0001
0002
0003
0004
0005
0006
0007
0008 #include <linux/bitfield.h>
0009 #include <linux/clk.h>
0010 #include <linux/clk/tegra.h>
0011 #include <linux/debugfs.h>
0012 #include <linux/devfreq.h>
0013 #include <linux/err.h>
0014 #include <linux/interconnect-provider.h>
0015 #include <linux/interrupt.h>
0016 #include <linux/io.h>
0017 #include <linux/iopoll.h>
0018 #include <linux/kernel.h>
0019 #include <linux/module.h>
0020 #include <linux/mutex.h>
0021 #include <linux/of.h>
0022 #include <linux/platform_device.h>
0023 #include <linux/pm_opp.h>
0024 #include <linux/slab.h>
0025 #include <linux/sort.h>
0026 #include <linux/types.h>
0027
0028 #include <soc/tegra/common.h>
0029 #include <soc/tegra/fuse.h>
0030
0031 #include "../jedec_ddr.h"
0032 #include "../of_memory.h"
0033
0034 #include "mc.h"
0035
0036 #define EMC_INTSTATUS 0x000
0037 #define EMC_INTMASK 0x004
0038 #define EMC_DBG 0x008
0039 #define EMC_ADR_CFG_0 0x010
0040 #define EMC_TIMING_CONTROL 0x028
0041 #define EMC_RC 0x02c
0042 #define EMC_RFC 0x030
0043 #define EMC_RAS 0x034
0044 #define EMC_RP 0x038
0045 #define EMC_R2W 0x03c
0046 #define EMC_W2R 0x040
0047 #define EMC_R2P 0x044
0048 #define EMC_W2P 0x048
0049 #define EMC_RD_RCD 0x04c
0050 #define EMC_WR_RCD 0x050
0051 #define EMC_RRD 0x054
0052 #define EMC_REXT 0x058
0053 #define EMC_WDV 0x05c
0054 #define EMC_QUSE 0x060
0055 #define EMC_QRST 0x064
0056 #define EMC_QSAFE 0x068
0057 #define EMC_RDV 0x06c
0058 #define EMC_REFRESH 0x070
0059 #define EMC_BURST_REFRESH_NUM 0x074
0060 #define EMC_PDEX2WR 0x078
0061 #define EMC_PDEX2RD 0x07c
0062 #define EMC_PCHG2PDEN 0x080
0063 #define EMC_ACT2PDEN 0x084
0064 #define EMC_AR2PDEN 0x088
0065 #define EMC_RW2PDEN 0x08c
0066 #define EMC_TXSR 0x090
0067 #define EMC_TCKE 0x094
0068 #define EMC_TFAW 0x098
0069 #define EMC_TRPAB 0x09c
0070 #define EMC_TCLKSTABLE 0x0a0
0071 #define EMC_TCLKSTOP 0x0a4
0072 #define EMC_TREFBW 0x0a8
0073 #define EMC_QUSE_EXTRA 0x0ac
0074 #define EMC_ODT_WRITE 0x0b0
0075 #define EMC_ODT_READ 0x0b4
0076 #define EMC_MRR 0x0ec
0077 #define EMC_FBIO_CFG5 0x104
0078 #define EMC_FBIO_CFG6 0x114
0079 #define EMC_STAT_CONTROL 0x160
0080 #define EMC_STAT_LLMC_CONTROL 0x178
0081 #define EMC_STAT_PWR_CLOCK_LIMIT 0x198
0082 #define EMC_STAT_PWR_CLOCKS 0x19c
0083 #define EMC_STAT_PWR_COUNT 0x1a0
0084 #define EMC_AUTO_CAL_INTERVAL 0x2a8
0085 #define EMC_CFG_2 0x2b8
0086 #define EMC_CFG_DIG_DLL 0x2bc
0087 #define EMC_DLL_XFORM_DQS 0x2c0
0088 #define EMC_DLL_XFORM_QUSE 0x2c4
0089 #define EMC_ZCAL_REF_CNT 0x2e0
0090 #define EMC_ZCAL_WAIT_CNT 0x2e4
0091 #define EMC_CFG_CLKTRIM_0 0x2d0
0092 #define EMC_CFG_CLKTRIM_1 0x2d4
0093 #define EMC_CFG_CLKTRIM_2 0x2d8
0094
0095 #define EMC_CLKCHANGE_REQ_ENABLE BIT(0)
0096 #define EMC_CLKCHANGE_PD_ENABLE BIT(1)
0097 #define EMC_CLKCHANGE_SR_ENABLE BIT(2)
0098
0099 #define EMC_TIMING_UPDATE BIT(0)
0100
0101 #define EMC_REFRESH_OVERFLOW_INT BIT(3)
0102 #define EMC_CLKCHANGE_COMPLETE_INT BIT(4)
0103 #define EMC_MRR_DIVLD_INT BIT(5)
0104
0105 #define EMC_DBG_READ_MUX_ASSEMBLY BIT(0)
0106 #define EMC_DBG_WRITE_MUX_ACTIVE BIT(1)
0107 #define EMC_DBG_FORCE_UPDATE BIT(2)
0108 #define EMC_DBG_READ_DQM_CTRL BIT(9)
0109 #define EMC_DBG_CFG_PRIORITY BIT(24)
0110
0111 #define EMC_FBIO_CFG5_DRAM_WIDTH_X16 BIT(4)
0112 #define EMC_FBIO_CFG5_DRAM_TYPE GENMASK(1, 0)
0113
0114 #define EMC_MRR_DEV_SELECTN GENMASK(31, 30)
0115 #define EMC_MRR_MRR_MA GENMASK(23, 16)
0116 #define EMC_MRR_MRR_DATA GENMASK(15, 0)
0117
0118 #define EMC_ADR_CFG_0_EMEM_NUMDEV GENMASK(25, 24)
0119
0120 #define EMC_PWR_GATHER_CLEAR (1 << 8)
0121 #define EMC_PWR_GATHER_DISABLE (2 << 8)
0122 #define EMC_PWR_GATHER_ENABLE (3 << 8)
0123
0124 enum emc_dram_type {
0125 DRAM_TYPE_RESERVED,
0126 DRAM_TYPE_DDR1,
0127 DRAM_TYPE_LPDDR2,
0128 DRAM_TYPE_DDR2,
0129 };
0130
0131 static const u16 emc_timing_registers[] = {
0132 EMC_RC,
0133 EMC_RFC,
0134 EMC_RAS,
0135 EMC_RP,
0136 EMC_R2W,
0137 EMC_W2R,
0138 EMC_R2P,
0139 EMC_W2P,
0140 EMC_RD_RCD,
0141 EMC_WR_RCD,
0142 EMC_RRD,
0143 EMC_REXT,
0144 EMC_WDV,
0145 EMC_QUSE,
0146 EMC_QRST,
0147 EMC_QSAFE,
0148 EMC_RDV,
