0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019 #include <linux/kernel.h>
0020 #include <linux/module.h>
0021 #include <linux/init.h>
0022 #include <linux/delay.h>
0023 #include <linux/string.h>
0024 #include <linux/slab.h>
0025
0026 #include <media/dvb_frontend.h>
0027 #include "mt352_priv.h"
0028 #include "mt352.h"
0029
0030 struct mt352_state {
0031 struct i2c_adapter* i2c;
0032 struct dvb_frontend frontend;
0033
0034
0035 struct mt352_config config;
0036 };
0037
0038 static int debug;
0039 #define dprintk(args...) \
0040 do { \
0041 if (debug) printk(KERN_DEBUG "mt352: " args); \
0042 } while (0)
0043
0044 static int mt352_single_write(struct dvb_frontend *fe, u8 reg, u8 val)
0045 {
0046 struct mt352_state* state = fe->demodulator_priv;
0047 u8 buf[2] = { reg, val };
0048 struct i2c_msg msg = { .addr = state->config.demod_address, .flags = 0,
0049 .buf = buf, .len = 2 };
0050 int err = i2c_transfer(state->i2c, &msg, 1);
0051 if (err != 1) {
0052 printk("mt352_write() to reg %x failed (err = %d)!\n", reg, err);
0053 return err;
0054 }
0055 return 0;
0056 }
0057
0058 static int _mt352_write(struct dvb_frontend* fe, const u8 ibuf[], int ilen)
0059 {
0060 int err,i;
0061 for (i=0; i < ilen-1; i++)
0062 if ((err = mt352_single_write(fe,ibuf[0]+i,ibuf[i+1])))
0063 return err;
0064
0065 return 0;
0066 }
0067
0068 static int mt352_read_register(struct mt352_state* state, u8 reg)
0069 {
0070 int ret;
0071 u8 b0 [] = { reg };
0072 u8 b1 [] = { 0 };
0073 struct i2c_msg msg [] = { { .addr = state->config.demod_address,
0074 .flags = 0,
0075 .buf = b0, .len = 1 },
0076 { .addr = state->config.demod_address,
0077 .flags = I2C_M_RD,
0078 .buf = b1, .len = 1 } };
0079
0080 ret = i2c_transfer(state->i2c, msg, 2);
0081
0082 if (ret != 2) {
0083 printk("%s: readreg error (reg=%d, ret==%i)\n",
0084 __func__, reg, ret);
0085 return ret;
0086 }
0087
0088 return b1[0];
0089 }
0090
0091 static int mt352_sleep(struct dvb_frontend* fe)
0092 {
0093 static u8 mt352_softdown[] = { CLOCK_CTL, 0x20, 0x08 };
0094
0095 _mt352_write(fe, mt352_softdown, sizeof(mt352_softdown));
0096 return 0;
0097 }
0098
0099 static void mt352_calc_nominal_rate(struct mt352_state* state,
0100 u32 bandwidth,
0101 unsigned char *buf)
0102 {
0103 u32 adc_clock = 20480;
0104 u32 bw,value;
0105
0106 switch (bandwidth) {
0107 case 6000000:
0108 bw = 6;
0109 break;
0110 case 7000000:
0111 bw = 7;
0112 break;
0113 case 8000000:
0114 default:
0115 bw = 8;
0116 break;
0117 }
0118 if (state->config.adc_clock)
0119 adc_clock = state->config.adc_clock;
0120
0121 value = 64 * bw * (1<<16) / (7 * 8);
0122 value = value * 1000 / adc_clock;
0123 dprintk("%s: bw %d, adc_clock %d => 0x%x\n",
0124 __func__, bw, adc_clock, value);
0125 buf[0] = msb(value);
0126 buf[1] = lsb(value);
0127 }
0128
0129 static void mt352_calc_input_freq(struct mt352_state* state,
