Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 // rc-main.c - Remote Controller core module
0003 //
0004 // Copyright (C) 2009-2010 by Mauro Carvalho Chehab
0005 
0006 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0007 
0008 #include <media/rc-core.h>
0009 #include <linux/bsearch.h>
0010 #include <linux/spinlock.h>
0011 #include <linux/delay.h>
0012 #include <linux/input.h>
0013 #include <linux/leds.h>
0014 #include <linux/slab.h>
0015 #include <linux/idr.h>
0016 #include <linux/device.h>
0017 #include <linux/module.h>
0018 #include "rc-core-priv.h"
0019 
0020 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
0021 #define IR_TAB_MIN_SIZE 256
0022 #define IR_TAB_MAX_SIZE 8192
0023 
0024 static const struct {
0025     const char *name;
0026     unsigned int repeat_period;
0027     unsigned int scancode_bits;
0028 } protocols[] = {
0029     [RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 },
0030     [RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 },
0031     [RC_PROTO_RC5] = { .name = "rc-5",
0032         .scancode_bits = 0x1f7f, .repeat_period = 114 },
0033     [RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
0034         .scancode_bits = 0x1f7f3f, .repeat_period = 114 },
0035     [RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
0036         .scancode_bits = 0x2fff, .repeat_period = 114 },
0037     [RC_PROTO_JVC] = { .name = "jvc",
0038         .scancode_bits = 0xffff, .repeat_period = 125 },
0039     [RC_PROTO_SONY12] = { .name = "sony-12",
0040         .scancode_bits = 0x1f007f, .repeat_period = 100 },
0041     [RC_PROTO_SONY15] = { .name = "sony-15",
0042         .scancode_bits = 0xff007f, .repeat_period = 100 },
0043     [RC_PROTO_SONY20] = { .name = "sony-20",
0044         .scancode_bits = 0x1fff7f, .repeat_period = 100 },
0045     [RC_PROTO_NEC] = { .name = "nec",
0046         .scancode_bits = 0xffff, .repeat_period = 110 },
0047     [RC_PROTO_NECX] = { .name = "nec-x",
0048         .scancode_bits = 0xffffff, .repeat_period = 110 },
0049     [RC_PROTO_NEC32] = { .name = "nec-32",
0050         .scancode_bits = 0xffffffff, .repeat_period = 110 },
0051     [RC_PROTO_SANYO] = { .name = "sanyo",
0052         .scancode_bits = 0x1fffff, .repeat_period = 125 },
0053     [RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
0054         .scancode_bits = 0xffffff, .repeat_period = 100 },
0055     [RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
0056         .scancode_bits = 0x1fffff, .repeat_period = 100 },
0057     [RC_PROTO_RC6_0] = { .name = "rc-6-0",
0058         .scancode_bits = 0xffff, .repeat_period = 114 },
0059     [RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
0060         .scancode_bits = 0xfffff, .repeat_period = 114 },
0061     [RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
0062         .scancode_bits = 0xffffff, .repeat_period = 114 },
0063     [RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
0064         .scancode_bits = 0xffffffff, .repeat_period = 114 },
0065     [RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
0066         .scancode_bits = 0xffff7fff, .repeat_period = 114 },
0067     [RC_PROTO_SHARP] = { .name = "sharp",
0068         .scancode_bits = 0x1fff, .repeat_period = 125 },
0069     [RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 },
0070     [RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 },
0071     [RC_PROTO_IMON] = { .name = "imon",
0072         .scancode_bits = 0x7fffffff, .repeat_period = 114 },
0073     [RC_PROTO_RCMM12] = { .name = "rc-mm-12",
0074         .scancode_bits = 0x00000fff, .repeat_period = 114 },
0075     [RC_PROTO_RCMM24] = { .name = "rc-mm-24",
0076         .scancode_bits = 0x00ffffff, .repeat_period = 114 },
0077     [RC_PROTO_RCMM32] = { .name = "rc-mm-32",
0078         .scancode_bits = 0xffffffff, .repeat_period = 114 },
0079     [RC_PROTO_XBOX_DVD] = { .name = "xbox-dvd", .repeat_period = 64 },
0080 };
0081 
0082 /* Used to keep track of known keymaps */
0083 static LIST_HEAD(rc_map_list);
0084 static DEFINE_SPINLOCK(rc_map_lock);
0085 static struct led_trigger *led_feedback;
0086 
0087 /* Used to keep track of rc devices */
0088 static DEFINE_IDA(rc_ida);
0089 
0090 static struct rc_map_list *seek_rc_map(const char *name)
0091 {
0092     struct rc_map_list *map = NULL;
0093 
0094     spin_lock(&rc_map_lock);
0095     list_for_each_entry(map, &rc_map_list, list) {
0096         if (!strcmp(name, map->map.name)) {
0097             spin_unlock(&rc_map_lock);
0098             return map;
0099         }
0100     }
0101     spin_unlock(&rc_map_lock);
0102 
0103     return NULL;
0104 }
0105 
0106 struct rc_map *rc_map_get(const char *name)
0107 {
0108 
0109     struct rc_map_list *map;
0110 
0111     map = seek_rc_map(name);
0112 #ifdef CONFIG_MODULES
0113     if (!map) {
0114         int rc = request_module("%s", name);
0115         if (rc < 0) {
0116             pr_err("Couldn't load IR keymap %s\n", name);
0117             return NULL;
0118         }
0119         msleep(20); /* Give some time for IR to register */
0120 
0121         map = seek_rc_map(name);
0122     }
0123 #endif
0124     if (!map) {
0125         pr_err("IR keymap %s not found\n", name);
0126         return NULL;
0127     }
0128 
0129     printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
0130 
0131     return &map->map;
0132 }
0133 EXPORT_SYMBOL_GPL(rc_map_get);
0134 
0135 int rc_map_register(struct rc_map_list *map)
0136 {
0137     spin_lock(&rc_map_lock);
0138     list_add_tail(&map->list, &rc_map_list);
0139     spin_unlock(&rc_map_lock);
0140     return 0;
0141 }
0142 EXPORT_SYMBOL_GPL(rc_map_register);
0143 
0144 void rc_map_unregister(struct rc_map_list *map)
0145 {
0146     spin_lock(&rc_map_lock);
0147     list_del(&map->list);
0148     spin_unlock(&rc_map_lock);
0149 }
0150 EXPORT_SYMBOL_GPL(rc_map_unregister);
0151 
0152 
0153 static struct rc_map_table empty[] = {
0154     { 0x2a, KEY_COFFEE },
0155 };
0156 
0157 static struct rc_map_list empty_map = {
0158     .map = {
0159         .scan     = empty,
0160         .size     = ARRAY_SIZE(empty),
0161         .rc_proto = RC_PROTO_UNKNOWN,   /* Legacy IR type */
0162         .name     = RC_MAP_EMPTY,
0163     }
0164 };
0165 
0166 /**
0167  * scancode_to_u64() - converts scancode in &struct input_keymap_entry
0168  * @ke: keymap entry containing scancode to be converted.
0169  * @scancode: pointer to the location where converted scancode should
0170  *  be stored.
0171  *
0172  * This function is a version of input_scancode_to_scalar specialized for
0173  * rc-core.
0174  */
0175 static int scancode_to_u64(const struct input_keymap_entry *ke, u64 *scancode)
0176 {
0177     switch (ke->len) {
0178     case 1:
0179         *scancode = *((u8 *)ke->scancode);
0180         break;
0181 
0182     case 2:
0183         *scancode = *((u16 *)ke->scancode);
0184         break;
0185 
0186     case 4:
0187         *scancode = *((u32 *)ke->scancode);
0188         break;
0189 
0190     case 8:
0191         *scancode = *((u64 *)ke->scancode);
0192         break;
0193 
0194     default:
0195         return -EINVAL;
0196     }
0197 
0198     return 0;
0199 }
0200 
0201 /**
0202  * ir_create_table() - initializes a scancode table
0203  * @dev:    the rc_dev device
0204  * @rc_map: the rc_map to initialize
0205  * @name:   name to assign to the table
0206  * @rc_proto:   ir type to assign to the new table
0207  * @size:   initial size of the table
0208  *
0209  * This routine will initialize the rc_map and will allocate
0210  * memory to hold at least the specified number of elements.
0211  *
0212  * return:  zero on success or a negative error code
0213  */
0214 static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map,
0215                const char *name, u64 rc_proto, size_t size)
0216 {
0217     rc_map->name = kstrdup(name, GFP_KERNEL);
0218     if (!rc_map->name)
0219         return -ENOMEM;
0220     rc_map->rc_proto = rc_proto;
0221     rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
0222     rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
0223     rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
0224     if (!rc_map->scan) {
0225         kfree(rc_map->name);
0226         rc_map->name = NULL;
0227         return -ENOMEM;
0228     }
0229 
0230     dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n",
0231         rc_map->size, rc_map->alloc);
0232     return 0;
0233 }
0234 
0235 /**
0236  * ir_free_table() - frees memory allocated by a scancode table
0237  * @rc_map: the table whose mappings need to be freed
0238  *
0239  * This routine will free memory alloctaed for key mappings used by given
0240  * scancode table.