0149 EMC_REFRESH,
0150 EMC_BURST_REFRESH_NUM,
0151 EMC_PDEX2WR,
0152 EMC_PDEX2RD,
0153 EMC_PCHG2PDEN,
0154 EMC_ACT2PDEN,
0155 EMC_AR2PDEN,
0156 EMC_RW2PDEN,
0157 EMC_TXSR,
0158 EMC_TCKE,
0159 EMC_TFAW,
0160 EMC_TRPAB,
0161 EMC_TCLKSTABLE,
0162 EMC_TCLKSTOP,
0163 EMC_TREFBW,
0164 EMC_QUSE_EXTRA,
0165 EMC_FBIO_CFG6,
0166 EMC_ODT_WRITE,
0167 EMC_ODT_READ,
0168 EMC_FBIO_CFG5,
0169 EMC_CFG_DIG_DLL,
0170 EMC_DLL_XFORM_DQS,
0171 EMC_DLL_XFORM_QUSE,
0172 EMC_ZCAL_REF_CNT,
0173 EMC_ZCAL_WAIT_CNT,
0174 EMC_AUTO_CAL_INTERVAL,
0175 EMC_CFG_CLKTRIM_0,
0176 EMC_CFG_CLKTRIM_1,
0177 EMC_CFG_CLKTRIM_2,
0178 };
0179
0180 struct emc_timing {
0181 unsigned long rate;
0182 u32 data[ARRAY_SIZE(emc_timing_registers)];
0183 };
0184
0185 enum emc_rate_request_type {
0186 EMC_RATE_DEVFREQ,
0187 EMC_RATE_DEBUG,
0188 EMC_RATE_ICC,
0189 EMC_RATE_TYPE_MAX,
0190 };
0191
0192 struct emc_rate_request {
0193 unsigned long min_rate;
0194 unsigned long max_rate;
0195 };
0196
0197 struct tegra_emc {
0198 struct device *dev;
0199 struct tegra_mc *mc;
0200 struct icc_provider provider;
0201 struct notifier_block clk_nb;
0202 struct clk *clk;
0203 void __iomem *regs;
0204 unsigned int dram_bus_width;
0205
0206 struct emc_timing *timings;
0207 unsigned int num_timings;
0208
0209 struct {
0210 struct dentry *root;
0211 unsigned long min_rate;
0212 unsigned long max_rate;
0213 } debugfs;
0214
0215
0216
0217
0218
0219 struct emc_rate_request requested_rate[EMC_RATE_TYPE_MAX];
0220
0221
0222 struct mutex rate_lock;
0223
0224 struct devfreq_simple_ondemand_data ondemand_data;
0225
0226
0227 union lpddr2_basic_config4 basic_conf4;
0228 unsigned int manufacturer_id;
0229 unsigned int revision_id1;
0230 unsigned int revision_id2;
0231
0232 bool mrr_error;
0233 };
0234
0235 static irqreturn_t tegra_emc_isr(int irq, void *data)
0236 {
0237 struct tegra_emc *emc = data;
0238 u32 intmask = EMC_REFRESH_OVERFLOW_INT;
0239 u32 status;
0240
0241 status = readl_relaxed(emc->regs + EMC_INTSTATUS) & intmask;
0242 if (!status)
0243 return IRQ_NONE;
0244
0245
0246 if (status & EMC_REFRESH_OVERFLOW_INT)
0247 dev_err_ratelimited(emc->dev,
0248 "refresh request overflow timeout\n");
0249
0250
0251 writel_relaxed(status, emc->regs + EMC_INTSTATUS);
0252
0253 return IRQ_HANDLED;
0254 }
0255
0256 static struct emc_timing *tegra_emc_find_timing(struct tegra_emc *emc,
0257 unsigned long rate)
0258 {
0259 struct emc_timing *timing = NULL;
0260 unsigned int i;
0261
0262 for (i = 0; i < emc->num_timings; i++) {
0263 if (emc->timings[i].rate >= rate) {
0264 timing = &emc->timings[i];
0265 break;
0266 }
0267 }
0268
0269 if (!timing) {
0270 dev_err(emc->dev, "no timing for rate %lu\n", rate);
0271 return NULL;
0272 }
0273
0274 return timing;
0275 }
0276
0277 static int emc_prepare_timing_change(struct tegra_emc *emc, unsigned long rate)
0278 {
0279 struct emc_timing *timing = tegra_emc_find_timing(emc, rate);
0280 unsigned int i;
0281
0282 if (!timing)
0283 return -EINVAL;
0284
0285 dev_dbg(emc->dev, "%s: using timing rate %lu for requested rate %lu\n",
0286 __func__, timing->rate, rate);
0287
0288
0289 for (i = 0; i < ARRAY_SIZE(timing->data); i++)
0290 writel_relaxed(timing->data[i],
0291 emc->regs + emc_timing_registers[i]);
0292
0293
0294 readl_relaxed(emc->regs + emc_timing_registers[i - 1]);
0295
0296 return 0;
0297 }
0298
0299 static int emc_complete_timing_change(struct tegra_emc *emc, bool flush)
0300 {
0301 int err;
0302 u32 v;
0303
0304 dev_dbg(emc->dev, "%s: flush %d\n", __func__, flush);
0305
0306 if (flush) {
0307
0308 writel_relaxed(EMC_TIMING_UPDATE,
0309 emc->regs + EMC_TIMING_CONTROL);
0310 return 0;
0311 }
0312
0313 err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_INTSTATUS, v,
0314 v & EMC_CLKCHANGE_COMPLETE_INT,
0315 1, 100);
0316 if (err) {
0317 dev_err(emc->dev, "emc-car handshake timeout: %d\n", err);
0318 return err;
0319 }
0320
0321 return 0;
0322 }
0323
0324 static int tegra_emc_clk_change_notify(struct notifier_block *nb,
0325 unsigned long msg, void *data)
0326 {
0327 struct tegra_emc *emc = container_of(nb, struct tegra_emc, clk_nb);
