0001
0002
0003
0004
0005
0006
0007 #include <linux/i2c.h>
0008 #include <linux/slab.h>
0009 #include <linux/videodev2.h>
0010 #include <linux/delay.h>
0011 #include <linux/module.h>
0012 #include <asm/div64.h>
0013 #include <media/v4l2-device.h>
0014 #include <media/v4l2-ctrls.h>
0015 #include <media/i2c/mt9v011.h>
0016
0017 MODULE_DESCRIPTION("Micron mt9v011 sensor driver");
0018 MODULE_AUTHOR("Mauro Carvalho Chehab");
0019 MODULE_LICENSE("GPL v2");
0020
0021 static int debug;
0022 module_param(debug, int, 0);
0023 MODULE_PARM_DESC(debug, "Debug level (0-2)");
0024
0025 #define R00_MT9V011_CHIP_VERSION 0x00
0026 #define R01_MT9V011_ROWSTART 0x01
0027 #define R02_MT9V011_COLSTART 0x02
0028 #define R03_MT9V011_HEIGHT 0x03
0029 #define R04_MT9V011_WIDTH 0x04
0030 #define R05_MT9V011_HBLANK 0x05
0031 #define R06_MT9V011_VBLANK 0x06
0032 #define R07_MT9V011_OUT_CTRL 0x07
0033 #define R09_MT9V011_SHUTTER_WIDTH 0x09
0034 #define R0A_MT9V011_CLK_SPEED 0x0a
0035 #define R0B_MT9V011_RESTART 0x0b
0036 #define R0C_MT9V011_SHUTTER_DELAY 0x0c
0037 #define R0D_MT9V011_RESET 0x0d
0038 #define R1E_MT9V011_DIGITAL_ZOOM 0x1e
0039 #define R20_MT9V011_READ_MODE 0x20
0040 #define R2B_MT9V011_GREEN_1_GAIN 0x2b
0041 #define R2C_MT9V011_BLUE_GAIN 0x2c
0042 #define R2D_MT9V011_RED_GAIN 0x2d
0043 #define R2E_MT9V011_GREEN_2_GAIN 0x2e
0044 #define R35_MT9V011_GLOBAL_GAIN 0x35
0045 #define RF1_MT9V011_CHIP_ENABLE 0xf1
0046
0047 #define MT9V011_VERSION 0x8232
0048 #define MT9V011_REV_B_VERSION 0x8243
0049
0050 struct mt9v011 {
0051 struct v4l2_subdev sd;
0052 #ifdef CONFIG_MEDIA_CONTROLLER
0053 struct media_pad pad;
0054 #endif
0055 struct v4l2_ctrl_handler ctrls;
0056 unsigned width, height;
0057 unsigned xtal;
0058 unsigned hflip:1;
0059 unsigned vflip:1;
0060
0061 u16 global_gain, exposure;
0062 s16 red_bal, blue_bal;
0063 };
0064
0065 static inline struct mt9v011 *to_mt9v011(struct v4l2_subdev *sd)
0066 {
0067 return container_of(sd, struct mt9v011, sd);
0068 }
0069
0070 static int mt9v011_read(struct v4l2_subdev *sd, unsigned char addr)
0071 {
0072 struct i2c_client *c = v4l2_get_subdevdata(sd);
0073 __be16 buffer;
0074 int rc, val;
0075
0076 rc = i2c_master_send(c, &addr, 1);
0077 if (rc != 1)
0078 v4l2_dbg(0, debug, sd,
0079 "i2c i/o error: rc == %d (should be 1)\n", rc);
0080
0081 msleep(10);
0082
0083 rc = i2c_master_recv(c, (char *)&buffer, 2);
0084 if (rc != 2)
0085 v4l2_dbg(0, debug, sd,
0086 "i2c i/o error: rc == %d (should be 2)\n", rc);
0087
0088 val = be16_to_cpu(buffer);
0089
0090 v4l2_dbg(2, debug, sd, "mt9v011: read 0x%02x = 0x%04x\n", addr, val);
0091
0092 return val;
0093 }
0094
0095 static void mt9v011_write(struct v4l2_subdev *sd, unsigned char addr,
0096 u16 value)
0097 {
0098 struct i2c_client *c = v4l2_get_subdevdata(sd);
0099 unsigned char buffer[3];
0100 int rc;
0101
0102 buffer[0] = addr;
0103 buffer[1] = value >> 8;
0104 buffer[2] = value & 0xff;
0105
0106 v4l2_dbg(2, debug, sd,
0107 "mt9v011: writing 0x%02x 0x%04x\n", buffer[0], value);
0108 rc = i2c_master_send(c, buffer, 3);
0109 if (rc != 3)
0110 v4l2_dbg(0, debug, sd,
0111 "i2c i/o error: rc == %d (should be 3)\n", rc);
0112 }
0113
0114
