Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  *  FM Driver for Connectivity chip of Texas Instruments.
0004  *
0005  *  This sub-module of FM driver is common for FM RX and TX
0006  *  functionality. This module is responsible for:
0007  *  1) Forming group of Channel-8 commands to perform particular
0008  *     functionality (eg., frequency set require more than
0009  *     one Channel-8 command to be sent to the chip).
0010  *  2) Sending each Channel-8 command to the chip and reading
0011  *     response back over Shared Transport.
0012  *  3) Managing TX and RX Queues and Tasklets.
0013  *  4) Handling FM Interrupt packet and taking appropriate action.
0014  *  5) Loading FM firmware to the chip (common, FM TX, and FM RX
0015  *     firmware files based on mode selection)
0016  *
0017  *  Copyright (C) 2011 Texas Instruments
0018  *  Author: Raja Mani <raja_mani@ti.com>
0019  *  Author: Manjunatha Halli <manjunatha_halli@ti.com>
0020  */
0021 
0022 #include <linux/delay.h>
0023 #include <linux/firmware.h>
0024 #include <linux/module.h>
0025 #include <linux/nospec.h>
0026 #include <linux/jiffies.h>
0027 
0028 #include "fmdrv.h"
0029 #include "fmdrv_v4l2.h"
0030 #include "fmdrv_common.h"
0031 #include <linux/ti_wilink_st.h>
0032 #include "fmdrv_rx.h"
0033 #include "fmdrv_tx.h"
0034 
0035 /* Region info */
0036 static struct region_info region_configs[] = {
0037     /* Europe/US */
0038     {
0039      .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
0040      .bot_freq = 87500, /* 87.5 MHz */
0041      .top_freq = 108000,    /* 108 MHz */
0042      .fm_band = 0,
0043      },
0044     /* Japan */
0045     {
0046      .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
0047      .bot_freq = 76000, /* 76 MHz */
0048      .top_freq = 90000, /* 90 MHz */
0049      .fm_band = 1,
0050      },
0051 };
0052 
0053 /* Band selection */
0054 static u8 default_radio_region; /* Europe/US */
0055 module_param(default_radio_region, byte, 0);
0056 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
0057 
0058 /* RDS buffer blocks */
0059 static u32 default_rds_buf = 300;
0060 module_param(default_rds_buf, uint, 0444);
0061 MODULE_PARM_DESC(default_rds_buf, "RDS buffer entries");
0062 
0063 /* Radio Nr */
0064 static u32 radio_nr = -1;
0065 module_param(radio_nr, int, 0444);
0066 MODULE_PARM_DESC(radio_nr, "Radio Nr");
0067 
0068 /* FM irq handlers forward declaration */
0069 static void fm_irq_send_flag_getcmd(struct fmdev *);
0070 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
0071 static void fm_irq_handle_hw_malfunction(struct fmdev *);
0072 static void fm_irq_handle_rds_start(struct fmdev *);
0073 static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
0074 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
0075 static void fm_irq_handle_rds_finish(struct fmdev *);
0076 static void fm_irq_handle_tune_op_ended(struct fmdev *);
0077 static void fm_irq_handle_power_enb(struct fmdev *);
0078 static void fm_irq_handle_low_rssi_start(struct fmdev *);
0079 static void fm_irq_afjump_set_pi(struct fmdev *);
0080 static void fm_irq_handle_set_pi_resp(struct fmdev *);
0081 static void fm_irq_afjump_set_pimask(struct fmdev *);
0082 static void fm_irq_handle_set_pimask_resp(struct fmdev *);
0083 static void fm_irq_afjump_setfreq(struct fmdev *);
0084 static void fm_irq_handle_setfreq_resp(struct fmdev *);
0085 static void fm_irq_afjump_enableint(struct fmdev *);
0086 static void fm_irq_afjump_enableint_resp(struct fmdev *);
0087 static void fm_irq_start_afjump(struct fmdev *);
0088 static void fm_irq_handle_start_afjump_resp(struct fmdev *);
0089 static void fm_irq_afjump_rd_freq(struct fmdev *);
0090 static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
0091 static void fm_irq_handle_low_rssi_finish(struct fmdev *);
0092 static void fm_irq_send_intmsk_cmd(struct fmdev *);
0093 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
0094 
0095 /*
0096  * When FM common module receives interrupt packet, following handlers
0097  * will be executed one after another to service the interrupt(s)
0098  */
0099 enum fmc_irq_handler_index {
0100     FM_SEND_FLAG_GETCMD_IDX,
0101     FM_HANDLE_FLAG_GETCMD_RESP_IDX,
0102 
0103     /* HW malfunction irq handler */
0104     FM_HW_MAL_FUNC_IDX,
0105 
0106     /* RDS threshold reached irq handler */
0107     FM_RDS_START_IDX,
0108     FM_RDS_SEND_RDS_GETCMD_IDX,
0109     FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
0110     FM_RDS_FINISH_IDX,
0111 
0112     /* Tune operation ended irq handler */
0113     FM_HW_TUNE_OP_ENDED_IDX,
0114 
0115     /* TX power enable irq handler */
0116     FM_HW_POWER_ENB_IDX,
0117 
0118     /* Low RSSI irq handler */
0119     FM_LOW_RSSI_START_IDX,
0120     FM_AF_JUMP_SETPI_IDX,
0121     FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
0122     FM_AF_JUMP_SETPI_MASK_IDX,
0123     FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
0124     FM_AF_JUMP_SET_AF_FREQ_IDX,
0125     FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
0126     FM_AF_JUMP_ENABLE_INT_IDX,
0127     FM_AF_JUMP_ENABLE_INT_RESP_IDX,
0128     FM_AF_JUMP_START_AFJUMP_IDX,
0129     FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
0130     FM_AF_JUMP_RD_FREQ_IDX,
0131     FM_AF_JUMP_RD_FREQ_RESP_IDX,
0132     FM_LOW_RSSI_FINISH_IDX,
0133 
0134     /* Interrupt process post action */
0135     FM_SEND_INTMSK_CMD_IDX,
0136     FM_HANDLE_INTMSK_CMD_RESP_IDX,
0137 };
0138 
0139 /* FM interrupt handler table */
0140 static int_handler_prototype int_handler_table[] = {
0141     fm_irq_send_flag_getcmd,
0142     fm_irq_handle_flag_getcmd_resp,
0143     fm_irq_handle_hw_malfunction,
0144     fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
0145     fm_irq_send_rdsdata_getcmd,
0146     fm_irq_handle_rdsdata_getcmd_resp,
0147     fm_irq_handle_rds_finish,
0148     fm_irq_handle_tune_op_ended,
0149     fm_irq_handle_power_enb, /* TX power enable irq handler */
0150     fm_irq_handle_low_rssi_start,
0151     fm_irq_afjump_set_pi,
0152     fm_irq_handle_set_pi_resp,
0153     fm_irq_afjump_set_pimask,
0154     fm_irq_handle_set_pimask_resp,
0155     fm_irq_afjump_setfreq,
0156     fm_irq_handle_setfreq_resp,
0157     fm_irq_afjump_enableint,
0158     fm_irq_afjump_enableint_resp,
0159     fm_irq_start_afjump,
0160     fm_irq_handle_start_afjump_resp,
0161     fm_irq_afjump_rd_freq,