0328 struct clk_notifier_data *cnd = data;
0329 int err;
0330
0331 switch (msg) {
0332 case PRE_RATE_CHANGE:
0333 err = emc_prepare_timing_change(emc, cnd->new_rate);
0334 break;
0335
0336 case ABORT_RATE_CHANGE:
0337 err = emc_prepare_timing_change(emc, cnd->old_rate);
0338 if (err)
0339 break;
0340
0341 err = emc_complete_timing_change(emc, true);
0342 break;
0343
0344 case POST_RATE_CHANGE:
0345 err = emc_complete_timing_change(emc, false);
0346 break;
0347
0348 default:
0349 return NOTIFY_DONE;
0350 }
0351
0352 return notifier_from_errno(err);
0353 }
0354
0355 static int load_one_timing_from_dt(struct tegra_emc *emc,
0356 struct emc_timing *timing,
0357 struct device_node *node)
0358 {
0359 u32 rate;
0360 int err;
0361
0362 if (!of_device_is_compatible(node, "nvidia,tegra20-emc-table")) {
0363 dev_err(emc->dev, "incompatible DT node: %pOF\n", node);
0364 return -EINVAL;
0365 }
0366
0367 err = of_property_read_u32(node, "clock-frequency", &rate);
0368 if (err) {
0369 dev_err(emc->dev, "timing %pOF: failed to read rate: %d\n",
0370 node, err);
0371 return err;
0372 }
0373
0374 err = of_property_read_u32_array(node, "nvidia,emc-registers",
0375 timing->data,
0376 ARRAY_SIZE(emc_timing_registers));
0377 if (err) {
0378 dev_err(emc->dev,
0379 "timing %pOF: failed to read emc timing data: %d\n",
0380 node, err);
0381 return err;
0382 }
0383
0384
0385
0386
0387
0388 timing->rate = rate * 2 * 1000;
0389
0390 dev_dbg(emc->dev, "%s: %pOF: EMC rate %lu\n",
0391 __func__, node, timing->rate);
0392
0393 return 0;
0394 }
0395
0396 static int cmp_timings(const void *_a, const void *_b)
0397 {
0398 const struct emc_timing *a = _a;
0399 const struct emc_timing *b = _b;
0400
0401 if (a->rate < b->rate)
0402 return -1;
0403
0404 if (a->rate > b->rate)
0405 return 1;
0406
0407 return 0;
0408 }
0409
0410 static int tegra_emc_load_timings_from_dt(struct tegra_emc *emc,
0411 struct device_node *node)
0412 {
0413 struct device_node *child;
0414 struct emc_timing *timing;
0415 int child_count;
0416 int err;
0417
0418 child_count = of_get_child_count(node);
0419 if (!child_count) {
0420 dev_err(emc->dev, "no memory timings in DT node: %pOF\n", node);
0421 return -EINVAL;
0422 }
0423
0424 emc->timings = devm_kcalloc(emc->dev, child_count, sizeof(*timing),
0425 GFP_KERNEL);
0426 if (!emc->timings)
0427 return -ENOMEM;
0428
0429 timing = emc->timings;
0430
0431 for_each_child_of_node(node, child) {
0432 if (of_node_name_eq(child, "lpddr2"))
0433 continue;
0434
0435 err = load_one_timing_from_dt(emc, timing++, child);
0436 if (err) {
0437 of_node_put(child);
0438 return err;
0439 }
0440
0441 emc->num_timings++;
0442 }
0443
0444 sort(emc->timings, emc->num_timings, sizeof(*timing), cmp_timings,
0445 NULL);
0446
0447 dev_info_once(emc->dev,
0448 "got %u timings for RAM code %u (min %luMHz max %luMHz)\n",
0449 emc->num_timings,
0450 tegra_read_ram_code(),
0451 emc->timings[0].rate / 1000000,
0452 emc->timings[emc->num_timings - 1].rate / 1000000);
0453
0454 return 0;
0455 }
0456
0457 static struct device_node *
0458 tegra_emc_find_node_by_ram_code(struct tegra_emc *emc)
0459 {
0460 struct device *dev = emc->dev;
0461 struct device_node *np;
0462 u32 value, ram_code;
0463 int err;
0464
0465 if (emc->mrr_error) {
0466 dev_warn(dev, "memory timings skipped due to MRR error\n");
0467 return NULL;
0468 }
0469
0470 if (of_get_child_count(dev->of_node) == 0) {
0471 dev_info_once(dev, "device-tree doesn't have memory timings\n");
0472 return NULL;
0473 }
0474
0475 if (!of_property_read_bool(dev->of_node, "nvidia,use-ram-code"))
0476 return of_node_get(dev->of_node);
0477
0478 ram_code = tegra_read_ram_code();
0479
0480 for (np = of_find_node_by_name(dev->of_node, "emc-tables"); np;
0481 np = of_find_node_by_name(np, "emc-tables")) {
0482 err = of_property_read_u32(np, "nvidia,ram-code", &value);
0483 if (err || value != ram_code) {
0484 struct device_node *lpddr2_np;
0485 bool cfg_mismatches = false;
0486
0487 lpddr2_np = of_find_node_by_name(np, "lpddr2");
0488 if (lpddr2_np) {
0489 const struct lpddr2_info *info;
0490
0491 info = of_lpddr2_get_info(lpddr2_np, dev);