0241  */
0242 static void ir_free_table(struct rc_map *rc_map)
0243 {
0244     rc_map->size = 0;
0245     kfree(rc_map->name);
0246     rc_map->name = NULL;
0247     kfree(rc_map->scan);
0248     rc_map->scan = NULL;
0249 }
0250 
0251 /**
0252  * ir_resize_table() - resizes a scancode table if necessary
0253  * @dev:    the rc_dev device
0254  * @rc_map: the rc_map to resize
0255  * @gfp_flags:  gfp flags to use when allocating memory
0256  *
0257  * This routine will shrink the rc_map if it has lots of
0258  * unused entries and grow it if it is full.
0259  *
0260  * return:  zero on success or a negative error code
0261  */
0262 static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map,
0263                gfp_t gfp_flags)
0264 {
0265     unsigned int oldalloc = rc_map->alloc;
0266     unsigned int newalloc = oldalloc;
0267     struct rc_map_table *oldscan = rc_map->scan;
0268     struct rc_map_table *newscan;
0269 
0270     if (rc_map->size == rc_map->len) {
0271         /* All entries in use -> grow keytable */
0272         if (rc_map->alloc >= IR_TAB_MAX_SIZE)
0273             return -ENOMEM;
0274 
0275         newalloc *= 2;
0276         dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc);
0277     }
0278 
0279     if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
0280         /* Less than 1/3 of entries in use -> shrink keytable */
0281         newalloc /= 2;
0282         dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc);
0283     }
0284 
0285     if (newalloc == oldalloc)
0286         return 0;
0287 
0288     newscan = kmalloc(newalloc, gfp_flags);
0289     if (!newscan)
0290         return -ENOMEM;
0291 
0292     memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
0293     rc_map->scan = newscan;
0294     rc_map->alloc = newalloc;
0295     rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
0296     kfree(oldscan);
0297     return 0;
0298 }
0299 
0300 /**
0301  * ir_update_mapping() - set a keycode in the scancode->keycode table
0302  * @dev:    the struct rc_dev device descriptor
0303  * @rc_map: scancode table to be adjusted
0304  * @index:  index of the mapping that needs to be updated
0305  * @new_keycode: the desired keycode
0306  *
0307  * This routine is used to update scancode->keycode mapping at given
0308  * position.
0309  *
0310  * return:  previous keycode assigned to the mapping
0311  *
0312  */
0313 static unsigned int ir_update_mapping(struct rc_dev *dev,
0314                       struct rc_map *rc_map,
0315                       unsigned int index,
0316                       unsigned int new_keycode)
0317 {
0318     int old_keycode = rc_map->scan[index].keycode;
0319     int i;
0320 
0321     /* Did the user wish to remove the mapping? */
0322     if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
0323         dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04llx\n",
0324             index, rc_map->scan[index].scancode);
0325         rc_map->len--;
0326         memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
0327             (rc_map->len - index) * sizeof(struct rc_map_table));
0328     } else {
0329         dev_dbg(&dev->dev, "#%d: %s scan 0x%04llx with key 0x%04x\n",
0330             index,
0331             old_keycode == KEY_RESERVED ? "New" : "Replacing",
0332             rc_map->scan[index].scancode, new_keycode);
0333         rc_map->scan[index].keycode = new_keycode;
0334         __set_bit(new_keycode, dev->input_dev->keybit);
0335     }
0336 
0337     if (old_keycode != KEY_RESERVED) {
0338         /* A previous mapping was updated... */
0339         __clear_bit(old_keycode, dev->input_dev->keybit);
0340         /* ... but another scancode might use the same keycode */
0341         for (i = 0; i < rc_map->len; i++) {
0342             if (rc_map->scan[i].keycode == old_keycode) {
0343                 __set_bit(old_keycode, dev->input_dev->keybit);
0344                 break;
0345             }
0346         }
0347 
0348         /* Possibly shrink the keytable, failure is not a problem */
0349         ir_resize_table(dev, rc_map, GFP_ATOMIC);
0350     }
0351 
0352     return old_keycode;
0353 }
0354 
0355 /**
0356  * ir_establish_scancode() - set a keycode in the scancode->keycode table
0357  * @dev:    the struct rc_dev device descriptor
0358  * @rc_map: scancode table to be searched
0359  * @scancode:   the desired scancode
0360  * @resize: controls whether we allowed to resize the table to
0361  *      accommodate not yet present scancodes
0362  *
0363  * This routine is used to locate given scancode in rc_map.
0364  * If scancode is not yet present the routine will allocate a new slot
0365  * for it.
0366  *
0367  * return:  index of the mapping containing scancode in question
0368  *      or -1U in case of failure.
0369  */
0370 static unsigned int ir_establish_scancode(struct rc_dev *dev,
0371                       struct rc_map *rc_map,
0372                       u64 scancode, bool resize)
0373 {
0374     unsigned int i;
0375 
0376     /*
0377      * Unfortunately, some hardware-based IR decoders don't provide
0378      * all bits for the complete IR code. In general, they provide only
0379      * the command part of the IR code. Yet, as it is possible to replace
0380      * the provided IR with another one, it is needed to allow loading
0381      * IR tables from other remotes. So, we support specifying a mask to
0382      * indicate the valid bits of the scancodes.
0383      */
0384     if (dev->scancode_mask)
0385         scancode &= dev->scancode_mask;
0386 
0387     /* First check if we already have a mapping for this ir command */
0388     for (i = 0; i < rc_map->len; i++) {
0389         if (rc_map->scan[i].scancode == scancode)
0390             return i;
0391 
0392         /* Keytable is sorted from lowest to highest scancode */
0393         if (rc_map->scan[i].scancode >= scancode)
0394             break;
0395     }
0396 
0397     /* No previous mapping found, we might need to grow the table */
0398     if (rc_map->size == rc_map->len) {
0399         if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC))
0400             return -1U;
0401     }
0402 
0403     /* i is the proper index to insert our new keycode */
0404     if (i < rc_map->len)
0405         memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
0406             (rc_map->len - i) * sizeof(struct rc_map_table));
0407     rc_map->scan[i].scancode = scancode;
0408     rc_map->scan[i].keycode = KEY_RESERVED;
0409     rc_map->len++;
0410 
0411     return i;
0412 }
0413 
0414 /**
0415  * ir_setkeycode() - set a keycode in the scancode->keycode table
0416  * @idev:   the struct input_dev device descriptor
0417  * @ke:     Input keymap entry
0418  * @old_keycode: result
0419  *
0420  * This routine is used to handle evdev EVIOCSKEY ioctl.
0421  *
0422  * return:  -EINVAL if the keycode could not be inserted, otherwise zero.
0423  */
0424 static int ir_setkeycode(struct input_dev *idev,
0425              const struct input_keymap_entry *ke,
0426              unsigned int *old_keycode)
0427 {
0428     struct rc_dev *rdev = input_get_drvdata(idev);
0429     struct rc_map *rc_map = &rdev->rc_map;
0430     unsigned int index;
0431     u64 scancode;
0432     int retval = 0;
0433     unsigned long flags;
0434 
0435     spin_lock_irqsave(&rc_map->lock, flags);
0436 
0437     if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
0438         index = ke->index;
0439         if (index >= rc_map->len) {
0440             retval = -EINVAL;
0441             goto out;
0442         }
0443     } else {
0444         retval = scancode_to_u64(ke, &scancode);
0445         if (retval)
0446             goto out;
0447 
0448         index = ir_establish_scancode(rdev, rc_map, scancode, true);
0449         if (index >= rc_map->len) {
0450             retval = -ENOMEM;
0451             goto out;
0452         }
0453     }
0454 
0455     *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
0456 
0457 out:
0458     spin_unlock_irqrestore(&rc_map->lock, flags);
0459     return retval;
0460 }
0461 
0462 /**
0463  * ir_setkeytable() - sets several entries in the scancode->keycode table
0464  * @dev:    the struct rc_dev device descriptor
0465  * @from:   the struct rc_map to copy entries from
0466  *
0467  * This routine is used to handle table initialization.
0468  *
0469  * return:  -ENOMEM if all keycodes could not be inserted, otherwise zero.