0162     fm_irq_afjump_rd_freq_resp,
0163     fm_irq_handle_low_rssi_finish,
0164     fm_irq_send_intmsk_cmd, /* Interrupt process post action */
0165     fm_irq_handle_intmsk_cmd_resp
0166 };
0167 
0168 static long (*g_st_write) (struct sk_buff *skb);
0169 static struct completion wait_for_fmdrv_reg_comp;
0170 
0171 static inline void fm_irq_call(struct fmdev *fmdev)
0172 {
0173     fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
0174 }
0175 
0176 /* Continue next function in interrupt handler table */
0177 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
0178 {
0179     fmdev->irq_info.stage = stage;
0180     fm_irq_call(fmdev);
0181 }
0182 
0183 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
0184 {
0185     fmdev->irq_info.stage = stage;
0186     mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
0187 }
0188 
0189 #ifdef FM_DUMP_TXRX_PKT
0190  /* To dump outgoing FM Channel-8 packets */
0191 inline void dump_tx_skb_data(struct sk_buff *skb)
0192 {
0193     int len, len_org;
0194     u8 index;
0195     struct fm_cmd_msg_hdr *cmd_hdr;
0196 
0197     cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
0198     printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
0199            fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
0200            cmd_hdr->len, cmd_hdr->op,
0201            cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
0202 
0203     len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
0204     if (len_org > 0) {
0205         printk(KERN_CONT "\n   data(%d): ", cmd_hdr->dlen);
0206         len = min(len_org, 14);
0207         for (index = 0; index < len; index++)
0208             printk(KERN_CONT "%x ",
0209                    skb->data[FM_CMD_MSG_HDR_SIZE + index]);
0210         printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
0211     }
0212     printk(KERN_CONT "\n");
0213 }
0214 
0215  /* To dump incoming FM Channel-8 packets */
0216 inline void dump_rx_skb_data(struct sk_buff *skb)
0217 {
0218     int len, len_org;
0219     u8 index;
0220     struct fm_event_msg_hdr *evt_hdr;
0221 
0222     evt_hdr = (struct fm_event_msg_hdr *)skb->data;
0223     printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x opcode:%02x type:%s dlen:%02x",
0224            evt_hdr->hdr, evt_hdr->len,
0225            evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
0226            (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
0227 
0228     len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
0229     if (len_org > 0) {
0230         printk(KERN_CONT "\n   data(%d): ", evt_hdr->dlen);
0231         len = min(len_org, 14);
0232         for (index = 0; index < len; index++)
0233             printk(KERN_CONT "%x ",
0234                    skb->data[FM_EVT_MSG_HDR_SIZE + index]);
0235         printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
0236     }
0237     printk(KERN_CONT "\n");
0238 }
0239 #endif
0240 
0241 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
0242 {
0243     fmdev->rx.region = region_configs[region_to_set];
0244 }
0245 
0246 /*
0247  * FM common sub-module will schedule this tasklet whenever it receives
0248  * FM packet from ST driver.
0249  */
0250 static void recv_tasklet(struct tasklet_struct *t)
0251 {
0252     struct fmdev *fmdev;
0253     struct fm_irq *irq_info;
0254     struct fm_event_msg_hdr *evt_hdr;
0255     struct sk_buff *skb;
0256     u8 num_fm_hci_cmds;
0257     unsigned long flags;
0258 
0259     fmdev = from_tasklet(fmdev, t, tx_task);
0260     irq_info = &fmdev->irq_info;
0261     /* Process all packets in the RX queue */
0262     while ((skb = skb_dequeue(&fmdev->rx_q))) {
0263         if (skb->len < sizeof(struct fm_event_msg_hdr)) {
0264             fmerr("skb(%p) has only %d bytes, at least need %zu bytes to decode\n",
0265                   skb,
0266                   skb->len, sizeof(struct fm_event_msg_hdr));
0267             kfree_skb(skb);
0268             continue;
0269         }
0270 
0271         evt_hdr = (void *)skb->data;
0272         num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
0273 
0274         /* FM interrupt packet? */
0275         if (evt_hdr->op == FM_INTERRUPT) {
0276             /* FM interrupt handler started already? */
0277             if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
0278                 set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
0279                 if (irq_info->stage != 0) {
0280                     fmerr("Inval stage resetting to zero\n");
0281                     irq_info->stage = 0;
0282                 }
0283 
0284                 /*
0285                  * Execute first function in interrupt handler
0286                  * table.
0287                  */
0288                 irq_info->handlers[irq_info->stage](fmdev);
0289             } else {
0290                 set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
0291             }
0292             kfree_skb(skb);
0293         }
0294         /* Anyone waiting for this with completion handler? */
0295         else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
0296 
0297             spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
0298             fmdev->resp_skb = skb;
0299             spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
0300             complete(fmdev->resp_comp);
0301 
0302             fmdev->resp_comp = NULL;
0303             atomic_set(&fmdev->tx_cnt, 1);
0304         }
0305         /* Is this for interrupt handler? */
0306         else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
0307             if (fmdev->resp_skb != NULL)
0308                 fmerr("Response SKB ptr not NULL\n");
0309 
0310             spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
0311             fmdev->resp_skb = skb;
0312             spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
0313 
0314             /* Execute interrupt handler where state index points */
0315             irq_info->handlers[irq_info->stage](fmdev);
0316 
0317             kfree_skb(skb);
0318             atomic_set(&fmdev->tx_cnt, 1);
0319         } else {
0320             fmerr("Nobody claimed SKB(%p),purging\n", skb);
0321         }
0322 
0323         /*
0324          * Check flow control field. If Num_FM_HCI_Commands field is
0325          * not zero, schedule FM TX tasklet.
