0001
0002
0003
0004
0005
0006
0007
0008 #include "cx88.h"
0009 #include "cx88-reg.h"
0010
0011 #include <linux/slab.h>
0012 #include <linux/kernel.h>
0013 #include <linux/module.h>
0014 #include <linux/jiffies.h>
0015 #include <asm/div64.h>
0016
0017 #define INT_PI ((s32)(3.141592653589 * 32768.0))
0018
0019 #define compat_remainder(a, b) \
0020 ((float)(((s32)((a) * 100)) % ((s32)((b) * 100))) / 100.0)
0021
0022 #define baseband_freq(carrier, srate, tone) ((s32)( \
0023 (compat_remainder(carrier + tone, srate)) / srate * 2 * INT_PI))
0024
0025
0026
0027
0028
0029
0030 #define FREQ_A2_CARRIER baseband_freq(54687.5, 2689.36, 0.0)
0031 #define FREQ_A2_DUAL baseband_freq(54687.5, 2689.36, 274.1)
0032 #define FREQ_A2_STEREO baseband_freq(54687.5, 2689.36, 117.5)
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042 #define FREQ_A2M_CARRIER ((s32)(2.114516 * 32768.0))
0043 #define FREQ_A2M_DUAL ((s32)(2.754916 * 32768.0))
0044 #define FREQ_A2M_STEREO ((s32)(2.462326 * 32768.0))
0045
0046 #define FREQ_EIAJ_CARRIER ((s32)(1.963495 * 32768.0))
0047 #define FREQ_EIAJ_DUAL ((s32)(2.562118 * 32768.0))
0048 #define FREQ_EIAJ_STEREO ((s32)(2.601053 * 32768.0))
0049
0050 #define FREQ_BTSC_DUAL ((s32)(1.963495 * 32768.0))
0051 #define FREQ_BTSC_DUAL_REF ((s32)(1.374446 * 32768.0))
0052
0053 #define FREQ_BTSC_SAP ((s32)(2.471532 * 32768.0))
0054 #define FREQ_BTSC_SAP_REF ((s32)(1.730072 * 32768.0))
0055
0056
0057 #define FREQ_NOISE_START ((s32)(0.100000 * 32768.0))
0058 #define FREQ_NOISE_END ((s32)(1.200000 * 32768.0))
0059
0060 static unsigned int dsp_debug;
0061 module_param(dsp_debug, int, 0644);
0062 MODULE_PARM_DESC(dsp_debug, "enable audio dsp debug messages");
0063
0064 #define dprintk(level, fmt, arg...) do { \
0065 if (dsp_debug >= level) \
0066 printk(KERN_DEBUG pr_fmt("%s: dsp:" fmt), \
0067 __func__, ##arg); \
0068 } while (0)
0069
0070 static s32 int_cos(u32 x)
0071 {
0072 u32 t2, t4, t6, t8;
0073 s32 ret;
0074 u16 period = x / INT_PI;
0075
0076 if (period % 2)
0077 return -int_cos(x - INT_PI);
0078 x = x % INT_PI;
0079 if (x > INT_PI / 2)
0080 return -int_cos(INT_PI / 2 - (x % (INT_PI / 2)));
0081
0082
0083
0084
0085 t2 = x * x / 32768 / 2;
0086 t4 = t2 * x / 32768 * x / 32768 / 3 / 4;
0087 t6 = t4 * x / 32768 * x / 32768 / 5 / 6;
0088 t8 = t6 * x / 32768 * x / 32768 / 7 / 8;
0089 ret = 32768 - t2 + t4 - t6 + t8;
0090 return ret;
0091 }
0092
0093 static u32 int_goertzel(s16 x[], u32 N, u32 freq)
0094 {
0095
0096
0097
0098
0099 s32 s_prev = 0;
0100 s32 s_prev2 = 0;
0101 s32 coeff = 2 * int_cos(freq);
0102 u32 i;
0103
0104 u64 tmp;
0105 u32 divisor;
0106
0107 for (i = 0; i < N; i++) {
0108 s32 s = x[i] + ((s64)coeff * s_prev / 32768) - s_prev2;
0109
