0001
0002
0003
0004
0005
0006
0007
0008
0009 #include <linux/init.h>
0010 #include <linux/kernel.h>
0011 #include <linux/module.h>
0012 #include <linux/moduleparam.h>
0013 #include <linux/slab.h>
0014
0015 #include <media/dvb_frontend.h>
0016 #include "mb86a16.h"
0017 #include "mb86a16_priv.h"
0018
0019 static unsigned int verbose = 5;
0020 module_param(verbose, int, 0644);
0021
0022 struct mb86a16_state {
0023 struct i2c_adapter *i2c_adap;
0024 const struct mb86a16_config *config;
0025 struct dvb_frontend frontend;
0026
0027
0028 int frequency;
0029 int srate;
0030
0031
0032 int master_clk;
0033 int deci;
0034 int csel;
0035 int rsel;
0036 };
0037
0038 #define MB86A16_ERROR 0
0039 #define MB86A16_NOTICE 1
0040 #define MB86A16_INFO 2
0041 #define MB86A16_DEBUG 3
0042
0043 #define dprintk(x, y, z, format, arg...) do { \
0044 if (z) { \
0045 if ((x > MB86A16_ERROR) && (x > y)) \
0046 printk(KERN_ERR "%s: " format "\n", __func__, ##arg); \
0047 else if ((x > MB86A16_NOTICE) && (x > y)) \
0048 printk(KERN_NOTICE "%s: " format "\n", __func__, ##arg); \
0049 else if ((x > MB86A16_INFO) && (x > y)) \
0050 printk(KERN_INFO "%s: " format "\n", __func__, ##arg); \
0051 else if ((x > MB86A16_DEBUG) && (x > y)) \
0052 printk(KERN_DEBUG "%s: " format "\n", __func__, ##arg); \
0053 } else { \
0054 if (x > y) \
0055 printk(format, ##arg); \
0056 } \
0057 } while (0)
0058
0059 #define TRACE_IN dprintk(verbose, MB86A16_DEBUG, 1, "-->()")
0060 #define TRACE_OUT dprintk(verbose, MB86A16_DEBUG, 1, "()-->")
0061
0062 static int mb86a16_write(struct mb86a16_state *state, u8 reg, u8 val)
0063 {
0064 int ret;
0065 u8 buf[] = { reg, val };
0066
0067 struct i2c_msg msg = {
0068 .addr = state->config->demod_address,
0069 .flags = 0,
0070 .buf = buf,
0071 .len = 2
0072 };
0073
0074 dprintk(verbose, MB86A16_DEBUG, 1,
0075 "writing to [0x%02x],Reg[0x%02x],Data[0x%02x]",
0076 state->config->demod_address, buf[0], buf[1]);
0077
0078 ret = i2c_transfer(state->i2c_adap, &msg, 1);
0079
0080 return (ret != 1) ? -EREMOTEIO : 0;
0081 }
0082
0083 static int mb86a16_read(struct mb86a16_state *state, u8 reg, u8 *val)
0084 {
0085 int ret;
0086 u8 b0[] = { reg };
0087 u8 b1[] = { 0 };
0088
0089 struct i2c_msg msg[] = {
0090 {
0091 .addr = state->config->demod_address,
0092 .flags = 0,
0093 .buf = b0,
0094 .len = 1
0095 }, {
0096 .addr = state->config->demod_address,
0097 .flags = I2C_M_RD,
0098 .buf = b1,
0099 .len = 1
0100 }
0101 };
0102 ret = i2c_transfer(state->i2c_adap, msg, 2);
0103 if (ret != 2) {
0104 dprintk(verbose, MB86A16_ERROR, 1, "read error(reg=0x%02x, ret=%i)",
0105 reg, ret);
0106
0107 if (ret < 0)
0108 return ret;
0109 return -EREMOTEIO;
0110 }
0111 *val = b1[0];
0112
0113 return ret;
0114 }
0115
0116 static int CNTM_set(struct mb86a16_state *state,
0117 unsigned char timint1,
0118 unsigned char timint2,
0119 unsigned char cnext)
0120 {
0121 unsigned char val;
0122
0123 val = (timint1 << 4) | (timint2 << 2) | cnext;
0124 if (mb86a16_write(state, MB86A16_CNTMR, val) < 0)
0125 goto err;
0126
0127 return 0;
0128
0129 err:
0130 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
0131 return -EREMOTEIO;
0132 }
0133
0134 static int smrt_set(struct mb86a16_state *state, int rate)
0135 {
0136 int tmp ;
0137 int m ;
0138 unsigned char STOFS0, STOFS1;
0139
0140 m = 1 << state->deci;
0141 tmp = (8192 * state->master_clk - 2 * m * rate * 8192 + state->master_clk / 2) / state->master_clk;
