Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * Mirics MSi001 silicon tuner driver
0004  *
0005  * Copyright (C) 2013 Antti Palosaari <crope@iki.fi>
0006  * Copyright (C) 2014 Antti Palosaari <crope@iki.fi>
0007  */
0008 
0009 #include <linux/module.h>
0010 #include <linux/gcd.h>
0011 #include <media/v4l2-device.h>
0012 #include <media/v4l2-ctrls.h>
0013 
0014 static const struct v4l2_frequency_band bands[] = {
0015     {
0016         .type = V4L2_TUNER_RF,
0017         .index = 0,
0018         .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
0019         .rangelow   =   49000000,
0020         .rangehigh  =  263000000,
0021     }, {
0022         .type = V4L2_TUNER_RF,
0023         .index = 1,
0024         .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
0025         .rangelow   =  390000000,
0026         .rangehigh  =  960000000,
0027     },
0028 };
0029 
0030 struct msi001_dev {
0031     struct spi_device *spi;
0032     struct v4l2_subdev sd;
0033 
0034     /* Controls */
0035     struct v4l2_ctrl_handler hdl;
0036     struct v4l2_ctrl *bandwidth_auto;
0037     struct v4l2_ctrl *bandwidth;
0038     struct v4l2_ctrl *lna_gain;
0039     struct v4l2_ctrl *mixer_gain;
0040     struct v4l2_ctrl *if_gain;
0041 
0042     unsigned int f_tuner;
0043 };
0044 
0045 static inline struct msi001_dev *sd_to_msi001_dev(struct v4l2_subdev *sd)
0046 {
0047     return container_of(sd, struct msi001_dev, sd);
0048 }
0049 
0050 static int msi001_wreg(struct msi001_dev *dev, u32 data)
0051 {
0052     /* Register format: 4 bits addr + 20 bits value */
0053     return spi_write(dev->spi, &data, 3);
0054 };
0055 
0056 static int msi001_set_gain(struct msi001_dev *dev, int lna_gain, int mixer_gain,
0057                int if_gain)
0058 {
0059     struct spi_device *spi = dev->spi;
0060     int ret;
0061     u32 reg;
0062 
0063     dev_dbg(&spi->dev, "lna=%d mixer=%d if=%d\n",
0064         lna_gain, mixer_gain, if_gain);
0065 
0066     reg = 1 << 0;
0067     reg |= (59 - if_gain) << 4;
0068     reg |= 0 << 10;
0069     reg |= (1 - mixer_gain) << 12;
0070     reg |= (1 - lna_gain) << 13;
0071     reg |= 4 << 14;
0072     reg |= 0 << 17;
0073     ret = msi001_wreg(dev, reg);
0074     if (ret)
0075         goto err;
0076 
0077     return 0;
0078 err:
0079     dev_dbg(&spi->dev, "failed %d\n", ret);
0080     return ret;
0081 };
0082 
0083 static int msi001_set_tuner(struct msi001_dev *dev)
0084 {
0085     struct spi_device *spi = dev->spi;
0086     int ret, i;
0087     unsigned int uitmp, div_n, k, k_thresh, k_frac, div_lo, f_if1;
0088     u32 reg;
0089     u64 f_vco;
0090     u8 mode, filter_mode;
0091 
0092     static const struct {
0093         u32 rf;
0094         u8 mode;
0095         u8 div_lo;
0096     } band_lut[] = {
0097         { 50000000, 0xe1, 16}, /* AM_MODE2, antenna 2 */
0098         {108000000, 0x42, 32}, /* VHF_MODE */
0099         {330000000, 0x44, 16}, /* B3_MODE */
0100         {960000000, 0x48,  4}, /* B45_MODE */
0101         {      ~0U, 0x50,  2}, /* BL_MODE */
0102     };
0103     static const struct {
0104         u32 freq;
0105         u8 filter_mode;
0106     } if_freq_lut[] = {
0107         {      0, 0x03}, /* Zero IF */
0108         { 450000, 0x02}, /* 450 kHz IF */
0109         {1620000, 0x01}, /* 1.62 MHz IF */
0110         {2048000, 0x00}, /* 2.048 MHz IF */