0110 s_prev2 = s_prev;
0111 s_prev = s;
0112 }
0113
0114 tmp = (s64)s_prev2 * s_prev2 + (s64)s_prev * s_prev -
0115 (s64)coeff * s_prev2 * s_prev / 32768;
0116
0117
0118
0119
0120
0121 divisor = N * N;
0122 do_div(tmp, divisor);
0123
0124 return (u32)tmp;
0125 }
0126
0127 static u32 freq_magnitude(s16 x[], u32 N, u32 freq)
0128 {
0129 u32 sum = int_goertzel(x, N, freq);
0130
0131 return (u32)int_sqrt(sum);
0132 }
0133
0134 static u32 noise_magnitude(s16 x[], u32 N, u32 freq_start, u32 freq_end)
0135 {
0136 int i;
0137 u32 sum = 0;
0138 u32 freq_step;
0139 int samples = 5;
0140
0141 if (N > 192) {
0142
0143 x += (N - 192);
0144 N = 192;
0145 }
0146
0147 freq_step = (freq_end - freq_start) / (samples - 1);
0148
0149 for (i = 0; i < samples; i++) {
0150 sum += int_goertzel(x, N, freq_start);
0151 freq_start += freq_step;
0152 }
0153
0154 return (u32)int_sqrt(sum / samples);
0155 }
0156
0157 static s32 detect_a2_a2m_eiaj(struct cx88_core *core, s16 x[], u32 N)
0158 {
0159 s32 carrier, stereo, dual, noise;
0160 s32 carrier_freq, stereo_freq, dual_freq;
0161 s32 ret;
0162
0163 switch (core->tvaudio) {
0164 case WW_BG:
0165 case WW_DK:
0166 carrier_freq = FREQ_A2_CARRIER;
0167 stereo_freq = FREQ_A2_STEREO;
0168 dual_freq = FREQ_A2_DUAL;
0169 break;
0170 case WW_M:
0171 carrier_freq = FREQ_A2M_CARRIER;
0172 stereo_freq = FREQ_A2M_STEREO;
0173 dual_freq = FREQ_A2M_DUAL;
0174 break;
0175 case WW_EIAJ:
0176 carrier_freq = FREQ_EIAJ_CARRIER;
0177 stereo_freq = FREQ_EIAJ_STEREO;
0178 dual_freq = FREQ_EIAJ_DUAL;
0179 break;
0180 default:
0181 pr_warn("unsupported audio mode %d for %s\n",
0182 core->tvaudio, __func__);
0183 return UNSET;
0184 }
0185
0186 carrier = freq_magnitude(x, N, carrier_freq);
0187 stereo = freq_magnitude(x, N, stereo_freq);
0188 dual = freq_magnitude(x, N, dual_freq);
0189 noise = noise_magnitude(x, N, FREQ_NOISE_START, FREQ_NOISE_END);
0190
0191 dprintk(1,
0192 "detect a2/a2m/eiaj: carrier=%d, stereo=%d, dual=%d, noise=%d\n",
0193 carrier, stereo, dual, noise);
0194
0195 if (stereo > dual)
0196 ret = V4L2_TUNER_SUB_STEREO;
0197 else
0198 ret = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2;
0199
0200 if (core->tvaudio == WW_EIAJ) {
0201
0202 if ((carrier > max(stereo, dual) * 2) &&
0203 (carrier < max(stereo, dual) * 6) &&
0204 (carrier > 20 && carrier < 200) &&
0205 (max(stereo, dual) > min(stereo, dual))) {
0206
0207
0208
0209
0210 return ret;
0211 }
0212 } else {
0213 if ((carrier > max(stereo, dual) * 2) &&
0214 (carrier < max(stereo, dual) * 8) &&
0215 (carrier > 20 && carrier < 200) &&
0216 (noise < 10) &&
0217 (max(stereo, dual) > min(stereo, dual) * 2)) {
0218 return ret;
0219 }
0220 }
0221 return V4L2_TUNER_SUB_MONO;
0222 }
0223
