0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022 #include <linux/kernel.h>
0023 #include "mxl301rf.h"
0024
0025 struct mxl301rf_state {
0026 struct mxl301rf_config cfg;
0027 struct i2c_client *i2c;
0028 };
0029
0030 static struct mxl301rf_state *cfg_to_state(struct mxl301rf_config *c)
0031 {
0032 return container_of(c, struct mxl301rf_state, cfg);
0033 }
0034
0035 static int raw_write(struct mxl301rf_state *state, const u8 *buf, int len)
0036 {
0037 int ret;
0038
0039 ret = i2c_master_send(state->i2c, buf, len);
0040 if (ret >= 0 && ret < len)
0041 ret = -EIO;
0042 return (ret == len) ? 0 : ret;
0043 }
0044
0045 static int reg_write(struct mxl301rf_state *state, u8 reg, u8 val)
0046 {
0047 u8 buf[2] = { reg, val };
0048
0049 return raw_write(state, buf, 2);
0050 }
0051
0052 static int reg_read(struct mxl301rf_state *state, u8 reg, u8 *val)
0053 {
0054 u8 wbuf[2] = { 0xfb, reg };
0055 int ret;
0056
0057 ret = raw_write(state, wbuf, sizeof(wbuf));
0058 if (ret == 0)
0059 ret = i2c_master_recv(state->i2c, val, 1);
0060 if (ret >= 0 && ret < 1)
0061 ret = -EIO;
0062 return (ret == 1) ? 0 : ret;
0063 }
0064
0065
0066
0067
0068 static int mxl301rf_get_rf_strength(struct dvb_frontend *fe, u16 *out)
0069 {
0070 struct mxl301rf_state *state;
0071 int ret;
0072 u8 rf_in1, rf_in2, rf_off1, rf_off2;
0073 u16 rf_in, rf_off;
0074 s64 level;
0075 struct dtv_fe_stats *rssi;
0076
0077 rssi = &fe->dtv_property_cache.strength;
0078 rssi->len = 1;
0079 rssi->stat[0].scale = FE_SCALE_NOT_AVAILABLE;
0080 *out = 0;
0081
0082 state = fe->tuner_priv;
0083 ret = reg_write(state, 0x14, 0x01);
0084 if (ret < 0)
0085 return ret;
0086 usleep_range(1000, 2000);
0087
0088 ret = reg_read(state, 0x18, &rf_in1);
0089 if (ret == 0)
0090 ret = reg_read(state, 0x19, &rf_in2);
0091 if (ret == 0)
0092 ret = reg_read(state, 0xd6, &rf_off1);
0093 if (ret == 0)
0094 ret = reg_read(state, 0xd7, &rf_off2);
0095 if (ret != 0)
0096 return ret;
0097
0098 rf_in = (rf_in2 & 0x07) << 8 | rf_in1;
0099 rf_off = (rf_off2 & 0x0f) << 5 | (rf_off1 >> 3);
0100 level = rf_in - rf_off - (113 << 3);
0101 level = level * 1000 / 8;
0102 rssi->stat[0].svalue = level;
0103 rssi->stat[0].scale = FE_SCALE_DECIBEL;
0104
0105 *out = (rf_in - rf_off + (1 << 9) - 1) * 100 / ((5 << 9) - 2);
0106 return 0;
0107 }
0108
0109
0110 struct shf {
0111 u32 freq;
0112 u32 ofst_th;
0113 u8 shf_val;
0114 u8 shf_dir;
0115 };
0116
0117 static const struct shf shf_tab[] = {
0118 { 64500, 500, 0x92, 0x07 },
0119 { 191500, 300, 0xe2, 0x07 },
0120 { 205500, 500, 0x2c, 0x04 },
0121 { 212500, 500, 0x1e, 0x04 },