0470  */
0471 static int ir_setkeytable(struct rc_dev *dev, const struct rc_map *from)
0472 {
0473     struct rc_map *rc_map = &dev->rc_map;
0474     unsigned int i, index;
0475     int rc;
0476 
0477     rc = ir_create_table(dev, rc_map, from->name, from->rc_proto,
0478                  from->size);
0479     if (rc)
0480         return rc;
0481 
0482     for (i = 0; i < from->size; i++) {
0483         index = ir_establish_scancode(dev, rc_map,
0484                           from->scan[i].scancode, false);
0485         if (index >= rc_map->len) {
0486             rc = -ENOMEM;
0487             break;
0488         }
0489 
0490         ir_update_mapping(dev, rc_map, index,
0491                   from->scan[i].keycode);
0492     }
0493 
0494     if (rc)
0495         ir_free_table(rc_map);
0496 
0497     return rc;
0498 }
0499 
0500 static int rc_map_cmp(const void *key, const void *elt)
0501 {
0502     const u64 *scancode = key;
0503     const struct rc_map_table *e = elt;
0504 
0505     if (*scancode < e->scancode)
0506         return -1;
0507     else if (*scancode > e->scancode)
0508         return 1;
0509     return 0;
0510 }
0511 
0512 /**
0513  * ir_lookup_by_scancode() - locate mapping by scancode
0514  * @rc_map: the struct rc_map to search
0515  * @scancode:   scancode to look for in the table
0516  *
0517  * This routine performs binary search in RC keykeymap table for
0518  * given scancode.
0519  *
0520  * return:  index in the table, -1U if not found
0521  */
0522 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
0523                       u64 scancode)
0524 {
0525     struct rc_map_table *res;
0526 
0527     res = bsearch(&scancode, rc_map->scan, rc_map->len,
0528               sizeof(struct rc_map_table), rc_map_cmp);
0529     if (!res)
0530         return -1U;
0531     else
0532         return res - rc_map->scan;
0533 }
0534 
0535 /**
0536  * ir_getkeycode() - get a keycode from the scancode->keycode table
0537  * @idev:   the struct input_dev device descriptor
0538  * @ke:     Input keymap entry
0539  *
0540  * This routine is used to handle evdev EVIOCGKEY ioctl.
0541  *
0542  * return:  always returns zero.
0543  */
0544 static int ir_getkeycode(struct input_dev *idev,
0545              struct input_keymap_entry *ke)
0546 {
0547     struct rc_dev *rdev = input_get_drvdata(idev);
0548     struct rc_map *rc_map = &rdev->rc_map;
0549     struct rc_map_table *entry;
0550     unsigned long flags;
0551     unsigned int index;
0552     u64 scancode;
0553     int retval;
0554 
0555     spin_lock_irqsave(&rc_map->lock, flags);
0556 
0557     if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
0558         index = ke->index;
0559     } else {
0560         retval = scancode_to_u64(ke, &scancode);
0561         if (retval)
0562             goto out;
0563 
0564         index = ir_lookup_by_scancode(rc_map, scancode);
0565     }
0566 
0567     if (index < rc_map->len) {
0568         entry = &rc_map->scan[index];
0569 
0570         ke->index = index;
0571         ke->keycode = entry->keycode;
0572         ke->len = sizeof(entry->scancode);
0573         memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
0574     } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
0575         /*
0576          * We do not really know the valid range of scancodes
0577          * so let's respond with KEY_RESERVED to anything we
0578          * do not have mapping for [yet].
0579          */
0580         ke->index = index;
0581         ke->keycode = KEY_RESERVED;
0582     } else {
0583         retval = -EINVAL;
0584         goto out;
0585     }
0586 
0587     retval = 0;
0588 
0589 out:
0590     spin_unlock_irqrestore(&rc_map->lock, flags);
0591     return retval;
0592 }
0593 
0594 /**
0595  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
0596  * @dev:    the struct rc_dev descriptor of the device
0597  * @scancode:   the scancode to look for
0598  *
0599  * This routine is used by drivers which need to convert a scancode to a
0600  * keycode. Normally it should not be used since drivers should have no
0601  * interest in keycodes.
0602  *
0603  * return:  the corresponding keycode, or KEY_RESERVED
0604  */
0605 u32 rc_g_keycode_from_table(struct rc_dev *dev, u64 scancode)
0606 {
0607     struct rc_map *rc_map = &dev->rc_map;
0608     unsigned int keycode;
0609     unsigned int index;
0610     unsigned long flags;
0611 
0612     spin_lock_irqsave(&rc_map->lock, flags);
0613 
0614     index = ir_lookup_by_scancode(rc_map, scancode);
0615     keycode = index < rc_map->len ?
0616             rc_map->scan[index].keycode : KEY_RESERVED;
0617 
0618     spin_unlock_irqrestore(&rc_map->lock, flags);
0619 
0620     if (keycode != KEY_RESERVED)
0621         dev_dbg(&dev->dev, "%s: scancode 0x%04llx keycode 0x%02x\n",
0622             dev->device_name, scancode, keycode);
0623 
0624     return keycode;
0625 }
0626 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
0627 
0628 /**
0629  * ir_do_keyup() - internal function to signal the release of a keypress
0630  * @dev:    the struct rc_dev descriptor of the device
0631  * @sync:   whether or not to call input_sync
0632  *
0633  * This function is used internally to release a keypress, it must be
0634  * called with keylock held.
0635  */
0636 static void ir_do_keyup(struct rc_dev *dev, bool sync)
0637 {
0638     if (!dev->keypressed)
0639         return;
0640 
0641     dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode);
0642     del_timer(&dev->timer_repeat);
0643     input_report_key(dev->input_dev, dev->last_keycode, 0);
0644     led_trigger_event(led_feedback, LED_OFF);
0645     if (sync)
0646         input_sync(dev->input_dev);
0647     dev->keypressed = false;
0648 }
0649 
0650 /**
0651  * rc_keyup() - signals the release of a keypress
0652  * @dev:    the struct rc_dev descriptor of the device
0653  *
0654  * This routine is used to signal that a key has been released on the
0655  * remote control.
0656  */
0657 void rc_keyup(struct rc_dev *dev)
0658 {
0659     unsigned long flags;
0660 
0661     spin_lock_irqsave(&dev->keylock, flags);
0662     ir_do_keyup(dev, true);
0663     spin_unlock_irqrestore(&dev->keylock, flags);
0664 }
0665 EXPORT_SYMBOL_GPL(rc_keyup);
0666 
0667 /**
0668  * ir_timer_keyup() - generates a keyup event after a timeout
0669  *
0670  * @t:      a pointer to the struct timer_list
0671  *
0672  * This routine will generate a keyup event some time after a keydown event
0673  * is generated when no further activity has been detected.
0674  */
0675 static void ir_timer_keyup(struct timer_list *t)
0676 {
0677     struct rc_dev *dev = from_timer(dev, t, timer_keyup);
0678     unsigned long flags;
0679 
0680     /*
0681      * ir->keyup_jiffies is used to prevent a race condition if a
0682      * hardware interrupt occurs at this point and the keyup timer
0683      * event is moved further into the future as a result.
0684      *
0685      * The timer will then be reactivated and this function called
0686      * again in the future. We need to exit gracefully in that case
0687      * to allow the input subsystem to do its auto-repeat magic or
0688      * a keyup event might follow immediately after the keydown.
0689      */
0690     spin_lock_irqsave(&dev->keylock, flags);
0691     if (time_is_before_eq_jiffies(dev->keyup_jiffies))
0692         ir_do_keyup(dev, true);
0693     spin_unlock_irqrestore(&dev->keylock, flags);
0694 }
0695 
0696 /**
0697  * ir_timer_repeat() - generates a repeat event after a timeout
0698  *
0699  * @t:      a pointer to the struct timer_list
0700  *
0701  * This routine will generate a soft repeat event every REP_PERIOD
0702  * milliseconds.
0703  */
0704 static void ir_timer_repeat(struct timer_list *t)
0705 {
0706     struct rc_dev *dev = from_timer(dev, t, timer_repeat);
0707     struct input_dev *input = dev->input_dev;
0708     unsigned long flags;
0709 
0710     spin_lock_irqsave(&dev->keylock, flags);
0711     if (dev->keypressed) {
0712         input_event(input, EV_KEY, dev->last_keycode, 2);
0713         input_sync(input);
0714         if (input->rep[REP_PERIOD])
0715             mod_timer(&dev->timer_repeat, jiffies +
0716                   msecs_to_jiffies(input->rep[REP_PERIOD]));
0717     }
0718     spin_unlock_irqrestore(&dev->keylock, flags);
0719 }
0720 
0721 static unsigned int repeat_period(int protocol)
0722 {
0723     if (protocol >= ARRAY_SIZE(protocols))
0724         return 100;
0725 
0726     return protocols[protocol].repeat_period;
0727 }
0728 
0729 /**
0730  * rc_repeat() - signals that a key is still pressed
0731  * @dev:    the struct rc_dev descriptor of the device
0732  *
0733  * This routine is used by IR decoders when a repeat message which does
0734  * not include the necessary bits to reproduce the scancode has been
0735  * received.
