0001
0002
0003
0004
0005
0006
0007
0008
0009
0010 #include <linux/module.h>
0011 #include <linux/delay.h>
0012 #include <linux/dvb/frontend.h>
0013 #include <linux/i2c.h>
0014 #include <linux/slab.h>
0015
0016 #include <media/dvb_frontend.h>
0017
0018 #include "mt2060.h"
0019 #include "mt2060_priv.h"
0020
0021 static int debug;
0022 module_param(debug, int, 0644);
0023 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
0024
0025 #define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2060: " args); printk("\n"); }} while (0)
0026
0027
0028 static int mt2060_readreg(struct mt2060_priv *priv, u8 reg, u8 *val)
0029 {
0030 struct i2c_msg msg[2] = {
0031 { .addr = priv->cfg->i2c_address, .flags = 0, .len = 1 },
0032 { .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .len = 1 },
0033 };
0034 int rc = 0;
0035 u8 *b;
0036
0037 b = kmalloc(2, GFP_KERNEL);
0038 if (!b)
0039 return -ENOMEM;
0040
0041 b[0] = reg;
0042 b[1] = 0;
0043
0044 msg[0].buf = b;
0045 msg[1].buf = b + 1;
0046
0047 if (i2c_transfer(priv->i2c, msg, 2) != 2) {
0048 printk(KERN_WARNING "mt2060 I2C read failed\n");
0049 rc = -EREMOTEIO;
0050 }
0051 *val = b[1];
0052 kfree(b);
0053
0054 return rc;
0055 }
0056
0057
0058 static int mt2060_writereg(struct mt2060_priv *priv, u8 reg, u8 val)
0059 {
0060 struct i2c_msg msg = {
0061 .addr = priv->cfg->i2c_address, .flags = 0, .len = 2
0062 };
0063 u8 *buf;
0064 int rc = 0;
0065
0066 buf = kmalloc(2, GFP_KERNEL);
0067 if (!buf)
0068 return -ENOMEM;
0069
0070 buf[0] = reg;
0071 buf[1] = val;
0072
0073 msg.buf = buf;
0074
0075 if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
0076 printk(KERN_WARNING "mt2060 I2C write failed\n");
0077 rc = -EREMOTEIO;
0078 }
0079 kfree(buf);
0080 return rc;
0081 }
0082
0083
0084 static int mt2060_writeregs(struct mt2060_priv *priv,u8 *buf, u8 len)
0085 {
0086 int rem, val_len;
0087 u8 *xfer_buf;
0088 int rc = 0;
0089 struct i2c_msg msg = {
0090 .addr = priv->cfg->i2c_address, .flags = 0
0091 };
0092
0093 xfer_buf = kmalloc(16, GFP_KERNEL);
0094 if (!xfer_buf)
0095 return -ENOMEM;
0096
0097 msg.buf = xfer_buf;
0098
0099 for (rem = len - 1; rem > 0; rem -= priv->i2c_max_regs) {
0100 val_len = min_t(int, rem, priv->i2c_max_regs);
0101 msg.len = 1 + val_len;
0102 xfer_buf[0] = buf[0] + len - 1 - rem;
0103 memcpy(&xfer_buf[1], &buf[1 + len - 1 - rem], val_len);
0104
0105 if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
0106 printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n", val_len);
0107 rc = -EREMOTEIO;
0108 break;
0109 }
0110 }
0111
0112 kfree(xfer_buf);
0113 return rc;
0114 }
0115
0116
0117
0118 static u8 mt2060_config1[] = {
0119 REG_LO1C1,
0120 0x3F, 0x74, 0x00, 0x08, 0x93
0121 };
0122
0123
0124 static u8 mt2060_config2[] = {
0125 REG_MISC_CTRL,
0126 0x20, 0x1E, 0x30, 0xff, 0x80, 0xff, 0x00, 0x2c, 0x42
0127 };
0128
0129
0130
0131 #ifdef MT2060_SPURCHECK
0132
0133
0134 static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
0135 {
0136 int I,J;
0137 int dia,diamin,diff;
0138 diamin=1000000;
0139 for (I = 1; I < 10; I++) {
0140 J = ((2*I*lo1)/lo2+1)/2;
0141 diff = I*(int)lo1-J*(int)lo2;
0142 if (diff < 0) diff=-diff;
0143 dia = (diff-(int)if2);
0144 if (dia < 0) dia=-dia;
0145 if (diamin > dia) diamin=dia;
0146 }