0142
0143 STOFS0 = tmp & 0x0ff;
0144 STOFS1 = (tmp & 0xf00) >> 8;
0145
0146 if (mb86a16_write(state, MB86A16_SRATE1, (state->deci << 2) |
0147 (state->csel << 1) |
0148 state->rsel) < 0)
0149 goto err;
0150 if (mb86a16_write(state, MB86A16_SRATE2, STOFS0) < 0)
0151 goto err;
0152 if (mb86a16_write(state, MB86A16_SRATE3, STOFS1) < 0)
0153 goto err;
0154
0155 return 0;
0156 err:
0157 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
0158 return -1;
0159 }
0160
0161 static int srst(struct mb86a16_state *state)
0162 {
0163 if (mb86a16_write(state, MB86A16_RESET, 0x04) < 0)
0164 goto err;
0165
0166 return 0;
0167 err:
0168 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
0169 return -EREMOTEIO;
0170
0171 }
0172
0173 static int afcex_data_set(struct mb86a16_state *state,
0174 unsigned char AFCEX_L,
0175 unsigned char AFCEX_H)
0176 {
0177 if (mb86a16_write(state, MB86A16_AFCEXL, AFCEX_L) < 0)
0178 goto err;
0179 if (mb86a16_write(state, MB86A16_AFCEXH, AFCEX_H) < 0)
0180 goto err;
0181
0182 return 0;
0183 err:
0184 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
0185
0186 return -1;
0187 }
0188
0189 static int afcofs_data_set(struct mb86a16_state *state,
0190 unsigned char AFCEX_L,
0191 unsigned char AFCEX_H)
0192 {
0193 if (mb86a16_write(state, 0x58, AFCEX_L) < 0)
0194 goto err;
0195 if (mb86a16_write(state, 0x59, AFCEX_H) < 0)
0196 goto err;
0197
0198 return 0;
0199 err:
0200 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
0201 return -EREMOTEIO;
0202 }
0203
0204 static int stlp_set(struct mb86a16_state *state,
0205 unsigned char STRAS,
0206 unsigned char STRBS)
0207 {
0208 if (mb86a16_write(state, MB86A16_STRFILTCOEF1, (STRBS << 3) | (STRAS)) < 0)
0209 goto err;
0210
0211 return 0;
0212 err:
0213 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
0214 return -EREMOTEIO;
0215 }
0216
0217 static int Vi_set(struct mb86a16_state *state, unsigned char ETH, unsigned char VIA)
0218 {
0219 if (mb86a16_write(state, MB86A16_VISET2, 0x04) < 0)
0220 goto err;
0221 if (mb86a16_write(state, MB86A16_VISET3, 0xf5) < 0)
0222 goto err;
0223
0224 return 0;
0225 err:
0226 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
0227 return -EREMOTEIO;
0228 }
0229
0230 static int initial_set(struct mb86a16_state *state)
0231 {
0232 if (stlp_set(state, 5, 7))
0233 goto err;
0234
0235 udelay(100);
0236 if (afcex_data_set(state, 0, 0))
0237 goto err;
0238
0239 udelay(100);
0240 if (afcofs_data_set(state, 0, 0))
0241 goto err;
0242
0243 udelay(100);
0244 if (mb86a16_write(state, MB86A16_CRLFILTCOEF1, 0x16) < 0)
0245 goto err;
0246 if (mb86a16_write(state, 0x2f, 0x21) < 0)
0247 goto err;
0248 if (mb86a16_write(state, MB86A16_VIMAG, 0x38) < 0)
0249 goto err;
0250 if (mb86a16_write(state, MB86A16_FAGCS1, 0x00) < 0)
0251 goto err;
0252 if (mb86a16_write(state, MB86A16_FAGCS2, 0x1c) < 0)
0253 goto err;
0254 if (mb86a16_write(state, MB86A16_FAGCS3, 0x20) < 0)
0255 goto err;
0256 if (mb86a16_write(state, MB86A16_FAGCS4, 0x1e) < 0)
0257 goto err;
0258 if (mb86a16_write(state, MB86A16_FAGCS5, 0x23) < 0)
0259 goto err;
0260 if (mb86a16_write(state, 0x54, 0xff) < 0)
0261 goto err;
0262 if (mb86a16_write(state, MB86A16_TSOUT, 0x00) < 0)
0263 goto err;
0264
0265 return 0;
0266
0267 err:
0268 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
0269 return -EREMOTEIO;
0270 }
0271
0272 static int S01T_set(struct mb86a16_state *state,
