0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011 #include <linux/kernel.h>
0012 #include <linux/module.h>
0013 #include <linux/init.h>
0014 #include <linux/string.h>
0015 #include <linux/slab.h>
0016 #include <linux/delay.h>
0017 #include <linux/jiffies.h>
0018 #include <asm/div64.h>
0019
0020 #include <linux/i2c.h>
0021
0022
0023 #include <media/dvb_frontend.h>
0024 #include "s5h1420.h"
0025 #include "s5h1420_priv.h"
0026
0027 #define TONE_FREQ 22000
0028
0029 struct s5h1420_state {
0030 struct i2c_adapter* i2c;
0031 const struct s5h1420_config* config;
0032
0033 struct dvb_frontend frontend;
0034 struct i2c_adapter tuner_i2c_adapter;
0035
0036 u8 CON_1_val;
0037
0038 u8 postlocked:1;
0039 u32 fclk;
0040 u32 tunedfreq;
0041 enum fe_code_rate fec_inner;
0042 u32 symbol_rate;
0043
0044
0045
0046
0047
0048 u8 shadow[256];
0049 };
0050
0051 static u32 s5h1420_getsymbolrate(struct s5h1420_state* state);
0052 static int s5h1420_get_tune_settings(struct dvb_frontend* fe,
0053 struct dvb_frontend_tune_settings* fesettings);
0054
0055
0056 static int debug;
0057 module_param(debug, int, 0644);
0058 MODULE_PARM_DESC(debug, "enable debugging");
0059
0060 #define dprintk(x...) do { \
0061 if (debug) \
0062 printk(KERN_DEBUG "S5H1420: " x); \
0063 } while (0)
0064
0065 static u8 s5h1420_readreg(struct s5h1420_state *state, u8 reg)
0066 {
0067 int ret;
0068 u8 b[2];
0069 struct i2c_msg msg[] = {
0070 { .addr = state->config->demod_address, .flags = 0, .buf = b, .len = 2 },
0071 { .addr = state->config->demod_address, .flags = 0, .buf = ®, .len = 1 },
0072 { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b, .len = 1 },
0073 };
0074
0075 b[0] = (reg - 1) & 0xff;
0076 b[1] = state->shadow[(reg - 1) & 0xff];
0077
0078 if (state->config->repeated_start_workaround) {
0079 ret = i2c_transfer(state->i2c, msg, 3);
0080 if (ret != 3)
0081 return ret;
0082 } else {
0083 ret = i2c_transfer(state->i2c, &msg[1], 1);
0084 if (ret != 1)
0085 return ret;
0086 ret = i2c_transfer(state->i2c, &msg[2], 1);
0087 if (ret != 1)
0088 return ret;
0089 }
0090
0091
0092
0093 return b[0];
0094 }
0095
0096 static int s5h1420_writereg (struct s5h1420_state* state, u8 reg, u8 data)
0097 {
0098 u8 buf[] = { reg, data };
0099 struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
0100 int err;
0101
0102
0103 err = i2c_transfer(state->i2c, &msg, 1);
0104 if (err != 1) {
0105 dprintk("%s: writereg error (err == %i, reg == 0x%02x, data == 0x%02x)\n", __func__, err, reg, data);
0106 return -EREMOTEIO;
0107 }
0108 state->shadow[reg] = data;
0109
0110 return 0;
0111 }
0112
0113 static int s5h1420_set_voltage(struct dvb_frontend *fe,
0114 enum fe_sec_voltage voltage)
0115 {
0116 struct s5h1420_state* state = fe->demodulator_priv;
0117
0118 dprintk("enter %s\n", __func__);
0119
0120 switch(voltage) {
0121 case SEC_VOLTAGE_13:
0122 s5h1420_writereg(state, 0x3c,
0123 (s5h1420_readreg(state, 0x3c) & 0xfe) | 0x02);
0124 break;
0125
0126 case SEC_VOLTAGE_18:
0127 s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) | 0x03);
0128 break;
0129
0130 case SEC_VOLTAGE_OFF:
0131 s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) & 0xfd);
0132 break;
0133 }
0134