0224 static s32 detect_btsc(struct cx88_core *core, s16 x[], u32 N)
0225 {
0226 s32 sap_ref = freq_magnitude(x, N, FREQ_BTSC_SAP_REF);
0227 s32 sap = freq_magnitude(x, N, FREQ_BTSC_SAP);
0228 s32 dual_ref = freq_magnitude(x, N, FREQ_BTSC_DUAL_REF);
0229 s32 dual = freq_magnitude(x, N, FREQ_BTSC_DUAL);
0230
0231 dprintk(1, "detect btsc: dual_ref=%d, dual=%d, sap_ref=%d, sap=%d\n",
0232 dual_ref, dual, sap_ref, sap);
0233
0234 return UNSET;
0235 }
0236
0237 static s16 *read_rds_samples(struct cx88_core *core, u32 *N)
0238 {
0239 const struct sram_channel *srch = &cx88_sram_channels[SRAM_CH27];
0240 s16 *samples;
0241
0242 unsigned int i;
0243 unsigned int bpl = srch->fifo_size / AUD_RDS_LINES;
0244 unsigned int spl = bpl / 4;
0245 unsigned int sample_count = spl * (AUD_RDS_LINES - 1);
0246
0247 u32 current_address = cx_read(srch->ptr1_reg);
0248 u32 offset = (current_address - srch->fifo_start + bpl);
0249
0250 dprintk(1,
0251 "read RDS samples: current_address=%08x (offset=%08x), sample_count=%d, aud_intstat=%08x\n",
0252 current_address,
0253 current_address - srch->fifo_start, sample_count,
0254 cx_read(MO_AUD_INTSTAT));
0255 samples = kmalloc_array(sample_count, sizeof(*samples), GFP_KERNEL);
0256 if (!samples)
0257 return NULL;
0258
0259 *N = sample_count;
0260
0261 for (i = 0; i < sample_count; i++) {
0262 offset = offset % (AUD_RDS_LINES * bpl);
0263 samples[i] = cx_read(srch->fifo_start + offset);
0264 offset += 4;
0265 }
0266
0267 dprintk(2, "RDS samples dump: %*ph\n", sample_count, samples);
0268
0269 return samples;
0270 }
0271
0272 s32 cx88_dsp_detect_stereo_sap(struct cx88_core *core)
0273 {
0274 s16 *samples;
0275 u32 N = 0;
0276 s32 ret = UNSET;
0277
0278
0279 if (!(cx_read(MO_AUD_DMACNTRL) & 0x04))
0280 return ret;
0281 if (!(cx_read(AUD_CTL) & EN_FMRADIO_EN_RDS))
0282 return ret;
0283
0284
0285 if (time_before(jiffies, core->last_change + msecs_to_jiffies(500)))
0286 return ret;
0287
0288 samples = read_rds_samples(core, &N);
0289
0290 if (!samples)
0291 return ret;
0292
0293 switch (core->tvaudio) {
0294 case WW_BG:
0295 case WW_DK:
0296 case WW_EIAJ:
0297 case WW_M:
0298 ret = detect_a2_a2m_eiaj(core, samples, N);
0299 break;
0300 case WW_BTSC:
0301 ret = detect_btsc(core, samples, N);
0302 break;
0303 case WW_NONE:
0304 case WW_I:
0305 case WW_L:
0306 case WW_I2SPT:
0307 case WW_FM:
0308 case WW_I2SADC:
0309 break;
0310 }
0311
0312 kfree(samples);
0313
0314 if (ret != UNSET)
0315 dprintk(1, "stereo/sap detection result:%s%s%s\n",
0316 (ret & V4L2_TUNER_SUB_MONO) ? " mono" : "",
0317 (ret & V4L2_TUNER_SUB_STEREO) ? " stereo" : "",
0318 (ret & V4L2_TUNER_SUB_LANG2) ? " dual" : "");
0319
0320 return ret;
0321 }
0322 EXPORT_SYMBOL(cx88_dsp_detect_stereo_sap);
0323