0736  */
0737 void rc_repeat(struct rc_dev *dev)
0738 {
0739     unsigned long flags;
0740     unsigned int timeout = usecs_to_jiffies(dev->timeout) +
0741         msecs_to_jiffies(repeat_period(dev->last_protocol));
0742     struct lirc_scancode sc = {
0743         .scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
0744         .keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
0745         .flags = LIRC_SCANCODE_FLAG_REPEAT |
0746              (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
0747     };
0748 
0749     if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
0750         lirc_scancode_event(dev, &sc);
0751 
0752     spin_lock_irqsave(&dev->keylock, flags);
0753 
0754     if (dev->last_scancode <= U32_MAX) {
0755         input_event(dev->input_dev, EV_MSC, MSC_SCAN,
0756                 dev->last_scancode);
0757         input_sync(dev->input_dev);
0758     }
0759 
0760     if (dev->keypressed) {
0761         dev->keyup_jiffies = jiffies + timeout;
0762         mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
0763     }
0764 
0765     spin_unlock_irqrestore(&dev->keylock, flags);
0766 }
0767 EXPORT_SYMBOL_GPL(rc_repeat);
0768 
0769 /**
0770  * ir_do_keydown() - internal function to process a keypress
0771  * @dev:    the struct rc_dev descriptor of the device
0772  * @protocol:   the protocol of the keypress
0773  * @scancode:   the scancode of the keypress
0774  * @keycode:    the keycode of the keypress
0775  * @toggle:     the toggle value of the keypress
0776  *
0777  * This function is used internally to register a keypress, it must be
0778  * called with keylock held.
0779  */
0780 static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
0781               u64 scancode, u32 keycode, u8 toggle)
0782 {
0783     bool new_event = (!dev->keypressed       ||
0784               dev->last_protocol != protocol ||
0785               dev->last_scancode != scancode ||
0786               dev->last_toggle   != toggle);
0787     struct lirc_scancode sc = {
0788         .scancode = scancode, .rc_proto = protocol,
0789         .flags = (toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0) |
0790              (!new_event ? LIRC_SCANCODE_FLAG_REPEAT : 0),
0791         .keycode = keycode
0792     };
0793 
0794     if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
0795         lirc_scancode_event(dev, &sc);
0796 
0797     if (new_event && dev->keypressed)
0798         ir_do_keyup(dev, false);
0799 
0800     if (scancode <= U32_MAX)
0801         input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
0802 
0803     dev->last_protocol = protocol;
0804     dev->last_scancode = scancode;
0805     dev->last_toggle = toggle;
0806     dev->last_keycode = keycode;
0807 
0808     if (new_event && keycode != KEY_RESERVED) {
0809         /* Register a keypress */
0810         dev->keypressed = true;
0811 
0812         dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08llx\n",
0813             dev->device_name, keycode, protocol, scancode);
0814         input_report_key(dev->input_dev, keycode, 1);
0815 
0816         led_trigger_event(led_feedback, LED_FULL);
0817     }
0818 
0819     /*
0820      * For CEC, start sending repeat messages as soon as the first
0821      * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
0822      * is non-zero. Otherwise, the input layer will generate repeat
0823      * messages.
0824      */
0825     if (!new_event && keycode != KEY_RESERVED &&
0826         dev->allowed_protocols == RC_PROTO_BIT_CEC &&
0827         !timer_pending(&dev->timer_repeat) &&
0828         dev->input_dev->rep[REP_PERIOD] &&
0829         !dev->input_dev->rep[REP_DELAY]) {
0830         input_event(dev->input_dev, EV_KEY, keycode, 2);
0831         mod_timer(&dev->timer_repeat, jiffies +
0832               msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
0833     }
0834 
0835     input_sync(dev->input_dev);
0836 }
0837 
0838 /**
0839  * rc_keydown() - generates input event for a key press
0840  * @dev:    the struct rc_dev descriptor of the device
0841  * @protocol:   the protocol for the keypress
0842  * @scancode:   the scancode for the keypress
0843  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
0844  *              support toggle values, this should be set to zero)
0845  *
0846  * This routine is used to signal that a key has been pressed on the
0847  * remote control.
0848  */
0849 void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u64 scancode,
0850         u8 toggle)
0851 {
0852     unsigned long flags;
0853     u32 keycode = rc_g_keycode_from_table(dev, scancode);
0854 
0855     spin_lock_irqsave(&dev->keylock, flags);
0856     ir_do_keydown(dev, protocol, scancode, keycode, toggle);
0857 
0858     if (dev->keypressed) {
0859         dev->keyup_jiffies = jiffies + usecs_to_jiffies(dev->timeout) +
0860             msecs_to_jiffies(repeat_period(protocol));
0861         mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
0862     }
0863     spin_unlock_irqrestore(&dev->keylock, flags);
0864 }
0865 EXPORT_SYMBOL_GPL(rc_keydown);
0866 
0867 /**
0868  * rc_keydown_notimeout() - generates input event for a key press without
0869  *                          an automatic keyup event at a later time
0870  * @dev:    the struct rc_dev descriptor of the device
0871  * @protocol:   the protocol for the keypress
0872  * @scancode:   the scancode for the keypress
0873  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
0874  *              support toggle values, this should be set to zero)
0875  *
0876  * This routine is used to signal that a key has been pressed on the
0877  * remote control. The driver must manually call rc_keyup() at a later stage.
0878  */
0879 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
0880               u64 scancode, u8 toggle)
0881 {
0882     unsigned long flags;
0883     u32 keycode = rc_g_keycode_from_table(dev, scancode);
0884 
0885     spin_lock_irqsave(&dev->keylock, flags);
0886     ir_do_keydown(dev, protocol, scancode, keycode, toggle);
0887     spin_unlock_irqrestore(&dev->keylock, flags);
0888 }
0889 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
0890 
0891 /**
0892  * rc_validate_scancode() - checks that a scancode is valid for a protocol.
0893  *  For nec, it should do the opposite of ir_nec_bytes_to_scancode()
0894  * @proto:  protocol
0895  * @scancode:   scancode
0896  */
0897 bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
0898 {
0899     switch (proto) {
0900     /*
0901      * NECX has a 16-bit address; if the lower 8 bits match the upper
0902      * 8 bits inverted, then the address would match regular nec.
0903      */
0904     case RC_PROTO_NECX:
0905         if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
0906             return false;
0907         break;
0908     /*
0909      * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
0910      * of the command match the upper 8 bits inverted, then it would
0911      * be either NEC or NECX.
0912      */
0913     case RC_PROTO_NEC32:
0914         if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
0915             return false;
0916         break;
0917     /*
0918      * If the customer code (top 32-bit) is 0x800f, it is MCE else it
0919      * is regular mode-6a 32 bit
0920      */
0921     case RC_PROTO_RC6_MCE:
0922         if ((scancode & 0xffff0000) != 0x800f0000)
0923             return false;
0924         break;
0925     case RC_PROTO_RC6_6A_32:
0926         if ((scancode & 0xffff0000) == 0x800f0000)
0927             return false;
0928         break;
0929     default:
0930         break;
0931     }
0932 
0933     return true;
0934 }
0935 
0936 /**
0937  * rc_validate_filter() - checks that the scancode and mask are valid and
0938  *            provides sensible defaults
0939  * @dev:    the struct rc_dev descriptor of the device
0940  * @filter: the scancode and mask
0941  *
0942  * return:  0 or -EINVAL if the filter is not valid
0943  */
0944 static int rc_validate_filter(struct rc_dev *dev,
0945                   struct rc_scancode_filter *filter)
0946 {
0947     u32 mask, s = filter->data;
0948     enum rc_proto protocol = dev->wakeup_protocol;
0949 
0950     if (protocol >= ARRAY_SIZE(protocols))
0951         return -EINVAL;
0952 
0953     mask = protocols[protocol].scancode_bits;
0954 
0955     if (!rc_validate_scancode(protocol, s))
0956         return -EINVAL;
0957 
0958     filter->data &= mask;
0959     filter->mask &= mask;
0960 
0961     /*
0962      * If we have to raw encode the IR for wakeup, we cannot have a mask
0963      */
0964     if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
0965         return -EINVAL;
0966 
0967     return 0;
0968 }
0969 
0970 int rc_open(struct rc_dev *rdev)
0971 {
0972     int rval = 0;
0973 
0974     if (!rdev)
0975         return -EINVAL;
0976 
0977     mutex_lock(&rdev->lock);
0978 
0979     if (!rdev->registered) {
0980         rval = -ENODEV;
0981     } else {
0982         if (!rdev->users++ && rdev->open)
0983             rval = rdev->open(rdev);
0984 
0985         if (rval)
0986             rdev->users--;
0987     }
0988 
0989     mutex_unlock(&rdev->lock);
0990 
0991     return rval;
0992 }
0993 
0994 static int ir_open(struct input_dev *idev)
0995 {
0996     struct rc_dev *rdev = input_get_drvdata(idev);
0997 
0998     return rc_open(rdev);
0999 }
1000 
1001 void rc_close(struct rc_dev *rdev)
1002 {
1003     if (rdev) {
1004         mutex_lock(&rdev->lock);
1005 
1006         if (!--rdev->users && rdev->close && rdev->registered)
1007             rdev->close(rdev);
1008 
1009         mutex_unlock(&rdev->lock);
1010     }
1011 }
1012 
1013 static void ir_close(struct input_dev *idev)
1014 {
1015     struct rc_dev *rdev = input_get_drvdata(idev);
1016     rc_close(rdev);
1017 }
1018 
1019 /* class for /sys/class/rc */
1020 static char *rc_devnode(struct device *dev, umode_t *mode)
1021 {
1022     return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
1023 }
1024 
1025 static struct class rc_class = {
1026     .name       = "rc",
1027     .devnode    = rc_devnode,
1028 };
1029 
1030 /*
1031  * These are the protocol textual descriptions that are
1032  * used by the sysfs protocols file. Note that the order
1033  * of the entries is relevant.