0135 dprintk("leave %s\n", __func__);
0136 return 0;
0137 }
0138
0139 static int s5h1420_set_tone(struct dvb_frontend *fe,
0140 enum fe_sec_tone_mode tone)
0141 {
0142 struct s5h1420_state* state = fe->demodulator_priv;
0143
0144 dprintk("enter %s\n", __func__);
0145 switch(tone) {
0146 case SEC_TONE_ON:
0147 s5h1420_writereg(state, 0x3b,
0148 (s5h1420_readreg(state, 0x3b) & 0x74) | 0x08);
0149 break;
0150
0151 case SEC_TONE_OFF:
0152 s5h1420_writereg(state, 0x3b,
0153 (s5h1420_readreg(state, 0x3b) & 0x74) | 0x01);
0154 break;
0155 }
0156 dprintk("leave %s\n", __func__);
0157
0158 return 0;
0159 }
0160
0161 static int s5h1420_send_master_cmd (struct dvb_frontend* fe,
0162 struct dvb_diseqc_master_cmd* cmd)
0163 {
0164 struct s5h1420_state* state = fe->demodulator_priv;
0165 u8 val;
0166 int i;
0167 unsigned long timeout;
0168 int result = 0;
0169
0170 dprintk("enter %s\n", __func__);
0171 if (cmd->msg_len > sizeof(cmd->msg))
0172 return -EINVAL;
0173
0174
0175 val = s5h1420_readreg(state, 0x3b);
0176 s5h1420_writereg(state, 0x3b, 0x02);
0177 msleep(15);
0178
0179
0180 for(i=0; i< cmd->msg_len; i++) {
0181 s5h1420_writereg(state, 0x3d + i, cmd->msg[i]);
0182 }
0183
0184
0185 s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) |
0186 ((cmd->msg_len-1) << 4) | 0x08);
0187
0188
0189 timeout = jiffies + ((100*HZ) / 1000);
0190 while(time_before(jiffies, timeout)) {
0191 if (!(s5h1420_readreg(state, 0x3b) & 0x08))
0192 break;
0193
0194 msleep(5);
0195 }
0196 if (time_after(jiffies, timeout))
0197 result = -ETIMEDOUT;
0198
0199
0200 s5h1420_writereg(state, 0x3b, val);
0201 msleep(15);
0202 dprintk("leave %s\n", __func__);
0203 return result;
0204 }
0205
0206 static int s5h1420_recv_slave_reply (struct dvb_frontend* fe,
0207 struct dvb_diseqc_slave_reply* reply)
0208 {
0209 struct s5h1420_state* state = fe->demodulator_priv;
0210 u8 val;
0211 int i;
0212 int length;
0213 unsigned long timeout;
0214 int result = 0;
0215
0216
0217 val = s5h1420_readreg(state, 0x3b);
0218 s5h1420_writereg(state, 0x3b, 0x82);
0219 msleep(15);
0220
0221
0222 timeout = jiffies + ((reply->timeout*HZ) / 1000);
0223 while(time_before(jiffies, timeout)) {
0224 if (!(s5h1420_readreg(state, 0x3b) & 0x80))
0225 break;
0226
0227 msleep(5);
0228 }
0229 if (time_after(jiffies, timeout)) {
0230 result = -ETIMEDOUT;
0231 goto exit;
0232 }
0233
0234
0235
0236 if (s5h1420_readreg(state, 0x49)) {
0237 result = -EIO;
0238 goto exit;
0239 }
0240
0241
0242 length = (s5h1420_readreg(state, 0x3b) & 0x70) >> 4;
0243 if (length > sizeof(reply->msg)) {
0244 result = -EOVERFLOW;
0245 goto exit;
0246 }
0247 reply->msg_len = length;
0248
0249
0250 for(i=0; i< length; i++) {
0251 reply->msg[i] = s5h1420_readreg(state, 0x3d + i);
0252 }
0253
0254 exit:
0255
0256 s5h1420_writereg(state, 0x3b, val);
0257 msleep(15);
0258 return result;
0259 }
0260
0261 static int s5h1420_send_burst(struct dvb_frontend *fe,
0262 enum fe_sec_mini_cmd minicmd)
0263 {
0264 struct s5h1420_state* state = fe->demodulator_priv;
0265 u8 val;
0266 int result = 0;
0267 unsigned long timeout;
0268
0269
0270 val = s5h1420_readreg(state, 0x3b);
0271 s5h1420_writereg(state, 0x3b, (s5h1420_readreg(state, 0x3b) & 0x70) | 0x01);