0130 unsigned char *buf)
0131 {
0132 int adc_clock = 20480;
0133 int if2 = 36167;
0134 int ife,value;
0135
0136 if (state->config.adc_clock)
0137 adc_clock = state->config.adc_clock;
0138 if (state->config.if2)
0139 if2 = state->config.if2;
0140
0141 if (adc_clock >= if2 * 2)
0142 ife = if2;
0143 else {
0144 ife = adc_clock - (if2 % adc_clock);
0145 if (ife > adc_clock / 2)
0146 ife = adc_clock - ife;
0147 }
0148 value = -16374 * ife / adc_clock;
0149 dprintk("%s: if2 %d, ife %d, adc_clock %d => %d / 0x%x\n",
0150 __func__, if2, ife, adc_clock, value, value & 0x3fff);
0151 buf[0] = msb(value);
0152 buf[1] = lsb(value);
0153 }
0154
0155 static int mt352_set_parameters(struct dvb_frontend *fe)
0156 {
0157 struct dtv_frontend_properties *op = &fe->dtv_property_cache;
0158 struct mt352_state* state = fe->demodulator_priv;
0159 unsigned char buf[13];
0160 static unsigned char tuner_go[] = { 0x5d, 0x01 };
0161 static unsigned char fsm_go[] = { 0x5e, 0x01 };
0162 unsigned int tps = 0;
0163
0164 switch (op->code_rate_HP) {
0165 case FEC_2_3:
0166 tps |= (1 << 7);
0167 break;
0168 case FEC_3_4:
0169 tps |= (2 << 7);
0170 break;
0171 case FEC_5_6:
0172 tps |= (3 << 7);
0173 break;
0174 case FEC_7_8:
0175 tps |= (4 << 7);
0176 break;
0177 case FEC_1_2:
0178 case FEC_AUTO:
0179 break;
0180 default:
0181 return -EINVAL;
0182 }
0183
0184 switch (op->code_rate_LP) {
0185 case FEC_2_3:
0186 tps |= (1 << 4);
0187 break;
0188 case FEC_3_4:
0189 tps |= (2 << 4);
0190 break;
0191 case FEC_5_6:
0192 tps |= (3 << 4);
0193 break;
0194 case FEC_7_8:
0195 tps |= (4 << 4);
0196 break;
0197 case FEC_1_2:
0198 case FEC_AUTO:
0199 break;
0200 case FEC_NONE:
0201 if (op->hierarchy == HIERARCHY_AUTO ||
0202 op->hierarchy == HIERARCHY_NONE)
0203 break;
0204 fallthrough;
0205 default:
0206 return -EINVAL;
0207 }
0208
0209 switch (op->modulation) {
0210 case QPSK:
0211 break;
0212 case QAM_AUTO:
0213 case QAM_16:
0214 tps |= (1 << 13);
0215 break;
0216 case QAM_64:
0217 tps |= (2 << 13);
0218 break;
0219 default:
0220 return -EINVAL;
0221 }
0222
0223 switch (op->transmission_mode) {
0224 case TRANSMISSION_MODE_2K:
0225 case TRANSMISSION_MODE_AUTO:
0226 break;
0227 case TRANSMISSION_MODE_8K:
0228 tps |= (1 << 0);
0229 break;
0230 default:
0231 return -EINVAL;
0232 }
0233
0234 switch (op->guard_interval) {
0235 case GUARD_INTERVAL_1_32:
0236 case GUARD_INTERVAL_AUTO:
0237 break;
0238 case GUARD_INTERVAL_1_16:
0239 tps |= (1 << 2);
0240 break;
0241 case GUARD_INTERVAL_1_8:
0242 tps |= (2 << 2);
0243 break;
0244 case GUARD_INTERVAL_1_4:
0245 tps |= (3 << 2);
0246 break;
0247 default:
0248 return -EINVAL;
0249 }
0250
0251 switch (op->hierarchy) {
0252 case HIERARCHY_AUTO:
0253 case HIERARCHY_NONE:
0254 break;
0255 case HIERARCHY_1:
0256 tps |= (1 << 10);
0257 break;
0258 case HIERARCHY_2:
0259 tps |= (2 << 10);
0260 break;
0261 case HIERARCHY_4:
0262 tps |= (3 << 10);
0263 break;
0264 default:
0265 return -EINVAL;
0266 }
0267
0268
0269 buf[0] = TPS_GIVEN_1;
0270
0271 buf[1] = msb(tps);
0272 buf[2] = lsb(tps);
0273
0274 buf[3] = 0x50;
0275
0276
0277 mt352_calc_nominal_rate(state, op->bandwidth_hz, buf+4);
0278 mt352_calc_input_freq(state, buf+6);
0279
0280 if (state->config.no_tuner) {
0281 if (fe->ops.tuner_ops.set_params) {
0282 fe->ops.tuner_ops.set_params(fe);
0283 if (fe->ops.i2c_gate_ctrl)
0284 fe->ops.i2c_gate_ctrl(fe, 0);
0285 }
0286
0287 _mt352_write(fe, buf, 8);
0288 _mt352_write(fe, fsm_go, 2);
0289 } else {
0290 if (fe->ops.tuner_ops.calc_regs) {
0291 fe->ops.tuner_ops.calc_regs(fe, buf+8, 5);
0292 buf[8] <<= 1;
0293 _mt352_write(fe, buf, sizeof(buf));
0294 _mt352_write(fe, tuner_go, 2);
0295 }
0296 }
0297
0298 return 0;
0299 }
0300
0301 static int mt352_get_parameters(struct dvb_frontend* fe,
0302 struct dtv_frontend_properties *op)
0303 {
0304 struct mt352_state* state = fe->demodulator_priv;
0305 u16 tps;
0306 u16 div;
0307 u8 trl;
0308 static const u8 tps_fec_to_api[8] =
0309 {
0310 FEC_1_2,
0311 FEC_2_3,
0312 FEC_3_4,
0313 FEC_5_6,
0314 FEC_7_8,
0315 FEC_AUTO,
0316 FEC_AUTO,
0317 FEC_AUTO
0318 };
0319
0320 if ( (mt352_read_register(state,0x00) & 0xC0) != 0xC0 )
0321 return -EINVAL;
0322
0323
0324
0325
0326 tps = (mt352_read_register(state, TPS_RECEIVED_1) << 8) | mt352_read_register(state, TPS_RECEIVED_0);
0327 div = (mt352_read_register(state, CHAN_START_1) << 8) | mt352_read_register(state, CHAN_START_0);
0328 trl = mt352_read_register(state, TRL_NOMINAL_RATE_1);
0329
0330 op->code_rate_HP = tps_fec_to_api[(tps >> 7) & 7];
0331 op->code_rate_LP = tps_fec_to_api[(tps >> 4) & 7];
0332
0333 switch ( (tps >> 13) & 3)
0334 {
0335 case 0:
0336 op->modulation = QPSK;
0337 break;
0338 case 1:
0339 op->modulation = QAM_16;
0340 break;
0341 case 2:
0342 op->modulation = QAM_64;
0343 break;
0344 default:
0345 op->modulation = QAM_AUTO;
0346 break;
0347 }
0348
0349 op->transmission_mode = (tps & 0x01) ? TRANSMISSION_MODE_8K : TRANSMISSION_MODE_2K;
0350
0351 switch ( (tps >> 2) & 3)
0352 {
0353 case 0:
0354 op->guard_interval = GUARD_INTERVAL_1_32;
0355 break;
0356 case 1:
0357 op->guard_interval = GUARD_INTERVAL_1_16;
0358 break;
0359 case 2:
0360 op->guard_interval = GUARD_INTERVAL_1_8;
0361 break;
0362 case 3:
0363 op->guard_interval = GUARD_INTERVAL_1_4;
0364 break;
0365 default:
0366 op->guard_interval = GUARD_INTERVAL_AUTO;
0367 break;
0368 }
0369
0370 switch ( (tps >> 10) & 7)
0371 {
0372 case 0:
0373 op->hierarchy = HIERARCHY_NONE;
0374 break;
0375 case 1:
0376 op->hierarchy = HIERARCHY_1;
0377 break;
0378 case 2:
0379 op->hierarchy = HIERARCHY_2;
0380 break;
0381 case 3:
0382 op->hierarchy = HIERARCHY_4;
0383 break;
0384 default:
0385 op->hierarchy = HIERARCHY_AUTO;
0386 break;
0387 }
0388
0389 op->frequency = (500 * (div - IF_FREQUENCYx6)) / 3 * 1000;
0390
0391 if (trl == 0x72)
0392 op->bandwidth_hz = 8000000;
0393 else if (trl == 0x64)
0394 op->bandwidth_hz = 7000000;
0395 else
0396 op->bandwidth_hz = 6000000;
0397
0398
0399 if (mt352_read_register(state, STATUS_2) & 0x02)
0400 op->inversion = INVERSION_OFF;
0401 else
0402 op->inversion = INVERSION_ON;
0403
0404 return 0;
0405 }
0406
0407 static int mt352_read_status(struct dvb_frontend *fe, enum fe_status *status)
0408 {
0409 struct mt352_state* state = fe->demodulator_priv;
0410 int s0, s1, s3;
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424 if ((s0 = mt352_read_register(state, STATUS_0)) < 0)
0425 return -EREMOTEIO;
0426 if ((s1 = mt352_read_register(state, STATUS_1)) < 0)
0427 return -EREMOTEIO;
0428 if ((s3 = mt352_read_register(state, STATUS_3)) < 0)
0429 return -EREMOTEIO;
0430
0431 *status = 0;
0432 if (s0 & (1 << 4))
0433 *status |= FE_HAS_CARRIER;
0434 if (s0 & (1 << 1))
0435 *status |= FE_HAS_VITERBI;
0436 if (s0 & (1 << 5))
0437 *status |= FE_HAS_LOCK;
0438 if (s1 & (1 << 1))
0439 *status |= FE_HAS_SYNC;
0440 if (s3 & (1 << 6))
0441 *status |= FE_HAS_SIGNAL;
0442
0443 if ((*status & (FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)) !=
0444 (FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC))
0445 *status &= ~FE_HAS_LOCK;
0446
0447 return 0;
0448 }
0449
0450 static int mt352_read_ber(struct dvb_frontend* fe, u32* ber)
0451 {
0452 struct mt352_state* state = fe->demodulator_priv;
0453
0454 *ber = (mt352_read_register (state, RS_ERR_CNT_2) << 16) |
0455 (mt352_read_register (state, RS_ERR_CNT_1) << 8) |
0456 (mt352_read_register (state, RS_ERR_CNT_0));
0457
0458 return 0;
0459 }
0460
0461 static int mt352_read_signal_strength(struct dvb_frontend* fe, u16* strength)
0462 {
0463 struct mt352_state* state = fe->demodulator_priv;
0464
0465
0466 u16 signal = ((mt352_read_register(state, AGC_GAIN_1) & 0x0f) << 12) |
0467 (mt352_read_register(state, AGC_GAIN_0) << 4);
0468
0469
0470 *strength = ~signal;
0471 return 0;
0472 }
0473
0474 static int mt352_read_snr(struct dvb_frontend* fe, u16* snr)
0475 {
0476 struct mt352_state* state = fe->demodulator_priv;
0477
0478 u8 _snr = mt352_read_register (state, SNR);
0479 *snr = (_snr << 8) | _snr;
0480
0481 return 0;
0482 }
0483
0484 static int mt352_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
0485 {
0486 struct mt352_state* state = fe->demodulator_priv;
0487
0488 *ucblocks = (mt352_read_register (state, RS_UBC_1) << 8) |
0489 (mt352_read_register (state, RS_UBC_0));
0490
0491 return 0;
0492 }
0493
0494 static int mt352_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fe_tune_settings)
0495 {
0496 fe_tune_settings->min_delay_ms = 800;
0497 fe_tune_settings->step_size = 0;