0122 { 226500, 500, 0xd4, 0x07 },
0123 { 99143, 500, 0x9c, 0x07 },
0124 { 173143, 500, 0xd4, 0x07 },
0125 { 191143, 300, 0xd4, 0x07 },
0126 { 207143, 500, 0xce, 0x07 },
0127 { 225143, 500, 0xce, 0x07 },
0128 { 243143, 500, 0xd4, 0x07 },
0129 { 261143, 500, 0xd4, 0x07 },
0130 { 291143, 500, 0xd4, 0x07 },
0131 { 339143, 500, 0x2c, 0x04 },
0132 { 117143, 500, 0x7a, 0x07 },
0133 { 135143, 300, 0x7a, 0x07 },
0134 { 153143, 500, 0x01, 0x07 }
0135 };
0136
0137 struct reg_val {
0138 u8 reg;
0139 u8 val;
0140 } __attribute__ ((__packed__));
0141
0142 static const struct reg_val set_idac[] = {
0143 { 0x0d, 0x00 },
0144 { 0x0c, 0x67 },
0145 { 0x6f, 0x89 },
0146 { 0x70, 0x0c },
0147 { 0x6f, 0x8a },
0148 { 0x70, 0x0e },
0149 { 0x6f, 0x8b },
0150 { 0x70, 0x1c },
0151 };
0152
0153 static int mxl301rf_set_params(struct dvb_frontend *fe)
0154 {
0155 struct reg_val tune0[] = {
0156 { 0x13, 0x00 },
0157 { 0x3b, 0xc0 },
0158 { 0x3b, 0x80 },
0159 { 0x10, 0x95 },
0160 { 0x1a, 0x05 },
0161 { 0x61, 0x00 },
0162 { 0x62, 0xa0 }
0163 };
0164
0165 struct reg_val tune1[] = {
0166 { 0x11, 0x40 },
0167 { 0x12, 0x0e },
0168 { 0x13, 0x01 }
0169 };
0170
0171 struct mxl301rf_state *state;
0172 u32 freq;
0173 u16 f;
0174 u32 tmp, div;
0175 int i, ret;
0176
0177 state = fe->tuner_priv;
0178 freq = fe->dtv_property_cache.frequency;
0179
0180
0181 for (i = 0; i < ARRAY_SIZE(shf_tab); i++) {
0182 if (freq >= (shf_tab[i].freq - shf_tab[i].ofst_th) * 1000 &&
0183 freq <= (shf_tab[i].freq + shf_tab[i].ofst_th) * 1000) {
0184 tune0[5].val = shf_tab[i].shf_val;
0185 tune0[6].val = 0xa0 | shf_tab[i].shf_dir;
0186 break;
0187 }
0188 }
0189 ret = raw_write(state, (u8 *) tune0, sizeof(tune0));
0190 if (ret < 0)
0191 goto failed;
0192 usleep_range(3000, 4000);
0193
0194
0195 f = freq / 1000000;
0196 tmp = freq % 1000000;
0197 div = 1000000;
0198 for (i = 0; i < 6; i++) {
0199 f <<= 1;
0200 div >>= 1;
0201 if (tmp > div) {
0202 tmp -= div;
0203 f |= 1;
0204 }
0205 }
0206 if (tmp > 7812)
0207 f++;
0208 tune1[0].val = f & 0xff;
0209 tune1[1].val = f >> 8;
0210 ret = raw_write(state, (u8 *) tune1, sizeof(tune1));
0211 if (ret < 0)
0212 goto failed;
0213 msleep(31);
0214
0215 ret = reg_write(state, 0x1a, 0x0d);
0216 if (ret < 0)
0217 goto failed;
0218 ret = raw_write(state, (u8 *) set_idac, sizeof(set_idac));
0219 if (ret < 0)
0220 goto failed;
0221 return 0;
0222
0223 failed:
0224 dev_warn(&state->i2c->dev, "(%s) failed. [adap%d-fe%d]\n",
0225 __func__, fe->dvb->num, fe->id);
0226 return ret;
0227 }
0228
0229 static const struct reg_val standby_data[] = {
0230 { 0x01, 0x00 },
0231 { 0x13, 0x00 }
0232 };
