0001
0002
0003
0004
0005
0006
0007
0008
0009 #include <linux/kernel.h>
0010 #include <asm/div64.h>
0011
0012 #include <media/dvb_frontend.h>
0013 #include "mb86a20s.h"
0014
0015 #define NUM_LAYERS 3
0016
0017 enum mb86a20s_bandwidth {
0018 MB86A20S_13SEG = 0,
0019 MB86A20S_13SEG_PARTIAL = 1,
0020 MB86A20S_1SEG = 2,
0021 MB86A20S_3SEG = 3,
0022 };
0023
0024 static u8 mb86a20s_subchannel[] = {
0025 0xb0, 0xc0, 0xd0, 0xe0,
0026 0xf0, 0x00, 0x10, 0x20,
0027 };
0028
0029 struct mb86a20s_state {
0030 struct i2c_adapter *i2c;
0031 const struct mb86a20s_config *config;
0032 u32 last_frequency;
0033
0034 struct dvb_frontend frontend;
0035
0036 u32 if_freq;
0037 enum mb86a20s_bandwidth bw;
0038 bool inversion;
0039 u32 subchannel;
0040
0041 u32 estimated_rate[NUM_LAYERS];
0042 unsigned long get_strength_time;
0043
0044 bool need_init;
0045 };
0046
0047 struct regdata {
0048 u8 reg;
0049 u8 data;
0050 };
0051
0052 #define BER_SAMPLING_RATE 1
0053
0054
0055
0056
0057
0058 static struct regdata mb86a20s_init1[] = {
0059 { 0x70, 0x0f },
0060 { 0x70, 0xff },
0061 { 0x08, 0x01 },
0062 { 0x50, 0xd1 }, { 0x51, 0x20 },
0063 };
0064
0065 static struct regdata mb86a20s_init2[] = {
0066 { 0x50, 0xd1 }, { 0x51, 0x22 },
0067 { 0x39, 0x01 },
0068 { 0x71, 0x00 },
0069 { 0x3b, 0x21 },
0070 { 0x3c, 0x3a },
0071 { 0x01, 0x0d },
0072 { 0x04, 0x08 }, { 0x05, 0x05 },
0073 { 0x04, 0x0e }, { 0x05, 0x00 },
0074 { 0x04, 0x0f }, { 0x05, 0x14 },
0075 { 0x04, 0x0b }, { 0x05, 0x8c },
0076 { 0x04, 0x00 }, { 0x05, 0x00 },
0077 { 0x04, 0x01 }, { 0x05, 0x07 },
0078 { 0x04, 0x02 }, { 0x05, 0x0f },
0079 { 0x04, 0x03 }, { 0x05, 0xa0 },
0080 { 0x04, 0x09 }, { 0x05, 0x00 },
0081 { 0x04, 0x0a }, { 0x05, 0xff },
0082 { 0x04, 0x27 }, { 0x05, 0x64 },
0083 { 0x04, 0x28 }, { 0x05, 0x00 },
0084 { 0x04, 0x1e }, { 0x05, 0xff },
0085 { 0x04, 0x29 }, { 0x05, 0x0a },
0086 { 0x04, 0x32 }, { 0x05, 0x0a },
0087 { 0x04, 0x14 }, { 0x05, 0x02 },
0088 { 0x04, 0x04 }, { 0x05, 0x00 },
0089 { 0x04, 0x05 }, { 0x05, 0x22 },
0090 { 0x04, 0x06 }, { 0x05, 0x0e },
0091 { 0x04, 0x07 }, { 0x05, 0xd8 },
0092 { 0x04, 0x12 }, { 0x05, 0x00 },
0093 { 0x04, 0x13 }, { 0x05, 0xff },
0094
0095
0096
0097
0098
0099
0100
0101
0102 { 0x52, 0x01 },
0103 { 0x50, 0xa7 }, { 0x51, 0x00 },
0104 { 0x50, 0xa8 }, { 0x51, 0xff },
0105 { 0x50, 0xa9 }, { 0x51, 0xff },
0106 { 0x50, 0xaa }, { 0x51, 0x00 },
0107 { 0x50, 0xab }, { 0x51, 0xff },
0108 { 0x50, 0xac }, { 0x51, 0xff },
0109 { 0x50, 0xad }, { 0x51, 0x00 },
0110 { 0x50, 0xae }, { 0x51, 0xff },
0111 { 0x50, 0xaf }, { 0x51, 0xff },
0112
0113
0114
0115
0116
0117
0118
0119
0120 { 0x5e, 0x07 },
0121 { 0x50, 0xdc }, { 0x51, 0x00 },
0122 { 0x50, 0xdd }, { 0x51, 0x7f },
0123 { 0x50, 0xde }, { 0x51, 0x00 },
0124 { 0x50, 0xdf }, { 0x51, 0x7f },
0125 { 0x50, 0xe0 }, { 0x51, 0x00 },
0126 { 0x50, 0xe1 }, { 0x51, 0x7f },
0127
0128
0129
0130
0131
0132
0133
0134
0135 { 0x50, 0xb0 }, { 0x51, 0x07 },
0136 { 0x50, 0xb2 }, { 0x51, 0x00 },
0137 { 0x50, 0xb3 }, { 0x51, 0x7f },
0138 { 0x50, 0xb4 }, { 0x51, 0x00 },
0139 { 0x50, 0xb5 }, { 0x51, 0x7f },
0140 { 0x50, 0xb6 }, { 0x51, 0x00 },
0141 { 0x50, 0xb7 }, { 0x51, 0x7f },
0142
0143 { 0x50, 0x50 }, { 0x51, 0x02 },
0144 { 0x50, 0x51 }, { 0x51, 0x04 },
0145 { 0x45, 0x04 },
0146 { 0x48, 0x04 },
0147 { 0x50, 0xd5 }, { 0x51, 0x01 },
0148 { 0x50, 0xd6 }, { 0x51, 0x1f },
0149 { 0x50, 0xd2 }, { 0x51, 0x03 },
0150 { 0x50, 0xd7 }, { 0x51, 0x3f },
0151 { 0x1c, 0x01 },
0152 { 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x03 },
0153 { 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0d },
0154 { 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 },
0155 { 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x01 },
0156 { 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x21 },
0157 { 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x29 },
0158 { 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 },
0159 { 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x31 },
0160 { 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0e },
0161 { 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x4e },
0162 { 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x46 },
0163 { 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f },
0164 { 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x56 },
0165 { 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x35 },
0166 { 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbe },
0167 { 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0x84 },
0168 { 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x03 }, { 0x2b, 0xee },
0169 { 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x98 },
0170 { 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x9f },
0171 { 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xb2 },
0172 { 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0xc2 },
0173 { 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0x4a },
0174 { 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbc },
0175 { 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x04 }, { 0x2b, 0xba },
0176 { 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0x14 },
0177 { 0x50, 0x1e }, { 0x51, 0x5d },
0178 { 0x50, 0x22 }, { 0x51, 0x00 },
0179 { 0x50, 0x23 }, { 0x51, 0xc8 },
0180 { 0x50, 0x24 }, { 0x51, 0x00 },
0181 { 0x50, 0x25 }, { 0x51, 0xf0 },
0182 { 0x50, 0x26 }, { 0x51, 0x00 },
0183 { 0x50, 0x27 }, { 0x51, 0xc3 },
0184 { 0x50, 0x39 }, { 0x51, 0x02 },
0185 { 0x50, 0xd5 }, { 0x51, 0x01 },
0186 { 0xd0, 0x00 },
0187 };
0188
0189 static struct regdata mb86a20s_reset_reception[] = {
0190 { 0x70, 0xf0 },
0191 { 0x70, 0xff },
0192 { 0x08, 0x01 },
0193 { 0x08, 0x00 },
0194 };
0195
0196 static struct regdata mb86a20s_per_ber_reset[] = {
0197 { 0x53, 0x00 },
0198 { 0x53, 0x07 },
0199
0200 { 0x5f, 0x00 },
0201 { 0x5f, 0x07 },
0202
0203 { 0x50, 0xb1 },
0204 { 0x51, 0x07 },
0205 { 0x51, 0x00 },
0206 };
0207
0208
0209
0210
0211
0212 static int mb86a20s_i2c_writereg(struct mb86a20s_state *state,
0213 u8 i2c_addr, u8 reg, u8 data)
0214 {
0215 u8 buf[] = { reg, data };
0216 struct i2c_msg msg = {
0217 .addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
0218 };
0219 int rc;
0220
0221 rc = i2c_transfer(state->i2c, &msg, 1);
0222 if (rc != 1) {
0223 dev_err(&state->i2c->dev,
0224 "%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
0225 __func__, rc, reg, data);
0226 return rc;
0227 }
0228
0229 return 0;
0230 }
0231
0232 static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state,
0233 u8 i2c_addr, struct regdata *rd, int size)
0234 {
0235 int i, rc;
0236
0237 for (i = 0; i < size; i++) {