0273 unsigned char s1t,
0274 unsigned s0t)
0275 {
0276 if (mb86a16_write(state, 0x33, (s1t << 3) | s0t) < 0)
0277 goto err;
0278
0279 return 0;
0280 err:
0281 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
0282 return -EREMOTEIO;
0283 }
0284
0285
0286 static int EN_set(struct mb86a16_state *state,
0287 int cren,
0288 int afcen)
0289 {
0290 unsigned char val;
0291
0292 val = 0x7a | (cren << 7) | (afcen << 2);
0293 if (mb86a16_write(state, 0x49, val) < 0)
0294 goto err;
0295
0296 return 0;
0297 err:
0298 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
0299 return -EREMOTEIO;
0300 }
0301
0302 static int AFCEXEN_set(struct mb86a16_state *state,
0303 int afcexen,
0304 int smrt)
0305 {
0306 unsigned char AFCA ;
0307
0308 if (smrt > 18875)
0309 AFCA = 4;
0310 else if (smrt > 9375)
0311 AFCA = 3;
0312 else if (smrt > 2250)
0313 AFCA = 2;
0314 else
0315 AFCA = 1;
0316
0317 if (mb86a16_write(state, 0x2a, 0x02 | (afcexen << 5) | (AFCA << 2)) < 0)
0318 goto err;
0319
0320 return 0;
0321
0322 err:
0323 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
0324 return -EREMOTEIO;
0325 }
0326
0327 static int DAGC_data_set(struct mb86a16_state *state,
0328 unsigned char DAGCA,
0329 unsigned char DAGCW)
0330 {
0331 if (mb86a16_write(state, 0x2d, (DAGCA << 3) | DAGCW) < 0)
0332 goto err;
0333
0334 return 0;
0335
0336 err:
0337 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
0338 return -EREMOTEIO;
0339 }
0340
0341 static void smrt_info_get(struct mb86a16_state *state, int rate)
0342 {
0343 if (rate >= 37501) {
0344 state->deci = 0; state->csel = 0; state->rsel = 0;
0345 } else if (rate >= 30001) {
0346 state->deci = 0; state->csel = 0; state->rsel = 1;
0347 } else if (rate >= 26251) {
0348 state->deci = 0; state->csel = 1; state->rsel = 0;
0349 } else if (rate >= 22501) {
0350 state->deci = 0; state->csel = 1; state->rsel = 1;
0351 } else if (rate >= 18751) {
0352 state->deci = 1; state->csel = 0; state->rsel = 0;
0353 } else if (rate >= 15001) {
0354 state->deci = 1; state->csel = 0; state->rsel = 1;
0355 } else if (rate >= 13126) {
0356 state->deci = 1; state->csel = 1; state->rsel = 0;
0357 } else if (rate >= 11251) {
0358 state->deci = 1; state->csel = 1; state->rsel = 1;
0359 } else if (rate >= 9376) {
0360 state->deci = 2; state->csel = 0; state->rsel = 0;
0361 } else if (rate >= 7501) {
0362 state->deci = 2; state->csel = 0; state->rsel = 1;
0363 } else if (rate >= 6563) {
0364 state->deci = 2; state->csel = 1; state->rsel = 0;
0365 } else if (rate >= 5626) {
0366 state->deci = 2; state->csel = 1; state->rsel = 1;
0367 } else if (rate >= 4688) {
0368 state->deci = 3; state->csel = 0; state->rsel = 0;
0369 } else if (rate >= 3751) {
0370 state->deci = 3; state->csel = 0; state->rsel = 1;
0371 } else if (rate >= 3282) {
0372 state->deci = 3; state->csel = 1; state->rsel = 0;
0373 } else if (rate >= 2814) {
0374 state->deci = 3; state->csel = 1; state->rsel = 1;
0375 } else if (rate >= 2344) {
0376 state->deci = 4; state->csel = 0; state->rsel = 0;
0377 } else if (rate >= 1876) {
0378 state->deci = 4; state->csel = 0; state->rsel = 1;
0379 } else if (rate >= 1641) {
0380 state->deci = 4; state->csel = 1; state->rsel = 0;
0381 } else if (rate >= 1407) {
0382 state->deci = 4; state->csel = 1; state->rsel = 1;
0383 } else if (rate >= 1172) {
0384 state->deci = 5; state->csel = 0; state->rsel = 0;
0385 } else if (rate >= 939) {