1034  */
1035 static const struct {
1036     u64 type;
1037     const char  *name;
1038     const char  *module_name;
1039 } proto_names[] = {
1040     { RC_PROTO_BIT_NONE,    "none",     NULL            },
1041     { RC_PROTO_BIT_OTHER,   "other",    NULL            },
1042     { RC_PROTO_BIT_UNKNOWN, "unknown",  NULL            },
1043     { RC_PROTO_BIT_RC5 |
1044       RC_PROTO_BIT_RC5X_20, "rc-5",     "ir-rc5-decoder"    },
1045     { RC_PROTO_BIT_NEC |
1046       RC_PROTO_BIT_NECX |
1047       RC_PROTO_BIT_NEC32,   "nec",      "ir-nec-decoder"    },
1048     { RC_PROTO_BIT_RC6_0 |
1049       RC_PROTO_BIT_RC6_6A_20 |
1050       RC_PROTO_BIT_RC6_6A_24 |
1051       RC_PROTO_BIT_RC6_6A_32 |
1052       RC_PROTO_BIT_RC6_MCE, "rc-6",     "ir-rc6-decoder"    },
1053     { RC_PROTO_BIT_JVC, "jvc",      "ir-jvc-decoder"    },
1054     { RC_PROTO_BIT_SONY12 |
1055       RC_PROTO_BIT_SONY15 |
1056       RC_PROTO_BIT_SONY20,  "sony",     "ir-sony-decoder"   },
1057     { RC_PROTO_BIT_RC5_SZ,  "rc-5-sz",  "ir-rc5-decoder"    },
1058     { RC_PROTO_BIT_SANYO,   "sanyo",    "ir-sanyo-decoder"  },
1059     { RC_PROTO_BIT_SHARP,   "sharp",    "ir-sharp-decoder"  },
1060     { RC_PROTO_BIT_MCIR2_KBD |
1061       RC_PROTO_BIT_MCIR2_MSE, "mce_kbd",    "ir-mce_kbd-decoder"    },
1062     { RC_PROTO_BIT_XMP, "xmp",      "ir-xmp-decoder"    },
1063     { RC_PROTO_BIT_CEC, "cec",      NULL            },
1064     { RC_PROTO_BIT_IMON,    "imon",     "ir-imon-decoder"   },
1065     { RC_PROTO_BIT_RCMM12 |
1066       RC_PROTO_BIT_RCMM24 |
1067       RC_PROTO_BIT_RCMM32,  "rc-mm",    "ir-rcmm-decoder"   },
1068     { RC_PROTO_BIT_XBOX_DVD, "xbox-dvd",    NULL            },
1069 };
1070 
1071 /**
1072  * struct rc_filter_attribute - Device attribute relating to a filter type.
1073  * @attr:   Device attribute.
1074  * @type:   Filter type.
1075  * @mask:   false for filter value, true for filter mask.
1076  */
1077 struct rc_filter_attribute {
1078     struct device_attribute     attr;
1079     enum rc_filter_type     type;
1080     bool                mask;
1081 };
1082 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1083 
1084 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)   \
1085     struct rc_filter_attribute dev_attr_##_name = {         \
1086         .attr = __ATTR(_name, _mode, _show, _store),        \
1087         .type = (_type),                    \
1088         .mask = (_mask),                    \
1089     }
1090 
1091 /**
1092  * show_protocols() - shows the current IR protocol(s)
1093  * @device: the device descriptor
1094  * @mattr:  the device attribute struct
1095  * @buf:    a pointer to the output buffer
1096  *
1097  * This routine is a callback routine for input read the IR protocol type(s).
1098  * it is triggered by reading /sys/class/rc/rc?/protocols.
1099  * It returns the protocol names of supported protocols.
1100  * Enabled protocols are printed in brackets.
1101  *
1102  * dev->lock is taken to guard against races between
1103  * store_protocols and show_protocols.
1104  */
1105 static ssize_t show_protocols(struct device *device,
1106                   struct device_attribute *mattr, char *buf)
1107 {
1108     struct rc_dev *dev = to_rc_dev(device);
1109     u64 allowed, enabled;
1110     char *tmp = buf;
1111     int i;
1112 
1113     mutex_lock(&dev->lock);
1114 
1115     enabled = dev->enabled_protocols;
1116     allowed = dev->allowed_protocols;
1117     if (dev->raw && !allowed)
1118         allowed = ir_raw_get_allowed_protocols();
1119 
1120     mutex_unlock(&dev->lock);
1121 
1122     dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1123         __func__, (long long)allowed, (long long)enabled);
1124 
1125     for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1126         if (allowed & enabled & proto_names[i].type)
1127             tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
1128         else if (allowed & proto_names[i].type)
1129             tmp += sprintf(tmp, "%s ", proto_names[i].name);
1130 
1131         if (allowed & proto_names[i].type)
1132             allowed &= ~proto_names[i].type;
1133     }
1134 
1135 #ifdef CONFIG_LIRC
1136     if (dev->driver_type == RC_DRIVER_IR_RAW)
1137         tmp += sprintf(tmp, "[lirc] ");
1138 #endif
1139 
1140     if (tmp != buf)
1141         tmp--;
1142     *tmp = '\n';
1143 
1144     return tmp + 1 - buf;
1145 }
1146 
1147 /**
1148  * parse_protocol_change() - parses a protocol change request
1149  * @dev:    rc_dev device
1150  * @protocols:  pointer to the bitmask of current protocols
1151  * @buf:    pointer to the buffer with a list of changes
1152  *
1153  * Writing "+proto" will add a protocol to the protocol mask.
1154  * Writing "-proto" will remove a protocol from protocol mask.
1155  * Writing "proto" will enable only "proto".
1156  * Writing "none" will disable all protocols.
1157  * Returns the number of changes performed or a negative error code.
1158  */
1159 static int parse_protocol_change(struct rc_dev *dev, u64 *protocols,
1160                  const char *buf)
1161 {
1162     const char *tmp;
1163     unsigned count = 0;
1164     bool enable, disable;
1165     u64 mask;
1166     int i;
1167 
1168     while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1169         if (!*tmp)
1170             break;
1171 
1172         if (*tmp == '+') {
1173             enable = true;
1174             disable = false;
1175             tmp++;
1176         } else if (*tmp == '-') {
1177             enable = false;
1178             disable = true;
1179             tmp++;
1180         } else {
1181             enable = false;
1182             disable = false;
1183         }
1184 
1185         for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1186             if (!strcasecmp(tmp, proto_names[i].name)) {
1187                 mask = proto_names[i].type;
1188                 break;
1189             }
1190         }
1191 
1192         if (i == ARRAY_SIZE(proto_names)) {
1193             if (!strcasecmp(tmp, "lirc"))
1194                 mask = 0;
1195             else {
1196                 dev_dbg(&dev->dev, "Unknown protocol: '%s'\n",
1197                     tmp);
1198                 return -EINVAL;
1199             }
1200         }
1201 
1202         count++;
1203 
1204         if (enable)
1205             *protocols |= mask;
1206         else if (disable)
1207             *protocols &= ~mask;
1208         else
1209             *protocols = mask;
1210     }
1211 
1212     if (!count) {
1213         dev_dbg(&dev->dev, "Protocol not specified\n");
1214         return -EINVAL;
1215     }
1216 
1217     return count;
1218 }
1219 
1220 void ir_raw_load_modules(u64 *protocols)
1221 {
1222     u64 available;
1223     int i, ret;
1224 
1225     for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1226         if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1227             proto_names[i].type & (RC_PROTO_BIT_OTHER |
1228                        RC_PROTO_BIT_UNKNOWN))
1229             continue;
1230 
1231         available = ir_raw_get_allowed_protocols();
1232         if (!(*protocols & proto_names[i].type & ~available))
1233             continue;
1234 
1235         if (!proto_names[i].module_name) {
1236             pr_err("Can't enable IR protocol %s\n",
1237                    proto_names[i].name);
1238             *protocols &= ~proto_names[i].type;
1239             continue;
1240         }
1241 
1242         ret = request_module("%s", proto_names[i].module_name);
1243         if (ret < 0) {
1244             pr_err("Couldn't load IR protocol module %s\n",
1245                    proto_names[i].module_name);
1246             *protocols &= ~proto_names[i].type;
1247             continue;
1248         }
1249         msleep(20);
1250         available = ir_raw_get_allowed_protocols();
1251         if (!(*protocols & proto_names[i].type & ~available))
1252             continue;
1253 
1254         pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1255                proto_names[i].module_name,
1256                proto_names[i].name);
1257         *protocols &= ~proto_names[i].type;
1258     }
1259 }
1260 
1261 /**
1262  * store_protocols() - changes the current/wakeup IR protocol(s)
1263  * @device: the device descriptor
1264  * @mattr:  the device attribute struct
1265  * @buf:    a pointer to the input buffer
1266  * @len:    length of the input buffer
1267  *
1268  * This routine is for changing the IR protocol type.
