0001
0002
0003
0004
0005
0006
0007
0008
0009
0010 #include <linux/kernel.h>
0011 #include <linux/module.h>
0012 #include <linux/platform_device.h>
0013 #include <linux/i2c.h>
0014 #include <linux/regmap.h>
0015 #include <linux/slab.h>
0016 #include <linux/irq.h>
0017 #include <linux/interrupt.h>
0018 #include <linux/mfd/core.h>
0019 #include <linux/mfd/da9150/core.h>
0020 #include <linux/mfd/da9150/registers.h>
0021
0022
0023 static int da9150_i2c_read_device(struct i2c_client *client, u8 addr, int count,
0024 u8 *buf)
0025 {
0026 struct i2c_msg xfer;
0027 int ret;
0028
0029
0030
0031
0032
0033
0034
0035 xfer.addr = client->addr;
0036 xfer.flags = 0;
0037 xfer.len = 1;
0038 xfer.buf = &addr;
0039
0040 ret = i2c_transfer(client->adapter, &xfer, 1);
0041 if (ret != 1) {
0042 if (ret < 0)
0043 return ret;
0044 else
0045 return -EIO;
0046 }
0047
0048
0049 xfer.addr = client->addr;
0050 xfer.flags = I2C_M_RD;
0051 xfer.len = count;
0052 xfer.buf = buf;
0053
0054 ret = i2c_transfer(client->adapter, &xfer, 1);
0055 if (ret == 1)
0056 return 0;
0057 else if (ret < 0)
0058 return ret;
0059 else
0060 return -EIO;
0061 }
0062
0063 static int da9150_i2c_write_device(struct i2c_client *client, u8 addr,
0064 int count, const u8 *buf)
0065 {
0066 struct i2c_msg xfer;
0067 u8 *reg_data;
0068 int ret;
0069
0070 reg_data = kzalloc(1 + count, GFP_KERNEL);
0071 if (!reg_data)
0072 return -ENOMEM;
0073
0074 reg_data[0] = addr;
0075 memcpy(®_data[1], buf, count);
0076
0077
0078 xfer.addr = client->addr;
0079 xfer.flags = 0;
0080 xfer.len = 1 + count;
0081 xfer.buf = reg_data;
0082
0083 ret = i2c_transfer(client->adapter, &xfer, 1);
0084 kfree(reg_data);
0085 if (ret == 1)
0086 return 0;
0087 else if (ret < 0)
0088 return ret;
0089 else
0090 return -EIO;
0091 }
0092
0093 static bool da9150_volatile_reg(struct device *dev, unsigned int reg)
0094 {
0095 switch (reg) {
0096 case DA9150_PAGE_CON:
0097 case DA9150_STATUS_A:
0098 case DA9150_STATUS_B:
0099 case DA9150_STATUS_C:
0100 case DA9150_STATUS_D:
0101 case DA9150_STATUS_E:
0102 case DA9150_STATUS_F:
0103 case DA9150_STATUS_G:
0104 case DA9150_STATUS_H:
0105 case DA9150_STATUS_I:
0106 case DA9150_STATUS_J:
0107 case DA9150_STATUS_K:
0108 case DA9150_STATUS_L:
0109 case DA9150_STATUS_N:
0110 case DA9150_FAULT_LOG_A:
0111 case DA9150_FAULT_LOG_B:
0112 case DA9150_EVENT_E:
0113 case DA9150_EVENT_F:
0114 case DA9150_EVENT_G:
0115 case DA9150_EVENT_H:
0116 case DA9150_CONTROL_B:
0117 case DA9150_CONTROL_C:
0118 case DA9150_GPADC_MAN:
0119 case DA9150_GPADC_RES_A:
0120 case DA9150_GPADC_RES_B:
0121 case DA9150_ADETVB_CFG_C:
0122 case DA9150_ADETD_STAT:
0123 case DA9150_ADET_CMPSTAT:
0124 case DA9150_ADET_CTRL_A:
0125 case DA9150_PPR_TCTR_B:
0126 case DA9150_COREBTLD_STAT_A:
0127 case DA9150_CORE_DATA_A:
0128 case DA9150_CORE_DATA_B:
0129 case DA9150_CORE_DATA_C:
0130 case DA9150_CORE_DATA_D:
0131 case DA9150_CORE2WIRE_STAT_A:
0132 case DA9150_FW_CTRL_C:
0133 case DA9150_FG_CTRL_B:
0134 case DA9150_FW_CTRL_B:
0135 case DA9150_GPADC_CMAN:
0136 case DA9150_GPADC_CRES_A:
0137 case DA9150_GPADC_CRES_B:
0138 case DA9150_CC_ICHG_RES_A:
0139 case DA9150_CC_ICHG_RES_B:
0140 case DA9150_CC_IAVG_RES_A:
0141 case DA9150_CC_IAVG_RES_B:
0142 case DA9150_TAUX_CTRL_A:
0143 case DA9150_TAUX_VALUE_H:
0144 case DA9150_TAUX_VALUE_L:
0145 case DA9150_TBAT_RES_A:
0146 case DA9150_TBAT_RES_B:
0147 return true;
0148 default:
0149 return false;
0150 }
0151 }
0152
0153 static const struct regmap_range_cfg da9150_range_cfg[] = {
0154 {
0155 .range_min = DA9150_PAGE_CON,
0156 .range_max = DA9150_TBAT_RES_B,
0157 .selector_reg = DA9150_PAGE_CON,
0158 .selector_mask = DA9150_I2C_PAGE_MASK,
0159 .selector_shift = DA9150_I2C_PAGE_SHIFT,
0160 .window_start = 0,
0161 .window_len = 256,
0162 },
0163 };
0164
0165 static const struct regmap_config da9150_regmap_config = {
0166 .reg_bits = 8,
0167 .val_bits = 8,
0168 .ranges = da9150_range_cfg,
0169 .num_ranges = ARRAY_SIZE(da9150_range_cfg),
0170 .max_register = DA9150_TBAT_RES_B,
0171
0172 .cache_type = REGCACHE_RBTREE,
0173
0174 .volatile_reg = da9150_volatile_reg,
0175 };
0176
0177 void da9150_read_qif(struct da9150 *da9150, u8 addr, int count, u8 *buf)
0178 {
0179 int ret;
0180
0181 ret = da9150_i2c_read_device(da9150->core_qif, addr, count, buf);
0182 if (ret < 0)
0183 dev_err(da9150->dev, "Failed to read from QIF 0x%x: %d\n",
0184 addr, ret);
0185 }
0186 EXPORT_SYMBOL_GPL(da9150_read_qif);
0187
0188 void da9150_write_qif(struct da9150 *da9150, u8 addr, int count, const u8 *buf)
0189 {
0190 int ret;
0191
0192 ret = da9150_i2c_write_device(da9150->core_qif, addr, count, buf);
0193 if (ret < 0)
0194 dev_err(da9150->dev, "Failed to write to QIF 0x%x: %d\n",
0195 addr, ret);
0196 }
0197 EXPORT_SYMBOL_GPL(da9150_write_qif);
0198
0199 u8 da9150_reg_read(struct da9150 *da9150, u16 reg)
0200 {
0201 int val, ret;
0202
0203 ret = regmap_read(da9150->regmap, reg, &val);
0204 if (ret)
0205 dev_err(da9150->dev, "Failed to read from reg 0x%x: %d\n",
0206 reg, ret);
0207
0208 return (u8) val;
0209 }
0210 EXPORT_SYMBOL_GPL(da9150_reg_read);
0211
0212 void da9150_reg_write(struct da9150 *da9150, u16 reg, u8 val)
0213 {
0214 int ret;
0215
0216 ret = regmap_write(da9150->regmap, reg, val);
0217 if (ret)
0218 dev_err(da9150->dev, "Failed to write to reg 0x%x: %d\n",
0219 reg, ret);
0220 }
0221 EXPORT_SYMBOL_GPL(da9150_reg_write);
0222
0223 void da9150_set_bits(struct da9150 *da9150, u16 reg, u8 mask, u8 val)
0224 {
0225 int ret;
0226
0227 ret = regmap_update_bits(da9150->regmap, reg, mask, val);