0492 if (info) {
0493 if (info->manufacturer_id >= 0 &&
0494 info->manufacturer_id != emc->manufacturer_id)
0495 cfg_mismatches = true;
0496
0497 if (info->revision_id1 >= 0 &&
0498 info->revision_id1 != emc->revision_id1)
0499 cfg_mismatches = true;
0500
0501 if (info->revision_id2 >= 0 &&
0502 info->revision_id2 != emc->revision_id2)
0503 cfg_mismatches = true;
0504
0505 if (info->density != emc->basic_conf4.density)
0506 cfg_mismatches = true;
0507
0508 if (info->io_width != emc->basic_conf4.io_width)
0509 cfg_mismatches = true;
0510
0511 if (info->arch_type != emc->basic_conf4.arch_type)
0512 cfg_mismatches = true;
0513 } else {
0514 dev_err(dev, "failed to parse %pOF\n", lpddr2_np);
0515 cfg_mismatches = true;
0516 }
0517
0518 of_node_put(lpddr2_np);
0519 } else {
0520 cfg_mismatches = true;
0521 }
0522
0523 if (cfg_mismatches) {
0524 of_node_put(np);
0525 continue;
0526 }
0527 }
0528
0529 return np;
0530 }
0531
0532 dev_err(dev, "no memory timings for RAM code %u found in device tree\n",
0533 ram_code);
0534
0535 return NULL;
0536 }
0537
0538 static int emc_read_lpddr_mode_register(struct tegra_emc *emc,
0539 unsigned int emem_dev,
0540 unsigned int register_addr,
0541 unsigned int *register_data)
0542 {
0543 u32 memory_dev = emem_dev ? 1 : 2;
0544 u32 val, mr_mask = 0xff;
0545 int err;
0546
0547
0548 writel_relaxed(EMC_MRR_DIVLD_INT, emc->regs + EMC_INTSTATUS);
0549
0550
0551 val = FIELD_PREP(EMC_MRR_DEV_SELECTN, memory_dev);
0552 val |= FIELD_PREP(EMC_MRR_MRR_MA, register_addr);
0553
0554 writel_relaxed(val, emc->regs + EMC_MRR);
0555
0556
0557 err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_INTSTATUS, val,
0558 val & EMC_MRR_DIVLD_INT,
0559 1, 100);
0560 if (err) {
0561 dev_err(emc->dev, "mode register %u read failed: %d\n",
0562 register_addr, err);
0563 emc->mrr_error = true;
0564 return err;
0565 }
0566
0567
0568 val = readl_relaxed(emc->regs + EMC_MRR);
0569 *register_data = FIELD_GET(EMC_MRR_MRR_DATA, val) & mr_mask;
0570
0571 return 0;
0572 }
0573
0574 static void emc_read_lpddr_sdram_info(struct tegra_emc *emc,
0575 unsigned int emem_dev,
0576 bool print_out)
0577 {
0578
0579 emc_read_lpddr_mode_register(emc, emem_dev, 5, &emc->manufacturer_id);
0580 emc_read_lpddr_mode_register(emc, emem_dev, 6, &emc->revision_id1);
0581 emc_read_lpddr_mode_register(emc, emem_dev, 7, &emc->revision_id2);
0582 emc_read_lpddr_mode_register(emc, emem_dev, 8, &emc->basic_conf4.value);
0583
0584 if (!print_out)
0585 return;
0586
0587 dev_info(emc->dev, "SDRAM[dev%u]: manufacturer: 0x%x (%s) rev1: 0x%x rev2: 0x%x prefetch: S%u density: %uMbit iowidth: %ubit\n",
0588 emem_dev, emc->manufacturer_id,
0589 lpddr2_jedec_manufacturer(emc->manufacturer_id),
0590 emc->revision_id1, emc->revision_id2,
0591 4 >> emc->basic_conf4.arch_type,
0592 64 << emc->basic_conf4.density,
0593 32 >> emc->basic_conf4.io_width);
0594 }
0595
0596 static int emc_setup_hw(struct tegra_emc *emc)
0597 {
0598 u32 emc_cfg, emc_dbg, emc_fbio, emc_adr_cfg;
0599 u32 intmask = EMC_REFRESH_OVERFLOW_INT;
0600 static bool print_sdram_info_once;
0601 enum emc_dram_type dram_type;
0602 const char *dram_type_str;
0603 unsigned int emem_numdev;
0604
0605 emc_cfg = readl_relaxed(emc->regs + EMC_CFG_2);
0606
0607
0608
0609
0610
0611 if (!(emc_cfg & EMC_CLKCHANGE_PD_ENABLE) &&
0612 !(emc_cfg & EMC_CLKCHANGE_SR_ENABLE)) {
0613 dev_err(emc->dev,
0614 "bootloader didn't specify DRAM auto-suspend mode\n");
0615 return -EINVAL;
0616 }
0617
0618
0619 emc_cfg |= EMC_CLKCHANGE_REQ_ENABLE;
0620 writel_relaxed(emc_cfg, emc->regs + EMC_CFG_2);
0621
0622
0623 writel_relaxed(intmask, emc->regs + EMC_INTMASK);
0624 writel_relaxed(intmask, emc->regs + EMC_INTSTATUS);
0625
0626
0627 emc_dbg = readl_relaxed(emc->regs + EMC_DBG);
0628 emc_dbg |= EMC_DBG_CFG_PRIORITY;
0629 emc_dbg &= ~EMC_DBG_READ_MUX_ASSEMBLY;
0630 emc_dbg &= ~EMC_DBG_WRITE_MUX_ACTIVE;
0631 emc_dbg &= ~EMC_DBG_FORCE_UPDATE;
0632 writel_relaxed(emc_dbg, emc->regs + EMC_DBG);
0633
0634 emc_fbio = readl_relaxed(emc->regs + EMC_FBIO_CFG5);
0635
0636 if (emc_fbio & EMC_FBIO_CFG5_DRAM_WIDTH_X16)