1269  * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1270  * See parse_protocol_change() for the valid commands.
1271  * Returns @len on success or a negative error code.
1272  *
1273  * dev->lock is taken to guard against races between
1274  * store_protocols and show_protocols.
1275  */
1276 static ssize_t store_protocols(struct device *device,
1277                    struct device_attribute *mattr,
1278                    const char *buf, size_t len)
1279 {
1280     struct rc_dev *dev = to_rc_dev(device);
1281     u64 *current_protocols;
1282     struct rc_scancode_filter *filter;
1283     u64 old_protocols, new_protocols;
1284     ssize_t rc;
1285 
1286     dev_dbg(&dev->dev, "Normal protocol change requested\n");
1287     current_protocols = &dev->enabled_protocols;
1288     filter = &dev->scancode_filter;
1289 
1290     if (!dev->change_protocol) {
1291         dev_dbg(&dev->dev, "Protocol switching not supported\n");
1292         return -EINVAL;
1293     }
1294 
1295     mutex_lock(&dev->lock);
1296     if (!dev->registered) {
1297         mutex_unlock(&dev->lock);
1298         return -ENODEV;
1299     }
1300 
1301     old_protocols = *current_protocols;
1302     new_protocols = old_protocols;
1303     rc = parse_protocol_change(dev, &new_protocols, buf);
1304     if (rc < 0)
1305         goto out;
1306 
1307     if (dev->driver_type == RC_DRIVER_IR_RAW)
1308         ir_raw_load_modules(&new_protocols);
1309 
1310     rc = dev->change_protocol(dev, &new_protocols);
1311     if (rc < 0) {
1312         dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n",
1313             (long long)new_protocols);
1314         goto out;
1315     }
1316 
1317     if (new_protocols != old_protocols) {
1318         *current_protocols = new_protocols;
1319         dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n",
1320             (long long)new_protocols);
1321     }
1322 
1323     /*
1324      * If a protocol change was attempted the filter may need updating, even
1325      * if the actual protocol mask hasn't changed (since the driver may have
1326      * cleared the filter).
1327      * Try setting the same filter with the new protocol (if any).
1328      * Fall back to clearing the filter.
1329      */
1330     if (dev->s_filter && filter->mask) {
1331         if (new_protocols)
1332             rc = dev->s_filter(dev, filter);
1333         else
1334             rc = -1;
1335 
1336         if (rc < 0) {
1337             filter->data = 0;
1338             filter->mask = 0;
1339             dev->s_filter(dev, filter);
1340         }
1341     }
1342 
1343     rc = len;
1344 
1345 out:
1346     mutex_unlock(&dev->lock);
1347     return rc;
1348 }
1349 
1350 /**
1351  * show_filter() - shows the current scancode filter value or mask
1352  * @device: the device descriptor
1353  * @attr:   the device attribute struct
1354  * @buf:    a pointer to the output buffer
1355  *
1356  * This routine is a callback routine to read a scancode filter value or mask.
1357  * It is triggered by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1358  * It prints the current scancode filter value or mask of the appropriate filter
1359  * type in hexadecimal into @buf and returns the size of the buffer.
1360  *
1361  * Bits of the filter value corresponding to set bits in the filter mask are
1362  * compared against input scancodes and non-matching scancodes are discarded.
1363  *
1364  * dev->lock is taken to guard against races between
1365  * store_filter and show_filter.
1366  */
1367 static ssize_t show_filter(struct device *device,
1368                struct device_attribute *attr,
1369                char *buf)
1370 {
1371     struct rc_dev *dev = to_rc_dev(device);
1372     struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1373     struct rc_scancode_filter *filter;
1374     u32 val;
1375 
1376     mutex_lock(&dev->lock);
1377 
1378     if (fattr->type == RC_FILTER_NORMAL)
1379         filter = &dev->scancode_filter;
1380     else
1381         filter = &dev->scancode_wakeup_filter;
1382 
1383     if (fattr->mask)
1384         val = filter->mask;
1385     else
1386         val = filter->data;
1387     mutex_unlock(&dev->lock);
1388 
1389     return sprintf(buf, "%#x\n", val);
1390 }
1391 
1392 /**
1393  * store_filter() - changes the scancode filter value
1394  * @device: the device descriptor
1395  * @attr:   the device attribute struct
1396  * @buf:    a pointer to the input buffer
1397  * @len:    length of the input buffer
1398  *
1399  * This routine is for changing a scancode filter value or mask.
1400  * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1401  * Returns -EINVAL if an invalid filter value for the current protocol was
1402  * specified or if scancode filtering is not supported by the driver, otherwise
1403  * returns @len.
1404  *
1405  * Bits of the filter value corresponding to set bits in the filter mask are
1406  * compared against input scancodes and non-matching scancodes are discarded.
1407  *
1408  * dev->lock is taken to guard against races between
1409  * store_filter and show_filter.
1410  */
1411 static ssize_t store_filter(struct device *device,
1412                 struct device_attribute *attr,
1413                 const char *buf, size_t len)
1414 {
1415     struct rc_dev *dev = to_rc_dev(device);
1416     struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1417     struct rc_scancode_filter new_filter, *filter;
1418     int ret;
1419     unsigned long val;
1420     int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1421 
1422     ret = kstrtoul(buf, 0, &val);
1423     if (ret < 0)
1424         return ret;
1425 
1426     if (fattr->type == RC_FILTER_NORMAL) {
1427         set_filter = dev->s_filter;
1428         filter = &dev->scancode_filter;
1429     } else {
1430         set_filter = dev->s_wakeup_filter;
1431         filter = &dev->scancode_wakeup_filter;
1432     }
1433 
1434     if (!set_filter)
1435         return -EINVAL;
1436 
1437     mutex_lock(&dev->lock);
1438     if (!dev->registered) {
1439         mutex_unlock(&dev->lock);
1440         return -ENODEV;
1441     }
1442 
1443     new_filter = *filter;
1444     if (fattr->mask)
1445         new_filter.mask = val;
1446     else
1447         new_filter.data = val;
1448 
1449     if (fattr->type == RC_FILTER_WAKEUP) {
1450         /*
1451          * Refuse to set a filter unless a protocol is enabled
1452          * and the filter is valid for that protocol
1453          */
1454         if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1455             ret = rc_validate_filter(dev, &new_filter);
1456         else
1457             ret = -EINVAL;
1458 
1459         if (ret != 0)
1460             goto unlock;
1461     }
1462 
1463     if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1464         val) {
1465         /* refuse to set a filter unless a protocol is enabled */
1466         ret = -EINVAL;
1467         goto unlock;
1468     }
1469 
1470     ret = set_filter(dev, &new_filter);
1471     if (ret < 0)
1472         goto unlock;
1473 
1474     *filter = new_filter;
1475 
1476 unlock:
1477     mutex_unlock(&dev->lock);
1478     return (ret < 0) ? ret : len;
1479 }
1480 
1481 /**
1482  * show_wakeup_protocols() - shows the wakeup IR protocol
1483  * @device: the device descriptor
1484  * @mattr:  the device attribute struct
1485  * @buf:    a pointer to the output buffer
1486  *
1487  * This routine is a callback routine for input read the IR protocol type(s).
1488  * it is triggered by reading /sys/class/rc/rc?/wakeup_protocols.
1489  * It returns the protocol names of supported protocols.
1490  * The enabled protocols are printed in brackets.
1491  *
1492  * dev->lock is taken to guard against races between
1493  * store_wakeup_protocols and show_wakeup_protocols.
1494  */
1495 static ssize_t show_wakeup_protocols(struct device *device,
1496                      struct device_attribute *mattr,
1497                      char *buf)
1498 {
1499     struct rc_dev *dev = to_rc_dev(device);
1500     u64 allowed;
1501     enum rc_proto enabled;
1502     char *tmp = buf;
1503     int i;
1504 
1505     mutex_lock(&dev->lock);
1506 
1507     allowed = dev->allowed_wakeup_protocols;
1508     enabled = dev->wakeup_protocol;
1509 
1510     mutex_unlock(&dev->lock);
1511 
1512     dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n",
1513         __func__, (long long)allowed, enabled);
1514 
1515     for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1516         if (allowed & (1ULL << i)) {
1517             if (i == enabled)
1518                 tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1519             else
1520                 tmp += sprintf(tmp, "%s ", protocols[i].name);
1521         }
1522     }
1523 
1524     if (tmp != buf)
1525         tmp--;
1526     *tmp = '\n';
1527 
1528     return tmp + 1 - buf;
1529 }
1530 
1531 /**
1532  * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1533  * @device: the device descriptor
1534  * @mattr:  the device attribute struct
1535  * @buf:    a pointer to the input buffer
1536  * @len:    length of the input buffer
1537  *
1538  * This routine is for changing the IR protocol type.