0386 state->deci = 5; state->csel = 0; state->rsel = 1;
0387 } else if (rate >= 821) {
0388 state->deci = 5; state->csel = 1; state->rsel = 0;
0389 } else {
0390 state->deci = 5; state->csel = 1; state->rsel = 1;
0391 }
0392
0393 if (state->csel == 0)
0394 state->master_clk = 92000;
0395 else
0396 state->master_clk = 61333;
0397
0398 }
0399
0400 static int signal_det(struct mb86a16_state *state,
0401 int smrt,
0402 unsigned char *SIG)
0403 {
0404 int ret;
0405 int smrtd;
0406 unsigned char S[3];
0407 int i;
0408
0409 if (*SIG > 45) {
0410 if (CNTM_set(state, 2, 1, 2) < 0) {
0411 dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
0412 return -1;
0413 }
0414 } else {
0415 if (CNTM_set(state, 3, 1, 2) < 0) {
0416 dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
0417 return -1;
0418 }
0419 }
0420 for (i = 0; i < 3; i++) {
0421 if (i == 0)
0422 smrtd = smrt * 98 / 100;
0423 else if (i == 1)
0424 smrtd = smrt;
0425 else
0426 smrtd = smrt * 102 / 100;
0427 smrt_info_get(state, smrtd);
0428 smrt_set(state, smrtd);
0429 srst(state);
0430 msleep_interruptible(10);
0431 if (mb86a16_read(state, 0x37, &(S[i])) != 2) {
0432 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
0433 return -EREMOTEIO;
0434 }
0435 }
0436 if ((S[1] > S[0] * 112 / 100) && (S[1] > S[2] * 112 / 100))
0437 ret = 1;
0438 else
0439 ret = 0;
0440
0441 *SIG = S[1];
0442
0443 if (CNTM_set(state, 0, 1, 2) < 0) {
0444 dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
0445 return -1;
0446 }
0447
0448 return ret;
0449 }
0450
0451 static int rf_val_set(struct mb86a16_state *state,
0452 int f,
0453 int smrt,
0454 unsigned char R)
0455 {
0456 unsigned char C, F, B;
0457 int M;
0458 unsigned char rf_val[5];
0459 int ack = -1;
0460
0461 if (smrt > 37750)
0462 C = 1;
0463 else if (smrt > 18875)
0464 C = 2;
0465 else if (smrt > 5500)
0466 C = 3;
0467 else
0468 C = 4;
0469
0470 if (smrt > 30500)
0471 F = 3;
0472 else if (smrt > 9375)
0473 F = 1;
0474 else if (smrt > 4625)
0475 F = 0;
0476 else
0477 F = 2;
0478
0479 if (f < 1060)
0480 B = 0;
0481 else if (f < 1175)
0482 B = 1;
0483 else if (f < 1305)
0484 B = 2;
0485 else if (f < 1435)
0486 B = 3;
0487 else if (f < 1570)
0488 B = 4;
0489 else if (f < 1715)
0490 B = 5;
0491 else if (f < 1845)
0492 B = 6;
0493 else if (f < 1980)
0494 B = 7;
0495 else if (f < 2080)
0496 B = 8;
0497 else
0498 B = 9;
0499
0500 M = f * (1 << R) / 2;
0501
0502 rf_val[0] = 0x01 | (C << 3) | (F << 1);
0503 rf_val[1] = (R << 5) | ((M & 0x1f000) >> 12);
0504 rf_val[2] = (M & 0x00ff0) >> 4;
0505 rf_val[3] = ((M & 0x0000f) << 4) | B;
0506
0507
0508 if (mb86a16_write(state, 0x21, rf_val[0]) < 0)
0509 ack = 0;
0510 if (mb86a16_write(state, 0x22, rf_val[1]) < 0)
0511 ack = 0;
0512 if (mb86a16_write(state, 0x23, rf_val[2]) < 0)
0513 ack = 0;
0514 if (mb86a16_write(state, 0x24, rf_val[3]) < 0)
0515 ack = 0;
0516 if (mb86a16_write(state, 0x25, 0x01) < 0)
0517 ack = 0;
0518 if (ack == 0) {
0519 dprintk(verbose, MB86A16_ERROR, 1, "RF Setup - I2C transfer error");
0520 return -EREMOTEIO;
0521 }
0522
0523 return 0;
0524 }
0525
0526 static int afcerr_chk(struct mb86a16_state *state)
0527 {
0528 unsigned char AFCM_L, AFCM_H ;
0529 int AFCM ;
0530 int afcm, afcerr ;
0531
0532 if (mb86a16_read(state, 0x0e, &AFCM_L) != 2)
0533 goto err;
0534 if (mb86a16_read(state, 0x0f, &AFCM_H) != 2)
0535 goto err;
0536
0537 AFCM = (AFCM_H << 8) + AFCM_L;
0538
0539 if (AFCM > 2048)
0540 afcm = AFCM - 4096;