0272
0273
0274 if (minicmd == SEC_MINI_B) {
0275 s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x04);
0276 }
0277 msleep(15);
0278
0279
0280 s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x08);
0281
0282
0283 timeout = jiffies + ((100*HZ) / 1000);
0284 while(time_before(jiffies, timeout)) {
0285 if (!(s5h1420_readreg(state, 0x3b) & 0x08))
0286 break;
0287
0288 msleep(5);
0289 }
0290 if (time_after(jiffies, timeout))
0291 result = -ETIMEDOUT;
0292
0293
0294 s5h1420_writereg(state, 0x3b, val);
0295 msleep(15);
0296 return result;
0297 }
0298
0299 static enum fe_status s5h1420_get_status_bits(struct s5h1420_state *state)
0300 {
0301 u8 val;
0302 enum fe_status status = 0;
0303
0304 val = s5h1420_readreg(state, 0x14);
0305 if (val & 0x02)
0306 status |= FE_HAS_SIGNAL;
0307 if (val & 0x01)
0308 status |= FE_HAS_CARRIER;
0309 val = s5h1420_readreg(state, 0x36);
0310 if (val & 0x01)
0311 status |= FE_HAS_VITERBI;
0312 if (val & 0x20)
0313 status |= FE_HAS_SYNC;
0314 if (status == (FE_HAS_SIGNAL|FE_HAS_CARRIER|FE_HAS_VITERBI|FE_HAS_SYNC))
0315 status |= FE_HAS_LOCK;
0316
0317 return status;
0318 }
0319
0320 static int s5h1420_read_status(struct dvb_frontend *fe,
0321 enum fe_status *status)
0322 {
0323 struct s5h1420_state* state = fe->demodulator_priv;
0324 u8 val;
0325
0326 dprintk("enter %s\n", __func__);
0327
0328 if (status == NULL)
0329 return -EINVAL;
0330
0331
0332 *status = s5h1420_get_status_bits(state);
0333
0334
0335
0336 if (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI)) {
0337 val = s5h1420_readreg(state, Vit10);
0338 if ((val & 0x07) == 0x03) {
0339 if (val & 0x08)
0340 s5h1420_writereg(state, Vit09, 0x13);
0341 else
0342 s5h1420_writereg(state, Vit09, 0x1b);
0343
0344
0345 mdelay(200);
0346 *status = s5h1420_get_status_bits(state);
0347 }
0348 }
0349
0350
0351 if ((*status & FE_HAS_LOCK) && !state->postlocked) {
0352
0353
0354 u32 tmp = s5h1420_getsymbolrate(state);
0355 switch (s5h1420_readreg(state, Vit10) & 0x07) {
0356 case 0: tmp = (tmp * 2 * 1) / 2; break;
0357 case 1: tmp = (tmp * 2 * 2) / 3; break;
0358 case 2: tmp = (tmp * 2 * 3) / 4; break;
0359 case 3: tmp = (tmp * 2 * 5) / 6; break;
0360 case 4: tmp = (tmp * 2 * 6) / 7; break;
0361 case 5: tmp = (tmp * 2 * 7) / 8; break;
0362 }
0363
0364 if (tmp == 0) {
0365 printk(KERN_ERR "s5h1420: avoided division by 0\n");
0366 tmp = 1;
0367 }
0368 tmp = state->fclk / tmp;
0369
0370
0371
0372 if (tmp < 2)
0373 val = 0x00;
0374 else if (tmp < 5)
0375 val = 0x01;
0376 else if (tmp < 9)
0377 val = 0x02;
0378 else if (tmp < 13)
0379 val = 0x03;
0380 else if (tmp < 17)
0381 val = 0x04;
0382 else if (tmp < 25)
0383 val = 0x05;
0384 else if (tmp < 33)
0385 val = 0x06;
0386 else
0387 val = 0x07;
0388 dprintk("for MPEG_CLK_INTL %d %x\n", tmp, val);
0389
0390 s5h1420_writereg(state, FEC01, 0x18);
0391 s5h1420_writereg(state, FEC01, 0x10);
0392 s5h1420_writereg(state, FEC01, val);
0393
0394
0395 val = s5h1420_readreg(state, Mpeg02);
0396 s5h1420_writereg(state, Mpeg02, val | (1 << 6));
0397
0398
0399 val = s5h1420_readreg(state, QPSK01) & 0x7f;
0400 s5h1420_writereg(state, QPSK01, val);
0401
0402
0403
0404 if (s5h1420_getsymbolrate(state) >= 20000000) {