0115 struct i2c_reg_value {
0116 unsigned char reg;
0117 u16 value;
0118 };
0119
0120
0121
0122
0123
0124 static const struct i2c_reg_value mt9v011_init_default[] = {
0125 { R0D_MT9V011_RESET, 0x0001 },
0126 { R0D_MT9V011_RESET, 0x0000 },
0127
0128 { R0C_MT9V011_SHUTTER_DELAY, 0x0000 },
0129 { R09_MT9V011_SHUTTER_WIDTH, 0x1fc },
0130
0131 { R0A_MT9V011_CLK_SPEED, 0x0000 },
0132 { R1E_MT9V011_DIGITAL_ZOOM, 0x0000 },
0133
0134 { R07_MT9V011_OUT_CTRL, 0x0002 },
0135 };
0136
0137
0138 static u16 calc_mt9v011_gain(s16 lineargain)
0139 {
0140
0141 u16 digitalgain = 0;
0142 u16 analogmult = 0;
0143 u16 analoginit = 0;
0144
0145 if (lineargain < 0)
0146 lineargain = 0;
0147
0148
0149 lineargain += 0x0020;
0150
0151 if (lineargain > 2047)
0152 lineargain = 2047;
0153
0154 if (lineargain > 1023) {
0155 digitalgain = 3;
0156 analogmult = 3;
0157 analoginit = lineargain / 16;
0158 } else if (lineargain > 511) {
0159 digitalgain = 1;
0160 analogmult = 3;
0161 analoginit = lineargain / 8;
0162 } else if (lineargain > 255) {
0163 analogmult = 3;
0164 analoginit = lineargain / 4;
0165 } else if (lineargain > 127) {
0166 analogmult = 1;
0167 analoginit = lineargain / 2;
0168 } else
0169 analoginit = lineargain;
0170
0171 return analoginit + (analogmult << 7) + (digitalgain << 9);
0172
0173 }
0174
0175 static void set_balance(struct v4l2_subdev *sd)
0176 {
0177 struct mt9v011 *core = to_mt9v011(sd);
0178 u16 green_gain, blue_gain, red_gain;
0179 u16 exposure;
0180 s16 bal;
0181
0182 exposure = core->exposure;
0183
0184 green_gain = calc_mt9v011_gain(core->global_gain);
0185
0186 bal = core->global_gain;
0187 bal += (core->blue_bal * core->global_gain / (1 << 7));
0188 blue_gain = calc_mt9v011_gain(bal);
0189
0190 bal = core->global_gain;
0191 bal += (core->red_bal * core->global_gain / (1 << 7));
0192 red_gain = calc_mt9v011_gain(bal);
0193
0194 mt9v011_write(sd, R2B_MT9V011_GREEN_1_GAIN, green_gain);
0195 mt9v011_write(sd, R2E_MT9V011_GREEN_2_GAIN, green_gain);
0196 mt9v011_write(sd, R2C_MT9V011_BLUE_GAIN, blue_gain);
0197 mt9v011_write(sd, R2D_MT9V011_RED_GAIN, red_gain);
0198 mt9v011_write(sd, R09_MT9V011_SHUTTER_WIDTH, exposure);
0199 }
0200
0201 static void calc_fps(struct v4l2_subdev *sd, u32 *numerator, u32 *denominator)
0202 {
0203 struct mt9v011 *core = to_mt9v011(sd);
0204 unsigned height, width, hblank, vblank, speed;
0205 unsigned row_time, t_time;
0206 u64 frames_per_ms;
0207 unsigned tmp;
0208
0209 height = mt9v011_read(sd, R03_MT9V011_HEIGHT);
0210 width = mt9v011_read(sd, R04_MT9V011_WIDTH);
0211 hblank = mt9v011_read(sd, R05_MT9V011_HBLANK);
0212 vblank = mt9v011_read(sd, R06_MT9V011_VBLANK);
0213 speed = mt9v011_read(sd, R0A_MT9V011_CLK_SPEED);
0214
0215 row_time = (width + 113 + hblank) * (speed + 2);
0216 t_time = row_time * (height + vblank + 1);
0217
0218 frames_per_ms = core->xtal * 1000l;
0219 do_div(frames_per_ms, t_time);
0220 tmp = frames_per_ms;
0221
0222 v4l2_dbg(1, debug, sd, "Programmed to %u.%03u fps (%d pixel clcks)\n",
0223 tmp / 1000, tmp % 1000, t_time);
0224
0225 if (numerator && denominator) {
0226 *numerator = 1000;
0227 *denominator = (u32)frames_per_ms;
0228 }
0229 }
0230