0541 else
0542 afcm = AFCM;
0543 afcerr = afcm * state->master_clk / 8192;
0544
0545 return afcerr;
0546
0547 err:
0548 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
0549 return -EREMOTEIO;
0550 }
0551
0552 static int dagcm_val_get(struct mb86a16_state *state)
0553 {
0554 int DAGCM;
0555 unsigned char DAGCM_H, DAGCM_L;
0556
0557 if (mb86a16_read(state, 0x45, &DAGCM_L) != 2)
0558 goto err;
0559 if (mb86a16_read(state, 0x46, &DAGCM_H) != 2)
0560 goto err;
0561
0562 DAGCM = (DAGCM_H << 8) + DAGCM_L;
0563
0564 return DAGCM;
0565
0566 err:
0567 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
0568 return -EREMOTEIO;
0569 }
0570
0571 static int mb86a16_read_status(struct dvb_frontend *fe, enum fe_status *status)
0572 {
0573 u8 stat, stat2;
0574 struct mb86a16_state *state = fe->demodulator_priv;
0575
0576 *status = 0;
0577
0578 if (mb86a16_read(state, MB86A16_SIG1, &stat) != 2)
0579 goto err;
0580 if (mb86a16_read(state, MB86A16_SIG2, &stat2) != 2)
0581 goto err;
0582 if ((stat > 25) && (stat2 > 25))
0583 *status |= FE_HAS_SIGNAL;
0584 if ((stat > 45) && (stat2 > 45))
0585 *status |= FE_HAS_CARRIER;
0586
0587 if (mb86a16_read(state, MB86A16_STATUS, &stat) != 2)
0588 goto err;
0589
0590 if (stat & 0x01)
0591 *status |= FE_HAS_SYNC;
0592 if (stat & 0x01)
0593 *status |= FE_HAS_VITERBI;
0594
0595 if (mb86a16_read(state, MB86A16_FRAMESYNC, &stat) != 2)
0596 goto err;
0597
0598 if ((stat & 0x0f) && (*status & FE_HAS_VITERBI))
0599 *status |= FE_HAS_LOCK;
0600
0601 return 0;
0602
0603 err:
0604 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
0605 return -EREMOTEIO;
0606 }
0607
0608 static int sync_chk(struct mb86a16_state *state,
0609 unsigned char *VIRM)
0610 {
0611 unsigned char val;
0612 int sync;
0613
0614 if (mb86a16_read(state, 0x0d, &val) != 2)
0615 goto err;
0616
0617 dprintk(verbose, MB86A16_INFO, 1, "Status = %02x,", val);
0618 sync = val & 0x01;
0619 *VIRM = (val & 0x1c) >> 2;
0620
0621 return sync;
0622 err:
0623 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
0624 *VIRM = 0;
0625 return -EREMOTEIO;
0626
0627 }
0628
0629 static int freqerr_chk(struct mb86a16_state *state,
0630 int fTP,
0631 int smrt,
0632 int unit)
0633 {
0634 unsigned char CRM, AFCML, AFCMH;
0635 unsigned char temp1, temp2, temp3;
0636 int crm, afcm, AFCM;
0637 int crrerr, afcerr;
0638 int frqerr;
0639 int afcen, afcexen = 0;
0640 int R, M, fOSC, fOSC_OFS;
0641
0642 if (mb86a16_read(state, 0x43, &CRM) != 2)
0643 goto err;
0644
0645 if (CRM > 127)
0646 crm = CRM - 256;
0647 else
0648 crm = CRM;
0649
0650 crrerr = smrt * crm / 256;
0651 if (mb86a16_read(state, 0x49, &temp1) != 2)
0652 goto err;
0653
0654 afcen = (temp1 & 0x04) >> 2;
0655 if (afcen == 0) {
0656 if (mb86a16_read(state, 0x2a, &temp1) != 2)
0657 goto err;
0658 afcexen = (temp1 & 0x20) >> 5;
0659 }
0660
0661 if (afcen == 1) {
0662 if (mb86a16_read(state, 0x0e, &AFCML) != 2)
0663 goto err;
0664 if (mb86a16_read(state, 0x0f, &AFCMH) != 2)
0665 goto err;
0666 } else if (afcexen == 1) {
0667 if (mb86a16_read(state, 0x2b, &AFCML) != 2)
0668 goto err;
0669 if (mb86a16_read(state, 0x2c, &AFCMH) != 2)
0670 goto err;
0671 }
0672 if ((afcen == 1) || (afcexen == 1)) {
0673 smrt_info_get(state, smrt);
0674 AFCM = ((AFCMH & 0x01) << 8) + AFCML;
0675 if (AFCM > 255)
0676 afcm = AFCM - 512;
0677 else
0678 afcm = AFCM;
0679
0680 afcerr = afcm * state->master_clk / 8192;
0681 } else