0233
0234 static int mxl301rf_sleep(struct dvb_frontend *fe)
0235 {
0236 struct mxl301rf_state *state;
0237 int ret;
0238
0239 state = fe->tuner_priv;
0240 ret = raw_write(state, (u8 *)standby_data, sizeof(standby_data));
0241 if (ret < 0)
0242 dev_warn(&state->i2c->dev, "(%s) failed. [adap%d-fe%d]\n",
0243 __func__, fe->dvb->num, fe->id);
0244 return ret;
0245 }
0246
0247
0248
0249
0250
0251
0252 static int mxl301rf_init(struct dvb_frontend *fe)
0253 {
0254 struct mxl301rf_state *state;
0255 int ret;
0256
0257 state = fe->tuner_priv;
0258
0259 ret = reg_write(state, 0x01, 0x01);
0260 if (ret < 0) {
0261 dev_warn(&state->i2c->dev, "(%s) failed. [adap%d-fe%d]\n",
0262 __func__, fe->dvb->num, fe->id);
0263 return ret;
0264 }
0265 return 0;
0266 }
0267
0268
0269
0270 static const struct dvb_tuner_ops mxl301rf_ops = {
0271 .info = {
0272 .name = "MaxLinear MxL301RF",
0273
0274 .frequency_min_hz = 93 * MHz,
0275 .frequency_max_hz = 803 * MHz + 142857,
0276 },
0277
0278 .init = mxl301rf_init,
0279 .sleep = mxl301rf_sleep,
0280
0281 .set_params = mxl301rf_set_params,
0282 .get_rf_strength = mxl301rf_get_rf_strength,
0283 };
0284
0285
0286 static int mxl301rf_probe(struct i2c_client *client,
0287 const struct i2c_device_id *id)
0288 {
0289 struct mxl301rf_state *state;
0290 struct mxl301rf_config *cfg;
0291 struct dvb_frontend *fe;
0292
0293 state = kzalloc(sizeof(*state), GFP_KERNEL);
0294 if (!state)
0295 return -ENOMEM;
0296
0297 state->i2c = client;
0298 cfg = client->dev.platform_data;
0299
0300 memcpy(&state->cfg, cfg, sizeof(state->cfg));
0301 fe = cfg->fe;
0302 fe->tuner_priv = state;
0303 memcpy(&fe->ops.tuner_ops, &mxl301rf_ops, sizeof(mxl301rf_ops));
0304
0305 i2c_set_clientdata(client, &state->cfg);
0306 dev_info(&client->dev, "MaxLinear MxL301RF attached.\n");
0307 return 0;
0308 }
0309
0310 static int mxl301rf_remove(struct i2c_client *client)
0311 {
0312 struct mxl301rf_state *state;
0313
0314 state = cfg_to_state(i2c_get_clientdata(client));
0315 state->cfg.fe->tuner_priv = NULL;
0316 kfree(state);
0317 return 0;
0318 }
0319
0320
0321 static const struct i2c_device_id mxl301rf_id[] = {
0322 {"mxl301rf", 0},
0323 {}
0324 };
0325 MODULE_DEVICE_TABLE(i2c, mxl301rf_id);
0326
0327 static struct i2c_driver mxl301rf_driver = {
0328 .driver = {
0329 .name = "mxl301rf",
0330 },
0331 .probe = mxl301rf_probe,
0332 .remove = mxl301rf_remove,
0333 .id_table = mxl301rf_id,
0334 };
0335
0336 module_i2c_driver(mxl301rf_driver);
0337
0338 MODULE_DESCRIPTION("MaxLinear MXL301RF tuner");
0339 MODULE_AUTHOR("Akihiro TSUKADA");
0340 MODULE_LICENSE("GPL");