0111     };
0112     static const struct {
0113         u32 freq;
0114         u8 val;
0115     } bandwidth_lut[] = {
0116         { 200000, 0x00}, /* 200 kHz */
0117         { 300000, 0x01}, /* 300 kHz */
0118         { 600000, 0x02}, /* 600 kHz */
0119         {1536000, 0x03}, /* 1.536 MHz */
0120         {5000000, 0x04}, /* 5 MHz */
0121         {6000000, 0x05}, /* 6 MHz */
0122         {7000000, 0x06}, /* 7 MHz */
0123         {8000000, 0x07}, /* 8 MHz */
0124     };
0125 
0126     unsigned int f_rf = dev->f_tuner;
0127 
0128     /*
0129      * bandwidth (Hz)
0130      * 200000, 300000, 600000, 1536000, 5000000, 6000000, 7000000, 8000000
0131      */
0132     unsigned int bandwidth;
0133 
0134     /*
0135      * intermediate frequency (Hz)
0136      * 0, 450000, 1620000, 2048000
0137      */
0138     unsigned int f_if = 0;
0139     #define F_REF 24000000
0140     #define DIV_PRE_N 4
0141     #define F_VCO_STEP div_lo
0142 
0143     dev_dbg(&spi->dev, "f_rf=%d f_if=%d\n", f_rf, f_if);
0144 
0145     for (i = 0; i < ARRAY_SIZE(band_lut); i++) {
0146         if (f_rf <= band_lut[i].rf) {
0147             mode = band_lut[i].mode;
0148             div_lo = band_lut[i].div_lo;
0149             break;
0150         }
0151     }
0152     if (i == ARRAY_SIZE(band_lut)) {
0153         ret = -EINVAL;
0154         goto err;
0155     }
0156 
0157     /* AM_MODE is upconverted */
0158     if ((mode >> 0) & 0x1)
0159         f_if1 =  5 * F_REF;
0160     else
0161         f_if1 =  0;
0162 
0163     for (i = 0; i < ARRAY_SIZE(if_freq_lut); i++) {
0164         if (f_if == if_freq_lut[i].freq) {
0165             filter_mode = if_freq_lut[i].filter_mode;
0166             break;
0167         }
0168     }
0169     if (i == ARRAY_SIZE(if_freq_lut)) {
0170         ret = -EINVAL;
0171         goto err;
0172     }
0173 
0174     /* filters */
0175     bandwidth = dev->bandwidth->val;
0176     bandwidth = clamp(bandwidth, 200000U, 8000000U);
0177 
0178     for (i = 0; i < ARRAY_SIZE(bandwidth_lut); i++) {
0179         if (bandwidth <= bandwidth_lut[i].freq) {
0180             bandwidth = bandwidth_lut[i].val;
0181             break;
0182         }
0183     }
0184     if (i == ARRAY_SIZE(bandwidth_lut)) {
0185         ret = -EINVAL;
0186         goto err;
0187     }
0188 
0189     dev->bandwidth->val = bandwidth_lut[i].freq;
0190 
0191     dev_dbg(&spi->dev, "bandwidth selected=%d\n", bandwidth_lut[i].freq);
0192 
0193     /*
0194      * Fractional-N synthesizer
0195      *
0196      *           +---------------------------------------+
0197      *           v                                       |
0198      *  Fref   +----+     +-------+         +----+     +------+     +---+
0199      * ------> | PD | --> |  VCO  | ------> | /4 | --> | /N.F | <-- | K |
0200      *         +----+     +-------+         +----+     +------+     +---+
0201      *                      |
0202      *                      |
0203      *                      v
0204      *                    +-------+  Fout
0205      *                    | /Rout | ------>
0206      *                    +-------+
0207      */
0208 
0209     /* Calculate PLL integer and fractional control word. */
0210     f_vco = (u64) (f_rf + f_if + f_if1) * div_lo;
0211     div_n = div_u64_rem(f_vco, DIV_PRE_N * F_REF, &k);