0147 return diamin;
0148 }
0149
0150 #define BANDWIDTH 4000
0151
0152
0153 static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
0154 {
0155 u32 Spur,Sp1,Sp2;
0156 int I,J;
0157 I=0;
0158 J=1000;
0159
0160 Spur=mt2060_spurcalc(lo1,lo2,if2);
0161 if (Spur < BANDWIDTH) {
0162
0163 dprintk("Spurs before : f_lo1: %d f_lo2: %d (kHz)",
0164 (int)lo1,(int)lo2);
0165 I=1000;
0166 Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
0167 Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);
0168
0169 if (Sp1 < Sp2) {
0170 J=-J; I=-I; Spur=Sp2;
0171 } else
0172 Spur=Sp1;
0173
0174 while (Spur < BANDWIDTH) {
0175 I += J;
0176 Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
0177 }
0178 dprintk("Spurs after : f_lo1: %d f_lo2: %d (kHz)",
0179 (int)(lo1+I),(int)(lo2+I));
0180 }
0181 return I;
0182 }
0183 #endif
0184
0185 #define IF2 36150
0186 #define FREF 16000
0187
0188 static int mt2060_set_params(struct dvb_frontend *fe)
0189 {
0190 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
0191 struct mt2060_priv *priv;
0192 int i=0;
0193 u32 freq;
0194 u8 lnaband;
0195 u32 f_lo1,f_lo2;
0196 u32 div1,num1,div2,num2;
0197 u8 b[8];
0198 u32 if1;
0199
0200 priv = fe->tuner_priv;
0201
0202 if1 = priv->if1_freq;
0203 b[0] = REG_LO1B1;
0204 b[1] = 0xFF;
0205
0206 if (fe->ops.i2c_gate_ctrl)
0207 fe->ops.i2c_gate_ctrl(fe, 1);
0208
0209 mt2060_writeregs(priv,b,2);
0210
0211 freq = c->frequency / 1000;
0212
0213 f_lo1 = freq + if1 * 1000;
0214 f_lo1 = (f_lo1 / 250) * 250;
0215 f_lo2 = f_lo1 - freq - IF2;
0216
0217 f_lo2 = ((f_lo2 + 25) / 50) * 50;
0218 priv->frequency = (f_lo1 - f_lo2 - IF2) * 1000;
0219
0220 #ifdef MT2060_SPURCHECK
0221
0222 num1 = mt2060_spurcheck(f_lo1,f_lo2,IF2);
0223 f_lo1 += num1;
0224 f_lo2 += num1;
0225 #endif
0226
0227 num1 = f_lo1 / (FREF / 64);
0228 div1 = num1 / 64;
0229 num1 &= 0x3f;
0230
0231
0232 num2 = f_lo2 * 64 / (FREF / 128);
0233 div2 = num2 / 8192;
0234 num2 &= 0x1fff;
0235
0236 if (freq <= 95000) lnaband = 0xB0; else
0237 if (freq <= 180000) lnaband = 0xA0; else
0238 if (freq <= 260000) lnaband = 0x90; else
0239 if (freq <= 335000) lnaband = 0x80; else
0240 if (freq <= 425000) lnaband = 0x70; else
0241 if (freq <= 480000) lnaband = 0x60; else
0242 if (freq <= 570000) lnaband = 0x50; else
0243 if (freq <= 645000) lnaband = 0x40; else
0244 if (freq <= 730000) lnaband = 0x30; else
0245 if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;
0246
0247 b[0] = REG_LO1C1;
0248 b[1] = lnaband | ((num1 >>2) & 0x0F);
0249 b[2] = div1;
0250 b[3] = (num2 & 0x0F) | ((num1 & 3) << 4);
0251 b[4] = num2 >> 4;
0252 b[5] = ((num2 >>12) & 1) | (div2 << 1);
0253
0254 dprintk("IF1: %dMHz",(int)if1);
0255 dprintk("PLL freq=%dkHz f_lo1=%dkHz f_lo2=%dkHz",(int)freq,(int)f_lo1,(int)f_lo2);
0256 dprintk("PLL div1=%d num1=%d div2=%d num2=%d",(int)div1,(int)num1,(int)div2,(int)num2);
0257 dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);
0258
0259 mt2060_writeregs(priv,b,6);
0260
0261
0262 i = 0;
0263 do {
0264 mt2060_readreg(priv,REG_LO_STATUS,b);
0265 if ((b[0] & 0x88)==0x88)
0266 break;
0267 msleep(4);
0268 i++;
0269 } while (i<10);
0270
0271 if (fe->ops.i2c_gate_ctrl)
0272 fe->ops.i2c_gate_ctrl(fe, 0);
0273
0274 return 0;
0275 }
0276
0277 static void mt2060_calibrate(struct mt2060_priv *priv)