0228 if (ret)
0229 dev_err(da9150->dev, "Failed to set bits in reg 0x%x: %d\n",
0230 reg, ret);
0231 }
0232 EXPORT_SYMBOL_GPL(da9150_set_bits);
0233
0234 void da9150_bulk_read(struct da9150 *da9150, u16 reg, int count, u8 *buf)
0235 {
0236 int ret;
0237
0238 ret = regmap_bulk_read(da9150->regmap, reg, buf, count);
0239 if (ret)
0240 dev_err(da9150->dev, "Failed to bulk read from reg 0x%x: %d\n",
0241 reg, ret);
0242 }
0243 EXPORT_SYMBOL_GPL(da9150_bulk_read);
0244
0245 void da9150_bulk_write(struct da9150 *da9150, u16 reg, int count, const u8 *buf)
0246 {
0247 int ret;
0248
0249 ret = regmap_raw_write(da9150->regmap, reg, buf, count);
0250 if (ret)
0251 dev_err(da9150->dev, "Failed to bulk write to reg 0x%x %d\n",
0252 reg, ret);
0253 }
0254 EXPORT_SYMBOL_GPL(da9150_bulk_write);
0255
0256 static const struct regmap_irq da9150_irqs[] = {
0257 [DA9150_IRQ_VBUS] = {
0258 .reg_offset = 0,
0259 .mask = DA9150_E_VBUS_MASK,
0260 },
0261 [DA9150_IRQ_CHG] = {
0262 .reg_offset = 0,
0263 .mask = DA9150_E_CHG_MASK,
0264 },
0265 [DA9150_IRQ_TCLASS] = {
0266 .reg_offset = 0,
0267 .mask = DA9150_E_TCLASS_MASK,
0268 },
0269 [DA9150_IRQ_TJUNC] = {
0270 .reg_offset = 0,
0271 .mask = DA9150_E_TJUNC_MASK,
0272 },
0273 [DA9150_IRQ_VFAULT] = {
0274 .reg_offset = 0,
0275 .mask = DA9150_E_VFAULT_MASK,
0276 },
0277 [DA9150_IRQ_CONF] = {
0278 .reg_offset = 1,
0279 .mask = DA9150_E_CONF_MASK,
0280 },
0281 [DA9150_IRQ_DAT] = {
0282 .reg_offset = 1,
0283 .mask = DA9150_E_DAT_MASK,
0284 },
0285 [DA9150_IRQ_DTYPE] = {
0286 .reg_offset = 1,
0287 .mask = DA9150_E_DTYPE_MASK,
0288 },
0289 [DA9150_IRQ_ID] = {
0290 .reg_offset = 1,
0291 .mask = DA9150_E_ID_MASK,
0292 },
0293 [DA9150_IRQ_ADP] = {
0294 .reg_offset = 1,
0295 .mask = DA9150_E_ADP_MASK,
0296 },
0297 [DA9150_IRQ_SESS_END] = {
0298 .reg_offset = 1,
0299 .mask = DA9150_E_SESS_END_MASK,
0300 },
0301 [DA9150_IRQ_SESS_VLD] = {
0302 .reg_offset = 1,
0303 .mask = DA9150_E_SESS_VLD_MASK,
0304 },
0305 [DA9150_IRQ_FG] = {
0306 .reg_offset = 2,
0307 .mask = DA9150_E_FG_MASK,
0308 },
0309 [DA9150_IRQ_GP] = {
0310 .reg_offset = 2,
0311 .mask = DA9150_E_GP_MASK,
0312 },
0313 [DA9150_IRQ_TBAT] = {
0314 .reg_offset = 2,
0315 .mask = DA9150_E_TBAT_MASK,
0316 },
0317 [DA9150_IRQ_GPIOA] = {
0318 .reg_offset = 2,
0319 .mask = DA9150_E_GPIOA_MASK,
0320 },
0321 [DA9150_IRQ_GPIOB] = {
0322 .reg_offset = 2,
0323 .mask = DA9150_E_GPIOB_MASK,
0324 },
0325 [DA9150_IRQ_GPIOC] = {
0326 .reg_offset = 2,
0327 .mask = DA9150_E_GPIOC_MASK,
0328 },
0329 [DA9150_IRQ_GPIOD] = {
0330 .reg_offset = 2,
0331 .mask = DA9150_E_GPIOD_MASK,
0332 },
0333 [DA9150_IRQ_GPADC] = {
0334 .reg_offset = 2,
0335 .mask = DA9150_E_GPADC_MASK,
0336 },
0337 [DA9150_IRQ_WKUP] = {
0338 .reg_offset = 3,