0682 afcerr = 0;
0683
0684 if (mb86a16_read(state, 0x22, &temp1) != 2)
0685 goto err;
0686 if (mb86a16_read(state, 0x23, &temp2) != 2)
0687 goto err;
0688 if (mb86a16_read(state, 0x24, &temp3) != 2)
0689 goto err;
0690
0691 R = (temp1 & 0xe0) >> 5;
0692 M = ((temp1 & 0x1f) << 12) + (temp2 << 4) + (temp3 >> 4);
0693 if (R == 0)
0694 fOSC = 2 * M;
0695 else
0696 fOSC = M;
0697
0698 fOSC_OFS = fOSC - fTP;
0699
0700 if (unit == 0) {
0701 if (crrerr + afcerr + fOSC_OFS * 1000 >= 0)
0702 frqerr = (crrerr + afcerr + fOSC_OFS * 1000 + 500) / 1000;
0703 else
0704 frqerr = (crrerr + afcerr + fOSC_OFS * 1000 - 500) / 1000;
0705 } else {
0706 frqerr = crrerr + afcerr + fOSC_OFS * 1000;
0707 }
0708
0709 return frqerr;
0710 err:
0711 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
0712 return -EREMOTEIO;
0713 }
0714
0715 static unsigned char vco_dev_get(struct mb86a16_state *state, int smrt)
0716 {
0717 unsigned char R;
0718
0719 if (smrt > 9375)
0720 R = 0;
0721 else
0722 R = 1;
0723
0724 return R;
0725 }
0726
0727 static void swp_info_get(struct mb86a16_state *state,
0728 int fOSC_start,
0729 int smrt,
0730 int v, int R,
0731 int swp_ofs,
0732 int *fOSC,
0733 int *afcex_freq,
0734 unsigned char *AFCEX_L,
0735 unsigned char *AFCEX_H)
0736 {
0737 int AFCEX ;
0738 int crnt_swp_freq ;
0739
0740 crnt_swp_freq = fOSC_start * 1000 + v * swp_ofs;
0741
0742 if (R == 0)
0743 *fOSC = (crnt_swp_freq + 1000) / 2000 * 2;
0744 else
0745 *fOSC = (crnt_swp_freq + 500) / 1000;
0746
0747 if (*fOSC >= crnt_swp_freq)
0748 *afcex_freq = *fOSC * 1000 - crnt_swp_freq;
0749 else
0750 *afcex_freq = crnt_swp_freq - *fOSC * 1000;
0751
0752 AFCEX = *afcex_freq * 8192 / state->master_clk;
0753 *AFCEX_L = AFCEX & 0x00ff;
0754 *AFCEX_H = (AFCEX & 0x0f00) >> 8;
0755 }
0756
0757
0758 static int swp_freq_calcuation(struct mb86a16_state *state, int i, int v, int *V, int vmax, int vmin,
0759 int SIGMIN, int fOSC, int afcex_freq, int swp_ofs, unsigned char *SIG1)
0760 {
0761 int swp_freq ;
0762
0763 if ((i % 2 == 1) && (v <= vmax)) {
0764
0765 if ((v - 1 == vmin) &&
0766 (*(V + 30 + v) >= 0) &&
0767 (*(V + 30 + v - 1) >= 0) &&
0768 (*(V + 30 + v - 1) > *(V + 30 + v)) &&
0769 (*(V + 30 + v - 1) > SIGMIN)) {
0770
0771 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
0772 *SIG1 = *(V + 30 + v - 1);
0773 } else if ((v == vmax) &&
0774 (*(V + 30 + v) >= 0) &&
0775 (*(V + 30 + v - 1) >= 0) &&
0776 (*(V + 30 + v) > *(V + 30 + v - 1)) &&
0777 (*(V + 30 + v) > SIGMIN)) {
0778
0779 swp_freq = fOSC * 1000 + afcex_freq;
0780 *SIG1 = *(V + 30 + v);
0781 } else if ((*(V + 30 + v) > 0) &&
0782 (*(V + 30 + v - 1) > 0) &&
0783 (*(V + 30 + v - 2) > 0) &&
0784 (*(V + 30 + v - 3) > 0) &&
0785 (*(V + 30 + v - 1) > *(V + 30 + v)) &&
0786 (*(V + 30 + v - 2) > *(V + 30 + v - 3)) &&
0787 ((*(V + 30 + v - 1) > SIGMIN) ||
0788 (*(V + 30 + v - 2) > SIGMIN))) {
0789
0790 if (*(V + 30 + v - 1) >= *(V + 30 + v - 2)) {
0791 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
0792 *SIG1 = *(V + 30 + v - 1);
0793 } else {
0794 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs * 2;
0795 *SIG1 = *(V + 30 + v - 2);
0796 }
0797 } else if ((v == vmax) &&
0798 (*(V + 30 + v) >= 0) &&
0799 (*(V + 30 + v - 1) >= 0) &&
0800 (*(V + 30 + v - 2) >= 0) &&
0801 (*(V + 30 + v) > *(V + 30 + v - 2)) &&
0802 (*(V + 30 + v - 1) > *(V + 30 + v - 2)) &&
0803 ((*(V + 30 + v) > SIGMIN) ||
0804 (*(V + 30 + v - 1) > SIGMIN))) {
0805