0238 rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg,
0239 rd[i].data);
0240 if (rc < 0)
0241 return rc;
0242 }
0243 return 0;
0244 }
0245
0246 static int mb86a20s_i2c_readreg(struct mb86a20s_state *state,
0247 u8 i2c_addr, u8 reg)
0248 {
0249 u8 val;
0250 int rc;
0251 struct i2c_msg msg[] = {
0252 { .addr = i2c_addr, .flags = 0, .buf = ®, .len = 1 },
0253 { .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 }
0254 };
0255
0256 rc = i2c_transfer(state->i2c, msg, 2);
0257
0258 if (rc != 2) {
0259 dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n",
0260 __func__, reg, rc);
0261 return (rc < 0) ? rc : -EIO;
0262 }
0263
0264 return val;
0265 }
0266
0267 #define mb86a20s_readreg(state, reg) \
0268 mb86a20s_i2c_readreg(state, state->config->demod_address, reg)
0269 #define mb86a20s_writereg(state, reg, val) \
0270 mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val)
0271 #define mb86a20s_writeregdata(state, regdata) \
0272 mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
0273 regdata, ARRAY_SIZE(regdata))
0274
0275
0276
0277
0278
0279
0280
0281 static int mb86a20s_read_status(struct dvb_frontend *fe, enum fe_status *status)
0282 {
0283 struct mb86a20s_state *state = fe->demodulator_priv;
0284 int val;
0285
0286 *status = 0;
0287
0288 val = mb86a20s_readreg(state, 0x0a);
0289 if (val < 0)
0290 return val;
0291
0292 val &= 0xf;
0293 if (val >= 2)
0294 *status |= FE_HAS_SIGNAL;
0295
0296 if (val >= 4)
0297 *status |= FE_HAS_CARRIER;
0298
0299 if (val >= 5)
0300 *status |= FE_HAS_VITERBI;
0301
0302 if (val >= 7)
0303 *status |= FE_HAS_SYNC;
0304
0305
0306
0307
0308
0309 if (val >= 9)
0310 *status |= FE_HAS_LOCK;
0311
0312 dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n",
0313 __func__, *status, val);
0314
0315 return val;
0316 }
0317
0318 static int mb86a20s_read_signal_strength(struct dvb_frontend *fe)
0319 {
0320 struct mb86a20s_state *state = fe->demodulator_priv;
0321 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
0322 int rc;
0323 unsigned rf_max, rf_min, rf;
0324
0325 if (state->get_strength_time &&
0326 (!time_after(jiffies, state->get_strength_time)))
0327 return c->strength.stat[0].uvalue;
0328
0329
0330 c->strength.stat[0].uvalue = 0;
0331
0332
0333 rf_max = 0xfff;
0334 rf_min = 0;
0335 do {
0336 rf = (rf_max + rf_min) / 2;
0337 rc = mb86a20s_writereg(state, 0x04, 0x1f);
0338 if (rc < 0)
0339 return rc;
0340 rc = mb86a20s_writereg(state, 0x05, rf >> 8);
0341 if (rc < 0)
0342 return rc;
0343 rc = mb86a20s_writereg(state, 0x04, 0x20);
0344 if (rc < 0)
0345 return rc;
0346 rc = mb86a20s_writereg(state, 0x05, rf);
0347 if (rc < 0)
0348 return rc;
0349
0350 rc = mb86a20s_readreg(state, 0x02);
0351 if (rc < 0)
0352 return rc;
0353 if (rc & 0x08)
0354 rf_min = (rf_max + rf_min) / 2;
0355 else
0356 rf_max = (rf_max + rf_min) / 2;
0357 if (rf_max - rf_min < 4) {
0358 rf = (rf_max + rf_min) / 2;
0359
0360
0361 rf = rf << (16 - 12);
0362 if (rf)
0363 rf |= (1 << 12) - 1;
0364
0365 dev_dbg(&state->i2c->dev,
0366 "%s: signal strength = %d (%d < RF=%d < %d)\n",
0367 __func__, rf, rf_min, rf >> 4, rf_max);
0368 c->strength.stat[0].uvalue = rf;
0369 state->get_strength_time = jiffies +
0370 msecs_to_jiffies(1000);
0371 return 0;
0372 }
0373 } while (1);
0374 }
0375
0376 static int mb86a20s_get_modulation(struct mb86a20s_state *state,
0377 unsigned layer)
0378 {
0379 int rc;
0380 static unsigned char reg[] = {
0381 [0] = 0x86,
0382 [1] = 0x8a,
0383 [2] = 0x8e,
0384 };
0385
0386 if (layer >= ARRAY_SIZE(reg))
0387 return -EINVAL;
0388 rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
0389 if (rc < 0)
0390 return rc;
0391 rc = mb86a20s_readreg(state, 0x6e);
0392 if (rc < 0)
0393 return rc;
0394 switch ((rc >> 4) & 0x07) {
0395 case 0:
0396 return DQPSK;
0397 case 1:
0398 return QPSK;
0399 case 2:
0400 return QAM_16;
0401 case 3:
0402 return QAM_64;
0403 default:
0404 return QAM_AUTO;
0405 }
0406 }
0407
0408 static int mb86a20s_get_fec(struct mb86a20s_state *state,
0409 unsigned layer)
0410 {
0411 int rc;
0412
0413 static unsigned char reg[] = {
0414 [0] = 0x87,
0415 [1] = 0x8b,
0416 [2] = 0x8f,
0417 };
0418
0419 if (layer >= ARRAY_SIZE(reg))
0420 return -EINVAL;
0421 rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
0422 if (rc < 0)
0423 return rc;
0424 rc = mb86a20s_readreg(state, 0x6e);
0425 if (rc < 0)
0426 return rc;
0427 switch ((rc >> 4) & 0x07) {
0428 case 0:
0429 return FEC_1_2;
0430 case 1:
0431 return FEC_2_3;
0432 case 2:
0433 return FEC_3_4;
0434 case 3:
0435 return FEC_5_6;
0436 case 4:
0437 return FEC_7_8;
0438 default:
0439 return FEC_AUTO;
0440 }
0441 }
0442
0443 static int mb86a20s_get_interleaving(struct mb86a20s_state *state,
0444 unsigned layer)
0445 {
0446 int rc;
0447 static const int interleaving[] = {
0448 0, 1, 2, 4, 8
0449 };
0450
0451 static const unsigned char reg[] = {
0452 [0] = 0x88,
0453 [1] = 0x8c,
0454 [2] = 0x90,
0455 };
0456
0457 if (layer >= ARRAY_SIZE(reg))
0458 return -EINVAL;
0459 rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
0460 if (rc < 0)
0461 return rc;
0462 rc = mb86a20s_readreg(state, 0x6e);
0463 if (rc < 0)
0464 return rc;
0465
0466 return interleaving[(rc >> 4) & 0x07];
0467 }
0468
0469 static int mb86a20s_get_segment_count(struct mb86a20s_state *state,
0470 unsigned layer)
0471 {
0472 int rc, count;
0473 static unsigned char reg[] = {
0474 [0] = 0x89,
0475 [1] = 0x8d,
0476 [2] = 0x91,
0477 };
0478
0479 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
0480
0481 if (layer >= ARRAY_SIZE(reg))
0482 return -EINVAL;
0483
0484 rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
0485 if (rc < 0)
0486 return rc;
0487 rc = mb86a20s_readreg(state, 0x6e);
0488 if (rc < 0)
0489 return rc;
0490 count = (rc >> 4) & 0x0f;
0491
0492 dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count);
0493
0494 return count;
0495 }
0496
0497 static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe)
0498 {
0499 struct mb86a20s_state *state = fe->demodulator_priv;
0500 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
0501
0502 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
0503
0504
0505 c->delivery_system = SYS_ISDBT;
0506 c->bandwidth_hz = 6000000;
0507
0508
0509 c->isdbt_layer_enabled = 0;
0510 c->transmission_mode = TRANSMISSION_MODE_AUTO;
0511 c->guard_interval = GUARD_INTERVAL_AUTO;
0512 c->isdbt_sb_mode = 0;
0513 c->isdbt_sb_segment_count = 0;
0514 }
0515
0516
0517
0518
0519
0520 static const u32 isdbt_rate[3][5][4] = {
0521 {
0522 { 280850, 312060, 330420, 340430 },
0523 { 374470, 416080, 440560, 453910 },
0524 { 421280, 468090, 495630, 510650 },
