990         return -ENODEV;
2991     }
2992     of_irq_to_resource_table(np, &ab850x_resource, 1);
2993 
2994     return mfd_add_devices(parent, 0, ab850x_cell, 1, NULL, 0, NULL);
2995 }
2996 
2997 static int db8500_prcmu_probe(struct platform_device *pdev)
2998 {
2999     struct device_node *np = pdev->dev.of_node;
3000     int irq = 0, err = 0;
3001     struct resource *res;
3002 
3003     res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3004     if (!res) {
3005         dev_err(&pdev->dev, "no prcmu memory region provided\n");
3006         return -EINVAL;
3007     }
3008     prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3009     if (!prcmu_base) {
3010         dev_err(&pdev->dev,
3011             "failed to ioremap prcmu register memory\n");
3012         return -ENOMEM;
3013     }
3014     init_prcm_registers();
3015     res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3016     if (!res) {
3017         dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3018         return -EINVAL;
3019     }
3020     tcdm_base = devm_ioremap(&pdev->dev, res->start,
3021             resource_size(res));
3022     if (!tcdm_base) {
3023         dev_err(&pdev->dev,
3024             "failed to ioremap prcmu-tcdm register memory\n");
3025         return -ENOMEM;
3026     }
3027 
3028     /* Clean up the mailbox interrupts after pre-kernel code. */
3029     writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3030 
3031     irq = platform_get_irq(pdev, 0);
3032     if (irq <= 0)
3033         return irq;
3034 
3035     err = request_threaded_irq(irq, prcmu_irq_handler,
3036             prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3037     if (err < 0) {
3038         pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3039         return err;
3040     }
3041 
3042     db8500_irq_init(np);
3043 
3044     prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3045 
3046     err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3047                   ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3048     if (err) {
3049         pr_err("prcmu: Failed to add subdevices\n");
3050         return err;
3051     }
3052 
3053     /* TODO: Remove restriction when clk definitions are available. */
3054     if (!of_machine_is_compatible("st-ericsson,u8540")) {
3055         err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3056                       ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3057                       db8500_irq_domain);
3058         if (err) {
3059             mfd_remove_devices(&pdev->dev);
3060             pr_err("prcmu: Failed to add subdevices\n");
3061             return err;
3062         }
3063     }
3064 
3065     err = db8500_prcmu_register_ab8500(&pdev->dev);
3066     if (err) {
3067         mfd_remove_devices(&pdev->dev);
3068         pr_err("prcmu: Failed to add ab8500 subdevice\n");
3069         return err;
3070     }
3071 
3072     pr_info("DB8500 PRCMU initialized\n");
3073     return err;
3074 }
3075 static const struct of_device_id db8500_prcmu_match[] = {
3076     { .compatible = "stericsson,db8500-prcmu"},
3077     { },
3078 };
3079 
3080 static struct platform_driver db8500_prcmu_driver = {
3081     .driver = {
3082         .name = "db8500-prcmu",
3083         .of_match_table = db8500_prcmu_match,
3084     },
3085     .probe = db8500_prcmu_probe,
3086 };
3087 
3088 static int __init db8500_prcmu_init(void)
3089 {
3090     return platform_driver_register(&db8500_prcmu_driver);
3091 }
3092 core_initcall(db8500_prcmu_init);