0326          */
0327         if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
0328             if (!skb_queue_empty(&fmdev->tx_q))
0329                 tasklet_schedule(&fmdev->tx_task);
0330     }
0331 }
0332 
0333 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */
0334 static void send_tasklet(struct tasklet_struct *t)
0335 {
0336     struct fmdev *fmdev;
0337     struct sk_buff *skb;
0338     int len;
0339 
0340     fmdev = from_tasklet(fmdev, t, tx_task);
0341 
0342     if (!atomic_read(&fmdev->tx_cnt))
0343         return;
0344 
0345     /* Check, is there any timeout happened to last transmitted packet */
0346     if (time_is_before_jiffies(fmdev->last_tx_jiffies + FM_DRV_TX_TIMEOUT)) {
0347         fmerr("TX timeout occurred\n");
0348         atomic_set(&fmdev->tx_cnt, 1);
0349     }
0350 
0351     /* Send queued FM TX packets */
0352     skb = skb_dequeue(&fmdev->tx_q);
0353     if (!skb)
0354         return;
0355 
0356     atomic_dec(&fmdev->tx_cnt);
0357     fmdev->pre_op = fm_cb(skb)->fm_op;
0358 
0359     if (fmdev->resp_comp != NULL)
0360         fmerr("Response completion handler is not NULL\n");
0361 
0362     fmdev->resp_comp = fm_cb(skb)->completion;
0363 
0364     /* Write FM packet to ST driver */
0365     len = g_st_write(skb);
0366     if (len < 0) {
0367         kfree_skb(skb);
0368         fmdev->resp_comp = NULL;
0369         fmerr("TX tasklet failed to send skb(%p)\n", skb);
0370         atomic_set(&fmdev->tx_cnt, 1);
0371     } else {
0372         fmdev->last_tx_jiffies = jiffies;
0373     }
0374 }
0375 
0376 /*
0377  * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
0378  * transmission
0379  */
0380 static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
0381         int payload_len, struct completion *wait_completion)
0382 {
0383     struct sk_buff *skb;
0384     struct fm_cmd_msg_hdr *hdr;
0385     int size;
0386 
0387     if (fm_op >= FM_INTERRUPT) {
0388         fmerr("Invalid fm opcode - %d\n", fm_op);
0389         return -EINVAL;
0390     }
0391     if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
0392         fmerr("Payload data is NULL during fw download\n");
0393         return -EINVAL;
0394     }
0395     if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
0396         size =
0397             FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
0398     else
0399         size = payload_len;
0400 
0401     skb = alloc_skb(size, GFP_ATOMIC);
0402     if (!skb) {
0403         fmerr("No memory to create new SKB\n");
0404         return -ENOMEM;
0405     }
0406     /*
0407      * Don't fill FM header info for the commands which come from
0408      * FM firmware file.
0409      */
0410     if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
0411             test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
0412         /* Fill command header info */
0413         hdr = skb_put(skb, FM_CMD_MSG_HDR_SIZE);
0414         hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER;  /* 0x08 */
0415 
0416         /* 3 (fm_opcode,rd_wr,dlen) + payload len) */
0417         hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
0418 
0419         /* FM opcode */
0420         hdr->op = fm_op;
0421 
0422         /* read/write type */
0423         hdr->rd_wr = type;
0424         hdr->dlen = payload_len;
0425         fm_cb(skb)->fm_op = fm_op;
0426 
0427         /*
0428          * If firmware download has finished and the command is
0429          * not a read command then payload is != NULL - a write
0430          * command with u16 payload - convert to be16
0431          */
0432         if (payload != NULL)
0433             *(__be16 *)payload = cpu_to_be16(*(u16 *)payload);
0434 
0435     } else if (payload != NULL) {
0436         fm_cb(skb)->fm_op = *((u8 *)payload + 2);
0437     }
0438     if (payload != NULL)
0439         skb_put_data(skb, payload, payload_len);
0440 
0441     fm_cb(skb)->completion = wait_completion;
0442     skb_queue_tail(&fmdev->tx_q, skb);
0443     tasklet_schedule(&fmdev->tx_task);
0444 
0445     return 0;
0446 }
0447 
0448 /* Sends FM Channel-8 command to the chip and waits for the response */
0449 int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
0450         unsigned int payload_len, void *response, int *response_len)
0451 {
0452     struct sk_buff *skb;
0453     struct fm_event_msg_hdr *evt_hdr;
0454     unsigned long flags;
0455     int ret;
0456 
0457     init_completion(&fmdev->maintask_comp);
0458     ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
0459                 &fmdev->maintask_comp);
0460     if (ret)
0461         return ret;
0462 
0463     if (!wait_for_completion_timeout(&fmdev->maintask_comp,
0464                      FM_DRV_TX_TIMEOUT)) {
0465         fmerr("Timeout(%d sec),didn't get regcompletion signal from RX tasklet\n",
0466                jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
0467         return -ETIMEDOUT;
0468     }
0469     if (!fmdev->resp_skb) {
0470         fmerr("Response SKB is missing\n");
0471         return -EFAULT;
0472     }
0473     spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
0474     skb = fmdev->resp_skb;
0475     fmdev->resp_skb = NULL;
0476     spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
0477 
0478     evt_hdr = (void *)skb->data;
0479     if (evt_hdr->status != 0) {
0480         fmerr("Received event pkt status(%d) is not zero\n",
0481                evt_hdr->status);
0482         kfree_skb(skb);
0483         return -EIO;
0484     }
0485     /* Send response data to caller */
0486     if (response != NULL && response_len != NULL && evt_hdr->dlen &&
0487         evt_hdr->dlen <= payload_len) {
0488         /* Skip header info and copy only response data */
0489         skb_pull(skb, sizeof(struct fm_event_msg_hdr));
0490         memcpy(response, skb->data, evt_hdr->dlen);
0491         *response_len = evt_hdr->dlen;
0492     } else if (response_len != NULL && evt_hdr->dlen == 0) {
0493         *response_len = 0;
0494     }
0495     kfree_skb(skb);
0496 
0497     return 0;
0498 }
0499 
0500 /* --- Helper functions used in FM interrupt handlers ---*/
0501 static inline int check_cmdresp_status(struct fmdev *fmdev,
0502         struct sk_buff **skb)
0503 {
0504     struct fm_event_msg_hdr *fm_evt_hdr;
0505     unsigned long flags;
0506 
0507     del_timer(&fmdev->irq_info.timer);
0508 
0509     spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
0510     *skb = fmdev->resp_skb;
0511     fmdev->resp_skb = NULL;
0512     spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
0513 
0514     fm_evt_hdr = (void *)(*skb)->data;
0515     if (fm_evt_hdr->status != 0) {
0516         fmerr("irq: opcode %x response status is not zero Initiating irq recovery process\n",
0517                 fm_evt_hdr->op);
0518 
0519         mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
0520         return -1;
0521     }
0522 
0523     return 0;
0524 }
0525 
0526 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
0527 {
0528     struct sk_buff *skb;
0529 
0530     if (!check_cmdresp_status(fmdev, &skb))
0531         fm_irq_call_stage(fmdev, stage);
0532 }
0533 
0534 /*
0535  * Interrupt process timeout handler.
0536  * One of the irq handler did not get proper response from the chip. So take
0537  * recovery action here. FM interrupts are disabled in the beginning of
0538  * interrupt process. Therefore reset stage index to re-enable default
0539  * interrupts. So that next interrupt will be processed as usual.