0525 { 468090, 520100, 550700, 567390 },
0526 { 491500, 546110, 578230, 595760 },
0527 }, {
0528 { 561710, 624130, 660840, 680870 },
0529 { 748950, 832170, 881120, 907820 },
0530 { 842570, 936190, 991260, 1021300 },
0531 { 936190, 1040210, 1101400, 1134780 },
0532 { 983000, 1092220, 1156470, 1191520 },
0533 }, {
0534 { 842570, 936190, 991260, 1021300 },
0535 { 1123430, 1248260, 1321680, 1361740 },
0536 { 1263860, 1404290, 1486900, 1531950 },
0537 { 1404290, 1560320, 1652110, 1702170 },
0538 { 1474500, 1638340, 1734710, 1787280 },
0539 }
0540 };
0541
0542 static u32 isdbt_layer_min_bitrate(struct dtv_frontend_properties *c,
0543 u32 layer)
0544 {
0545 int mod, fec, guard;
0546
0547
0548
0549
0550
0551
0552 switch (c->layer[layer].modulation) {
0553 case DQPSK:
0554 case QPSK:
0555 default:
0556 mod = 0;
0557 break;
0558 case QAM_16:
0559 mod = 1;
0560 break;
0561 case QAM_64:
0562 mod = 2;
0563 break;
0564 }
0565
0566 switch (c->layer[layer].fec) {
0567 default:
0568 case FEC_1_2:
0569 case FEC_AUTO:
0570 fec = 0;
0571 break;
0572 case FEC_2_3:
0573 fec = 1;
0574 break;
0575 case FEC_3_4:
0576 fec = 2;
0577 break;
0578 case FEC_5_6:
0579 fec = 3;
0580 break;
0581 case FEC_7_8:
0582 fec = 4;
0583 break;
0584 }
0585
0586 switch (c->guard_interval) {
0587 default:
0588 case GUARD_INTERVAL_1_4:
0589 guard = 0;
0590 break;
0591 case GUARD_INTERVAL_1_8:
0592 guard = 1;
0593 break;
0594 case GUARD_INTERVAL_1_16:
0595 guard = 2;
0596 break;
0597 case GUARD_INTERVAL_1_32:
0598 guard = 3;
0599 break;
0600 }
0601
0602 return isdbt_rate[mod][fec][guard] * c->layer[layer].segment_count;
0603 }
0604
0605 static int mb86a20s_get_frontend(struct dvb_frontend *fe)
0606 {
0607 struct mb86a20s_state *state = fe->demodulator_priv;
0608 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
0609 int layer, rc, rate, counter;
0610
0611 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
0612
0613
0614 mb86a20s_reset_frontend_cache(fe);
0615
0616
0617 rc = mb86a20s_writereg(state, 0x6d, 0x85);
0618 if (rc < 0)
0619 return rc;
0620 rc = mb86a20s_readreg(state, 0x6e);
0621 if (rc < 0)
0622 return rc;
0623 c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0;
0624
0625
0626
0627 for (layer = 0; layer < NUM_LAYERS; layer++) {
0628 dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n",
0629 __func__, 'A' + layer);
0630
0631 rc = mb86a20s_get_segment_count(state, layer);
0632 if (rc < 0)
0633 goto noperlayer_error;
0634 if (rc >= 0 && rc < 14) {
0635 c->layer[layer].segment_count = rc;
0636 } else {
0637 c->layer[layer].segment_count = 0;
0638 state->estimated_rate[layer] = 0;
0639 continue;
0640 }
0641 c->isdbt_layer_enabled |= 1 << layer;
0642 rc = mb86a20s_get_modulation(state, layer);
0643 if (rc < 0)
0644 goto noperlayer_error;
0645 dev_dbg(&state->i2c->dev, "%s: modulation %d.\n",
0646 __func__, rc);
0647 c->layer[layer].modulation = rc;
0648 rc = mb86a20s_get_fec(state, layer);
0649 if (rc < 0)
0650 goto noperlayer_error;
0651 dev_dbg(&state->i2c->dev, "%s: FEC %d.\n",
0652 __func__, rc);
0653 c->layer[layer].fec = rc;
0654 rc = mb86a20s_get_interleaving(state, layer);
0655 if (rc < 0)
0656 goto noperlayer_error;
0657 dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n",
0658 __func__, rc);
0659 c->layer[layer].interleaving = rc;
0660
0661 rate = isdbt_layer_min_bitrate(c, layer);
0662 counter = rate * BER_SAMPLING_RATE;
0663
0664
0665 if (counter < 256)
0666 counter = 256;
0667 else if (counter > (1 << 24) - 1)
0668 counter = (1 << 24) - 1;
0669
0670 dev_dbg(&state->i2c->dev,
0671 "%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n",
0672 __func__, 'A' + layer, rate / 1000, counter, counter);
0673
0674 state->estimated_rate[layer] = counter;
0675 }
0676
0677 rc = mb86a20s_writereg(state, 0x6d, 0x84);
0678 if (rc < 0)
0679 return rc;
0680 if ((rc & 0x60) == 0x20) {
0681 c->isdbt_sb_mode = 1;
0682
0683 if (!c->isdbt_sb_segment_count)
0684 c->isdbt_sb_segment_count = 1;
0685 }
0686
0687
0688 rc = mb86a20s_readreg(state, 0x07);
0689 if (rc < 0)
0690 return rc;
0691 c->transmission_mode = TRANSMISSION_MODE_AUTO;
0692 if ((rc & 0x60) == 0x20) {
0693
0694 switch ((rc >> 2) & 0x03) {
0695 case 1:
0696 c->transmission_mode = TRANSMISSION_MODE_4K;
0697 break;
0698 case 2:
0699 c->transmission_mode = TRANSMISSION_MODE_8K;
0700 break;
0701 }
0702 }
0703 c->guard_interval = GUARD_INTERVAL_AUTO;
0704 if (!(rc & 0x10)) {
0705
0706 switch (rc & 0x3) {
0707 case 0:
0708 c->guard_interval = GUARD_INTERVAL_1_4;
0709 break;
0710 case 1:
0711 c->guard_interval = GUARD_INTERVAL_1_8;
0712 break;
0713 case 2:
0714 c->guard_interval = GUARD_INTERVAL_1_16;
0715 break;
0716 }
0717 }
0718 return 0;
0719
0720 noperlayer_error:
0721
0722
0723 c->isdbt_layer_enabled = 0;
0724
0725 return rc;
0726 }
0727
0728 static int mb86a20s_reset_counters(struct dvb_frontend *fe)
0729 {
0730 struct mb86a20s_state *state = fe->demodulator_priv;
0731 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
0732 int rc, val;
0733
0734 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
0735
0736
0737 if (state->last_frequency != c->frequency) {
0738 memset(&c->cnr, 0, sizeof(c->cnr));
0739 memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error));
0740 memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count));
0741 memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
0742 memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
0743 memset(&c->block_error, 0, sizeof(c->block_error));
0744 memset(&c->block_count, 0, sizeof(c->block_count));
0745
0746 state->last_frequency = c->frequency;
0747 }
0748
0749
0750
0751
0752 rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset);
0753 if (rc < 0)
0754 goto err;
0755
0756
0757 rc = mb86a20s_readreg(state, 0x45);
0758 if (rc < 0)
0759 goto err;
0760 val = rc;
0761 rc = mb86a20s_writereg(state, 0x45, val | 0x10);
0762 if (rc < 0)
0763 goto err;
0764 rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
0765 if (rc < 0)
0766 goto err;
0767
0768
0769 rc = mb86a20s_writereg(state, 0x50, 0x50);
0770 if (rc < 0)
0771 goto err;
0772 rc = mb86a20s_readreg(state, 0x51);
0773 if (rc < 0)
0774 goto err;
0775 val = rc;
0776 rc = mb86a20s_writereg(state, 0x51, val | 0x01);
0777 if (rc < 0)
0778 goto err;
0779 rc = mb86a20s_writereg(state, 0x51, val & 0x06);
0780 if (rc < 0)
0781 goto err;
0782
0783 goto ok;
0784 err:
0785 dev_err(&state->i2c->dev,
0786 "%s: Can't reset FE statistics (error %d).\n",
0787 __func__, rc);
0788 ok:
0789 return rc;
0790 }
0791
0792 static int mb86a20s_get_pre_ber(struct dvb_frontend *fe,