0637 emc->dram_bus_width = 16;
0638 else
0639 emc->dram_bus_width = 32;
0640
0641 dram_type = FIELD_GET(EMC_FBIO_CFG5_DRAM_TYPE, emc_fbio);
0642
0643 switch (dram_type) {
0644 case DRAM_TYPE_RESERVED:
0645 dram_type_str = "INVALID";
0646 break;
0647 case DRAM_TYPE_DDR1:
0648 dram_type_str = "DDR1";
0649 break;
0650 case DRAM_TYPE_LPDDR2:
0651 dram_type_str = "LPDDR2";
0652 break;
0653 case DRAM_TYPE_DDR2:
0654 dram_type_str = "DDR2";
0655 break;
0656 }
0657
0658 emc_adr_cfg = readl_relaxed(emc->regs + EMC_ADR_CFG_0);
0659 emem_numdev = FIELD_GET(EMC_ADR_CFG_0_EMEM_NUMDEV, emc_adr_cfg) + 1;
0660
0661 dev_info_once(emc->dev, "%ubit DRAM bus, %u %s %s attached\n",
0662 emc->dram_bus_width, emem_numdev, dram_type_str,
0663 emem_numdev == 2 ? "devices" : "device");
0664
0665 if (dram_type == DRAM_TYPE_LPDDR2) {
0666 while (emem_numdev--)
0667 emc_read_lpddr_sdram_info(emc, emem_numdev,
0668 !print_sdram_info_once);
0669 print_sdram_info_once = true;
0670 }
0671
0672 return 0;
0673 }
0674
0675 static long emc_round_rate(unsigned long rate,
0676 unsigned long min_rate,
0677 unsigned long max_rate,
0678 void *arg)
0679 {
0680 struct emc_timing *timing = NULL;
0681 struct tegra_emc *emc = arg;
0682 unsigned int i;
0683
0684 if (!emc->num_timings)
0685 return clk_get_rate(emc->clk);
0686
0687 min_rate = min(min_rate, emc->timings[emc->num_timings - 1].rate);
0688
0689 for (i = 0; i < emc->num_timings; i++) {
0690 if (emc->timings[i].rate < rate && i != emc->num_timings - 1)
0691 continue;
0692
0693 if (emc->timings[i].rate > max_rate) {
0694 i = max(i, 1u) - 1;
0695
0696 if (emc->timings[i].rate < min_rate)
0697 break;
0698 }
0699
0700 if (emc->timings[i].rate < min_rate)
0701 continue;
0702
0703 timing = &emc->timings[i];
0704 break;
0705 }
0706
0707 if (!timing) {
0708 dev_err(emc->dev, "no timing for rate %lu min %lu max %lu\n",
0709 rate, min_rate, max_rate);
0710 return -EINVAL;
0711 }
0712
0713 return timing->rate;
0714 }
0715
0716 static void tegra_emc_rate_requests_init(struct tegra_emc *emc)
0717 {
0718 unsigned int i;
0719
0720 for (i = 0; i < EMC_RATE_TYPE_MAX; i++) {
0721 emc->requested_rate[i].min_rate = 0;
0722 emc->requested_rate[i].max_rate = ULONG_MAX;
0723 }
0724 }
0725
0726 static int emc_request_rate(struct tegra_emc *emc,
0727 unsigned long new_min_rate,
0728 unsigned long new_max_rate,
0729 enum emc_rate_request_type type)
0730 {
0731 struct emc_rate_request *req = emc->requested_rate;
0732 unsigned long min_rate = 0, max_rate = ULONG_MAX;
0733 unsigned int i;
0734 int err;
0735
0736
0737 for (i = 0; i < EMC_RATE_TYPE_MAX; i++, req++) {
0738 if (i == type) {
0739 min_rate = max(new_min_rate, min_rate);
0740 max_rate = min(new_max_rate, max_rate);
0741 } else {
0742 min_rate = max(req->min_rate, min_rate);
0743 max_rate = min(req->max_rate, max_rate);
0744 }
0745 }
0746
0747 if (min_rate > max_rate) {
0748 dev_err_ratelimited(emc->dev, "%s: type %u: out of range: %lu %lu\n",
0749 __func__, type, min_rate, max_rate);
0750 return -ERANGE;
0751 }
0752
0753
0754
0755
0756
0757 err = dev_pm_opp_set_rate(emc->dev, min_rate);
0758 if (err)
0759 return err;
0760
0761 emc->requested_rate[type].min_rate = new_min_rate;
0762 emc->requested_rate[type].max_rate = new_max_rate;
0763
0764 return 0;
0765 }
0766
0767 static int emc_set_min_rate(struct tegra_emc *emc, unsigned long rate,
0768 enum emc_rate_request_type type)
0769 {
0770 struct emc_rate_request *req = &emc->requested_rate[type];
0771 int ret;
0772
0773 mutex_lock(&emc->rate_lock);
0774 ret = emc_request_rate(emc, rate, req->max_rate, type);
0775 mutex_unlock(&emc->rate_lock);
0776
0777 return ret;
0778 }
0779
0780 static int emc_set_max_rate(struct tegra_emc *emc, unsigned long rate,
0781 enum emc_rate_request_type type)
0782 {
0783 struct emc_rate_request *req = &emc->requested_rate[type];
0784 int ret;
0785
0786 mutex_lock(&emc->rate_lock);
0787 ret = emc_request_rate(emc, req->min_rate, rate, type);
0788 mutex_unlock(&emc->rate_lock);
0789
0790 return ret;
0791 }
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818 static bool tegra_emc_validate_rate(struct tegra_emc *emc, unsigned long rate)