0405 s5h1420_writereg(state, Loop04, 0x8a);
0406 s5h1420_writereg(state, Loop05, 0x6a);
0407 } else {
0408 s5h1420_writereg(state, Loop04, 0x58);
0409 s5h1420_writereg(state, Loop05, 0x27);
0410 }
0411
0412
0413 state->postlocked = 1;
0414 }
0415
0416 dprintk("leave %s\n", __func__);
0417
0418 return 0;
0419 }
0420
0421 static int s5h1420_read_ber(struct dvb_frontend* fe, u32* ber)
0422 {
0423 struct s5h1420_state* state = fe->demodulator_priv;
0424
0425 s5h1420_writereg(state, 0x46, 0x1d);
0426 mdelay(25);
0427
0428 *ber = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47);
0429
0430 return 0;
0431 }
0432
0433 static int s5h1420_read_signal_strength(struct dvb_frontend* fe, u16* strength)
0434 {
0435 struct s5h1420_state* state = fe->demodulator_priv;
0436
0437 u8 val = s5h1420_readreg(state, 0x15);
0438
0439 *strength = (u16) ((val << 8) | val);
0440
0441 return 0;
0442 }
0443
0444 static int s5h1420_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
0445 {
0446 struct s5h1420_state* state = fe->demodulator_priv;
0447
0448 s5h1420_writereg(state, 0x46, 0x1f);
0449 mdelay(25);
0450
0451 *ucblocks = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47);
0452
0453 return 0;
0454 }
0455
0456 static void s5h1420_reset(struct s5h1420_state* state)
0457 {
0458 dprintk("%s\n", __func__);
0459 s5h1420_writereg (state, 0x01, 0x08);
0460 s5h1420_writereg (state, 0x01, 0x00);
0461 udelay(10);
0462 }
0463
0464 static void s5h1420_setsymbolrate(struct s5h1420_state* state,
0465 struct dtv_frontend_properties *p)
0466 {
0467 u8 v;
0468 u64 val;
0469
0470 dprintk("enter %s\n", __func__);
0471
0472 val = ((u64) p->symbol_rate / 1000ULL) * (1ULL<<24);
0473 if (p->symbol_rate < 29000000)
0474 val *= 2;
0475 do_div(val, (state->fclk / 1000));
0476
0477 dprintk("symbol rate register: %06llx\n", (unsigned long long)val);
0478
0479 v = s5h1420_readreg(state, Loop01);
0480 s5h1420_writereg(state, Loop01, v & 0x7f);
0481 s5h1420_writereg(state, Tnco01, val >> 16);
0482 s5h1420_writereg(state, Tnco02, val >> 8);
0483 s5h1420_writereg(state, Tnco03, val & 0xff);
0484 s5h1420_writereg(state, Loop01, v | 0x80);
0485 dprintk("leave %s\n", __func__);
0486 }
0487
0488 static u32 s5h1420_getsymbolrate(struct s5h1420_state* state)
0489 {
0490 return state->symbol_rate;
0491 }
0492
0493 static void s5h1420_setfreqoffset(struct s5h1420_state* state, int freqoffset)
0494 {
0495 int val;
0496 u8 v;
0497
0498 dprintk("enter %s\n", __func__);
0499
0500
0501
0502 val = -(int) ((freqoffset * (1<<24)) / (state->fclk / 1000000));
0503
0504 dprintk("phase rotator/freqoffset: %d %06x\n", freqoffset, val);
0505
0506 v = s5h1420_readreg(state, Loop01);
0507 s5h1420_writereg(state, Loop01, v & 0xbf);
0508 s5h1420_writereg(state, Pnco01, val >> 16);
0509 s5h1420_writereg(state, Pnco02, val >> 8);
0510 s5h1420_writereg(state, Pnco03, val & 0xff);
0511 s5h1420_writereg(state, Loop01, v | 0x40);
0512 dprintk("leave %s\n", __func__);
0513 }
0514
0515 static int s5h1420_getfreqoffset(struct s5h1420_state* state)
0516 {
0517 int val;
0518
0519 s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) | 0x08);
0520 val = s5h1420_readreg(state, 0x0e) << 16;
0521 val |= s5h1420_readreg(state, 0x0f) << 8;