0278 {
0279 u8 b = 0;
0280 int i = 0;
0281
0282 if (mt2060_writeregs(priv,mt2060_config1,sizeof(mt2060_config1)))
0283 return;
0284 if (mt2060_writeregs(priv,mt2060_config2,sizeof(mt2060_config2)))
0285 return;
0286
0287
0288 mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30);
0289
0290 do {
0291 b |= (1 << 6);
0292 mt2060_writereg(priv, REG_LO2C1,b);
0293 msleep(20);
0294
0295 if (i == 0) {
0296 b |= (1 << 7);
0297 mt2060_writereg(priv, REG_LO2C1,b);
0298 b &= ~(1 << 7);
0299 msleep(20);
0300 }
0301
0302 b &= ~(1 << 6);
0303 mt2060_writereg(priv, REG_LO2C1,b);
0304
0305 msleep(20);
0306 i++;
0307 } while (i < 9);
0308
0309 i = 0;
0310 while (i++ < 10 && mt2060_readreg(priv, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
0311 msleep(20);
0312
0313 if (i <= 10) {
0314 mt2060_readreg(priv, REG_FM_FREQ, &priv->fmfreq);
0315 dprintk("calibration was successful: %d", (int)priv->fmfreq);
0316 } else
0317 dprintk("FMCAL timed out");
0318 }
0319
0320 static int mt2060_get_frequency(struct dvb_frontend *fe, u32 *frequency)
0321 {
0322 struct mt2060_priv *priv = fe->tuner_priv;
0323 *frequency = priv->frequency;
0324 return 0;
0325 }
0326
0327 static int mt2060_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
0328 {
0329 *frequency = IF2 * 1000;
0330 return 0;
0331 }
0332
0333 static int mt2060_init(struct dvb_frontend *fe)
0334 {
0335 struct mt2060_priv *priv = fe->tuner_priv;
0336 int ret;
0337
0338 if (fe->ops.i2c_gate_ctrl)
0339 fe->ops.i2c_gate_ctrl(fe, 1);
0340
0341 if (priv->sleep) {
0342 ret = mt2060_writereg(priv, REG_MISC_CTRL, 0x20);
0343 if (ret)
0344 goto err_i2c_gate_ctrl;
0345 }
0346
0347 ret = mt2060_writereg(priv, REG_VGAG,
0348 (priv->cfg->clock_out << 6) | 0x33);
0349
0350 err_i2c_gate_ctrl:
0351 if (fe->ops.i2c_gate_ctrl)
0352 fe->ops.i2c_gate_ctrl(fe, 0);
0353
0354 return ret;
0355 }
0356
0357 static int mt2060_sleep(struct dvb_frontend *fe)
0358 {
0359 struct mt2060_priv *priv = fe->tuner_priv;
0360 int ret;
0361
0362 if (fe->ops.i2c_gate_ctrl)
0363 fe->ops.i2c_gate_ctrl(fe, 1);
0364
0365 ret = mt2060_writereg(priv, REG_VGAG,
0366 (priv->cfg->clock_out << 6) | 0x30);
0367 if (ret)
0368 goto err_i2c_gate_ctrl;
0369
0370 if (priv->sleep)
0371 ret = mt2060_writereg(priv, REG_MISC_CTRL, 0xe8);
0372
0373 err_i2c_gate_ctrl:
0374 if (fe->ops.i2c_gate_ctrl)
0375 fe->ops.i2c_gate_ctrl(fe, 0);
0376
0377 return ret;
0378 }
0379
0380 static void mt2060_release(struct dvb_frontend *fe)
0381 {
0382 kfree(fe->tuner_priv);
0383 fe->tuner_priv = NULL;
0384 }
0385
0386 static const struct dvb_tuner_ops mt2060_tuner_ops = {
0387 .info = {
0388 .name = "Microtune MT2060",
0389 .frequency_min_hz = 48 * MHz,
0390 .frequency_max_hz = 860 * MHz,
0391 .frequency_step_hz = 50 * kHz,
0392 },
0393
0394 .release = mt2060_release,
0395
0396 .init = mt2060_init,
0397 .sleep = mt2060_sleep,
0398
0399 .set_params = mt2060_set_params,
0400 .get_frequency = mt2060_get_frequency,
0401 .get_if_frequency = mt2060_get_if_frequency,
0402 };
0403
0404
0405 struct dvb_frontend * mt2060_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2060_config *cfg, u16 if1)
0406 {
0407 struct mt2060_priv *priv = NULL;
0408 u8 id = 0;
0409
0410 priv = kzalloc(sizeof(struct mt2060_priv), GFP_KERNEL);