0212     k_thresh = (DIV_PRE_N * F_REF) / F_VCO_STEP;
0213     k_frac = div_u64((u64) k * k_thresh, (DIV_PRE_N * F_REF));
0214 
0215     /* Find out greatest common divisor and divide to smaller. */
0216     uitmp = gcd(k_thresh, k_frac);
0217     k_thresh /= uitmp;
0218     k_frac /= uitmp;
0219 
0220     /* Force divide to reg max. Resolution will be reduced. */
0221     uitmp = DIV_ROUND_UP(k_thresh, 4095);
0222     k_thresh = DIV_ROUND_CLOSEST(k_thresh, uitmp);
0223     k_frac = DIV_ROUND_CLOSEST(k_frac, uitmp);
0224 
0225     /* Calculate real RF set. */
0226     uitmp = (unsigned int) F_REF * DIV_PRE_N * div_n;
0227     uitmp += (unsigned int) F_REF * DIV_PRE_N * k_frac / k_thresh;
0228     uitmp /= div_lo;
0229 
0230     dev_dbg(&spi->dev,
0231         "f_rf=%u:%u f_vco=%llu div_n=%u k_thresh=%u k_frac=%u div_lo=%u\n",
0232         f_rf, uitmp, f_vco, div_n, k_thresh, k_frac, div_lo);
0233 
0234     ret = msi001_wreg(dev, 0x00000e);
0235     if (ret)
0236         goto err;
0237 
0238     ret = msi001_wreg(dev, 0x000003);
0239     if (ret)
0240         goto err;
0241 
0242     reg = 0 << 0;
0243     reg |= mode << 4;
0244     reg |= filter_mode << 12;
0245     reg |= bandwidth << 14;
0246     reg |= 0x02 << 17;
0247     reg |= 0x00 << 20;
0248     ret = msi001_wreg(dev, reg);
0249     if (ret)
0250         goto err;
0251 
0252     reg = 5 << 0;
0253     reg |= k_thresh << 4;
0254     reg |= 1 << 19;
0255     reg |= 1 << 21;
0256     ret = msi001_wreg(dev, reg);
0257     if (ret)
0258         goto err;
0259 
0260     reg = 2 << 0;
0261     reg |= k_frac << 4;
0262     reg |= div_n << 16;
0263     ret = msi001_wreg(dev, reg);
0264     if (ret)
0265         goto err;
0266 
0267     ret = msi001_set_gain(dev, dev->lna_gain->cur.val,
0268                   dev->mixer_gain->cur.val, dev->if_gain->cur.val);
0269     if (ret)
0270         goto err;
0271 
0272     reg = 6 << 0;
0273     reg |= 63 << 4;
0274     reg |= 4095 << 10;
0275     ret = msi001_wreg(dev, reg);
0276     if (ret)
0277         goto err;
0278 
0279     return 0;
0280 err:
0281     dev_dbg(&spi->dev, "failed %d\n", ret);
0282     return ret;
0283 }
0284 
0285 static int msi001_standby(struct v4l2_subdev *sd)
0286 {
0287     struct msi001_dev *dev = sd_to_msi001_dev(sd);
0288 
0289     return msi001_wreg(dev, 0x000000);
0290 }
0291 
0292 static int msi001_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *v)
0293 {
0294     struct msi001_dev *dev = sd_to_msi001_dev(sd);
0295     struct spi_device *spi = dev->spi;
0296 
0297     dev_dbg(&spi->dev, "index=%d\n", v->index);
0298 
0299     strscpy(v->name, "Mirics MSi001", sizeof(v->name));
0300     v->type = V4L2_TUNER_RF;
0301     v->capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS;
0302     v->rangelow =    49000000;
0303     v->rangehigh =  960000000;
0304 
0305     return 0;
0306 }
0307 
0308 static int msi001_s_tuner(struct v4l2_subdev *sd, const struct v4l2_tuner *v)
0309 {
0310     struct msi001_dev *dev = sd_to_msi001_dev(sd);
0311     struct spi_device *spi = dev->spi;
0312 
0313     dev_dbg(&spi->dev, "index=%d\n", v->index);
0314     return 0;
0315 }
0316 
0317 static int msi001_g_frequency(struct v4l2_subdev *sd, struct v4l2_frequency *f)
0318 {
0319     struct msi001_dev *dev = sd_to_msi001_dev(sd);
0320     struct spi_device *spi = dev->spi;