0540  */
0541 static void int_timeout_handler(struct timer_list *t)
0542 {
0543     struct fmdev *fmdev;
0544     struct fm_irq *fmirq;
0545 
0546     fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
0547     fmdev = from_timer(fmdev, t, irq_info.timer);
0548     fmirq = &fmdev->irq_info;
0549     fmirq->retry++;
0550 
0551     if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
0552         /* Stop recovery action (interrupt reenable process) and
0553          * reset stage index & retry count values */
0554         fmirq->stage = 0;
0555         fmirq->retry = 0;
0556         fmerr("Recovery action failed duringirq processing, max retry reached\n");
0557         return;
0558     }
0559     fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
0560 }
0561 
0562 /* --------- FM interrupt handlers ------------*/
0563 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
0564 {
0565     u16 flag;
0566 
0567     /* Send FLAG_GET command , to know the source of interrupt */
0568     if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
0569         fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
0570 }
0571 
0572 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
0573 {
0574     struct sk_buff *skb;
0575     struct fm_event_msg_hdr *fm_evt_hdr;
0576 
0577     if (check_cmdresp_status(fmdev, &skb))
0578         return;
0579 
0580     fm_evt_hdr = (void *)skb->data;
0581     if (fm_evt_hdr->dlen > sizeof(fmdev->irq_info.flag))
0582         return;
0583 
0584     /* Skip header info and copy only response data */
0585     skb_pull(skb, sizeof(struct fm_event_msg_hdr));
0586     memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
0587 
0588     fmdev->irq_info.flag = be16_to_cpu((__force __be16)fmdev->irq_info.flag);
0589     fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
0590 
0591     /* Continue next function in interrupt handler table */
0592     fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
0593 }
0594 
0595 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
0596 {
0597     if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
0598         fmerr("irq: HW MAL int received - do nothing\n");
0599 
0600     /* Continue next function in interrupt handler table */
0601     fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
0602 }
0603 
0604 static void fm_irq_handle_rds_start(struct fmdev *fmdev)
0605 {
0606     if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
0607         fmdbg("irq: rds threshold reached\n");
0608         fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
0609     } else {
0610         /* Continue next function in interrupt handler table */
0611         fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
0612     }
0613 
0614     fm_irq_call(fmdev);
0615 }
0616 
0617 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
0618 {
0619     /* Send the command to read RDS data from the chip */
0620     if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
0621                 (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
0622         fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
0623 }
0624 
0625 /* Keeps track of current RX channel AF (Alternate Frequency) */
0626 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
0627 {
0628     struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
0629     u8 reg_idx = fmdev->rx.region.fm_band;
0630     u8 index;
0631     u32 freq;
0632 
0633     /* First AF indicates the number of AF follows. Reset the list */
0634     if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
0635         fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
0636         fmdev->rx.stat_info.afcache_size = 0;
0637         fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
0638         return;
0639     }
0640 
0641     if (af < FM_RDS_MIN_AF)
0642         return;
0643     if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
0644         return;
0645     if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
0646         return;
0647 
0648     freq = fmdev->rx.region.bot_freq + (af * 100);
0649     if (freq == fmdev->rx.freq) {
0650         fmdbg("Current freq(%d) is matching with received AF(%d)\n",
0651                 fmdev->rx.freq, freq);
0652         return;
0653     }
0654     /* Do check in AF cache */
0655     for (index = 0; index < stat_info->afcache_size; index++) {
0656         if (stat_info->af_cache[index] == freq)
0657             break;
0658     }
0659     /* Reached the limit of the list - ignore the next AF */
0660     if (index == stat_info->af_list_max) {
0661         fmdbg("AF cache is full\n");
0662         return;
0663     }
0664     /*
0665      * If we reached the end of the list then this AF is not
0666      * in the list - add it.
0667      */
0668     if (index == stat_info->afcache_size) {
0669         fmdbg("Storing AF %d to cache index %d\n", freq, index);
0670         stat_info->af_cache[index] = freq;
0671         stat_info->afcache_size++;
0672     }
0673 }
0674 
0675 /*
0676  * Converts RDS buffer data from big endian format
0677  * to little endian format.
0678  */
0679 static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
0680         struct fm_rdsdata_format *rds_format)
0681 {
0682     u8 index = 0;
0683     u8 *rds_buff;
0684 
0685     /*
0686      * Since in Orca the 2 RDS Data bytes are in little endian and
0687      * in Dolphin they are in big endian, the parsing of the RDS data
0688      * is chip dependent
0689      */
0690     if (fmdev->asci_id != 0x6350) {
0691         rds_buff = &rds_format->data.groupdatabuff.buff[0];
0692         while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
0693             swap(rds_buff[index], rds_buff[index + 1]);
0694             index += 2;
0695         }
0696     }
0697 }
0698 
0699 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
0700 {
0701     struct sk_buff *skb;
0702     struct fm_rdsdata_format rds_fmt;
0703     struct fm_rds *rds = &fmdev->rx.rds;
0704     unsigned long group_idx, flags;
0705     u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE];
0706     u8 type, blk_idx, idx;
0707     u16 cur_picode;
0708     u32 rds_len;
0709 
0710     if (check_cmdresp_status(fmdev, &skb))
0711         return;
0712 
0713     /* Skip header info */
0714     skb_pull(skb, sizeof(struct fm_event_msg_hdr));
0715     rds_data = skb->data;
0716     rds_len = skb->len;
0717 
0718     /* Parse the RDS data */
0719     while (rds_len >= FM_RDS_BLK_SIZE) {
0720         meta_data = rds_data[2];
0721         /* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
0722         type = (meta_data & 0x07);
0723 
0724         /* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
0725         blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
0726         fmdbg("Block index:%d(%s)\n", blk_idx,
0727                (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
0728 
0729         if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
0730             break;
0731 
0732         if (blk_idx > FM_RDS_BLK_IDX_D) {
0733             fmdbg("Block sequence mismatch\n");
0734             rds->last_blk_idx = -1;
0735             break;
0736         }
0737 
0738         /* Skip checkword (control) byte and copy only data byte */
0739         idx = array_index_nospec(blk_idx * (FM_RDS_BLK_SIZE - 1),
0740                      FM_RX_RDS_INFO_FIELD_MAX - (FM_RDS_BLK_SIZE - 1));
0741 
0742         memcpy(&rds_fmt.data.groupdatabuff.buff[idx], rds_data,
0743                FM_RDS_BLK_SIZE - 1);
0744 
0745         rds->last_blk_idx = blk_idx;
0746 
0747         /* If completed a whole group then handle it */
0748         if (blk_idx == FM_RDS_BLK_IDX_D) {
0749             fmdbg("Good block received\n");
0750             fm_rdsparse_swapbytes(fmdev, &rds_fmt);
0751 
0752             /*
0753              * Extract PI code and store in local cache.
0754              * We need this during AF switch processing.