0819 {
0820 unsigned int i;
0821
0822 for (i = 0; i < emc->num_timings; i++)
0823 if (rate == emc->timings[i].rate)
0824 return true;
0825
0826 return false;
0827 }
0828
0829 static int tegra_emc_debug_available_rates_show(struct seq_file *s, void *data)
0830 {
0831 struct tegra_emc *emc = s->private;
0832 const char *prefix = "";
0833 unsigned int i;
0834
0835 for (i = 0; i < emc->num_timings; i++) {
0836 seq_printf(s, "%s%lu", prefix, emc->timings[i].rate);
0837 prefix = " ";
0838 }
0839
0840 seq_puts(s, "\n");
0841
0842 return 0;
0843 }
0844
0845 static int tegra_emc_debug_available_rates_open(struct inode *inode,
0846 struct file *file)
0847 {
0848 return single_open(file, tegra_emc_debug_available_rates_show,
0849 inode->i_private);
0850 }
0851
0852 static const struct file_operations tegra_emc_debug_available_rates_fops = {
0853 .open = tegra_emc_debug_available_rates_open,
0854 .read = seq_read,
0855 .llseek = seq_lseek,
0856 .release = single_release,
0857 };
0858
0859 static int tegra_emc_debug_min_rate_get(void *data, u64 *rate)
0860 {
0861 struct tegra_emc *emc = data;
0862
0863 *rate = emc->debugfs.min_rate;
0864
0865 return 0;
0866 }
0867
0868 static int tegra_emc_debug_min_rate_set(void *data, u64 rate)
0869 {
0870 struct tegra_emc *emc = data;
0871 int err;
0872
0873 if (!tegra_emc_validate_rate(emc, rate))
0874 return -EINVAL;
0875
0876 err = emc_set_min_rate(emc, rate, EMC_RATE_DEBUG);
0877 if (err < 0)
0878 return err;
0879
0880 emc->debugfs.min_rate = rate;
0881
0882 return 0;
0883 }
0884
0885 DEFINE_SIMPLE_ATTRIBUTE(tegra_emc_debug_min_rate_fops,
0886 tegra_emc_debug_min_rate_get,
0887 tegra_emc_debug_min_rate_set, "%llu\n");
0888
0889 static int tegra_emc_debug_max_rate_get(void *data, u64 *rate)
0890 {
0891 struct tegra_emc *emc = data;
0892
0893 *rate = emc->debugfs.max_rate;
0894
0895 return 0;
0896 }
0897
0898 static int tegra_emc_debug_max_rate_set(void *data, u64 rate)
0899 {
0900 struct tegra_emc *emc = data;
0901 int err;
0902
0903 if (!tegra_emc_validate_rate(emc, rate))
0904 return -EINVAL;
0905
0906 err = emc_set_max_rate(emc, rate, EMC_RATE_DEBUG);
0907 if (err < 0)
0908 return err;
0909
0910 emc->debugfs.max_rate = rate;
0911
0912 return 0;
0913 }
0914
0915 DEFINE_SIMPLE_ATTRIBUTE(tegra_emc_debug_max_rate_fops,
0916 tegra_emc_debug_max_rate_get,
0917 tegra_emc_debug_max_rate_set, "%llu\n");
0918
0919 static void tegra_emc_debugfs_init(struct tegra_emc *emc)
0920 {
0921 struct device *dev = emc->dev;
0922 unsigned int i;
0923 int err;
0924
0925 emc->debugfs.min_rate = ULONG_MAX;
0926 emc->debugfs.max_rate = 0;
0927
0928 for (i = 0; i < emc->num_timings; i++) {
0929 if (emc->timings[i].rate < emc->debugfs.min_rate)
0930 emc->debugfs.min_rate = emc->timings[i].rate;
0931
0932 if (emc->timings[i].rate > emc->debugfs.max_rate)
0933 emc->debugfs.max_rate = emc->timings[i].rate;
0934 }
0935
0936 if (!emc->num_timings) {
0937 emc->debugfs.min_rate = clk_get_rate(emc->clk);
0938 emc->debugfs.max_rate = emc->debugfs.min_rate;
0939 }
0940
0941 err = clk_set_rate_range(emc->clk, emc->debugfs.min_rate,
0942 emc->debugfs.max_rate);
0943 if (err < 0) {
0944 dev_err(dev, "failed to set rate range [%lu-%lu] for %pC\n",
0945 emc->debugfs.min_rate, emc->debugfs.max_rate,
0946 emc->clk);
0947 }
0948
0949 emc->debugfs.root = debugfs_create_dir("emc", NULL);
0950
0951 debugfs_create_file("available_rates", 0444, emc->debugfs.root,
0952 emc, &tegra_emc_debug_available_rates_fops);
0953 debugfs_create_file("min_rate", 0644, emc->debugfs.root,
0954 emc, &tegra_emc_debug_min_rate_fops);
0955 debugfs_create_file("max_rate", 0644, emc->debugfs.root,
0956 emc, &tegra_emc_debug_max_rate_fops);
0957 }
0958
0959 static inline struct tegra_emc *
0960 to_tegra_emc_provider(struct icc_provider *provider)
0961 {
0962 return container_of(provider, struct tegra_emc, provider);
0963 }
0964
0965 static struct icc_node_data *
0966 emc_of_icc_xlate_extended(struct of_phandle_args *spec, void *data)
0967 {
0968 struct icc_provider *provider = data;