0793 unsigned layer,
0794 u32 *error, u32 *count)
0795 {
0796 struct mb86a20s_state *state = fe->demodulator_priv;
0797 int rc, val;
0798
0799 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
0800
0801 if (layer >= NUM_LAYERS)
0802 return -EINVAL;
0803
0804
0805 rc = mb86a20s_readreg(state, 0x54);
0806 if (rc < 0)
0807 return rc;
0808
0809
0810 if (!(rc & (1 << layer))) {
0811 dev_dbg(&state->i2c->dev,
0812 "%s: preBER for layer %c is not available yet.\n",
0813 __func__, 'A' + layer);
0814 return -EBUSY;
0815 }
0816
0817
0818 rc = mb86a20s_readreg(state, 0x55 + layer * 3);
0819 if (rc < 0)
0820 return rc;
0821 *error = rc << 16;
0822 rc = mb86a20s_readreg(state, 0x56 + layer * 3);
0823 if (rc < 0)
0824 return rc;
0825 *error |= rc << 8;
0826 rc = mb86a20s_readreg(state, 0x57 + layer * 3);
0827 if (rc < 0)
0828 return rc;
0829 *error |= rc;
0830
0831 dev_dbg(&state->i2c->dev,
0832 "%s: bit error before Viterbi for layer %c: %d.\n",
0833 __func__, 'A' + layer, *error);
0834
0835
0836 rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
0837 if (rc < 0)
0838 return rc;
0839 rc = mb86a20s_readreg(state, 0x51);
0840 if (rc < 0)
0841 return rc;
0842 *count = rc << 16;
0843 rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
0844 if (rc < 0)
0845 return rc;
0846 rc = mb86a20s_readreg(state, 0x51);
0847 if (rc < 0)
0848 return rc;
0849 *count |= rc << 8;
0850 rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
0851 if (rc < 0)
0852 return rc;
0853 rc = mb86a20s_readreg(state, 0x51);
0854 if (rc < 0)
0855 return rc;
0856 *count |= rc;
0857
0858 dev_dbg(&state->i2c->dev,
0859 "%s: bit count before Viterbi for layer %c: %d.\n",
0860 __func__, 'A' + layer, *count);
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870 if (state->estimated_rate[layer]
0871 && state->estimated_rate[layer] != *count) {
0872 dev_dbg(&state->i2c->dev,
0873 "%s: updating layer %c preBER counter to %d.\n",
0874 __func__, 'A' + layer, state->estimated_rate[layer]);
0875
0876
0877 rc = mb86a20s_writereg(state, 0x52, 0x00);
0878
0879
0880 rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
0881 if (rc < 0)
0882 return rc;
0883 rc = mb86a20s_writereg(state, 0x51,
0884 state->estimated_rate[layer] >> 16);
0885 if (rc < 0)
0886 return rc;
0887 rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
0888 if (rc < 0)
0889 return rc;
0890 rc = mb86a20s_writereg(state, 0x51,
0891 state->estimated_rate[layer] >> 8);
0892 if (rc < 0)
0893 return rc;
0894 rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
0895 if (rc < 0)
0896 return rc;
0897 rc = mb86a20s_writereg(state, 0x51,
0898 state->estimated_rate[layer]);
0899 if (rc < 0)
0900 return rc;
0901
0902
0903 rc = mb86a20s_writereg(state, 0x52, 0x01);
0904
0905
0906 rc = mb86a20s_writereg(state, 0x53, 0x00);
0907 if (rc < 0)
0908 return rc;
0909 rc = mb86a20s_writereg(state, 0x53, 0x07);
0910 } else {
0911
0912 rc = mb86a20s_readreg(state, 0x53);
0913 if (rc < 0)
0914 return rc;
0915 val = rc;
0916 rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer));
0917 if (rc < 0)
0918 return rc;
0919 rc = mb86a20s_writereg(state, 0x53, val | (1 << layer));
0920 }
0921
0922 return rc;
0923 }
0924
0925 static int mb86a20s_get_post_ber(struct dvb_frontend *fe,
0926 unsigned layer,
0927 u32 *error, u32 *count)
0928 {
0929 struct mb86a20s_state *state = fe->demodulator_priv;
0930 u32 counter, collect_rate;
0931 int rc, val;
0932
0933 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
0934
0935 if (layer >= NUM_LAYERS)
0936 return -EINVAL;
0937
0938
0939 rc = mb86a20s_readreg(state, 0x60);
0940 if (rc < 0)
0941 return rc;
0942
0943
0944 if (!(rc & (1 << layer))) {
0945 dev_dbg(&state->i2c->dev,
0946 "%s: post BER for layer %c is not available yet.\n",
0947 __func__, 'A' + layer);
0948 return -EBUSY;
0949 }
0950
0951
0952 rc = mb86a20s_readreg(state, 0x64 + layer * 3);
0953 if (rc < 0)
0954 return rc;
0955 *error = rc << 16;
0956 rc = mb86a20s_readreg(state, 0x65 + layer * 3);
0957 if (rc < 0)
0958 return rc;
0959 *error |= rc << 8;
0960 rc = mb86a20s_readreg(state, 0x66 + layer * 3);
0961 if (rc < 0)
0962 return rc;
0963 *error |= rc;
0964
0965 dev_dbg(&state->i2c->dev,
0966 "%s: post bit error for layer %c: %d.\n",
0967 __func__, 'A' + layer, *error);
0968
0969
0970 rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
0971 if (rc < 0)
0972 return rc;
0973 rc = mb86a20s_readreg(state, 0x51);
0974 if (rc < 0)
0975 return rc;
0976 counter = rc << 8;
0977 rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
0978 if (rc < 0)
0979 return rc;
0980 rc = mb86a20s_readreg(state, 0x51);
0981 if (rc < 0)
0982 return rc;
0983 counter |= rc;
0984 *count = counter * 204 * 8;
0985
0986 dev_dbg(&state->i2c->dev,
0987 "%s: post bit count for layer %c: %d.\n",
0988 __func__, 'A' + layer, *count);
0989
0990
0991
0992
0993
0994
0995
0996
0997 if (!state->estimated_rate[layer])
0998 goto reset_measurement;
0999
1000 collect_rate = state->estimated_rate[layer] / 204 / 8;
1001 if (collect_rate < 32)
1002 collect_rate = 32;
1003 if (collect_rate > 65535)
1004 collect_rate = 65535;
1005 if (collect_rate != counter) {
1006 dev_dbg(&state->i2c->dev,
1007 "%s: updating postBER counter on layer %c to %d.\n",
1008 __func__, 'A' + layer, collect_rate);
1009
1010
1011 rc = mb86a20s_writereg(state, 0x5e, 0x00);
1012
1013
1014 rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
1015 if (rc < 0)
1016 return rc;
1017 rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1018 if (rc < 0)
1019 return rc;
1020 rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
1021 if (rc < 0)
1022 return rc;
1023 rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1024 if (rc < 0)
1025 return rc;
1026
1027
1028 rc = mb86a20s_writereg(state, 0x5e, 0x07);
1029
1030
1031 rc = mb86a20s_writereg(state, 0x5f, 0x00);
1032 if (rc < 0)
1033 return rc;
1034 rc = mb86a20s_writereg(state, 0x5f, 0x07);
1035
1036 return rc;
1037 }
1038
1039 reset_measurement:
1040
1041 rc = mb86a20s_readreg(state, 0x5f);
1042 if (rc < 0)
1043 return rc;
1044 val = rc;
1045 rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer));
1046 if (rc < 0)
1047 return rc;
1048 rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer));
1049
1050 return rc;
1051 }
1052
1053 static int mb86a20s_get_blk_error(struct dvb_frontend *fe,
1054 unsigned layer,
1055 u32 *error, u32 *count)
1056 {
1057 struct mb86a20s_state *state = fe->demodulator_priv;
1058 int rc, val;
1059 u32 collect_rate;
1060 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1061
1062 if (layer >= NUM_LAYERS)
1063 return -EINVAL;