0755              */
0756             cur_picode = be16_to_cpu((__force __be16)rds_fmt.data.groupgeneral.pidata);
0757             if (fmdev->rx.stat_info.picode != cur_picode)
0758                 fmdev->rx.stat_info.picode = cur_picode;
0759 
0760             fmdbg("picode:%d\n", cur_picode);
0761 
0762             group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
0763             fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
0764                     (group_idx % 2) ? "B" : "A");
0765 
0766             group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
0767             if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
0768                 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
0769                 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
0770             }
0771         }
0772         rds_len -= FM_RDS_BLK_SIZE;
0773         rds_data += FM_RDS_BLK_SIZE;
0774     }
0775 
0776     /* Copy raw rds data to internal rds buffer */
0777     rds_data = skb->data;
0778     rds_len = skb->len;
0779 
0780     spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
0781     while (rds_len > 0) {
0782         /*
0783          * Fill RDS buffer as per V4L2 specification.
0784          * Store control byte
0785          */
0786         type = (rds_data[2] & 0x07);
0787         blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
0788         tmpbuf[2] = blk_idx;    /* Offset name */
0789         tmpbuf[2] |= blk_idx << 3;  /* Received offset */
0790 
0791         /* Store data byte */
0792         tmpbuf[0] = rds_data[0];
0793         tmpbuf[1] = rds_data[1];
0794 
0795         memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
0796         rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
0797 
0798         /* Check for overflow & start over */
0799         if (rds->wr_idx == rds->rd_idx) {
0800             fmdbg("RDS buffer overflow\n");
0801             rds->wr_idx = 0;
0802             rds->rd_idx = 0;
0803             break;
0804         }
0805         rds_len -= FM_RDS_BLK_SIZE;
0806         rds_data += FM_RDS_BLK_SIZE;
0807     }
0808     spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
0809 
0810     /* Wakeup read queue */
0811     if (rds->wr_idx != rds->rd_idx)
0812         wake_up_interruptible(&rds->read_queue);
0813 
0814     fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
0815 }
0816 
0817 static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
0818 {
0819     fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
0820 }
0821 
0822 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
0823 {
0824     if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
0825         irq_info.mask) {
0826         fmdbg("irq: tune ended/bandlimit reached\n");
0827         if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
0828             fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
0829         } else {
0830             complete(&fmdev->maintask_comp);
0831             fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
0832         }
0833     } else
0834         fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
0835 
0836     fm_irq_call(fmdev);
0837 }
0838 
0839 static void fm_irq_handle_power_enb(struct fmdev *fmdev)
0840 {
0841     if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
0842         fmdbg("irq: Power Enabled/Disabled\n");
0843         complete(&fmdev->maintask_comp);
0844     }
0845 
0846     fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
0847 }
0848 
0849 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
0850 {
0851     if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
0852         (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
0853         (fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
0854         (fmdev->rx.stat_info.afcache_size != 0)) {
0855         fmdbg("irq: rssi level has fallen below threshold level\n");
0856 
0857         /* Disable further low RSSI interrupts */
0858         fmdev->irq_info.mask &= ~FM_LEV_EVENT;
0859 
0860         fmdev->rx.afjump_idx = 0;
0861         fmdev->rx.freq_before_jump = fmdev->rx.freq;
0862         fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
0863     } else {
0864         /* Continue next function in interrupt handler table */
0865         fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
0866     }
0867 
0868     fm_irq_call(fmdev);
0869 }
0870 
0871 static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
0872 {
0873     u16 payload;
0874 
0875     /* Set PI code - must be updated if the AF list is not empty */
0876     payload = fmdev->rx.stat_info.picode;
0877     if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
0878         fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
0879 }
0880 
0881 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
0882 {
0883     fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
0884 }
0885 
0886 /*
0887  * Set PI mask.
0888  * 0xFFFF = Enable PI code matching
0889  * 0x0000 = Disable PI code matching
0890  */
0891 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
0892 {
0893     u16 payload;
0894 
0895     payload = 0x0000;
0896     if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
0897         fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
0898 }
0899 
0900 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
0901 {
0902     fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
0903 }
0904 
0905 static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
0906 {
0907     u16 frq_index;
0908     u16 payload;
0909 
0910     fmdbg("Switch to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
0911     frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
0912          fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
0913 
0914     payload = frq_index;
0915     if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
0916         fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
0917 }
0918 
0919 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
0920 {
0921     fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
0922 }
0923 
0924 static void fm_irq_afjump_enableint(struct fmdev *fmdev)
0925 {
0926     u16 payload;
0927 
0928     /* Enable FR (tuning operation ended) interrupt */
0929     payload = FM_FR_EVENT;
0930     if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
0931         fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
0932 }
0933 
0934 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
0935 {
0936     fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
0937 }
0938 
0939 static void fm_irq_start_afjump(struct fmdev *fmdev)
0940 {
0941     u16 payload;
0942 
0943     payload = FM_TUNER_AF_JUMP_MODE;
0944     if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
0945             sizeof(payload), NULL))
0946         fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
0947 }
0948 
0949 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
0950 {
0951     struct sk_buff *skb;
0952 
0953     if (check_cmdresp_status(fmdev, &skb))
0954         return;
0955 
0956     fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
0957     set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
0958     clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
0959 }
0960 
0961 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
0962 {
0963     u16 payload;
0964 
0965     if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
0966         fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
0967 }
0968 
0969 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
0970 {
0971     struct sk_buff *skb;
0972     u16 read_freq;
0973     u32 curr_freq, jumped_freq;
0974 
0975     if (check_cmdresp_status(fmdev, &skb))
0976         return;
0977 
0978     /* Skip header info and copy only response data */
0979     skb_pull(skb, sizeof(struct fm_event_msg_hdr));
0980     memcpy(&read_freq, skb->data, sizeof(read_freq));
0981     read_freq = be16_to_cpu((__force __be16)read_freq);
0982     curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
0983 
0984     jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
0985 
0986     /* If the frequency was changed the jump succeeded */
0987     if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
0988         fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
0989         fmdev->rx.freq = curr_freq;
0990         fm_rx_reset_rds_cache(fmdev);
0991 
0992         /* AF feature is on, enable low level RSSI interrupt */
0993         if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
0994             fmdev->irq_info.mask |= FM_LEV_EVENT;
0995 
0996         fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
0997     } else {        /* jump to the next freq in the AF list */
0998         fmdev->rx.afjump_idx++;
0999 
1000         /* If we reached the end of the list - stop searching */
1001         if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
1002             fmdbg("AF switch processing failed\n");
1003             fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1004         } else {    /* AF List is not over - try next one */
1005 
1006             fmdbg("Trying next freq in AF cache\n");
1007             fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
1008         }
1009     }
1010     fm_irq_call(fmdev);
1011 }
1012 
1013 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
1014 {
1015     fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
1016 }
1017 
1018 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
1019 {
1020     u16 payload;
1021 
1022     /* Re-enable FM interrupts */
1023     payload = fmdev->irq_info.mask;
1024 
1025     if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
1026             sizeof(payload), NULL))
1027         fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
1028 }
1029 
1030 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
1031 {
1032     struct sk_buff *skb;
1033 
1034     if (check_cmdresp_status(fmdev, &skb))
1035         return;
1036     /*
1037      * This is last function in interrupt table to be executed.