0321 
0322     dev_dbg(&spi->dev, "tuner=%d\n", f->tuner);
0323     f->frequency = dev->f_tuner;
0324     return 0;
0325 }
0326 
0327 static int msi001_s_frequency(struct v4l2_subdev *sd,
0328                   const struct v4l2_frequency *f)
0329 {
0330     struct msi001_dev *dev = sd_to_msi001_dev(sd);
0331     struct spi_device *spi = dev->spi;
0332     unsigned int band;
0333 
0334     dev_dbg(&spi->dev, "tuner=%d type=%d frequency=%u\n",
0335         f->tuner, f->type, f->frequency);
0336 
0337     if (f->frequency < ((bands[0].rangehigh + bands[1].rangelow) / 2))
0338         band = 0;
0339     else
0340         band = 1;
0341     dev->f_tuner = clamp_t(unsigned int, f->frequency,
0342                    bands[band].rangelow, bands[band].rangehigh);
0343 
0344     return msi001_set_tuner(dev);
0345 }
0346 
0347 static int msi001_enum_freq_bands(struct v4l2_subdev *sd,
0348                   struct v4l2_frequency_band *band)
0349 {
0350     struct msi001_dev *dev = sd_to_msi001_dev(sd);
0351     struct spi_device *spi = dev->spi;
0352 
0353     dev_dbg(&spi->dev, "tuner=%d type=%d index=%d\n",
0354         band->tuner, band->type, band->index);
0355 
0356     if (band->index >= ARRAY_SIZE(bands))
0357         return -EINVAL;
0358 
0359     band->capability = bands[band->index].capability;
0360     band->rangelow = bands[band->index].rangelow;
0361     band->rangehigh = bands[band->index].rangehigh;
0362 
0363     return 0;
0364 }
0365 
0366 static const struct v4l2_subdev_tuner_ops msi001_tuner_ops = {
0367     .standby                  = msi001_standby,
0368     .g_tuner                  = msi001_g_tuner,
0369     .s_tuner                  = msi001_s_tuner,
0370     .g_frequency              = msi001_g_frequency,
0371     .s_frequency              = msi001_s_frequency,
0372     .enum_freq_bands          = msi001_enum_freq_bands,
0373 };
0374 
0375 static const struct v4l2_subdev_ops msi001_ops = {
0376     .tuner                    = &msi001_tuner_ops,
0377 };
0378 
0379 static int msi001_s_ctrl(struct v4l2_ctrl *ctrl)
0380 {
0381     struct msi001_dev *dev = container_of(ctrl->handler, struct msi001_dev, hdl);
0382     struct spi_device *spi = dev->spi;
0383 
0384     int ret;
0385 
0386     dev_dbg(&spi->dev, "id=%d name=%s val=%d min=%lld max=%lld step=%lld\n",
0387         ctrl->id, ctrl->name, ctrl->val, ctrl->minimum, ctrl->maximum,
0388         ctrl->step);
0389 
0390     switch (ctrl->id) {
0391     case V4L2_CID_RF_TUNER_BANDWIDTH_AUTO:
0392     case V4L2_CID_RF_TUNER_BANDWIDTH:
0393         ret = msi001_set_tuner(dev);
0394         break;
0395     case  V4L2_CID_RF_TUNER_LNA_GAIN:
0396         ret = msi001_set_gain(dev, dev->lna_gain->val,
0397                       dev->mixer_gain->cur.val,
0398                       dev->if_gain->cur.val);
0399         break;
0400     case  V4L2_CID_RF_TUNER_MIXER_GAIN:
0401         ret = msi001_set_gain(dev, dev->lna_gain->cur.val,
0402                       dev->mixer_gain->val,
0403                       dev->if_gain->cur.val);
0404         break;
0405     case  V4L2_CID_RF_TUNER_IF_GAIN:
0406         ret = msi001_set_gain(dev, dev->lna_gain->cur.val,
0407                       dev->mixer_gain->cur.val,
0408                       dev->if_gain->val);
0409         break;
0410     default:
0411         dev_dbg(&spi->dev, "unknown control %d\n", ctrl->id);
0412         ret = -EINVAL;
0413     }
0414 
0415     return ret;
0416 }
0417 
0418 static const struct v4l2_ctrl_ops msi001_ctrl_ops = {
0419     .s_ctrl                   = msi001_s_ctrl,
0420 };
0421 
0422 static int msi001_probe(struct spi_device *spi)
0423 {
0424     struct msi001_dev *dev;
0425     int ret;
0426 
0427     dev_dbg(&spi->dev, "\n");
0428 
0429     dev = kzalloc(sizeof(*dev), GFP_KERNEL);
0430     if (!dev) {
0431         ret = -ENOMEM;
0432         goto err;
0433     }
0434 
0435     dev->spi = spi;
0436     dev->f_tuner = bands[0].rangelow;
0437     v4l2_spi_subdev_init(&dev->sd, spi, &msi001_ops);
0438 
0439     /* Register controls */
0440     v4l2_ctrl_handler_init(&dev->hdl, 5);
0441     dev->bandwidth_auto = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
0442             V4L2_CID_RF_TUNER_BANDWIDTH_AUTO, 0, 1, 1, 1);
0443     dev->bandwidth = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
0444             V4L2_CID_RF_TUNER_BANDWIDTH, 200000, 8000000, 1, 200000);
0445     if (dev->hdl.error) {
0446         ret = dev->hdl.error;
0447         dev_err(&spi->dev, "Could not initialize controls\n");
0448         /* control init failed, free handler */
0449         goto err_ctrl_handler_free;
0450     }
0451 
0452     v4l2_ctrl_auto_cluster(2, &dev->bandwidth_auto, 0, false);
0453     dev->lna_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
0454             V4L2_CID_RF_TUNER_LNA_GAIN, 0, 1, 1, 1);
0455     dev->mixer_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
0456             V4L2_CID_RF_TUNER_MIXER_GAIN, 0, 1, 1, 1);
0457     dev->if_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
0458             V4L2_CID_RF_TUNER_IF_GAIN, 0, 59, 1, 0);
0459     if (dev->hdl.error) {
0460         ret = dev->hdl.error;
0461         dev_err(&spi->dev, "Could not initialize controls\n");
0462         /* control init failed, free handler */
0463         goto err_ctrl_handler_free;
0464     }
0465 
0466     dev->sd.ctrl_handler = &dev->hdl;
0467     return 0;
0468 err_ctrl_handler_free:
0469     v4l2_ctrl_handler_free(&dev->hdl);
0470     kfree(dev);
0471 err:
0472     return ret;
0473 }
0474 
0475 static void msi001_remove(struct spi_device *spi)
0476 {
0477     struct v4l2_subdev *sd = spi_get_drvdata(spi);
0478     struct msi001_dev *dev = sd_to_msi001_dev(sd);
0479 
0480     dev_dbg(&spi->dev, "\n");
0481 
0482     /*
0483      * Registered by v4l2_spi_new_subdev() from master driver, but we must
0484      * unregister it from here. Weird.
0485      */
0486     v4l2_device_unregister_subdev(&dev->sd);
0487     v4l2_ctrl_handler_free(&dev->hdl);
0488     kfree(dev);
0489 }
0490 
0491 static const struct spi_device_id msi001_id_table[] = {
0492     {"msi001", 0},
0493     {}
0494 };
0495 MODULE_DEVICE_TABLE(spi, msi001_id_table);
0496 
0497 static struct spi_driver msi001_driver = {
0498     .driver = {
0499         .name   = "msi001",
0500         .suppress_bind_attrs = true,
0501     },
0502     .probe      = msi001_probe,
0503     .remove     = msi001_remove,
0504     .id_table   = msi001_id_table,
0505 };
0506 module_spi_driver(msi001_driver);
0507 
0508 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
0509 MODULE_DESCRIPTION("Mirics MSi001");
0510 MODULE_LICENSE("GPL");