0522 val |= s5h1420_readreg(state, 0x10);
0523 s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) & 0xf7);
0524
0525 if (val & 0x800000)
0526 val |= 0xff000000;
0527
0528
0529
0530 val = (((-val) * (state->fclk/1000000)) / (1<<24));
0531
0532 return val;
0533 }
0534
0535 static void s5h1420_setfec_inversion(struct s5h1420_state* state,
0536 struct dtv_frontend_properties *p)
0537 {
0538 u8 inversion = 0;
0539 u8 vit08, vit09;
0540
0541 dprintk("enter %s\n", __func__);
0542
0543 if (p->inversion == INVERSION_OFF)
0544 inversion = state->config->invert ? 0x08 : 0;
0545 else if (p->inversion == INVERSION_ON)
0546 inversion = state->config->invert ? 0 : 0x08;
0547
0548 if ((p->fec_inner == FEC_AUTO) || (p->inversion == INVERSION_AUTO)) {
0549 vit08 = 0x3f;
0550 vit09 = 0;
0551 } else {
0552 switch (p->fec_inner) {
0553 case FEC_1_2:
0554 vit08 = 0x01;
0555 vit09 = 0x10;
0556 break;
0557
0558 case FEC_2_3:
0559 vit08 = 0x02;
0560 vit09 = 0x11;
0561 break;
0562
0563 case FEC_3_4:
0564 vit08 = 0x04;
0565 vit09 = 0x12;
0566 break;
0567
0568 case FEC_5_6:
0569 vit08 = 0x08;
0570 vit09 = 0x13;
0571 break;
0572
0573 case FEC_6_7:
0574 vit08 = 0x10;
0575 vit09 = 0x14;
0576 break;
0577
0578 case FEC_7_8:
0579 vit08 = 0x20;
0580 vit09 = 0x15;
0581 break;
0582
0583 default:
0584 return;
0585 }
0586 }
0587 vit09 |= inversion;
0588 dprintk("fec: %02x %02x\n", vit08, vit09);
0589 s5h1420_writereg(state, Vit08, vit08);
0590 s5h1420_writereg(state, Vit09, vit09);
0591 dprintk("leave %s\n", __func__);
0592 }
0593
0594 static enum fe_code_rate s5h1420_getfec(struct s5h1420_state *state)
0595 {
0596 switch(s5h1420_readreg(state, 0x32) & 0x07) {
0597 case 0:
0598 return FEC_1_2;
0599
0600 case 1:
0601 return FEC_2_3;
0602
0603 case 2:
0604 return FEC_3_4;
0605
0606 case 3:
0607 return FEC_5_6;
0608
0609 case 4:
0610 return FEC_6_7;
0611
0612 case 5:
0613 return FEC_7_8;
0614 }
0615
0616 return FEC_NONE;
0617 }
0618
0619 static enum fe_spectral_inversion
0620 s5h1420_getinversion(struct s5h1420_state *state)
0621 {
0622 if (s5h1420_readreg(state, 0x32) & 0x08)
0623 return INVERSION_ON;
0624
0625 return INVERSION_OFF;
0626 }
0627
0628 static int s5h1420_set_frontend(struct dvb_frontend *fe)
0629 {
0630 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
0631 struct s5h1420_state* state = fe->demodulator_priv;
0632 int frequency_delta;
0633 struct dvb_frontend_tune_settings fesettings;
0634
0635 dprintk("enter %s\n", __func__);
0636
0637
0638 s5h1420_get_tune_settings(fe, &fesettings);
0639 frequency_delta = p->frequency - state->tunedfreq;
0640 if ((frequency_delta > -fesettings.max_drift) &&
0641 (frequency_delta < fesettings.max_drift) &&
0642 (frequency_delta != 0) &&
0643 (state->fec_inner == p->fec_inner) &&
0644 (state->symbol_rate == p->symbol_rate)) {
0645
0646 if (fe->ops.tuner_ops.set_params) {
0647 fe->ops.tuner_ops.set_params(fe);
0648 if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
0649 }
0650 if (fe->ops.tuner_ops.get_frequency) {
0651 u32 tmp;
0652 fe->ops.tuner_ops.get_frequency(fe, &tmp);
0653 if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
0654 s5h1420_setfreqoffset(state, p->frequency - tmp);