0806 if (*(V + 30 + v) >= *(V + 30 + v - 1)) {
0807 swp_freq = fOSC * 1000 + afcex_freq;
0808 *SIG1 = *(V + 30 + v);
0809 } else {
0810 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
0811 *SIG1 = *(V + 30 + v - 1);
0812 }
0813 } else {
0814 swp_freq = -1 ;
0815 }
0816 } else if ((i % 2 == 0) && (v >= vmin)) {
0817
0818 if ((*(V + 30 + v) > 0) &&
0819 (*(V + 30 + v + 1) > 0) &&
0820 (*(V + 30 + v + 2) > 0) &&
0821 (*(V + 30 + v + 1) > *(V + 30 + v)) &&
0822 (*(V + 30 + v + 1) > *(V + 30 + v + 2)) &&
0823 (*(V + 30 + v + 1) > SIGMIN)) {
0824
0825 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
0826 *SIG1 = *(V + 30 + v + 1);
0827 } else if ((v + 1 == vmax) &&
0828 (*(V + 30 + v) >= 0) &&
0829 (*(V + 30 + v + 1) >= 0) &&
0830 (*(V + 30 + v + 1) > *(V + 30 + v)) &&
0831 (*(V + 30 + v + 1) > SIGMIN)) {
0832
0833 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
0834 *SIG1 = *(V + 30 + v);
0835 } else if ((v == vmin) &&
0836 (*(V + 30 + v) > 0) &&
0837 (*(V + 30 + v + 1) > 0) &&
0838 (*(V + 30 + v + 2) > 0) &&
0839 (*(V + 30 + v) > *(V + 30 + v + 1)) &&
0840 (*(V + 30 + v) > *(V + 30 + v + 2)) &&
0841 (*(V + 30 + v) > SIGMIN)) {
0842
0843 swp_freq = fOSC * 1000 + afcex_freq;
0844 *SIG1 = *(V + 30 + v);
0845 } else if ((*(V + 30 + v) >= 0) &&
0846 (*(V + 30 + v + 1) >= 0) &&
0847 (*(V + 30 + v + 2) >= 0) &&
0848 (*(V + 30 + v + 3) >= 0) &&
0849 (*(V + 30 + v + 1) > *(V + 30 + v)) &&
0850 (*(V + 30 + v + 2) > *(V + 30 + v + 3)) &&
0851 ((*(V + 30 + v + 1) > SIGMIN) ||
0852 (*(V + 30 + v + 2) > SIGMIN))) {
0853
0854 if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
0855 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
0856 *SIG1 = *(V + 30 + v + 1);
0857 } else {
0858 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
0859 *SIG1 = *(V + 30 + v + 2);
0860 }
0861 } else if ((*(V + 30 + v) >= 0) &&
0862 (*(V + 30 + v + 1) >= 0) &&
0863 (*(V + 30 + v + 2) >= 0) &&
0864 (*(V + 30 + v + 3) >= 0) &&
0865 (*(V + 30 + v) > *(V + 30 + v + 2)) &&
0866 (*(V + 30 + v + 1) > *(V + 30 + v + 2)) &&
0867 (*(V + 30 + v) > *(V + 30 + v + 3)) &&
0868 (*(V + 30 + v + 1) > *(V + 30 + v + 3)) &&
0869 ((*(V + 30 + v) > SIGMIN) ||
0870 (*(V + 30 + v + 1) > SIGMIN))) {
0871
0872 if (*(V + 30 + v) >= *(V + 30 + v + 1)) {
0873 swp_freq = fOSC * 1000 + afcex_freq;
0874 *SIG1 = *(V + 30 + v);
0875 } else {
0876 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
0877 *SIG1 = *(V + 30 + v + 1);
0878 }
0879 } else if ((v + 2 == vmin) &&
0880 (*(V + 30 + v) >= 0) &&
0881 (*(V + 30 + v + 1) >= 0) &&
0882 (*(V + 30 + v + 2) >= 0) &&
0883 (*(V + 30 + v + 1) > *(V + 30 + v)) &&
0884 (*(V + 30 + v + 2) > *(V + 30 + v)) &&
0885 ((*(V + 30 + v + 1) > SIGMIN) ||
0886 (*(V + 30 + v + 2) > SIGMIN))) {
0887
0888 if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
0889 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
0890 *SIG1 = *(V + 30 + v + 1);
0891 } else {
0892 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
0893 *SIG1 = *(V + 30 + v + 2);
0894 }
0895 } else if ((vmax == 0) && (vmin == 0) && (*(V + 30 + v) > SIGMIN)) {
0896 swp_freq = fOSC * 1000;
0897 *SIG1 = *(V + 30 + v);
0898 } else
0899 swp_freq = -1;
0900 } else
0901 swp_freq = -1;
0902
0903 return swp_freq;
0904 }
0905
0906 static void swp_info_get2(struct mb86a16_state *state,
0907 int smrt,
0908 int R,
0909 int swp_freq,
0910 int *afcex_freq,
0911 int *fOSC,
0912 unsigned char *AFCEX_L,