1539  * It is triggered by writing to /sys/class/rc/rc?/wakeup_protocols.
1540  * Returns @len on success or a negative error code.
1541  *
1542  * dev->lock is taken to guard against races between
1543  * store_wakeup_protocols and show_wakeup_protocols.
1544  */
1545 static ssize_t store_wakeup_protocols(struct device *device,
1546                       struct device_attribute *mattr,
1547                       const char *buf, size_t len)
1548 {
1549     struct rc_dev *dev = to_rc_dev(device);
1550     enum rc_proto protocol = RC_PROTO_UNKNOWN;
1551     ssize_t rc;
1552     u64 allowed;
1553     int i;
1554 
1555     mutex_lock(&dev->lock);
1556     if (!dev->registered) {
1557         mutex_unlock(&dev->lock);
1558         return -ENODEV;
1559     }
1560 
1561     allowed = dev->allowed_wakeup_protocols;
1562 
1563     if (!sysfs_streq(buf, "none")) {
1564         for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1565             if ((allowed & (1ULL << i)) &&
1566                 sysfs_streq(buf, protocols[i].name)) {
1567                 protocol = i;
1568                 break;
1569             }
1570         }
1571 
1572         if (i == ARRAY_SIZE(protocols)) {
1573             rc = -EINVAL;
1574             goto out;
1575         }
1576 
1577         if (dev->encode_wakeup) {
1578             u64 mask = 1ULL << protocol;
1579 
1580             ir_raw_load_modules(&mask);
1581             if (!mask) {
1582                 rc = -EINVAL;
1583                 goto out;
1584             }
1585         }
1586     }
1587 
1588     if (dev->wakeup_protocol != protocol) {
1589         dev->wakeup_protocol = protocol;
1590         dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol);
1591 
1592         if (protocol == RC_PROTO_RC6_MCE)
1593             dev->scancode_wakeup_filter.data = 0x800f0000;
1594         else
1595             dev->scancode_wakeup_filter.data = 0;
1596         dev->scancode_wakeup_filter.mask = 0;
1597 
1598         rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1599         if (rc == 0)
1600             rc = len;
1601     } else {
1602         rc = len;
1603     }
1604 
1605 out:
1606     mutex_unlock(&dev->lock);
1607     return rc;
1608 }
1609 
1610 static void rc_dev_release(struct device *device)
1611 {
1612     struct rc_dev *dev = to_rc_dev(device);
1613 
1614     kfree(dev);
1615 }
1616 
1617 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1618 {
1619     struct rc_dev *dev = to_rc_dev(device);
1620     int ret = 0;
1621 
1622     mutex_lock(&dev->lock);
1623 
1624     if (!dev->registered)
1625         ret = -ENODEV;
1626     if (ret == 0 && dev->rc_map.name)
1627         ret = add_uevent_var(env, "NAME=%s", dev->rc_map.name);
1628     if (ret == 0 && dev->driver_name)
1629         ret = add_uevent_var(env, "DRV_NAME=%s", dev->driver_name);
1630     if (ret == 0 && dev->device_name)
1631         ret = add_uevent_var(env, "DEV_NAME=%s", dev->device_name);
1632 
1633     mutex_unlock(&dev->lock);
1634 
1635     return ret;
1636 }
1637 
1638 /*
1639  * Static device attribute struct with the sysfs attributes for IR's
1640  */
1641 static struct device_attribute dev_attr_ro_protocols =
1642 __ATTR(protocols, 0444, show_protocols, NULL);
1643 static struct device_attribute dev_attr_rw_protocols =
1644 __ATTR(protocols, 0644, show_protocols, store_protocols);
1645 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1646            store_wakeup_protocols);
1647 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1648               show_filter, store_filter, RC_FILTER_NORMAL, false);
1649 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1650               show_filter, store_filter, RC_FILTER_NORMAL, true);
1651 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1652               show_filter, store_filter, RC_FILTER_WAKEUP, false);
1653 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1654               show_filter, store_filter, RC_FILTER_WAKEUP, true);
1655 
1656 static struct attribute *rc_dev_rw_protocol_attrs[] = {
1657     &dev_attr_rw_protocols.attr,
1658     NULL,
1659 };
1660 
1661 static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
1662     .attrs  = rc_dev_rw_protocol_attrs,
1663 };
1664 
1665 static struct attribute *rc_dev_ro_protocol_attrs[] = {
1666     &dev_attr_ro_protocols.attr,
1667     NULL,
1668 };
1669 
1670 static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
1671     .attrs  = rc_dev_ro_protocol_attrs,
1672 };
1673 
1674 static struct attribute *rc_dev_filter_attrs[] = {
1675     &dev_attr_filter.attr.attr,
1676     &dev_attr_filter_mask.attr.attr,
1677     NULL,
1678 };
1679 
1680 static const struct attribute_group rc_dev_filter_attr_grp = {
1681     .attrs  = rc_dev_filter_attrs,
1682 };
1683 
1684 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1685     &dev_attr_wakeup_filter.attr.attr,
1686     &dev_attr_wakeup_filter_mask.attr.attr,
1687     &dev_attr_wakeup_protocols.attr,
1688     NULL,
1689 };
1690 
1691 static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1692     .attrs  = rc_dev_wakeup_filter_attrs,
1693 };
1694 
1695 static const struct device_type rc_dev_type = {
1696     .release    = rc_dev_release,
1697     .uevent     = rc_dev_uevent,
1698 };
1699 
1700 struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1701 {
1702     struct rc_dev *dev;
1703 
1704     dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1705     if (!dev)
1706         return NULL;
1707 
1708     if (type != RC_DRIVER_IR_RAW_TX) {
1709         dev->input_dev = input_allocate_device();
1710         if (!dev->input_dev) {
1711             kfree(dev);
1712             return NULL;
1713         }
1714 
1715         dev->input_dev->getkeycode = ir_getkeycode;
1716         dev->input_dev->setkeycode = ir_setkeycode;
1717         input_set_drvdata(dev->input_dev, dev);
1718 
1719         dev->timeout = IR_DEFAULT_TIMEOUT;
1720         timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
1721         timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
1722 
1723         spin_lock_init(&dev->rc_map.lock);
1724         spin_lock_init(&dev->keylock);
1725     }
1726     mutex_init(&dev->lock);
1727 
1728     dev->dev.type = &rc_dev_type;
1729     dev->dev.class = &rc_class;
1730     device_initialize(&dev->dev);
1731 
1732     dev->driver_type = type;
1733 
1734     __module_get(THIS_MODULE);
1735     return dev;
1736 }
1737 EXPORT_SYMBOL_GPL(rc_allocate_device);
1738 
1739 void rc_free_device(struct rc_dev *dev)
1740 {
1741     if (!dev)
1742         return;
1743 
1744     input_free_device(dev->input_dev);
1745 
1746     put_device(&dev->dev);
1747 
1748     /* kfree(dev) will be called by the callback function
1749        rc_dev_release() */
1750 
1751     module_put(THIS_MODULE);
1752 }
1753 EXPORT_SYMBOL_GPL(rc_free_device);
1754 
1755 static void devm_rc_alloc_release(struct device *dev, void *res)
1756 {
1757     rc_free_device(*(struct rc_dev **)res);
1758 }
1759 
1760 struct rc_dev *devm_rc_allocate_device(struct device *dev,
1761                        enum rc_driver_type type)
1762 {
1763     struct rc_dev **dr, *rc;
1764 
1765     dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1766     if (!dr)
1767         return NULL;
1768 
1769     rc = rc_allocate_device(type);
1770     if (!rc) {
1771         devres_free(dr);
1772         return NULL;
1773     }
1774 
1775     rc->dev.parent = dev;
1776     rc->managed_alloc = true;
1777     *dr = rc;
1778     devres_add(dev, dr);
1779 
1780     return rc;
1781 }
1782 EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1783 
1784 static int rc_prepare_rx_device(struct rc_dev *dev)
1785 {
1786     int rc;
1787     struct rc_map *rc_map;
1788     u64 rc_proto;
1789 
1790     if (!dev->map_name)
1791         return -EINVAL;
1792 
1793     rc_map = rc_map_get(dev->map_name);
1794     if (!rc_map)
1795         rc_map = rc_map_get(RC_MAP_EMPTY);
1796     if (!rc_map || !rc_map->scan || rc_map->size == 0)
1797         return -EINVAL;
1798 
1799     rc = ir_setkeytable(dev, rc_map);
1800     if (rc)
1801         return rc;
1802 
1803     rc_proto = BIT_ULL(rc_map->rc_proto);
1804 
1805     if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1806         dev->enabled_protocols = dev->allowed_protocols;
1807 
1808     if (dev->driver_type == RC_DRIVER_IR_RAW)
1809         ir_raw_load_modules(&rc_proto);
1810 
1811     if (dev->change_protocol) {
1812         rc = dev->change_protocol(dev, &rc_proto);
1813         if (rc < 0)
1814             goto out_table;
1815         dev->enabled_protocols = rc_proto;
1816     }
1817 
1818     /* Keyboard events */
1819     set_bit(EV_KEY, dev->input_dev->evbit);
1820     set_bit(EV_REP, dev->input_dev->evbit);
1821     set_bit(EV_MSC, dev->input_dev->evbit);
1822     set_bit(MSC_SCAN, dev->input_dev->mscbit);
1823 
1824     /* Pointer/mouse events */
1825     set_bit(INPUT_PROP_POINTING_STICK, dev->input_dev->propbit);
1826     set_bit(EV_REL, dev->input_dev->evbit);
1827     set_bit(REL_X, dev->input_dev->relbit);
1828     set_bit(REL_Y, dev->input_dev->relbit);
1829 
1830     if (dev->open)
1831         dev->input_dev->open = ir_open;
1832     if (dev->close)
1833         dev->input_dev->close = ir_close;
1834 
1835     dev->input_dev->dev.parent = &dev->dev;
1836     memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1837     dev->input_dev->phys = dev->input_phys;
1838     dev->input_dev->name = dev->device_name;
1839 
1840     return 0;
1841 
1842 out_table:
1843     ir_free_table(&dev->rc_map);
1844 
1845     return rc;
1846 }
1847 
1848 static int rc_setup_rx_device(struct rc_dev *dev)
1849 {
1850     int rc;
1851 
1852     /* rc_open will be called here */
1853     rc = input_register_device(dev->input_dev);
1854     if (rc)
1855         return rc;
1856 
1857     /*
1858      * Default delay of 250ms is too short for some protocols, especially
1859      * since the timeout is currently set to 250ms. Increase it to 500ms,
1860      * to avoid wrong repetition of the keycodes. Note that this must be
1861      * set after the call to input_register_device().