1038      * So, reset stage index to 0.
1039      */
1040     fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
1041 
1042     /* Start processing any pending interrupt */
1043     if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
1044         fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
1045     else
1046         clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
1047 }
1048 
1049 /* Returns availability of RDS data in internal buffer */
1050 int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
1051                 struct poll_table_struct *pts)
1052 {
1053     poll_wait(file, &fmdev->rx.rds.read_queue, pts);
1054     if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
1055         return 0;
1056 
1057     return -EAGAIN;
1058 }
1059 
1060 /* Copies RDS data from internal buffer to user buffer */
1061 int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
1062         u8 __user *buf, size_t count)
1063 {
1064     u32 block_count;
1065     u8 tmpbuf[FM_RDS_BLK_SIZE];
1066     unsigned long flags;
1067     int ret;
1068 
1069     if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1070         if (file->f_flags & O_NONBLOCK)
1071             return -EWOULDBLOCK;
1072 
1073         ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
1074                 (fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
1075         if (ret)
1076             return -EINTR;
1077     }
1078 
1079     /* Calculate block count from byte count */
1080     count /= FM_RDS_BLK_SIZE;
1081     block_count = 0;
1082     ret = 0;
1083 
1084     while (block_count < count) {
1085         spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
1086 
1087         if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1088             spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1089             break;
1090         }
1091         memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
1092                     FM_RDS_BLK_SIZE);
1093         fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
1094         if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
1095             fmdev->rx.rds.rd_idx = 0;
1096 
1097         spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1098 
1099         if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE))
1100             break;
1101 
1102         block_count++;
1103         buf += FM_RDS_BLK_SIZE;
1104         ret += FM_RDS_BLK_SIZE;
1105     }
1106     return ret;
1107 }
1108 
1109 int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
1110 {
1111     switch (fmdev->curr_fmmode) {
1112     case FM_MODE_RX:
1113         return fm_rx_set_freq(fmdev, freq_to_set);
1114 
1115     case FM_MODE_TX:
1116         return fm_tx_set_freq(fmdev, freq_to_set);
1117 
1118     default:
1119         return -EINVAL;
1120     }
1121 }
1122 
1123 int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
1124 {
1125     if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
1126         fmerr("RX frequency is not set\n");
1127         return -EPERM;
1128     }
1129     if (cur_tuned_frq == NULL) {
1130         fmerr("Invalid memory\n");
1131         return -ENOMEM;
1132     }
1133 
1134     switch (fmdev->curr_fmmode) {
1135     case FM_MODE_RX:
1136         *cur_tuned_frq = fmdev->rx.freq;
1137         return 0;
1138 
1139     case FM_MODE_TX:
1140         *cur_tuned_frq = 0; /* TODO : Change this later */
1141         return 0;
1142 
1143     default:
1144         return -EINVAL;
1145     }
1146 
1147 }
1148 
1149 int fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
1150 {
1151     switch (fmdev->curr_fmmode) {
1152     case FM_MODE_RX:
1153         return fm_rx_set_region(fmdev, region_to_set);
1154 
1155     case FM_MODE_TX:
1156         return fm_tx_set_region(fmdev, region_to_set);
1157 
1158     default:
1159         return -EINVAL;
1160     }
1161 }
1162 
1163 int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
1164 {
1165     switch (fmdev->curr_fmmode) {
1166     case FM_MODE_RX:
1167         return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
1168 
1169     case FM_MODE_TX:
1170         return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
1171 
1172     default:
1173         return -EINVAL;
1174     }
1175 }
1176 
1177 int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
1178 {
1179     switch (fmdev->curr_fmmode) {
1180     case FM_MODE_RX:
1181         return fm_rx_set_stereo_mono(fmdev, mode);
1182 
1183     case FM_MODE_TX:
1184         return fm_tx_set_stereo_mono(fmdev, mode);
1185 
1186     default:
1187         return -EINVAL;
1188     }
1189 }
1190 
1191 int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
1192 {
1193     switch (fmdev->curr_fmmode) {
1194     case FM_MODE_RX:
1195         return fm_rx_set_rds_mode(fmdev, rds_en_dis);
1196 
1197     case FM_MODE_TX:
1198         return fm_tx_set_rds_mode(fmdev, rds_en_dis);
1199 
1200     default:
1201         return -EINVAL;
1202     }
1203 }
1204 
1205 /* Sends power off command to the chip */
1206 static int fm_power_down(struct fmdev *fmdev)
1207 {
1208     u16 payload;
1209     int ret;
1210 
1211     if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1212         fmerr("FM core is not ready\n");
1213         return -EPERM;
1214     }
1215     if (fmdev->curr_fmmode == FM_MODE_OFF) {
1216         fmdbg("FM chip is already in OFF state\n");
1217         return 0;
1218     }
1219 
1220     payload = 0x0;
1221     ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1222         sizeof(payload), NULL, NULL);
1223     if (ret < 0)
1224         return ret;
1225 
1226     return fmc_release(fmdev);
1227 }
1228 
1229 /* Reads init command from FM firmware file and loads to the chip */
1230 static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
1231 {
1232     const struct firmware *fw_entry;
1233     struct bts_header *fw_header;
1234     struct bts_action *action;
1235     struct bts_action_delay *delay;
1236     u8 *fw_data;
1237     int ret, fw_len, cmd_cnt;
1238 
1239     cmd_cnt = 0;
1240     set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1241 
1242     ret = request_firmware(&fw_entry, fw_name,
1243                 &fmdev->radio_dev->dev);
1244     if (ret < 0) {
1245         fmerr("Unable to read firmware(%s) content\n", fw_name);
1246         return ret;
1247     }
1248     fmdbg("Firmware(%s) length : %zu bytes\n", fw_name, fw_entry->size);
1249 
1250     fw_data = (void *)fw_entry->data;
1251     fw_len = fw_entry->size;
1252 
1253     fw_header = (struct bts_header *)fw_data;
1254     if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
1255         fmerr("%s not a legal TI firmware file\n", fw_name);
1256         ret = -EINVAL;
1257         goto rel_fw;
1258     }
1259     fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
1260 
1261     /* Skip file header info , we already verified it */
1262     fw_data += sizeof(struct bts_header);
1263     fw_len -= sizeof(struct bts_header);
1264 
1265     while (fw_data && fw_len > 0) {
1266         action = (struct bts_action *)fw_data;
1267 
1268         switch (action->type) {
1269         case ACTION_SEND_COMMAND:   /* Send */
1270             ret = fmc_send_cmd(fmdev, 0, 0, action->data,
1271                        action->size, NULL, NULL);
1272             if (ret)
1273                 goto rel_fw;
1274 
1275             cmd_cnt++;
1276             break;
1277 
1278         case ACTION_DELAY:  /* Delay */
1279             delay = (struct bts_action_delay *)action->data;
1280             mdelay(delay->msec);
1281             break;
1282         }
1283 
1284         fw_data += (sizeof(struct bts_action) + (action->size));
1285         fw_len -= (sizeof(struct bts_action) + (action->size));
1286     }
1287     fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt);
1288 rel_fw:
1289     release_firmware(fw_entry);
1290     clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1291 
1292     return ret;
1293 }
1294 
1295 /* Loads default RX configuration to the chip */
1296 static int load_default_rx_configuration(struct fmdev *fmdev)
1297 {
1298     int ret;
1299 
1300     ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
1301     if (ret < 0)
1302         return ret;
1303 
1304     return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
1305 }
1306 
1307 /* Does FM power on sequence */
1308 static int fm_power_up(struct fmdev *fmdev, u8 mode)
1309 {
1310     u16 payload;
1311     __be16 asic_id = 0, asic_ver = 0;
1312     int resp_len, ret;
1313     u8 fw_name[50];
1314 
1315     if (mode >= FM_MODE_ENTRY_MAX) {
1316         fmerr("Invalid firmware download option\n");
1317         return -EINVAL;
1318     }
1319 
1320     /*
1321      * Initialize FM common module. FM GPIO toggling is
1322      * taken care in Shared Transport driver.