0969 struct icc_node_data *ndata;
0970 struct icc_node *node;
0971
0972
0973 list_for_each_entry(node, &provider->nodes, node_list) {
0974 if (node->id != TEGRA_ICC_EMEM)
0975 continue;
0976
0977 ndata = kzalloc(sizeof(*ndata), GFP_KERNEL);
0978 if (!ndata)
0979 return ERR_PTR(-ENOMEM);
0980
0981
0982
0983
0984
0985 ndata->tag = TEGRA_MC_ICC_TAG_ISO;
0986 ndata->node = node;
0987
0988 return ndata;
0989 }
0990
0991 return ERR_PTR(-EPROBE_DEFER);
0992 }
0993
0994 static int emc_icc_set(struct icc_node *src, struct icc_node *dst)
0995 {
0996 struct tegra_emc *emc = to_tegra_emc_provider(dst->provider);
0997 unsigned long long peak_bw = icc_units_to_bps(dst->peak_bw);
0998 unsigned long long avg_bw = icc_units_to_bps(dst->avg_bw);
0999 unsigned long long rate = max(avg_bw, peak_bw);
1000 unsigned int dram_data_bus_width_bytes;
1001 int err;
1002
1003
1004
1005
1006
1007
1008 dram_data_bus_width_bytes = emc->dram_bus_width / 8;
1009 do_div(rate, dram_data_bus_width_bytes);
1010 rate = min_t(u64, rate, U32_MAX);
1011
1012 err = emc_set_min_rate(emc, rate, EMC_RATE_ICC);
1013 if (err)
1014 return err;
1015
1016 return 0;
1017 }
1018
1019 static int tegra_emc_interconnect_init(struct tegra_emc *emc)
1020 {
1021 const struct tegra_mc_soc *soc;
1022 struct icc_node *node;
1023 int err;
1024
1025 emc->mc = devm_tegra_memory_controller_get(emc->dev);
1026 if (IS_ERR(emc->mc))
1027 return PTR_ERR(emc->mc);
1028
1029 soc = emc->mc->soc;
1030
1031 emc->provider.dev = emc->dev;
1032 emc->provider.set = emc_icc_set;
1033 emc->provider.data = &emc->provider;
1034 emc->provider.aggregate = soc->icc_ops->aggregate;
1035 emc->provider.xlate_extended = emc_of_icc_xlate_extended;
1036
1037 err = icc_provider_add(&emc->provider);
1038 if (err)
1039 goto err_msg;
1040
1041
1042 node = icc_node_create(TEGRA_ICC_EMC);
1043 if (IS_ERR(node)) {
1044 err = PTR_ERR(node);
1045 goto del_provider;
1046 }
1047
1048 node->name = "External Memory Controller";
1049 icc_node_add(node, &emc->provider);
1050
1051
1052 err = icc_link_create(node, TEGRA_ICC_EMEM);
1053 if (err)
1054 goto remove_nodes;
1055
1056
1057 node = icc_node_create(TEGRA_ICC_EMEM);
1058 if (IS_ERR(node)) {
1059 err = PTR_ERR(node);
1060 goto remove_nodes;
1061 }
1062
1063 node->name = "External Memory (DRAM)";
1064 icc_node_add(node, &emc->provider);
1065
1066 return 0;
1067
1068 remove_nodes:
1069 icc_nodes_remove(&emc->provider);
1070 del_provider:
1071 icc_provider_del(&emc->provider);
1072 err_msg:
1073 dev_err(emc->dev, "failed to initialize ICC: %d\n", err);
1074
1075 return err;
1076 }
1077
1078 static void devm_tegra_emc_unset_callback(void *data)
1079 {
1080 tegra20_clk_set_emc_round_callback(NULL, NULL);
1081 }
1082
1083 static void devm_tegra_emc_unreg_clk_notifier(void *data)
1084 {
1085 struct tegra_emc *emc = data;
1086
1087 clk_notifier_unregister(emc->clk, &emc->clk_nb);
1088 }
1089
1090 static int tegra_emc_init_clk(struct tegra_emc *emc)
1091 {
1092 int err;
1093
1094 tegra20_clk_set_emc_round_callback(emc_round_rate, emc);
1095
1096 err = devm_add_action_or_reset(emc->dev, devm_tegra_emc_unset_callback,
1097 NULL);
1098 if (err)
1099 return err;
1100
1101 emc->clk = devm_clk_get(emc->dev, NULL);
1102 if (IS_ERR(emc->clk)) {
1103 dev_err(emc->dev, "failed to get EMC clock: %pe\n", emc->clk);
1104 return PTR_ERR(emc->clk);
1105 }
1106
1107 err = clk_notifier_register(emc->clk, &emc->clk_nb);
1108 if (err) {
1109 dev_err(emc->dev, "failed to register clk notifier: %d\n", err);
1110 return err;
1111 }
1112
1113 err = devm_add_action_or_reset(emc->dev,
1114 devm_tegra_emc_unreg_clk_notifier, emc);
1115 if (err)
1116 return err;
1117
1118 return 0;
1119 }
1120
1121 static int tegra_emc_devfreq_target(struct device *dev, unsigned long *freq,
1122 u32 flags)
1123 {
1124 struct tegra_emc *emc = dev_get_drvdata(dev);
1125 struct dev_pm_opp *opp;
1126 unsigned long rate;
1127
1128 opp = devfreq_recommended_opp(dev, freq, flags);
1129 if (IS_ERR(opp)) {
1130 dev_err(dev, "failed to find opp for %lu Hz\n", *freq);
1131 return PTR_ERR(opp);
1132 }
1133