1862      */
1863     if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
1864         dev->input_dev->rep[REP_DELAY] = 0;
1865     else
1866         dev->input_dev->rep[REP_DELAY] = 500;
1867 
1868     /*
1869      * As a repeat event on protocols like RC-5 and NEC take as long as
1870      * 110/114ms, using 33ms as a repeat period is not the right thing
1871      * to do.
1872      */
1873     dev->input_dev->rep[REP_PERIOD] = 125;
1874 
1875     return 0;
1876 }
1877 
1878 static void rc_free_rx_device(struct rc_dev *dev)
1879 {
1880     if (!dev)
1881         return;
1882 
1883     if (dev->input_dev) {
1884         input_unregister_device(dev->input_dev);
1885         dev->input_dev = NULL;
1886     }
1887 
1888     ir_free_table(&dev->rc_map);
1889 }
1890 
1891 int rc_register_device(struct rc_dev *dev)
1892 {
1893     const char *path;
1894     int attr = 0;
1895     int minor;
1896     int rc;
1897 
1898     if (!dev)
1899         return -EINVAL;
1900 
1901     minor = ida_alloc_max(&rc_ida, RC_DEV_MAX - 1, GFP_KERNEL);
1902     if (minor < 0)
1903         return minor;
1904 
1905     dev->minor = minor;
1906     dev_set_name(&dev->dev, "rc%u", dev->minor);
1907     dev_set_drvdata(&dev->dev, dev);
1908 
1909     dev->dev.groups = dev->sysfs_groups;
1910     if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1911         dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
1912     else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1913         dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
1914     if (dev->s_filter)
1915         dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1916     if (dev->s_wakeup_filter)
1917         dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1918     dev->sysfs_groups[attr++] = NULL;
1919 
1920     if (dev->driver_type == RC_DRIVER_IR_RAW) {
1921         rc = ir_raw_event_prepare(dev);
1922         if (rc < 0)
1923             goto out_minor;
1924     }
1925 
1926     if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1927         rc = rc_prepare_rx_device(dev);
1928         if (rc)
1929             goto out_raw;
1930     }
1931 
1932     dev->registered = true;
1933 
1934     rc = device_add(&dev->dev);
1935     if (rc)
1936         goto out_rx_free;
1937 
1938     path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1939     dev_info(&dev->dev, "%s as %s\n",
1940          dev->device_name ?: "Unspecified device", path ?: "N/A");
1941     kfree(path);
1942 
1943     /*
1944      * once the input device is registered in rc_setup_rx_device,
1945      * userspace can open the input device and rc_open() will be called
1946      * as a result. This results in driver code being allowed to submit
1947      * keycodes with rc_keydown, so lirc must be registered first.
1948      */
1949     if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
1950         rc = lirc_register(dev);
1951         if (rc < 0)
1952             goto out_dev;
1953     }
1954 
1955     if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1956         rc = rc_setup_rx_device(dev);
1957         if (rc)
1958             goto out_lirc;
1959     }
1960 
1961     if (dev->driver_type == RC_DRIVER_IR_RAW) {
1962         rc = ir_raw_event_register(dev);
1963         if (rc < 0)
1964             goto out_rx;
1965     }
1966 
1967     dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor,
1968         dev->driver_name ? dev->driver_name : "unknown");
1969 
1970     return 0;
1971 
1972 out_rx:
1973     rc_free_rx_device(dev);
1974 out_lirc:
1975     if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1976         lirc_unregister(dev);
1977 out_dev:
1978     device_del(&dev->dev);
1979 out_rx_free:
1980     ir_free_table(&dev->rc_map);
1981 out_raw:
1982     ir_raw_event_free(dev);
1983 out_minor:
1984     ida_free(&rc_ida, minor);
1985     return rc;
1986 }
1987 EXPORT_SYMBOL_GPL(rc_register_device);
1988 
1989 static void devm_rc_release(struct device *dev, void *res)
1990 {
1991     rc_unregister_device(*(struct rc_dev **)res);
1992 }
1993 
1994 int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1995 {
1996     struct rc_dev **dr;
1997     int ret;
1998 
1999     dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
2000     if (!dr)
2001         return -ENOMEM;
2002 
2003     ret = rc_register_device(dev);
2004     if (ret) {
2005         devres_free(dr);
2006         return ret;
2007     }
2008 
2009     *dr = dev;
2010     devres_add(parent, dr);
2011 
2012     return 0;
2013 }
2014 EXPORT_SYMBOL_GPL(devm_rc_register_device);
2015 
2016 void rc_unregister_device(struct rc_dev *dev)
2017 {
2018     if (!dev)
2019         return;
2020 
2021     if (dev->driver_type == RC_DRIVER_IR_RAW)
2022         ir_raw_event_unregister(dev);
2023 
2024     del_timer_sync(&dev->timer_keyup);
2025     del_timer_sync(&dev->timer_repeat);
2026 
2027     mutex_lock(&dev->lock);
2028     if (dev->users && dev->close)
2029         dev->close(dev);
2030     dev->registered = false;
2031     mutex_unlock(&dev->lock);
2032 
2033     rc_free_rx_device(dev);
2034 
2035     /*
2036      * lirc device should be freed with dev->registered = false, so
2037      * that userspace polling will get notified.
2038      */
2039     if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
2040         lirc_unregister(dev);
2041 
2042     device_del(&dev->dev);
2043 
2044     ida_free(&rc_ida, dev->minor);
2045 
2046     if (!dev->managed_alloc)
2047         rc_free_device(dev);
2048 }
2049 
2050 EXPORT_SYMBOL_GPL(rc_unregister_device);
2051 
2052 /*
2053  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
2054  */
2055 
2056 static int __init rc_core_init(void)
2057 {
2058     int rc = class_register(&rc_class);
2059     if (rc) {
2060         pr_err("rc_core: unable to register rc class\n");
2061         return rc;
2062     }
2063 
2064     rc = lirc_dev_init();
2065     if (rc) {
2066         pr_err("rc_core: unable to init lirc\n");
2067         class_unregister(&rc_class);
2068         return rc;
2069     }
2070 
2071     led_trigger_register_simple("rc-feedback", &led_feedback);
2072     rc_map_register(&empty_map);
2073 #ifdef CONFIG_MEDIA_CEC_RC
2074     rc_map_register(&cec_map);
2075 #endif
2076 
2077     return 0;
2078 }
2079 
2080 static void __exit rc_core_exit(void)
2081 {
2082     lirc_dev_exit();
2083     class_unregister(&rc_class);
2084     led_trigger_unregister_simple(led_feedback);
2085 #ifdef CONFIG_MEDIA_CEC_RC
2086     rc_map_unregister(&cec_map);
2087 #endif
2088     rc_map_unregister(&empty_map);
2089 }
2090 
2091 subsys_initcall(rc_core_init);
2092 module_exit(rc_core_exit);
2093 
2094 MODULE_AUTHOR("Mauro Carvalho Chehab");
2095 MODULE_LICENSE("GPL v2");