1323      */
1324     ret = fmc_prepare(fmdev);
1325     if (ret < 0) {
1326         fmerr("Unable to prepare FM Common\n");
1327         return ret;
1328     }
1329 
1330     payload = FM_ENABLE;
1331     if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1332             sizeof(payload), NULL, NULL))
1333         goto rel;
1334 
1335     /* Allow the chip to settle down in Channel-8 mode */
1336     msleep(20);
1337 
1338     if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
1339             sizeof(asic_id), &asic_id, &resp_len))
1340         goto rel;
1341 
1342     if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
1343             sizeof(asic_ver), &asic_ver, &resp_len))
1344         goto rel;
1345 
1346     fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
1347         be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1348 
1349     sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START,
1350         be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1351 
1352     ret = fm_download_firmware(fmdev, fw_name);
1353     if (ret < 0) {
1354         fmdbg("Failed to download firmware file %s\n", fw_name);
1355         goto rel;
1356     }
1357     sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ?
1358             FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
1359             be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1360 
1361     ret = fm_download_firmware(fmdev, fw_name);
1362     if (ret < 0) {
1363         fmdbg("Failed to download firmware file %s\n", fw_name);
1364         goto rel;
1365     } else
1366         return ret;
1367 rel:
1368     return fmc_release(fmdev);
1369 }
1370 
1371 /* Set FM Modes(TX, RX, OFF) */
1372 int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
1373 {
1374     int ret = 0;
1375 
1376     if (fm_mode >= FM_MODE_ENTRY_MAX) {
1377         fmerr("Invalid FM mode\n");
1378         return -EINVAL;
1379     }
1380     if (fmdev->curr_fmmode == fm_mode) {
1381         fmdbg("Already fm is in mode(%d)\n", fm_mode);
1382         return ret;
1383     }
1384 
1385     switch (fm_mode) {
1386     case FM_MODE_OFF:   /* OFF Mode */
1387         ret = fm_power_down(fmdev);
1388         if (ret < 0) {
1389             fmerr("Failed to set OFF mode\n");
1390             return ret;
1391         }
1392         break;
1393 
1394     case FM_MODE_TX:    /* TX Mode */
1395     case FM_MODE_RX:    /* RX Mode */
1396         /* Power down before switching to TX or RX mode */
1397         if (fmdev->curr_fmmode != FM_MODE_OFF) {
1398             ret = fm_power_down(fmdev);
1399             if (ret < 0) {
1400                 fmerr("Failed to set OFF mode\n");
1401                 return ret;
1402             }
1403             msleep(30);
1404         }
1405         ret = fm_power_up(fmdev, fm_mode);
1406         if (ret < 0) {
1407             fmerr("Failed to load firmware\n");
1408             return ret;
1409         }
1410     }
1411     fmdev->curr_fmmode = fm_mode;
1412 
1413     /* Set default configuration */
1414     if (fmdev->curr_fmmode == FM_MODE_RX) {
1415         fmdbg("Loading default rx configuration..\n");
1416         ret = load_default_rx_configuration(fmdev);
1417         if (ret < 0)
1418             fmerr("Failed to load default values\n");
1419     }
1420 
1421     return ret;
1422 }
1423 
1424 /* Returns current FM mode (TX, RX, OFF) */
1425 int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
1426 {
1427     if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1428         fmerr("FM core is not ready\n");
1429         return -EPERM;
1430     }
1431     if (fmmode == NULL) {
1432         fmerr("Invalid memory\n");
1433         return -ENOMEM;
1434     }
1435 
1436     *fmmode = fmdev->curr_fmmode;
1437     return 0;
1438 }
1439 
1440 /* Called by ST layer when FM packet is available */
1441 static long fm_st_receive(void *arg, struct sk_buff *skb)
1442 {
1443     struct fmdev *fmdev;
1444 
1445     fmdev = (struct fmdev *)arg;
1446 
1447     if (skb == NULL) {
1448         fmerr("Invalid SKB received from ST\n");
1449         return -EFAULT;
1450     }
1451 
1452     if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
1453         fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
1454         return -EINVAL;
1455     }
1456 
1457     memcpy(skb_push(skb, 1), &skb->cb[0], 1);
1458     skb_queue_tail(&fmdev->rx_q, skb);
1459     tasklet_schedule(&fmdev->rx_task);
1460 
1461     return 0;
1462 }
1463 
1464 /*
1465  * Called by ST layer to indicate protocol registration completion
1466  * status.
1467  */
1468 static void fm_st_reg_comp_cb(void *arg, int data)
1469 {
1470     struct fmdev *fmdev;
1471 
1472     fmdev = (struct fmdev *)arg;
1473     fmdev->streg_cbdata = data;
1474     complete(&wait_for_fmdrv_reg_comp);
1475 }
1476 
1477 /*
1478  * This function will be called from FM V4L2 open function.
1479  * Register with ST driver and initialize driver data.