0231 static u16 calc_speed(struct v4l2_subdev *sd, u32 numerator, u32 denominator)
0232 {
0233 struct mt9v011 *core = to_mt9v011(sd);
0234 unsigned height, width, hblank, vblank;
0235 unsigned row_time, line_time;
0236 u64 t_time, speed;
0237
0238
0239 if (!numerator || !denominator)
0240 return 0;
0241
0242 height = mt9v011_read(sd, R03_MT9V011_HEIGHT);
0243 width = mt9v011_read(sd, R04_MT9V011_WIDTH);
0244 hblank = mt9v011_read(sd, R05_MT9V011_HBLANK);
0245 vblank = mt9v011_read(sd, R06_MT9V011_VBLANK);
0246
0247 row_time = width + 113 + hblank;
0248 line_time = height + vblank + 1;
0249
0250 t_time = core->xtal * ((u64)numerator);
0251
0252 t_time += denominator / 2;
0253 do_div(t_time, denominator);
0254
0255 speed = t_time;
0256 do_div(speed, row_time * line_time);
0257
0258
0259 if (speed < 2)
0260 speed = 0;
0261 else
0262 speed -= 2;
0263
0264
0265 if (speed > 15)
0266 return 15;
0267
0268 return (u16)speed;
0269 }
0270
0271 static void set_res(struct v4l2_subdev *sd)
0272 {
0273 struct mt9v011 *core = to_mt9v011(sd);
0274 unsigned vstart, hstart;
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287 hstart = 20 + (640 - core->width) / 2;
0288 mt9v011_write(sd, R02_MT9V011_COLSTART, hstart);
0289 mt9v011_write(sd, R04_MT9V011_WIDTH, core->width);
0290 mt9v011_write(sd, R05_MT9V011_HBLANK, 771 - core->width);
0291
0292 vstart = 8 + (480 - core->height) / 2;
0293 mt9v011_write(sd, R01_MT9V011_ROWSTART, vstart);
0294 mt9v011_write(sd, R03_MT9V011_HEIGHT, core->height);
0295 mt9v011_write(sd, R06_MT9V011_VBLANK, 508 - core->height);
0296
0297 calc_fps(sd, NULL, NULL);
0298 };
0299
0300 static void set_read_mode(struct v4l2_subdev *sd)
0301 {
0302 struct mt9v011 *core = to_mt9v011(sd);
0303 unsigned mode = 0x1000;
0304
0305 if (core->hflip)
0306 mode |= 0x4000;
0307
0308 if (core->vflip)
0309 mode |= 0x8000;
0310
0311 mt9v011_write(sd, R20_MT9V011_READ_MODE, mode);
0312 }
0313
0314 static int mt9v011_reset(struct v4l2_subdev *sd, u32 val)
0315 {
0316 int i;
0317
0318 for (i = 0; i < ARRAY_SIZE(mt9v011_init_default); i++)
0319 mt9v011_write(sd, mt9v011_init_default[i].reg,
0320 mt9v011_init_default[i].value);
0321
0322 set_balance(sd);
0323 set_res(sd);
0324 set_read_mode(sd);
0325
0326 return 0;
0327 }
0328
0329 static int mt9v011_enum_mbus_code(struct v4l2_subdev *sd,
0330 struct v4l2_subdev_state *sd_state,
0331 struct v4l2_subdev_mbus_code_enum *code)
0332 {
0333 if (code->pad || code->index > 0)
0334 return -EINVAL;
0335
0336 code->code = MEDIA_BUS_FMT_SGRBG8_1X8;
0337 return 0;
0338 }
0339
0340 static int mt9v011_set_fmt(struct v4l2_subdev *sd,
0341 struct v4l2_subdev_state *sd_state,
0342 struct v4l2_subdev_format *format)
0343 {
0344 struct v4l2_mbus_framefmt *fmt = &format->format;
0345 struct mt9v011 *core = to_mt9v011(sd);
0346
0347 if (format->pad || fmt->code != MEDIA_BUS_FMT_SGRBG8_1X8)
0348 return -EINVAL;
0349
0350 v4l_bound_align_image(&fmt->width, 48, 639, 1,
0351 &fmt->height, 32, 480, 1, 0);
0352 fmt->field = V4L2_FIELD_NONE;
0353 fmt->colorspace = V4L2_COLORSPACE_SRGB;
0354
0355 if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
0356 core->width = fmt->width;
0357 core->height = fmt->height;