1064
1065
1066 rc = mb86a20s_writereg(state, 0x50, 0xb8);
1067 if (rc < 0)
1068 return rc;
1069 rc = mb86a20s_readreg(state, 0x51);
1070 if (rc < 0)
1071 return rc;
1072
1073
1074
1075 if (!(rc & (1 << layer))) {
1076 dev_dbg(&state->i2c->dev,
1077 "%s: block counts for layer %c aren't available yet.\n",
1078 __func__, 'A' + layer);
1079 return -EBUSY;
1080 }
1081
1082
1083 rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2);
1084 if (rc < 0)
1085 return rc;
1086 rc = mb86a20s_readreg(state, 0x51);
1087 if (rc < 0)
1088 return rc;
1089 *error = rc << 8;
1090 rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2);
1091 if (rc < 0)
1092 return rc;
1093 rc = mb86a20s_readreg(state, 0x51);
1094 if (rc < 0)
1095 return rc;
1096 *error |= rc;
1097 dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n",
1098 __func__, 'A' + layer, *error);
1099
1100
1101 rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1102 if (rc < 0)
1103 return rc;
1104 rc = mb86a20s_readreg(state, 0x51);
1105 if (rc < 0)
1106 return rc;
1107 *count = rc << 8;
1108 rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1109 if (rc < 0)
1110 return rc;
1111 rc = mb86a20s_readreg(state, 0x51);
1112 if (rc < 0)
1113 return rc;
1114 *count |= rc;
1115
1116 dev_dbg(&state->i2c->dev,
1117 "%s: block count for layer %c: %d.\n",
1118 __func__, 'A' + layer, *count);
1119
1120
1121
1122
1123
1124
1125
1126
1127 if (!state->estimated_rate[layer])
1128 goto reset_measurement;
1129
1130 collect_rate = state->estimated_rate[layer] / 204 / 8;
1131 if (collect_rate < 32)
1132 collect_rate = 32;
1133 if (collect_rate > 65535)
1134 collect_rate = 65535;
1135
1136 if (collect_rate != *count) {
1137 dev_dbg(&state->i2c->dev,
1138 "%s: updating PER counter on layer %c to %d.\n",
1139 __func__, 'A' + layer, collect_rate);
1140
1141
1142 rc = mb86a20s_writereg(state, 0x50, 0xb0);
1143 if (rc < 0)
1144 return rc;
1145 rc = mb86a20s_writereg(state, 0x51, 0x00);
1146 if (rc < 0)
1147 return rc;
1148
1149
1150 rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1151 if (rc < 0)
1152 return rc;
1153 rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1154 if (rc < 0)
1155 return rc;
1156 rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1157 if (rc < 0)
1158 return rc;
1159 rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1160 if (rc < 0)
1161 return rc;
1162
1163
1164 rc = mb86a20s_writereg(state, 0x50, 0xb0);
1165 if (rc < 0)
1166 return rc;
1167 rc = mb86a20s_writereg(state, 0x51, 0x07);
1168 if (rc < 0)
1169 return rc;
1170
1171
1172 rc = mb86a20s_writereg(state, 0x50, 0xb1);
1173 if (rc < 0)
1174 return rc;
1175 rc = mb86a20s_writereg(state, 0x51, 0x07);
1176 if (rc < 0)
1177 return rc;
1178 rc = mb86a20s_writereg(state, 0x51, 0x00);
1179
1180 return rc;
1181 }
1182
1183 reset_measurement:
1184
1185 rc = mb86a20s_writereg(state, 0x50, 0xb1);
1186 if (rc < 0)
1187 return rc;
1188 rc = mb86a20s_readreg(state, 0x51);
1189 if (rc < 0)
1190 return rc;
1191 val = rc;
1192 rc = mb86a20s_writereg(state, 0x51, val | (1 << layer));
1193 if (rc < 0)
1194 return rc;
1195 rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer));
1196
1197 return rc;
1198 }
1199
1200 struct linear_segments {
1201 unsigned x, y;
1202 };
1203
1204
1205
1206
1207
1208 static const struct linear_segments cnr_to_db_table[] = {
1209 { 19648, 0},
1210 { 18187, 1000},
1211 { 16534, 2000},
1212 { 14823, 3000},
1213 { 13161, 4000},
1214 { 11622, 5000},
1215 { 10279, 6000},
1216 { 9089, 7000},
1217 { 8042, 8000},
1218 { 7137, 9000},
1219 { 6342, 10000},
1220 { 5641, 11000},
1221 { 5030, 12000},
1222 { 4474, 13000},
1223 { 3988, 14000},
1224 { 3556, 15000},
1225 { 3180, 16000},
1226 { 2841, 17000},
1227 { 2541, 18000},
1228 { 2276, 19000},
1229 { 2038, 20000},
1230 { 1800, 21000},
1231 { 1625, 22000},
1232 { 1462, 23000},
1233 { 1324, 24000},
1234 { 1175, 25000},
1235 { 1063, 26000},
1236 { 980, 27000},
1237 { 907, 28000},
1238 { 840, 29000},
1239 { 788, 30000},
1240 };
1241
1242 static const struct linear_segments cnr_64qam_table[] = {
1243 { 3922688, 0},
1244 { 3920384, 1000},
1245 { 3902720, 2000},
1246 { 3894784, 3000},
1247 { 3882496, 4000},
1248 { 3872768, 5000},
1249 { 3858944, 6000},
1250 { 3851520, 7000},
1251 { 3838976, 8000},
1252 { 3829248, 9000},
1253 { 3818240, 10000},
1254 { 3806976, 11000},
1255 { 3791872, 12000},
1256 { 3767040, 13000},
1257 { 3720960, 14000},
1258 { 3637504, 15000},
1259 { 3498496, 16000},
1260 { 3296000, 17000},
1261 { 3031040, 18000},
1262 { 2715392, 19000},
1263 { 2362624, 20000},
1264 { 1963264, 21000},
1265 { 1649664, 22000},
1266 { 1366784, 23000},
1267 { 1120768, 24000},
1268 { 890880, 25000},
1269 { 723456, 26000},
1270 { 612096, 27000},
1271 { 518912, 28000},
1272 { 448256, 29000},
1273 { 388864, 30000},
1274 };
1275
1276 static const struct linear_segments cnr_16qam_table[] = {
1277 { 5314816, 0},
1278 { 5219072, 1000},
1279 { 5118720, 2000},
1280 { 4998912, 3000},
1281 { 4875520, 4000},
1282 { 4736000, 5000},
1283 { 4604160, 6000},
1284 { 4458752, 7000},
1285 { 4300288, 8000},
1286 { 4092928, 9000},
1287 { 3836160, 10000},
1288 { 3521024, 11000},
1289 { 3155968, 12000},
1290 { 2756864, 13000},
1291 { 2347008, 14000},
1292 { 1955072, 15000},
1293 { 1593600, 16000},
1294 { 1297920, 17000},
1295 { 1043968, 18000},
1296 { 839680, 19000},
1297 { 672256, 20000},
1298 { 523008, 21000},
1299 { 424704, 22000},
1300 { 345088, 23000},
1301 { 280064, 24000},
1302 { 221440, 25000},
1303 { 179712, 26000},
1304 { 151040, 27000},
1305 { 128512, 28000},
1306 { 110080, 29000},
1307 { 95744, 30000},
1308 };
1309
1310 static const struct linear_segments cnr_qpsk_table[] = {
1311 { 2834176, 0},
1312 { 2683648, 1000},
1313 { 2536960, 2000},
1314 { 2391808, 3000},
1315 { 2133248, 4000},
1316 { 1906176, 5000},
1317 { 1666560, 6000},
1318 { 1422080, 7000},
1319 { 1189632, 8000},
1320 { 976384, 9000},
1321 { 790272, 10000},
1322 { 633344, 11000},
1323 { 505600, 12000},
1324 { 402944, 13000},
1325 { 320768, 14000},
1326 { 255488, 15000},
1327 { 204032, 16000},
1328 { 163072, 17000},
1329 { 130304, 18000},
1330 { 105216, 19000},
1331 { 83456, 20000},
1332 { 65024, 21000},
1333 { 52480, 22000},
1334 { 42752, 23000},
1335 { 34560, 24000},
1336 { 27136, 25000},
1337 { 22016, 26000},
1338 { 18432, 27000},
1339 { 15616, 28000},
1340 { 13312, 29000},
1341 { 11520, 30000},
1342 };
1343
1344 static u32 interpolate_value(u32 value, const struct linear_segments *segments,
1345 unsigned len)
1346 {
1347 u64 tmp64;
1348 u32 dx, dy;
1349 int i, ret;
1350
1351 if (value >= segments[0].x)