1480  */
1481 int fmc_prepare(struct fmdev *fmdev)
1482 {
1483     static struct st_proto_s fm_st_proto;
1484     int ret;
1485 
1486     if (test_bit(FM_CORE_READY, &fmdev->flag)) {
1487         fmdbg("FM Core is already up\n");
1488         return 0;
1489     }
1490 
1491     memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1492     fm_st_proto.recv = fm_st_receive;
1493     fm_st_proto.match_packet = NULL;
1494     fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
1495     fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
1496     fm_st_proto.priv_data = fmdev;
1497     fm_st_proto.chnl_id = 0x08;
1498     fm_st_proto.max_frame_size = 0xff;
1499     fm_st_proto.hdr_len = 1;
1500     fm_st_proto.offset_len_in_hdr = 0;
1501     fm_st_proto.len_size = 1;
1502     fm_st_proto.reserve = 1;
1503 
1504     ret = st_register(&fm_st_proto);
1505     if (ret == -EINPROGRESS) {
1506         init_completion(&wait_for_fmdrv_reg_comp);
1507         fmdev->streg_cbdata = -EINPROGRESS;
1508         fmdbg("%s waiting for ST reg completion signal\n", __func__);
1509 
1510         if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
1511                          FM_ST_REG_TIMEOUT)) {
1512             fmerr("Timeout(%d sec), didn't get reg completion signal from ST\n",
1513                     jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
1514             return -ETIMEDOUT;
1515         }
1516         if (fmdev->streg_cbdata != 0) {
1517             fmerr("ST reg comp CB called with error status %d\n",
1518                   fmdev->streg_cbdata);
1519             return -EAGAIN;
1520         }
1521 
1522         ret = 0;
1523     } else if (ret < 0) {
1524         fmerr("st_register failed %d\n", ret);
1525         return -EAGAIN;
1526     }
1527 
1528     if (fm_st_proto.write != NULL) {
1529         g_st_write = fm_st_proto.write;
1530     } else {
1531         fmerr("Failed to get ST write func pointer\n");
1532         ret = st_unregister(&fm_st_proto);
1533         if (ret < 0)
1534             fmerr("st_unregister failed %d\n", ret);
1535         return -EAGAIN;
1536     }
1537 
1538     spin_lock_init(&fmdev->rds_buff_lock);
1539     spin_lock_init(&fmdev->resp_skb_lock);
1540 
1541     /* Initialize TX queue and TX tasklet */
1542     skb_queue_head_init(&fmdev->tx_q);
1543     tasklet_setup(&fmdev->tx_task, send_tasklet);
1544 
1545     /* Initialize RX Queue and RX tasklet */
1546     skb_queue_head_init(&fmdev->rx_q);
1547     tasklet_setup(&fmdev->rx_task, recv_tasklet);
1548 
1549     fmdev->irq_info.stage = 0;
1550     atomic_set(&fmdev->tx_cnt, 1);
1551     fmdev->resp_comp = NULL;
1552 
1553     timer_setup(&fmdev->irq_info.timer, int_timeout_handler, 0);
1554     /*TODO: add FM_STIC_EVENT later */
1555     fmdev->irq_info.mask = FM_MAL_EVENT;
1556 
1557     /* Region info */
1558     fmdev->rx.region = region_configs[default_radio_region];
1559 
1560     fmdev->rx.mute_mode = FM_MUTE_OFF;
1561     fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
1562     fmdev->rx.rds.flag = FM_RDS_DISABLE;
1563     fmdev->rx.freq = FM_UNDEFINED_FREQ;
1564     fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
1565     fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
1566     fmdev->irq_info.retry = 0;
1567 
1568     fm_rx_reset_rds_cache(fmdev);
1569     init_waitqueue_head(&fmdev->rx.rds.read_queue);
1570 
1571     fm_rx_reset_station_info(fmdev);
1572     set_bit(FM_CORE_READY, &fmdev->flag);
1573 
1574     return ret;
1575 }
1576 
1577 /*
1578  * This function will be called from FM V4L2 release function.
1579  * Unregister from ST driver.
1580  */
1581 int fmc_release(struct fmdev *fmdev)
1582 {
1583     static struct st_proto_s fm_st_proto;
1584     int ret;
1585 
1586     if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1587         fmdbg("FM Core is already down\n");
1588         return 0;
1589     }
1590     /* Service pending read */
1591     wake_up_interruptible(&fmdev->rx.rds.read_queue);
1592 
1593     tasklet_kill(&fmdev->tx_task);
1594     tasklet_kill(&fmdev->rx_task);
1595 
1596     skb_queue_purge(&fmdev->tx_q);
1597     skb_queue_purge(&fmdev->rx_q);
1598 
1599     fmdev->resp_comp = NULL;
1600     fmdev->rx.freq = 0;
1601 
1602     memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1603     fm_st_proto.chnl_id = 0x08;
1604 
1605     ret = st_unregister(&fm_st_proto);
1606 
1607     if (ret < 0)
1608         fmerr("Failed to de-register FM from ST %d\n", ret);
1609     else
1610         fmdbg("Successfully unregistered from ST\n");
1611 
1612     clear_bit(FM_CORE_READY, &fmdev->flag);
1613     return ret;
1614 }
1615 
1616 /*
1617  * Module init function. Ask FM V4L module to register video device.
1618  * Allocate memory for FM driver context and RX RDS buffer.
1619  */
1620 static int __init fm_drv_init(void)
1621 {
1622     struct fmdev *fmdev = NULL;
1623     int ret = -ENOMEM;
1624 
1625     fmdbg("FM driver version %s\n", FM_DRV_VERSION);
1626 
1627     fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
1628     if (NULL == fmdev) {
1629         fmerr("Can't allocate operation structure memory\n");
1630         return ret;
1631     }
1632     fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
1633     fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
1634     if (NULL == fmdev->rx.rds.buff) {
1635         fmerr("Can't allocate rds ring buffer\n");
1636         goto rel_dev;
1637     }
1638 
1639     ret = fm_v4l2_init_video_device(fmdev, radio_nr);
1640     if (ret < 0)
1641         goto rel_rdsbuf;
1642 
1643     fmdev->irq_info.handlers = int_handler_table;
1644     fmdev->curr_fmmode = FM_MODE_OFF;
1645     fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
1646     fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
1647     return ret;
1648 
1649 rel_rdsbuf:
1650     kfree(fmdev->rx.rds.buff);
1651 rel_dev:
1652     kfree(fmdev);
1653 
1654     return ret;
1655 }
1656 
1657 /* Module exit function. Ask FM V4L module to unregister video device */
1658 static void __exit fm_drv_exit(void)
1659 {
1660     struct fmdev *fmdev = NULL;
1661 
1662     fmdev = fm_v4l2_deinit_video_device();
1663     if (fmdev != NULL) {
1664         kfree(fmdev->rx.rds.buff);
1665         kfree(fmdev);
1666     }
1667 }
1668 
1669 module_init(fm_drv_init);
1670 module_exit(fm_drv_exit);
1671 
1672 /* ------------- Module Info ------------- */
1673 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>");
1674 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
1675 MODULE_VERSION(FM_DRV_VERSION);
1676 MODULE_LICENSE("GPL");