0339 .mask = DA9150_E_WKUP_MASK,
0340 },
0341 };
0342
0343 static const struct regmap_irq_chip da9150_regmap_irq_chip = {
0344 .name = "da9150_irq",
0345 .status_base = DA9150_EVENT_E,
0346 .mask_base = DA9150_IRQ_MASK_E,
0347 .ack_base = DA9150_EVENT_E,
0348 .num_regs = DA9150_NUM_IRQ_REGS,
0349 .irqs = da9150_irqs,
0350 .num_irqs = ARRAY_SIZE(da9150_irqs),
0351 };
0352
0353 static const struct resource da9150_gpadc_resources[] = {
0354 DEFINE_RES_IRQ_NAMED(DA9150_IRQ_GPADC, "GPADC"),
0355 };
0356
0357 static const struct resource da9150_charger_resources[] = {
0358 DEFINE_RES_IRQ_NAMED(DA9150_IRQ_CHG, "CHG_STATUS"),
0359 DEFINE_RES_IRQ_NAMED(DA9150_IRQ_TJUNC, "CHG_TJUNC"),
0360 DEFINE_RES_IRQ_NAMED(DA9150_IRQ_VFAULT, "CHG_VFAULT"),
0361 DEFINE_RES_IRQ_NAMED(DA9150_IRQ_VBUS, "CHG_VBUS"),
0362 };
0363
0364 static const struct resource da9150_fg_resources[] = {
0365 DEFINE_RES_IRQ_NAMED(DA9150_IRQ_FG, "FG"),
0366 };
0367
0368 enum da9150_dev_idx {
0369 DA9150_GPADC_IDX = 0,
0370 DA9150_CHARGER_IDX,
0371 DA9150_FG_IDX,
0372 };
0373
0374 static struct mfd_cell da9150_devs[] = {
0375 [DA9150_GPADC_IDX] = {
0376 .name = "da9150-gpadc",
0377 .of_compatible = "dlg,da9150-gpadc",
0378 .resources = da9150_gpadc_resources,
0379 .num_resources = ARRAY_SIZE(da9150_gpadc_resources),
0380 },
0381 [DA9150_CHARGER_IDX] = {
0382 .name = "da9150-charger",
0383 .of_compatible = "dlg,da9150-charger",
0384 .resources = da9150_charger_resources,
0385 .num_resources = ARRAY_SIZE(da9150_charger_resources),
0386 },
0387 [DA9150_FG_IDX] = {
0388 .name = "da9150-fuel-gauge",
0389 .of_compatible = "dlg,da9150-fuel-gauge",
0390 .resources = da9150_fg_resources,
0391 .num_resources = ARRAY_SIZE(da9150_fg_resources),
0392 },
0393 };
0394
0395 static int da9150_probe(struct i2c_client *client,
0396 const struct i2c_device_id *id)
0397 {
0398 struct da9150 *da9150;
0399 struct da9150_pdata *pdata = dev_get_platdata(&client->dev);
0400 int qif_addr;
0401 int ret;
0402
0403 da9150 = devm_kzalloc(&client->dev, sizeof(*da9150), GFP_KERNEL);
0404 if (!da9150)
0405 return -ENOMEM;
0406
0407 da9150->dev = &client->dev;
0408 da9150->irq = client->irq;
0409 i2c_set_clientdata(client, da9150);
0410
0411 da9150->regmap = devm_regmap_init_i2c(client, &da9150_regmap_config);
0412 if (IS_ERR(da9150->regmap)) {
0413 ret = PTR_ERR(da9150->regmap);
0414 dev_err(da9150->dev, "Failed to allocate register map: %d\n",
0415 ret);
0416 return ret;
0417 }
0418
0419
0420 qif_addr = da9150_reg_read(da9150, DA9150_CORE2WIRE_CTRL_A);
0421 qif_addr = (qif_addr & DA9150_CORE_BASE_ADDR_MASK) >> 1;
0422 qif_addr |= DA9150_QIF_I2C_ADDR_LSB;
0423 da9150->core_qif = i2c_new_dummy_device(client->adapter, qif_addr);
0424 if (IS_ERR(da9150->core_qif)) {