0655 } else {
0656 s5h1420_setfreqoffset(state, 0);
0657 }
0658 dprintk("simple tune\n");
0659 return 0;
0660 }
0661 dprintk("tuning demod\n");
0662
0663
0664 s5h1420_reset(state);
0665
0666
0667 if (p->symbol_rate > 33000000)
0668 state->fclk = 80000000;
0669 else if (p->symbol_rate > 28500000)
0670 state->fclk = 59000000;
0671 else if (p->symbol_rate > 25000000)
0672 state->fclk = 86000000;
0673 else if (p->symbol_rate > 1900000)
0674 state->fclk = 88000000;
0675 else
0676 state->fclk = 44000000;
0677
0678 dprintk("pll01: %d, ToneFreq: %d\n", state->fclk/1000000 - 8, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32));
0679 s5h1420_writereg(state, PLL01, state->fclk/1000000 - 8);
0680 s5h1420_writereg(state, PLL02, 0x40);
0681 s5h1420_writereg(state, DiS01, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32));
0682
0683
0684 if (p->symbol_rate > 29000000)
0685 s5h1420_writereg(state, QPSK01, 0xae | 0x10);
0686 else
0687 s5h1420_writereg(state, QPSK01, 0xac | 0x10);
0688
0689
0690 s5h1420_writereg(state, CON_1, 0x00);
0691 s5h1420_writereg(state, QPSK02, 0x00);
0692 s5h1420_writereg(state, Pre01, 0xb0);
0693
0694 s5h1420_writereg(state, Loop01, 0xF0);
0695 s5h1420_writereg(state, Loop02, 0x2a);
0696 s5h1420_writereg(state, Loop03, 0x79);
0697 if (p->symbol_rate > 20000000)
0698 s5h1420_writereg(state, Loop04, 0x79);
0699 else
0700 s5h1420_writereg(state, Loop04, 0x58);
0701 s5h1420_writereg(state, Loop05, 0x6b);
0702
0703 if (p->symbol_rate >= 8000000)
0704 s5h1420_writereg(state, Post01, (0 << 6) | 0x10);
0705 else if (p->symbol_rate >= 4000000)
0706 s5h1420_writereg(state, Post01, (1 << 6) | 0x10);
0707 else
0708 s5h1420_writereg(state, Post01, (3 << 6) | 0x10);
0709
0710 s5h1420_writereg(state, Monitor12, 0x00);
0711
0712 s5h1420_writereg(state, Sync01, 0x33);
0713 s5h1420_writereg(state, Mpeg01, state->config->cdclk_polarity);
0714 s5h1420_writereg(state, Mpeg02, 0x3d);
0715 s5h1420_writereg(state, Err01, 0x03);
0716
0717 s5h1420_writereg(state, Vit06, 0x6e);
0718 s5h1420_writereg(state, DiS03, 0x00);
0719 s5h1420_writereg(state, Rf01, 0x61);
0720
0721
0722 if (fe->ops.tuner_ops.set_params) {
0723 fe->ops.tuner_ops.set_params(fe);
0724 if (fe->ops.i2c_gate_ctrl)
0725 fe->ops.i2c_gate_ctrl(fe, 0);
0726 s5h1420_setfreqoffset(state, 0);
0727 }
0728
0729
0730 s5h1420_setsymbolrate(state, p);
0731 s5h1420_setfec_inversion(state, p);
0732
0733
0734 s5h1420_writereg(state, QPSK01, s5h1420_readreg(state, QPSK01) | 1);
0735
0736 state->fec_inner = p->fec_inner;
0737 state->symbol_rate = p->symbol_rate;
0738 state->postlocked = 0;
0739 state->tunedfreq = p->frequency;
0740
0741 dprintk("leave %s\n", __func__);
0742 return 0;
0743 }
0744
0745 static int s5h1420_get_frontend(struct dvb_frontend* fe,
0746 struct dtv_frontend_properties *p)
0747 {
0748 struct s5h1420_state* state = fe->demodulator_priv;
0749
0750 p->frequency = state->tunedfreq + s5h1420_getfreqoffset(state);
0751 p->inversion = s5h1420_getinversion(state);
0752 p->symbol_rate = s5h1420_getsymbolrate(state);
0753 p->fec_inner = s5h1420_getfec(state);
0754
0755 return 0;
0756 }
0757
0758 static int s5h1420_get_tune_settings(struct dvb_frontend* fe,