1352 return segments[0].y;
1353 if (value < segments[len-1].x)
1354 return segments[len-1].y;
1355
1356 for (i = 1; i < len - 1; i++) {
1357
1358 if (value == segments[i].x)
1359 return segments[i].y;
1360 if (value > segments[i].x)
1361 break;
1362 }
1363
1364
1365 dy = segments[i].y - segments[i - 1].y;
1366 dx = segments[i - 1].x - segments[i].x;
1367 tmp64 = value - segments[i].x;
1368 tmp64 *= dy;
1369 do_div(tmp64, dx);
1370 ret = segments[i].y - tmp64;
1371
1372 return ret;
1373 }
1374
1375 static int mb86a20s_get_main_CNR(struct dvb_frontend *fe)
1376 {
1377 struct mb86a20s_state *state = fe->demodulator_priv;
1378 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1379 u32 cnr_linear, cnr;
1380 int rc, val;
1381
1382
1383 rc = mb86a20s_readreg(state, 0x45);
1384 if (rc < 0)
1385 return rc;
1386
1387 if (!(rc & 0x40)) {
1388 dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n",
1389 __func__);
1390 return -EBUSY;
1391 }
1392 val = rc;
1393
1394 rc = mb86a20s_readreg(state, 0x46);
1395 if (rc < 0)
1396 return rc;
1397 cnr_linear = rc << 8;
1398
1399 rc = mb86a20s_readreg(state, 0x46);
1400 if (rc < 0)
1401 return rc;
1402 cnr_linear |= rc;
1403
1404 cnr = interpolate_value(cnr_linear,
1405 cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table));
1406
1407 c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1408 c->cnr.stat[0].svalue = cnr;
1409
1410 dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n",
1411 __func__, cnr / 1000, cnr % 1000, cnr_linear);
1412
1413
1414 rc = mb86a20s_writereg(state, 0x45, val | 0x10);
1415 if (rc < 0)
1416 return rc;
1417 rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
1418
1419 return rc;
1420 }
1421
1422 static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe)
1423 {
1424 struct mb86a20s_state *state = fe->demodulator_priv;
1425 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1426 u32 mer, cnr;
1427 int rc, val, layer;
1428 const struct linear_segments *segs;
1429 unsigned segs_len;
1430
1431 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1432
1433
1434 rc = mb86a20s_writereg(state, 0x50, 0x5b);
1435 if (rc < 0)
1436 return rc;
1437 rc = mb86a20s_readreg(state, 0x51);
1438 if (rc < 0)
1439 return rc;
1440
1441
1442 if (!(rc & 0x01)) {
1443 dev_dbg(&state->i2c->dev,
1444 "%s: MER measures aren't available yet.\n", __func__);
1445 return -EBUSY;
1446 }
1447
1448
1449 for (layer = 0; layer < NUM_LAYERS; layer++) {
1450 if (!(c->isdbt_layer_enabled & (1 << layer))) {
1451 c->cnr.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1452 continue;
1453 }
1454
1455 rc = mb86a20s_writereg(state, 0x50, 0x52 + layer * 3);
1456 if (rc < 0)
1457 return rc;
1458 rc = mb86a20s_readreg(state, 0x51);
1459 if (rc < 0)
1460 return rc;
1461 mer = rc << 16;
1462 rc = mb86a20s_writereg(state, 0x50, 0x53 + layer * 3);
1463 if (rc < 0)
1464 return rc;
1465 rc = mb86a20s_readreg(state, 0x51);
1466 if (rc < 0)
1467 return rc;
1468 mer |= rc << 8;
1469 rc = mb86a20s_writereg(state, 0x50, 0x54 + layer * 3);
1470 if (rc < 0)
1471 return rc;
1472 rc = mb86a20s_readreg(state, 0x51);
1473 if (rc < 0)
1474 return rc;
1475 mer |= rc;
1476
1477 switch (c->layer[layer].modulation) {
1478 case DQPSK:
1479 case QPSK:
1480 segs = cnr_qpsk_table;
1481 segs_len = ARRAY_SIZE(cnr_qpsk_table);
1482 break;
1483 case QAM_16:
1484 segs = cnr_16qam_table;
1485 segs_len = ARRAY_SIZE(cnr_16qam_table);
1486 break;
1487 default:
1488 case QAM_64:
1489 segs = cnr_64qam_table;
1490 segs_len = ARRAY_SIZE(cnr_64qam_table);
1491 break;
1492 }
1493 cnr = interpolate_value(mer, segs, segs_len);
1494
1495 c->cnr.stat[1 + layer].scale = FE_SCALE_DECIBEL;
1496 c->cnr.stat[1 + layer].svalue = cnr;
1497
1498 dev_dbg(&state->i2c->dev,
1499 "%s: CNR for layer %c is %d.%03d dB (MER = %d).\n",
1500 __func__, 'A' + layer, cnr / 1000, cnr % 1000, mer);
1501
1502 }
1503
1504
1505
1506 rc = mb86a20s_writereg(state, 0x50, 0x50);
1507 if (rc < 0)
1508 return rc;
1509 rc = mb86a20s_readreg(state, 0x51);
1510 if (rc < 0)
1511 return rc;
1512 val = rc;
1513
1514 rc = mb86a20s_writereg(state, 0x51, val | 0x01);
1515 if (rc < 0)
1516 return rc;
1517 rc = mb86a20s_writereg(state, 0x51, val & 0x06);
1518 if (rc < 0)
1519 return rc;
1520
1521 return 0;
1522 }
1523
1524 static void mb86a20s_stats_not_ready(struct dvb_frontend *fe)
1525 {
1526 struct mb86a20s_state *state = fe->demodulator_priv;
1527 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1528 int layer;
1529
1530 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1531
1532
1533
1534
1535 c->strength.len = 1;
1536
1537
1538 c->cnr.len = NUM_LAYERS + 1;
1539 c->pre_bit_error.len = NUM_LAYERS + 1;
1540 c->pre_bit_count.len = NUM_LAYERS + 1;
1541 c->post_bit_error.len = NUM_LAYERS + 1;
1542 c->post_bit_count.len = NUM_LAYERS + 1;
1543 c->block_error.len = NUM_LAYERS + 1;
1544 c->block_count.len = NUM_LAYERS + 1;
1545
1546
1547 c->strength.stat[0].scale = FE_SCALE_RELATIVE;
1548 c->strength.stat[0].uvalue = 0;
1549
1550
1551 for (layer = 0; layer < NUM_LAYERS + 1; layer++) {
1552 c->cnr.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1553 c->pre_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1554 c->pre_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1555 c->post_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1556 c->post_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1557 c->block_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1558 c->block_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1559 }
1560 }
1561
1562 static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr)
1563 {
1564 struct mb86a20s_state *state = fe->demodulator_priv;
1565 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1566 int rc = 0, layer;
1567 u32 bit_error = 0, bit_count = 0;
1568 u32 t_pre_bit_error = 0, t_pre_bit_count = 0;
1569 u32 t_post_bit_error = 0, t_post_bit_count = 0;
1570 u32 block_error = 0, block_count = 0;
1571 u32 t_block_error = 0, t_block_count = 0;
1572 int active_layers = 0, pre_ber_layers = 0, post_ber_layers = 0;
1573 int per_layers = 0;
1574
1575 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1576
1577 mb86a20s_get_main_CNR(fe);
1578
1579
1580 mb86a20s_get_blk_error_layer_CNR(fe);
1581
1582
1583
1584
1585
1586
1587 if (status_nr < 9)
1588 return 0;
1589
1590 for (layer = 0; layer < NUM_LAYERS; layer++) {
1591 if (c->isdbt_layer_enabled & (1 << layer)) {
1592
1593 active_layers++;
1594
1595
1596 rc = mb86a20s_get_pre_ber(fe, layer,
1597 &bit_error, &bit_count);
1598 if (rc >= 0) {