0358
0359 set_res(sd);
0360 } else {
0361 sd_state->pads->try_fmt = *fmt;
0362 }
0363
0364 return 0;
0365 }
0366
0367 static int mt9v011_g_frame_interval(struct v4l2_subdev *sd,
0368 struct v4l2_subdev_frame_interval *ival)
0369 {
0370 calc_fps(sd,
0371 &ival->interval.numerator,
0372 &ival->interval.denominator);
0373
0374 return 0;
0375 }
0376
0377 static int mt9v011_s_frame_interval(struct v4l2_subdev *sd,
0378 struct v4l2_subdev_frame_interval *ival)
0379 {
0380 struct v4l2_fract *tpf = &ival->interval;
0381 u16 speed;
0382
0383 speed = calc_speed(sd, tpf->numerator, tpf->denominator);
0384
0385 mt9v011_write(sd, R0A_MT9V011_CLK_SPEED, speed);
0386 v4l2_dbg(1, debug, sd, "Setting speed to %d\n", speed);
0387
0388
0389 calc_fps(sd, &tpf->numerator, &tpf->denominator);
0390
0391 return 0;
0392 }
0393
0394 #ifdef CONFIG_VIDEO_ADV_DEBUG
0395 static int mt9v011_g_register(struct v4l2_subdev *sd,
0396 struct v4l2_dbg_register *reg)
0397 {
0398 reg->val = mt9v011_read(sd, reg->reg & 0xff);
0399 reg->size = 2;
0400
0401 return 0;
0402 }
0403
0404 static int mt9v011_s_register(struct v4l2_subdev *sd,
0405 const struct v4l2_dbg_register *reg)
0406 {
0407 mt9v011_write(sd, reg->reg & 0xff, reg->val & 0xffff);
0408
0409 return 0;
0410 }
0411 #endif
0412
0413 static int mt9v011_s_ctrl(struct v4l2_ctrl *ctrl)
0414 {
0415 struct mt9v011 *core =
0416 container_of(ctrl->handler, struct mt9v011, ctrls);
0417 struct v4l2_subdev *sd = &core->sd;
0418
0419 switch (ctrl->id) {
0420 case V4L2_CID_GAIN:
0421 core->global_gain = ctrl->val;
0422 break;
0423 case V4L2_CID_EXPOSURE:
0424 core->exposure = ctrl->val;
0425 break;
0426 case V4L2_CID_RED_BALANCE:
0427 core->red_bal = ctrl->val;
0428 break;
0429 case V4L2_CID_BLUE_BALANCE:
0430 core->blue_bal = ctrl->val;
0431 break;
0432 case V4L2_CID_HFLIP:
0433 core->hflip = ctrl->val;
0434 set_read_mode(sd);
0435 return 0;
0436 case V4L2_CID_VFLIP:
0437 core->vflip = ctrl->val;
0438 set_read_mode(sd);
0439 return 0;
0440 default:
0441 return -EINVAL;
0442 }
0443
0444 set_balance(sd);
0445 return 0;
0446 }
0447
0448 static const struct v4l2_ctrl_ops mt9v011_ctrl_ops = {
0449 .s_ctrl = mt9v011_s_ctrl,
0450 };
0451
0452 static const struct v4l2_subdev_core_ops mt9v011_core_ops = {
0453 .reset = mt9v011_reset,
0454 #ifdef CONFIG_VIDEO_ADV_DEBUG
0455 .g_register = mt9v011_g_register,
0456 .s_register = mt9v011_s_register,
0457 #endif
0458 };
0459
0460 static const struct v4l2_subdev_video_ops mt9v011_video_ops = {
0461 .g_frame_interval = mt9v011_g_frame_interval,
0462 .s_frame_interval = mt9v011_s_frame_interval,
0463 };
0464
0465 static const struct v4l2_subdev_pad_ops mt9v011_pad_ops = {
0466 .enum_mbus_code = mt9v011_enum_mbus_code,
0467 .set_fmt = mt9v011_set_fmt,
0468 };
0469
0470 static const struct v4l2_subdev_ops mt9v011_ops = {
0471 .core = &mt9v011_core_ops,
0472 .video = &mt9v011_video_ops,
0473 .pad = &mt9v011_pad_ops,
0474 };
0475
0476
0477
0478
0479
0480
0481 static int mt9v011_probe(struct i2c_client *c,
0482 const struct i2c_device_id *id)
0483 {
0484 u16 version;
0485 struct mt9v011 *core;
0486 struct v4l2_subdev *sd;
0487 #ifdef CONFIG_MEDIA_CONTROLLER