0411 if (priv == NULL)
0412 return NULL;
0413
0414 priv->cfg = cfg;
0415 priv->i2c = i2c;
0416 priv->if1_freq = if1;
0417 priv->i2c_max_regs = ~0;
0418
0419 if (fe->ops.i2c_gate_ctrl)
0420 fe->ops.i2c_gate_ctrl(fe, 1);
0421
0422 if (mt2060_readreg(priv,REG_PART_REV,&id) != 0) {
0423 kfree(priv);
0424 return NULL;
0425 }
0426
0427 if (id != PART_REV) {
0428 kfree(priv);
0429 return NULL;
0430 }
0431 printk(KERN_INFO "MT2060: successfully identified (IF1 = %d)\n", if1);
0432 memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(struct dvb_tuner_ops));
0433
0434 fe->tuner_priv = priv;
0435
0436 mt2060_calibrate(priv);
0437
0438 if (fe->ops.i2c_gate_ctrl)
0439 fe->ops.i2c_gate_ctrl(fe, 0);
0440
0441 return fe;
0442 }
0443 EXPORT_SYMBOL(mt2060_attach);
0444
0445 static int mt2060_probe(struct i2c_client *client,
0446 const struct i2c_device_id *id)
0447 {
0448 struct mt2060_platform_data *pdata = client->dev.platform_data;
0449 struct dvb_frontend *fe;
0450 struct mt2060_priv *dev;
0451 int ret;
0452 u8 chip_id;
0453
0454 dev_dbg(&client->dev, "\n");
0455
0456 if (!pdata) {
0457 dev_err(&client->dev, "Cannot proceed without platform data\n");
0458 ret = -EINVAL;
0459 goto err;
0460 }
0461
0462 dev = devm_kzalloc(&client->dev, sizeof(*dev), GFP_KERNEL);
0463 if (!dev) {
0464 ret = -ENOMEM;
0465 goto err;
0466 }
0467
0468 fe = pdata->dvb_frontend;
0469 dev->config.i2c_address = client->addr;
0470 dev->config.clock_out = pdata->clock_out;
0471 dev->cfg = &dev->config;
0472 dev->i2c = client->adapter;
0473 dev->if1_freq = pdata->if1 ? pdata->if1 : 1220;
0474 dev->client = client;
0475 dev->i2c_max_regs = pdata->i2c_write_max ? pdata->i2c_write_max - 1 : ~0;
0476 dev->sleep = true;
0477
0478 ret = mt2060_readreg(dev, REG_PART_REV, &chip_id);
0479 if (ret) {
0480 ret = -ENODEV;
0481 goto err;
0482 }
0483
0484 dev_dbg(&client->dev, "chip id=%02x\n", chip_id);
0485
0486 if (chip_id != PART_REV) {
0487 ret = -ENODEV;
0488 goto err;
0489 }
0490
0491
0492 ret = mt2060_writereg(dev, REG_MISC_CTRL, 0x20);
0493 if (ret)
0494 goto err;
0495 mt2060_calibrate(dev);
0496 ret = mt2060_writereg(dev, REG_MISC_CTRL, 0xe8);
0497 if (ret)
0498 goto err;
0499
0500 dev_info(&client->dev, "Microtune MT2060 successfully identified\n");
0501 memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(fe->ops.tuner_ops));
0502 fe->ops.tuner_ops.release = NULL;
0503 fe->tuner_priv = dev;
0504 i2c_set_clientdata(client, dev);
0505
0506 return 0;
0507 err:
0508 dev_dbg(&client->dev, "failed=%d\n", ret);
0509 return ret;
0510 }
0511
0512 static int mt2060_remove(struct i2c_client *client)
0513 {
0514 dev_dbg(&client->dev, "\n");
0515
0516 return 0;
0517 }
0518
0519 static const struct i2c_device_id mt2060_id_table[] = {
0520 {"mt2060", 0},
0521 {}
0522 };
0523 MODULE_DEVICE_TABLE(i2c, mt2060_id_table);
0524
0525 static struct i2c_driver mt2060_driver = {
0526 .driver = {
0527 .name = "mt2060",
0528 .suppress_bind_attrs = true,
0529 },
0530 .probe = mt2060_probe,
0531 .remove = mt2060_remove,
0532 .id_table = mt2060_id_table,
0533 };
0534
0535 module_i2c_driver(mt2060_driver);
0536
0537 MODULE_AUTHOR("Olivier DANET");
0538 MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
0539 MODULE_LICENSE("GPL");