1599 c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1600 c->pre_bit_error.stat[1 + layer].uvalue += bit_error;
1601 c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1602 c->pre_bit_count.stat[1 + layer].uvalue += bit_count;
1603 } else if (rc != -EBUSY) {
1604
1605
1606
1607
1608 c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1609 c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1610 dev_err(&state->i2c->dev,
1611 "%s: Can't get BER for layer %c (error %d).\n",
1612 __func__, 'A' + layer, rc);
1613 }
1614 if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1615 pre_ber_layers++;
1616
1617
1618 rc = mb86a20s_get_post_ber(fe, layer,
1619 &bit_error, &bit_count);
1620 if (rc >= 0) {
1621 c->post_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1622 c->post_bit_error.stat[1 + layer].uvalue += bit_error;
1623 c->post_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1624 c->post_bit_count.stat[1 + layer].uvalue += bit_count;
1625 } else if (rc != -EBUSY) {
1626
1627
1628
1629
1630 c->post_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1631 c->post_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1632 dev_err(&state->i2c->dev,
1633 "%s: Can't get BER for layer %c (error %d).\n",
1634 __func__, 'A' + layer, rc);
1635 }
1636 if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1637 post_ber_layers++;
1638
1639
1640 rc = mb86a20s_get_blk_error(fe, layer,
1641 &block_error,
1642 &block_count);
1643 if (rc >= 0) {
1644 c->block_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1645 c->block_error.stat[1 + layer].uvalue += block_error;
1646 c->block_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1647 c->block_count.stat[1 + layer].uvalue += block_count;
1648 } else if (rc != -EBUSY) {
1649
1650
1651
1652
1653 c->block_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1654 c->block_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1655 dev_err(&state->i2c->dev,
1656 "%s: Can't get PER for layer %c (error %d).\n",
1657 __func__, 'A' + layer, rc);
1658
1659 }
1660 if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1661 per_layers++;
1662
1663
1664 t_pre_bit_error += c->pre_bit_error.stat[1 + layer].uvalue;
1665 t_pre_bit_count += c->pre_bit_count.stat[1 + layer].uvalue;
1666
1667
1668 t_post_bit_error += c->post_bit_error.stat[1 + layer].uvalue;
1669 t_post_bit_count += c->post_bit_count.stat[1 + layer].uvalue;
1670
1671
1672 t_block_error += c->block_error.stat[1 + layer].uvalue;
1673 t_block_count += c->block_count.stat[1 + layer].uvalue;
1674 }
1675 }
1676
1677
1678
1679
1680
1681 if (pre_ber_layers) {
1682
1683
1684
1685
1686
1687
1688
1689 c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1690 c->pre_bit_error.stat[0].uvalue = t_pre_bit_error;
1691 c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1692 c->pre_bit_count.stat[0].uvalue = t_pre_bit_count;
1693 } else {
1694 c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1695 c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1696 }
1697
1698
1699
1700
1701
1702 if (post_ber_layers) {
1703
1704
1705
1706
1707
1708
1709
1710 c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1711 c->post_bit_error.stat[0].uvalue = t_post_bit_error;
1712 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1713 c->post_bit_count.stat[0].uvalue = t_post_bit_count;
1714 } else {
1715 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1716 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1717 }
1718
1719 if (per_layers) {
1720
1721
1722
1723
1724
1725
1726
1727 c->block_error.stat[0].scale = FE_SCALE_COUNTER;
1728 c->block_error.stat[0].uvalue = t_block_error;
1729 c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1730 c->block_count.stat[0].uvalue = t_block_count;
1731 } else {
1732 c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1733 c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1734 }
1735
1736 return rc;
1737 }
1738
1739
1740
1741
1742
1743
1744 static int mb86a20s_initfe(struct dvb_frontend *fe)
1745 {
1746 struct mb86a20s_state *state = fe->demodulator_priv;
1747 u64 pll;
1748 u32 fclk;
1749 int rc;
1750 u8 regD5 = 1, reg71, reg09 = 0x3a;
1751
1752 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1753
1754 if (fe->ops.i2c_gate_ctrl)
1755 fe->ops.i2c_gate_ctrl(fe, 0);
1756
1757
1758 rc = mb86a20s_writeregdata(state, mb86a20s_init1);
1759 if (rc < 0)
1760 goto err;
1761
1762 if (!state->inversion)
1763 reg09 |= 0x04;
1764 rc = mb86a20s_writereg(state, 0x09, reg09);
1765 if (rc < 0)
1766 goto err;
1767 if (!state->bw)
1768 reg71 = 1;
1769 else
1770 reg71 = 0;
1771 rc = mb86a20s_writereg(state, 0x39, reg71);
1772 if (rc < 0)
1773 goto err;
1774 rc = mb86a20s_writereg(state, 0x71, state->bw);
1775 if (rc < 0)
1776 goto err;
1777 if (state->subchannel) {
1778 rc = mb86a20s_writereg(state, 0x44, state->subchannel);
1779 if (rc < 0)
1780 goto err;
1781 }
1782
1783 fclk = state->config->fclk;
1784 if (!fclk)
1785 fclk = 32571428;
1786
1787
1788 if (fe->ops.tuner_ops.get_if_frequency)
1789 fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq);
1790
1791 if (!state->if_freq)
1792 state->if_freq = 3300000;
1793
1794 pll = (((u64)1) << 34) * state->if_freq;
1795 do_div(pll, 63 * fclk);
1796 pll = (1 << 25) - pll;
1797 rc = mb86a20s_writereg(state, 0x28, 0x2a);
1798 if (rc < 0)
1799 goto err;
1800 rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1801 if (rc < 0)
1802 goto err;
1803 rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1804 if (rc < 0)
1805 goto err;
1806 rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1807 if (rc < 0)
1808 goto err;
1809 dev_dbg(&state->i2c->dev, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n",
1810 __func__, fclk, state->if_freq, (long long)pll);
1811
1812
1813 pll = state->if_freq * 1677721600L;
1814 do_div(pll, 1628571429L);
1815 rc = mb86a20s_writereg(state, 0x28, 0x20);
1816 if (rc < 0)
1817 goto err;
1818 rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1819 if (rc < 0)
1820 goto err;
1821 rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1822 if (rc < 0)
1823 goto err;
1824 rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1825 if (rc < 0)
1826 goto err;
1827 dev_dbg(&state->i2c->dev, "%s: IF=%d, IF reg=0x%06llx\n",
1828 __func__, state->if_freq, (long long)pll);
1829
1830 if (!state->config->is_serial)
1831 regD5 &= ~1;
1832
1833 rc = mb86a20s_writereg(state, 0x50, 0xd5);
1834 if (rc < 0)
1835 goto err;
1836 rc = mb86a20s_writereg(state, 0x51, regD5);
1837 if (rc < 0)
1838 goto err;
1839
1840 rc = mb86a20s_writeregdata(state, mb86a20s_init2);
1841 if (rc < 0)
1842 goto err;
1843
1844