0759 struct dvb_frontend_tune_settings* fesettings)
0760 {
0761 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
0762 if (p->symbol_rate > 20000000) {
0763 fesettings->min_delay_ms = 50;
0764 fesettings->step_size = 2000;
0765 fesettings->max_drift = 8000;
0766 } else if (p->symbol_rate > 12000000) {
0767 fesettings->min_delay_ms = 100;
0768 fesettings->step_size = 1500;
0769 fesettings->max_drift = 9000;
0770 } else if (p->symbol_rate > 8000000) {
0771 fesettings->min_delay_ms = 100;
0772 fesettings->step_size = 1000;
0773 fesettings->max_drift = 8000;
0774 } else if (p->symbol_rate > 4000000) {
0775 fesettings->min_delay_ms = 100;
0776 fesettings->step_size = 500;
0777 fesettings->max_drift = 7000;
0778 } else if (p->symbol_rate > 2000000) {
0779 fesettings->min_delay_ms = 200;
0780 fesettings->step_size = (p->symbol_rate / 8000);
0781 fesettings->max_drift = 14 * fesettings->step_size;
0782 } else {
0783 fesettings->min_delay_ms = 200;
0784 fesettings->step_size = (p->symbol_rate / 8000);
0785 fesettings->max_drift = 18 * fesettings->step_size;
0786 }
0787
0788 return 0;
0789 }
0790
0791 static int s5h1420_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
0792 {
0793 struct s5h1420_state* state = fe->demodulator_priv;
0794
0795 if (enable)
0796 return s5h1420_writereg(state, 0x02, state->CON_1_val | 1);
0797 else
0798 return s5h1420_writereg(state, 0x02, state->CON_1_val & 0xfe);
0799 }
0800
0801 static int s5h1420_init (struct dvb_frontend* fe)
0802 {
0803 struct s5h1420_state* state = fe->demodulator_priv;
0804
0805
0806 state->CON_1_val = state->config->serial_mpeg << 4;
0807 s5h1420_writereg(state, 0x02, state->CON_1_val);
0808 msleep(10);
0809 s5h1420_reset(state);
0810
0811 return 0;
0812 }
0813
0814 static int s5h1420_sleep(struct dvb_frontend* fe)
0815 {
0816 struct s5h1420_state* state = fe->demodulator_priv;
0817 state->CON_1_val = 0x12;
0818 return s5h1420_writereg(state, 0x02, state->CON_1_val);
0819 }
0820
0821 static void s5h1420_release(struct dvb_frontend* fe)
0822 {
0823 struct s5h1420_state* state = fe->demodulator_priv;
0824 i2c_del_adapter(&state->tuner_i2c_adapter);
0825 kfree(state);
0826 }
0827
0828 static u32 s5h1420_tuner_i2c_func(struct i2c_adapter *adapter)
0829 {
0830 return I2C_FUNC_I2C;
0831 }
0832
0833 static int s5h1420_tuner_i2c_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
0834 {
0835 struct s5h1420_state *state = i2c_get_adapdata(i2c_adap);
0836 struct i2c_msg m[3];
0837 u8 tx_open[2] = { CON_1, state->CON_1_val | 1 };
0838
0839 if (1 + num > ARRAY_SIZE(m)) {
0840 printk(KERN_WARNING
0841 "%s: i2c xfer: num=%d is too big!\n",
0842 KBUILD_MODNAME, num);
0843 return -EOPNOTSUPP;
0844 }
0845
0846 memset(m, 0, sizeof(struct i2c_msg) * (1 + num));
0847
0848 m[0].addr = state->config->demod_address;
0849 m[0].buf = tx_open;
0850 m[0].len = 2;
0851
0852 memcpy(&m[1], msg, sizeof(struct i2c_msg) * num);
0853
0854 return i2c_transfer(state->i2c, m, 1 + num) == 1 + num ? num : -EIO;
0855 }
0856
0857 static const struct i2c_algorithm s5h1420_tuner_i2c_algo = {
0858 .master_xfer = s5h1420_tuner_i2c_tuner_xfer,
0859 .functionality = s5h1420_tuner_i2c_func,
0860 };
0861