1134 rate = dev_pm_opp_get_freq(opp);
1135 dev_pm_opp_put(opp);
1136
1137 return emc_set_min_rate(emc, rate, EMC_RATE_DEVFREQ);
1138 }
1139
1140 static int tegra_emc_devfreq_get_dev_status(struct device *dev,
1141 struct devfreq_dev_status *stat)
1142 {
1143 struct tegra_emc *emc = dev_get_drvdata(dev);
1144
1145
1146 writel_relaxed(EMC_PWR_GATHER_DISABLE, emc->regs + EMC_STAT_CONTROL);
1147
1148
1149
1150
1151
1152 stat->busy_time = readl_relaxed(emc->regs + EMC_STAT_PWR_COUNT);
1153 stat->total_time = readl_relaxed(emc->regs + EMC_STAT_PWR_CLOCKS);
1154 stat->current_frequency = clk_get_rate(emc->clk);
1155
1156
1157 writel_relaxed(EMC_PWR_GATHER_CLEAR, emc->regs + EMC_STAT_CONTROL);
1158 writel_relaxed(EMC_PWR_GATHER_ENABLE, emc->regs + EMC_STAT_CONTROL);
1159
1160 return 0;
1161 }
1162
1163 static struct devfreq_dev_profile tegra_emc_devfreq_profile = {
1164 .polling_ms = 30,
1165 .target = tegra_emc_devfreq_target,
1166 .get_dev_status = tegra_emc_devfreq_get_dev_status,
1167 };
1168
1169 static int tegra_emc_devfreq_init(struct tegra_emc *emc)
1170 {
1171 struct devfreq *devfreq;
1172
1173
1174
1175
1176
1177
1178
1179
1180 emc->ondemand_data.upthreshold = 20;
1181
1182
1183
1184
1185
1186
1187 writel_relaxed(0x00000000, emc->regs + EMC_STAT_CONTROL);
1188 writel_relaxed(0x00000000, emc->regs + EMC_STAT_LLMC_CONTROL);
1189 writel_relaxed(0xffffffff, emc->regs + EMC_STAT_PWR_CLOCK_LIMIT);
1190
1191 devfreq = devm_devfreq_add_device(emc->dev, &tegra_emc_devfreq_profile,
1192 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1193 &emc->ondemand_data);
1194 if (IS_ERR(devfreq)) {
1195 dev_err(emc->dev, "failed to initialize devfreq: %pe", devfreq);
1196 return PTR_ERR(devfreq);
1197 }
1198
1199 return 0;
1200 }
1201
1202 static int tegra_emc_probe(struct platform_device *pdev)
1203 {
1204 struct tegra_core_opp_params opp_params = {};
1205 struct device_node *np;
1206 struct tegra_emc *emc;
1207 int irq, err;
1208
1209 irq = platform_get_irq(pdev, 0);
1210 if (irq < 0) {
1211 dev_err(&pdev->dev, "please update your device tree\n");
1212 return irq;
1213 }
1214
1215 emc = devm_kzalloc(&pdev->dev, sizeof(*emc), GFP_KERNEL);
1216 if (!emc)
1217 return -ENOMEM;
1218
1219 mutex_init(&emc->rate_lock);
1220 emc->clk_nb.notifier_call = tegra_emc_clk_change_notify;
1221 emc->dev = &pdev->dev;
1222
1223 emc->regs = devm_platform_ioremap_resource(pdev, 0);
1224 if (IS_ERR(emc->regs))
1225 return PTR_ERR(emc->regs);
1226
1227 err = emc_setup_hw(emc);
1228 if (err)
1229 return err;
1230
1231 np = tegra_emc_find_node_by_ram_code(emc);
1232 if (np) {
1233 err = tegra_emc_load_timings_from_dt(emc, np);
1234 of_node_put(np);
1235 if (err)
1236 return err;
1237 }
1238
1239 err = devm_request_irq(&pdev->dev, irq, tegra_emc_isr, 0,
1240 dev_name(&pdev->dev), emc);
1241 if (err) {
1242 dev_err(&pdev->dev, "failed to request IRQ: %d\n", err);
1243 return err;
1244 }
1245
1246 err = tegra_emc_init_clk(emc);
1247 if (err)
1248 return err;
1249
1250 opp_params.init_state = true;
1251
1252 err = devm_tegra_core_dev_init_opp_table(&pdev->dev, &opp_params);
1253 if (err)
1254 return err;
1255
1256 platform_set_drvdata(pdev, emc);
1257 tegra_emc_rate_requests_init(emc);
1258 tegra_emc_debugfs_init(emc);
1259 tegra_emc_interconnect_init(emc);
1260 tegra_emc_devfreq_init(emc);
1261
1262
1263
1264
1265
1266
1267 try_module_get(THIS_MODULE);
1268
1269 return 0;
1270 }
1271
1272 static const struct of_device_id tegra_emc_of_match[] = {
1273 { .compatible = "nvidia,tegra20-emc", },
1274 {},
1275 };
1276 MODULE_DEVICE_TABLE(of, tegra_emc_of_match);
1277
1278 static struct platform_driver tegra_emc_driver = {
1279 .probe = tegra_emc_probe,
1280 .driver = {
1281 .name = "tegra20-emc",
1282 .of_match_table = tegra_emc_of_match,
1283 .suppress_bind_attrs = true,
1284 .sync_state = icc_sync_state,
1285 },
1286 };
1287 module_platform_driver(tegra_emc_driver);
1288
1289 MODULE_AUTHOR("Dmitry Osipenko <digetx@gmail.com>");
1290 MODULE_DESCRIPTION("NVIDIA Tegra20 EMC driver");
1291 MODULE_SOFTDEP("pre: governor_simpleondemand");
1292 MODULE_LICENSE("GPL v2");