0488 int ret;
0489 #endif
0490
0491
0492 if (!i2c_check_functionality(c->adapter,
0493 I2C_FUNC_SMBUS_READ_BYTE | I2C_FUNC_SMBUS_WRITE_BYTE_DATA))
0494 return -EIO;
0495
0496 core = devm_kzalloc(&c->dev, sizeof(struct mt9v011), GFP_KERNEL);
0497 if (!core)
0498 return -ENOMEM;
0499
0500 sd = &core->sd;
0501 v4l2_i2c_subdev_init(sd, c, &mt9v011_ops);
0502
0503 #ifdef CONFIG_MEDIA_CONTROLLER
0504 core->pad.flags = MEDIA_PAD_FL_SOURCE;
0505 sd->entity.function = MEDIA_ENT_F_CAM_SENSOR;
0506
0507 ret = media_entity_pads_init(&sd->entity, 1, &core->pad);
0508 if (ret < 0)
0509 return ret;
0510 #endif
0511
0512
0513 version = mt9v011_read(sd, R00_MT9V011_CHIP_VERSION);
0514 if ((version != MT9V011_VERSION) &&
0515 (version != MT9V011_REV_B_VERSION)) {
0516 v4l2_info(sd, "*** unknown micron chip detected (0x%04x).\n",
0517 version);
0518 return -EINVAL;
0519 }
0520
0521 v4l2_ctrl_handler_init(&core->ctrls, 5);
0522 v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
0523 V4L2_CID_GAIN, 0, (1 << 12) - 1 - 0x20, 1, 0x20);
0524 v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
0525 V4L2_CID_EXPOSURE, 0, 2047, 1, 0x01fc);
0526 v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
0527 V4L2_CID_RED_BALANCE, -(1 << 9), (1 << 9) - 1, 1, 0);
0528 v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
0529 V4L2_CID_BLUE_BALANCE, -(1 << 9), (1 << 9) - 1, 1, 0);
0530 v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
0531 V4L2_CID_HFLIP, 0, 1, 1, 0);
0532 v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
0533 V4L2_CID_VFLIP, 0, 1, 1, 0);
0534
0535 if (core->ctrls.error) {
0536 int ret = core->ctrls.error;
0537
0538 v4l2_err(sd, "control initialization error %d\n", ret);
0539 v4l2_ctrl_handler_free(&core->ctrls);
0540 return ret;
0541 }
0542 core->sd.ctrl_handler = &core->ctrls;
0543
0544 core->global_gain = 0x0024;
0545 core->exposure = 0x01fc;
0546 core->width = 640;
0547 core->height = 480;
0548 core->xtal = 27000000;
0549
0550 if (c->dev.platform_data) {
0551 struct mt9v011_platform_data *pdata = c->dev.platform_data;
0552
0553 core->xtal = pdata->xtal;
0554 v4l2_dbg(1, debug, sd, "xtal set to %d.%03d MHz\n",
0555 core->xtal / 1000000, (core->xtal / 1000) % 1000);
0556 }
0557
0558 v4l_info(c, "chip found @ 0x%02x (%s - chip version 0x%04x)\n",
0559 c->addr << 1, c->adapter->name, version);
0560
0561 return 0;
0562 }
0563
0564 static int mt9v011_remove(struct i2c_client *c)
0565 {
0566 struct v4l2_subdev *sd = i2c_get_clientdata(c);
0567 struct mt9v011 *core = to_mt9v011(sd);
0568
0569 v4l2_dbg(1, debug, sd,
0570 "mt9v011.c: removing mt9v011 adapter on address 0x%x\n",
0571 c->addr << 1);
0572
0573 v4l2_device_unregister_subdev(sd);
0574 v4l2_ctrl_handler_free(&core->ctrls);
0575
0576 return 0;
0577 }
0578
0579
0580
0581 static const struct i2c_device_id mt9v011_id[] = {
0582 { "mt9v011", 0 },
0583 { }
0584 };
0585 MODULE_DEVICE_TABLE(i2c, mt9v011_id);
0586
0587 static struct i2c_driver mt9v011_driver = {
0588 .driver = {
0589 .name = "mt9v011",
0590 },
0591 .probe = mt9v011_probe,
0592 .remove = mt9v011_remove,
0593 .id_table = mt9v011_id,
0594 };
0595
0596 module_i2c_driver(mt9v011_driver);