1845 err:
1846 if (fe->ops.i2c_gate_ctrl)
1847 fe->ops.i2c_gate_ctrl(fe, 1);
1848
1849 if (rc < 0) {
1850 state->need_init = true;
1851 dev_info(&state->i2c->dev,
1852 "mb86a20s: Init failed. Will try again later\n");
1853 } else {
1854 state->need_init = false;
1855 dev_dbg(&state->i2c->dev, "Initialization succeeded.\n");
1856 }
1857 return rc;
1858 }
1859
1860 static int mb86a20s_set_frontend(struct dvb_frontend *fe)
1861 {
1862 struct mb86a20s_state *state = fe->demodulator_priv;
1863 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1864 int rc, if_freq;
1865 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1866
1867 if (!c->isdbt_layer_enabled)
1868 c->isdbt_layer_enabled = 7;
1869
1870 if (c->isdbt_layer_enabled == 1)
1871 state->bw = MB86A20S_1SEG;
1872 else if (c->isdbt_partial_reception)
1873 state->bw = MB86A20S_13SEG_PARTIAL;
1874 else
1875 state->bw = MB86A20S_13SEG;
1876
1877 if (c->inversion == INVERSION_ON)
1878 state->inversion = true;
1879 else
1880 state->inversion = false;
1881
1882 if (!c->isdbt_sb_mode) {
1883 state->subchannel = 0;
1884 } else {
1885 if (c->isdbt_sb_subchannel >= ARRAY_SIZE(mb86a20s_subchannel))
1886 c->isdbt_sb_subchannel = 0;
1887
1888 state->subchannel = mb86a20s_subchannel[c->isdbt_sb_subchannel];
1889 }
1890
1891
1892
1893
1894
1895 if (fe->ops.i2c_gate_ctrl)
1896 fe->ops.i2c_gate_ctrl(fe, 1);
1897 fe->ops.tuner_ops.set_params(fe);
1898
1899 if (fe->ops.tuner_ops.get_if_frequency)
1900 fe->ops.tuner_ops.get_if_frequency(fe, &if_freq);
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919 mb86a20s_initfe(fe);
1920
1921 if (fe->ops.i2c_gate_ctrl)
1922 fe->ops.i2c_gate_ctrl(fe, 0);
1923
1924 rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception);
1925 mb86a20s_reset_counters(fe);
1926 mb86a20s_stats_not_ready(fe);
1927
1928 if (fe->ops.i2c_gate_ctrl)
1929 fe->ops.i2c_gate_ctrl(fe, 1);
1930
1931 return rc;
1932 }
1933
1934 static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe,
1935 enum fe_status *status)
1936 {
1937 struct mb86a20s_state *state = fe->demodulator_priv;
1938 int rc, status_nr;
1939
1940 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1941
1942 if (fe->ops.i2c_gate_ctrl)
1943 fe->ops.i2c_gate_ctrl(fe, 0);
1944
1945
1946 status_nr = mb86a20s_read_status(fe, status);
1947 if (status_nr < 7) {
1948 mb86a20s_stats_not_ready(fe);
1949 mb86a20s_reset_frontend_cache(fe);
1950 }
1951 if (status_nr < 0) {
1952 dev_err(&state->i2c->dev,
1953 "%s: Can't read frontend lock status\n", __func__);
1954 rc = status_nr;
1955 goto error;
1956 }
1957
1958
1959 rc = mb86a20s_read_signal_strength(fe);
1960 if (rc < 0) {
1961 dev_err(&state->i2c->dev,
1962 "%s: Can't reset VBER registers.\n", __func__);
1963 mb86a20s_stats_not_ready(fe);
1964 mb86a20s_reset_frontend_cache(fe);
1965
1966 rc = 0;
1967 goto error;
1968 }
1969
1970 if (status_nr >= 7) {
1971
1972 rc = mb86a20s_get_frontend(fe);
1973 if (rc < 0) {
1974 dev_err(&state->i2c->dev,
1975 "%s: Can't get FE TMCC data.\n", __func__);
1976 rc = 0;
1977 goto error;
1978 }
1979
1980
1981 rc = mb86a20s_get_stats(fe, status_nr);
1982 if (rc < 0 && rc != -EBUSY) {
1983 dev_err(&state->i2c->dev,
1984 "%s: Can't get FE statistics.\n", __func__);
1985 rc = 0;
1986 goto error;
1987 }
1988 rc = 0;
1989 }
1990 goto ok;
1991
1992 error:
1993 mb86a20s_stats_not_ready(fe);
1994
1995 ok:
1996 if (fe->ops.i2c_gate_ctrl)
1997 fe->ops.i2c_gate_ctrl(fe, 1);
1998
1999 return rc;
2000 }
2001
2002 static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe,
2003 u16 *strength)
2004 {
2005 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
2006
2007
2008 *strength = c->strength.stat[0].uvalue;
2009
2010 return 0;
2011 }
2012
2013 static int mb86a20s_tune(struct dvb_frontend *fe,
2014 bool re_tune,
2015 unsigned int mode_flags,
2016 unsigned int *delay,
2017 enum fe_status *status)
2018 {
2019 struct mb86a20s_state *state = fe->demodulator_priv;
2020 int rc = 0;
2021
2022 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2023
2024 if (re_tune)
2025 rc = mb86a20s_set_frontend(fe);
2026
2027 if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
2028 mb86a20s_read_status_and_stats(fe, status);
2029
2030 return rc;
2031 }
2032
2033 static void mb86a20s_release(struct dvb_frontend *fe)
2034 {
2035 struct mb86a20s_state *state = fe->demodulator_priv;
2036
2037 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2038
2039 kfree(state);
2040 }
2041
2042 static enum dvbfe_algo mb86a20s_get_frontend_algo(struct dvb_frontend *fe)
2043 {
2044 return DVBFE_ALGO_HW;
2045 }
2046
2047 static const struct dvb_frontend_ops mb86a20s_ops;
2048
2049 struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config,
2050 struct i2c_adapter *i2c)
2051 {
2052 struct mb86a20s_state *state;
2053 u8 rev;
2054
2055 dev_dbg(&i2c->dev, "%s called.\n", __func__);
2056
2057
2058 state = kzalloc(sizeof(*state), GFP_KERNEL);
2059 if (!state)
2060 return NULL;
2061
2062
2063 state->config = config;
2064 state->i2c = i2c;
2065
2066
2067 memcpy(&state->frontend.ops, &mb86a20s_ops,
2068 sizeof(struct dvb_frontend_ops));
2069 state->frontend.demodulator_priv = state;
2070
2071
2072 rev = mb86a20s_readreg(state, 0);
2073 if (rev != 0x13) {
2074 kfree(state);
2075 dev_dbg(&i2c->dev,
2076 "Frontend revision %d is unknown - aborting.\n",
2077 rev);
2078 return NULL;
2079 }
2080
2081 dev_info(&i2c->dev, "Detected a Fujitsu mb86a20s frontend\n");
2082 return &state->frontend;
2083 }
2084 EXPORT_SYMBOL(mb86a20s_attach);
2085
2086 static const struct dvb_frontend_ops mb86a20s_ops = {
2087 .delsys = { SYS_ISDBT },
2088
2089 .info = {
2090 .name = "Fujitsu mb86A20s",
2091 .caps = FE_CAN_RECOVER |
2092 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
2093 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
2094 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2095 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO |
2096 FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO,
2097
2098 .frequency_min_hz = 45 * MHz,
2099 .frequency_max_hz = 864 * MHz,
2100 .frequency_stepsize_hz = 62500,
2101 },
2102
2103 .release = mb86a20s_release,
2104
2105 .init = mb86a20s_initfe,
2106 .set_frontend = mb86a20s_set_frontend,
2107 .read_status = mb86a20s_read_status_and_stats,
2108 .read_signal_strength = mb86a20s_read_signal_strength_from_cache,
2109 .tune = mb86a20s_tune,
2110 .get_frontend_algo = mb86a20s_get_frontend_algo,
2111 };
2112
2113 MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware");
2114 MODULE_AUTHOR("Mauro Carvalho Chehab");
2115 MODULE_LICENSE("GPL");