0425 dev_err(da9150->dev, "Failed to attach QIF client\n");
0426 return PTR_ERR(da9150->core_qif);
0427 }
0428
0429 i2c_set_clientdata(da9150->core_qif, da9150);
0430
0431 if (pdata) {
0432 da9150->irq_base = pdata->irq_base;
0433
0434 da9150_devs[DA9150_FG_IDX].platform_data = pdata->fg_pdata;
0435 da9150_devs[DA9150_FG_IDX].pdata_size =
0436 sizeof(struct da9150_fg_pdata);
0437 } else {
0438 da9150->irq_base = -1;
0439 }
0440
0441 ret = regmap_add_irq_chip(da9150->regmap, da9150->irq,
0442 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
0443 da9150->irq_base, &da9150_regmap_irq_chip,
0444 &da9150->regmap_irq_data);
0445 if (ret) {
0446 dev_err(da9150->dev, "Failed to add regmap irq chip: %d\n",
0447 ret);
0448 goto regmap_irq_fail;
0449 }
0450
0451
0452 da9150->irq_base = regmap_irq_chip_get_base(da9150->regmap_irq_data);
0453
0454 enable_irq_wake(da9150->irq);
0455
0456 ret = mfd_add_devices(da9150->dev, -1, da9150_devs,
0457 ARRAY_SIZE(da9150_devs), NULL,
0458 da9150->irq_base, NULL);
0459 if (ret) {
0460 dev_err(da9150->dev, "Failed to add child devices: %d\n", ret);
0461 goto mfd_fail;
0462 }
0463
0464 return 0;
0465
0466 mfd_fail:
0467 regmap_del_irq_chip(da9150->irq, da9150->regmap_irq_data);
0468 regmap_irq_fail:
0469 i2c_unregister_device(da9150->core_qif);
0470
0471 return ret;
0472 }
0473
0474 static int da9150_remove(struct i2c_client *client)
0475 {
0476 struct da9150 *da9150 = i2c_get_clientdata(client);
0477
0478 regmap_del_irq_chip(da9150->irq, da9150->regmap_irq_data);
0479 mfd_remove_devices(da9150->dev);
0480 i2c_unregister_device(da9150->core_qif);
0481
0482 return 0;
0483 }
0484
0485 static void da9150_shutdown(struct i2c_client *client)
0486 {
0487 struct da9150 *da9150 = i2c_get_clientdata(client);
0488
0489
0490 da9150_set_bits(da9150, DA9150_CONFIG_D,
0491 DA9150_WKUP_PM_EN_MASK,
0492 DA9150_WKUP_PM_EN_MASK);
0493
0494
0495 da9150_set_bits(da9150, DA9150_CONTROL_C,
0496 DA9150_DISABLE_MASK, DA9150_DISABLE_MASK);
0497 }
0498
0499 static const struct i2c_device_id da9150_i2c_id[] = {
0500 { "da9150", },
0501 { }
0502 };
0503 MODULE_DEVICE_TABLE(i2c, da9150_i2c_id);
0504
0505 static const struct of_device_id da9150_of_match[] = {
0506 { .compatible = "dlg,da9150", },
0507 { }
0508 };
0509 MODULE_DEVICE_TABLE(of, da9150_of_match);
0510
0511 static struct i2c_driver da9150_driver = {
0512 .driver = {
0513 .name = "da9150",
0514 .of_match_table = da9150_of_match,
0515 },
0516 .probe = da9150_probe,
0517 .remove = da9150_remove,
0518 .shutdown = da9150_shutdown,
0519 .id_table = da9150_i2c_id,
0520 };
0521
0522 module_i2c_driver(da9150_driver);
0523
0524 MODULE_DESCRIPTION("MFD Core Driver for DA9150");
0525 MODULE_AUTHOR("Adam Thomson <Adam.Thomson.Opensource@diasemi.com>");
0526 MODULE_LICENSE("GPL");