0862 struct i2c_adapter *s5h1420_get_tuner_i2c_adapter(struct dvb_frontend *fe)
0863 {
0864 struct s5h1420_state *state = fe->demodulator_priv;
0865 return &state->tuner_i2c_adapter;
0866 }
0867 EXPORT_SYMBOL(s5h1420_get_tuner_i2c_adapter);
0868
0869 static const struct dvb_frontend_ops s5h1420_ops;
0870
0871 struct dvb_frontend *s5h1420_attach(const struct s5h1420_config *config,
0872 struct i2c_adapter *i2c)
0873 {
0874
0875 struct s5h1420_state *state = kzalloc(sizeof(struct s5h1420_state), GFP_KERNEL);
0876 u8 i;
0877
0878 if (state == NULL)
0879 goto error;
0880
0881
0882 state->config = config;
0883 state->i2c = i2c;
0884 state->postlocked = 0;
0885 state->fclk = 88000000;
0886 state->tunedfreq = 0;
0887 state->fec_inner = FEC_NONE;
0888 state->symbol_rate = 0;
0889
0890
0891 i = s5h1420_readreg(state, ID01);
0892 if (i != 0x03)
0893 goto error;
0894
0895 memset(state->shadow, 0xff, sizeof(state->shadow));
0896
0897 for (i = 0; i < 0x50; i++)
0898 state->shadow[i] = s5h1420_readreg(state, i);
0899
0900
0901 memcpy(&state->frontend.ops, &s5h1420_ops, sizeof(struct dvb_frontend_ops));
0902 state->frontend.demodulator_priv = state;
0903
0904
0905 strscpy(state->tuner_i2c_adapter.name, "S5H1420-PN1010 tuner I2C bus",
0906 sizeof(state->tuner_i2c_adapter.name));
0907 state->tuner_i2c_adapter.algo = &s5h1420_tuner_i2c_algo;
0908 state->tuner_i2c_adapter.algo_data = NULL;
0909 i2c_set_adapdata(&state->tuner_i2c_adapter, state);
0910 if (i2c_add_adapter(&state->tuner_i2c_adapter) < 0) {
0911 printk(KERN_ERR "S5H1420/PN1010: tuner i2c bus could not be initialized\n");
0912 goto error;
0913 }
0914
0915 return &state->frontend;
0916
0917 error:
0918 kfree(state);
0919 return NULL;
0920 }
0921 EXPORT_SYMBOL(s5h1420_attach);
0922
0923 static const struct dvb_frontend_ops s5h1420_ops = {
0924 .delsys = { SYS_DVBS },
0925 .info = {
0926 .name = "Samsung S5H1420/PnpNetwork PN1010 DVB-S",
0927 .frequency_min_hz = 950 * MHz,
0928 .frequency_max_hz = 2150 * MHz,
0929 .frequency_stepsize_hz = 125 * kHz,
0930 .frequency_tolerance_hz = 29500 * kHz,
0931 .symbol_rate_min = 1000000,
0932 .symbol_rate_max = 45000000,
0933
0934 .caps = FE_CAN_INVERSION_AUTO |
0935 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
0936 FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
0937 FE_CAN_QPSK
0938 },
0939
0940 .release = s5h1420_release,
0941
0942 .init = s5h1420_init,
0943 .sleep = s5h1420_sleep,
0944 .i2c_gate_ctrl = s5h1420_i2c_gate_ctrl,
0945
0946 .set_frontend = s5h1420_set_frontend,
0947 .get_frontend = s5h1420_get_frontend,
0948 .get_tune_settings = s5h1420_get_tune_settings,
0949
0950 .read_status = s5h1420_read_status,
0951 .read_ber = s5h1420_read_ber,
0952 .read_signal_strength = s5h1420_read_signal_strength,
0953 .read_ucblocks = s5h1420_read_ucblocks,
0954
0955 .diseqc_send_master_cmd = s5h1420_send_master_cmd,
0956 .diseqc_recv_slave_reply = s5h1420_recv_slave_reply,
0957 .diseqc_send_burst = s5h1420_send_burst,
0958 .set_tone = s5h1420_set_tone,
0959 .set_voltage = s5h1420_set_voltage,
0960 };
0961
0962 MODULE_DESCRIPTION("Samsung S5H1420/PnpNetwork PN1010 DVB-S Demodulator driver");
0963 MODULE_AUTHOR("Andrew de Quincey, Patrick Boettcher");
0964 MODULE_LICENSE("GPL");