0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011 #include <linux/bitrev.h>
0012 #include <linux/module.h>
0013 #include "rc-core-priv.h"
0014
0015 #define XMP_UNIT 136
0016 #define XMP_LEADER 210
0017 #define XMP_NIBBLE_PREFIX 760
0018 #define XMP_HALFFRAME_SPACE 13800
0019
0020 #define XMP_TRAILER_SPACE 20000
0021
0022 enum xmp_state {
0023 STATE_INACTIVE,
0024 STATE_LEADER_PULSE,
0025 STATE_NIBBLE_SPACE,
0026 };
0027
0028
0029
0030
0031
0032
0033
0034
0035 static int ir_xmp_decode(struct rc_dev *dev, struct ir_raw_event ev)
0036 {
0037 struct xmp_dec *data = &dev->raw->xmp;
0038
0039 if (!is_timing_event(ev)) {
0040 if (ev.overflow)
0041 data->state = STATE_INACTIVE;
0042 return 0;
0043 }
0044
0045 dev_dbg(&dev->dev, "XMP decode started at state %d %d (%uus %s)\n",
0046 data->state, data->count, ev.duration, TO_STR(ev.pulse));
0047
0048 switch (data->state) {
0049
0050 case STATE_INACTIVE:
0051 if (!ev.pulse)
0052 break;
0053
0054 if (eq_margin(ev.duration, XMP_LEADER, XMP_UNIT / 2)) {
0055 data->count = 0;
0056 data->state = STATE_NIBBLE_SPACE;
0057 }
0058
0059 return 0;
0060
0061 case STATE_LEADER_PULSE:
0062 if (!ev.pulse)
0063 break;
0064
0065 if (eq_margin(ev.duration, XMP_LEADER, XMP_UNIT / 2))
0066 data->state = STATE_NIBBLE_SPACE;
0067
0068 return 0;
0069
0070 case STATE_NIBBLE_SPACE:
0071 if (ev.pulse)
0072 break;
0073
0074 if (geq_margin(ev.duration, XMP_TRAILER_SPACE, XMP_NIBBLE_PREFIX)) {
0075 int divider, i;
0076 u8 addr, subaddr, subaddr2, toggle, oem, obc1, obc2, sum1, sum2;
0077 u32 *n;
0078 u32 scancode;
0079
0080 if (data->count != 16) {
0081 dev_dbg(&dev->dev, "received TRAILER period at index %d: %u\n",
0082 data->count, ev.duration);
0083 data->state = STATE_INACTIVE;
0084 return -EINVAL;
0085 }
0086
0087 n = data->durations;
0088
0089
0090
0091
0092
0093 divider = (n[3] - XMP_NIBBLE_PREFIX) / 15 - 2000;
0094 if (divider < 50) {
0095 dev_dbg(&dev->dev, "divider to small %d.\n",
0096 divider);
0097 data->state = STATE_INACTIVE;
0098 return -EINVAL;
0099 }
0100
0101
0102 for (i = 0; i < 16; i++)
0103 n[i] = (n[i] - XMP_NIBBLE_PREFIX) / divider;
0104 sum1 = (15 + n[0] + n[1] + n[2] + n[3] +
0105 n[4] + n[5] + n[6] + n[7]) % 16;
0106 sum2 = (15 + n[8] + n[9] + n[10] + n[11] +
0107 n[12] + n[13] + n[14] + n[15]) % 16;
0108
0109 if (sum1 != 15 || sum2 != 15) {
0110 dev_dbg(&dev->dev, "checksum errors sum1=0x%X sum2=0x%X\n",
0111 sum1, sum2);
0112 data->state = STATE_INACTIVE;
0113 return -EINVAL;
0114 }
0115
0116 subaddr = n[0] << 4 | n[2];
0117 subaddr2 = n[8] << 4 | n[11];
0118 oem = n[4] << 4 | n[5];
0119 addr = n[6] << 4 | n[7];
0120 toggle = n[10];
0121 obc1 = n[12] << 4 | n[13];
0122 obc2 = n[14] << 4 | n[15];
0123 if (subaddr != subaddr2) {
0124 dev_dbg(&dev->dev, "subaddress nibbles mismatch 0x%02X != 0x%02X\n",
0125 subaddr, subaddr2);
0126 data->state = STATE_INACTIVE;
0127 return -EINVAL;
0128 }
0129 if (oem != 0x44)
0130 dev_dbg(&dev->dev, "Warning: OEM nibbles 0x%02X. Expected 0x44\n",
0131 oem);
0132
0133 scancode = addr << 24 | subaddr << 16 |
0134 obc1 << 8 | obc2;
0135 dev_dbg(&dev->dev, "XMP scancode 0x%06x\n", scancode);
0136
0137 if (toggle == 0) {
0138 rc_keydown(dev, RC_PROTO_XMP, scancode, 0);
0139 } else {
0140 rc_repeat(dev);
0141 dev_dbg(&dev->dev, "Repeat last key\n");
0142 }
0143 data->state = STATE_INACTIVE;
0144
0145 return 0;
0146
0147 } else if (geq_margin(ev.duration, XMP_HALFFRAME_SPACE, XMP_NIBBLE_PREFIX)) {
0148
0149 if (data->count == 16) {
0150 dev_dbg(&dev->dev, "received half frame pulse at index %d. Probably a final frame key-up event: %u\n",
0151 data->count, ev.duration);
0152
0153
0154
0155
0156
0157 data->count = 8;
0158 }
0159
0160 else if (data->count != 8)
0161 dev_dbg(&dev->dev, "received half frame pulse at index %d: %u\n",
0162 data->count, ev.duration);
0163 data->state = STATE_LEADER_PULSE;
0164
0165 return 0;
0166
0167 } else if (geq_margin(ev.duration, XMP_NIBBLE_PREFIX, XMP_UNIT)) {
0168
0169 if (data->count == 16) {
0170 dev_dbg(&dev->dev, "too many pulses (%d) ignoring: %u\n",
0171 data->count, ev.duration);
0172 data->state = STATE_INACTIVE;
0173 return -EINVAL;
0174 }
0175 data->durations[data->count] = ev.duration;
0176 data->count++;
0177 data->state = STATE_LEADER_PULSE;
0178
0179 return 0;
0180
0181 }
0182
0183 break;
0184 }
0185
0186 dev_dbg(&dev->dev, "XMP decode failed at count %d state %d (%uus %s)\n",
0187 data->count, data->state, ev.duration, TO_STR(ev.pulse));
0188 data->state = STATE_INACTIVE;
0189 return -EINVAL;
0190 }
0191
0192 static struct ir_raw_handler xmp_handler = {
0193 .protocols = RC_PROTO_BIT_XMP,
0194 .decode = ir_xmp_decode,
0195 .min_timeout = XMP_TRAILER_SPACE,
0196 };
0197
0198 static int __init ir_xmp_decode_init(void)
0199 {
0200 ir_raw_handler_register(&xmp_handler);
0201
0202 printk(KERN_INFO "IR XMP protocol handler initialized\n");
0203 return 0;
0204 }
0205
0206 static void __exit ir_xmp_decode_exit(void)
0207 {
0208 ir_raw_handler_unregister(&xmp_handler);
0209 }
0210
0211 module_init(ir_xmp_decode_init);
0212 module_exit(ir_xmp_decode_exit);
0213
0214 MODULE_LICENSE("GPL");
0215 MODULE_AUTHOR("Marcel Mol <marcel@mesa.nl>");
0216 MODULE_AUTHOR("MESA Consulting (http://www.mesa.nl)");
0217 MODULE_DESCRIPTION("XMP IR protocol decoder");