0498 fe_tune_settings->max_drift = 0;
0499
0500 return 0;
0501 }
0502
0503 static int mt352_init(struct dvb_frontend* fe)
0504 {
0505 struct mt352_state* state = fe->demodulator_priv;
0506
0507 static u8 mt352_reset_attach [] = { RESET, 0xC0 };
0508
0509 dprintk("%s: hello\n",__func__);
0510
0511 if ((mt352_read_register(state, CLOCK_CTL) & 0x10) == 0 ||
0512 (mt352_read_register(state, CONFIG) & 0x20) == 0) {
0513
0514
0515 _mt352_write(fe, mt352_reset_attach, sizeof(mt352_reset_attach));
0516 return state->config.demod_init(fe);
0517 }
0518
0519 return 0;
0520 }
0521
0522 static void mt352_release(struct dvb_frontend* fe)
0523 {
0524 struct mt352_state* state = fe->demodulator_priv;
0525 kfree(state);
0526 }
0527
0528 static const struct dvb_frontend_ops mt352_ops;
0529
0530 struct dvb_frontend* mt352_attach(const struct mt352_config* config,
0531 struct i2c_adapter* i2c)
0532 {
0533 struct mt352_state* state = NULL;
0534
0535
0536 state = kzalloc(sizeof(struct mt352_state), GFP_KERNEL);
0537 if (state == NULL) goto error;
0538
0539
0540 state->i2c = i2c;
0541 memcpy(&state->config,config,sizeof(struct mt352_config));
0542
0543
0544 if (mt352_read_register(state, CHIP_ID) != ID_MT352) goto error;
0545
0546
0547 memcpy(&state->frontend.ops, &mt352_ops, sizeof(struct dvb_frontend_ops));
0548 state->frontend.demodulator_priv = state;
0549 return &state->frontend;
0550
0551 error:
0552 kfree(state);
0553 return NULL;
0554 }
0555
0556 static const struct dvb_frontend_ops mt352_ops = {
0557 .delsys = { SYS_DVBT },
0558 .info = {
0559 .name = "Zarlink MT352 DVB-T",
0560 .frequency_min_hz = 174 * MHz,
0561 .frequency_max_hz = 862 * MHz,
0562 .frequency_stepsize_hz = 166667,
0563 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
0564 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
0565 FE_CAN_FEC_AUTO |
0566 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
0567 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
0568 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER |
0569 FE_CAN_MUTE_TS
0570 },
0571
0572 .release = mt352_release,
0573
0574 .init = mt352_init,
0575 .sleep = mt352_sleep,
0576 .write = _mt352_write,
0577
0578 .set_frontend = mt352_set_parameters,
0579 .get_frontend = mt352_get_parameters,
0580 .get_tune_settings = mt352_get_tune_settings,
0581
0582 .read_status = mt352_read_status,
0583 .read_ber = mt352_read_ber,
0584 .read_signal_strength = mt352_read_signal_strength,
0585 .read_snr = mt352_read_snr,
0586 .read_ucblocks = mt352_read_ucblocks,
0587 };
0588
0589 module_param(debug, int, 0644);
0590 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
0591
0592 MODULE_DESCRIPTION("Zarlink MT352 DVB-T Demodulator driver");
0593 MODULE_AUTHOR("Holger Waechtler, Daniel Mack, Antonio Mancuso");
0594 MODULE_LICENSE("GPL");
0595
0596 EXPORT_SYMBOL(mt352_attach);