0913 unsigned char *AFCEX_H)
0914 {
0915 int AFCEX ;
0916
0917 if (R == 0)
0918 *fOSC = (swp_freq + 1000) / 2000 * 2;
0919 else
0920 *fOSC = (swp_freq + 500) / 1000;
0921
0922 if (*fOSC >= swp_freq)
0923 *afcex_freq = *fOSC * 1000 - swp_freq;
0924 else
0925 *afcex_freq = swp_freq - *fOSC * 1000;
0926
0927 AFCEX = *afcex_freq * 8192 / state->master_clk;
0928 *AFCEX_L = AFCEX & 0x00ff;
0929 *AFCEX_H = (AFCEX & 0x0f00) >> 8;
0930 }
0931
0932 static void afcex_info_get(struct mb86a16_state *state,
0933 int afcex_freq,
0934 unsigned char *AFCEX_L,
0935 unsigned char *AFCEX_H)
0936 {
0937 int AFCEX ;
0938
0939 AFCEX = afcex_freq * 8192 / state->master_clk;
0940 *AFCEX_L = AFCEX & 0x00ff;
0941 *AFCEX_H = (AFCEX & 0x0f00) >> 8;
0942 }
0943
0944 static int SEQ_set(struct mb86a16_state *state, unsigned char loop)
0945 {
0946
0947 if (mb86a16_write(state, 0x32, 0x02 | (loop << 2)) < 0) {
0948 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
0949 return -EREMOTEIO;
0950 }
0951
0952 return 0;
0953 }
0954
0955 static int iq_vt_set(struct mb86a16_state *state, unsigned char IQINV)
0956 {
0957
0958 if (mb86a16_write(state, 0x06, 0xdf | (IQINV << 5)) < 0) {
0959 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
0960 return -EREMOTEIO;
0961 }
0962
0963 return 0;
0964 }
0965
0966 static int FEC_srst(struct mb86a16_state *state)
0967 {
0968 if (mb86a16_write(state, MB86A16_RESET, 0x02) < 0) {
0969 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
0970 return -EREMOTEIO;
0971 }
0972
0973 return 0;
0974 }
0975
0976 static int S2T_set(struct mb86a16_state *state, unsigned char S2T)
0977 {
0978 if (mb86a16_write(state, 0x34, 0x70 | S2T) < 0) {
0979 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
0980 return -EREMOTEIO;
0981 }
0982
0983 return 0;
0984 }
0985
0986 static int S45T_set(struct mb86a16_state *state, unsigned char S4T, unsigned char S5T)
0987 {
0988 if (mb86a16_write(state, 0x35, 0x00 | (S5T << 4) | S4T) < 0) {
0989 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
0990 return -EREMOTEIO;
0991 }
0992
0993 return 0;
0994 }
0995
0996
0997 static int mb86a16_set_fe(struct mb86a16_state *state)
0998 {
0999 u8 agcval, cnmval;
1000
1001 int i, j;
1002 int fOSC = 0;
1003 int fOSC_start = 0;
1004 int wait_t;
1005 int fcp;
1006 int swp_ofs;
1007 int V[60];
1008 u8 SIG1MIN;
1009
1010 unsigned char CREN, AFCEN, AFCEXEN;
1011 unsigned char SIG1;
1012 unsigned char TIMINT1, TIMINT2, TIMEXT;
1013 unsigned char S0T, S1T;
1014 unsigned char S2T;
1015
1016 unsigned char S4T, S5T;
1017 unsigned char AFCEX_L, AFCEX_H;
1018 unsigned char R;
1019 unsigned char VIRM;
1020 unsigned char ETH, VIA;
1021 unsigned char junk;
1022
1023 int loop;
1024 int ftemp;
1025 int v, vmax, vmin;
1026 int vmax_his, vmin_his;
1027 int swp_freq, prev_swp_freq[20];
1028 int prev_freq_num;
1029 int signal_dupl;
1030 int afcex_freq;
1031 int signal;
1032 int afcerr;
1033 int temp_freq, delta_freq;
1034 int dagcm[4];
1035 int smrt_d;
1036
1037 int n;
1038 int ret = -1;
1039 int sync;
1040
1041 dprintk(verbose, MB86A16_INFO, 1, "freq=%d Mhz, symbrt=%d Ksps", state->frequency, state->srate);
1042
1043 fcp = 3000;
1044 swp_ofs = state->srate / 4;
1045
1046 for (i = 0; i < 60; i++)
1047 V[i] = -1;
1048
1049 for (i = 0; i < 20; i++)
1050 prev_swp_freq[i] = 0;
1051
1052 SIG1MIN = 25;
1053
1054 for (n = 0; ((n < 3) && (ret == -1)); n++) {
1055 SEQ_set(state, 0);
1056 iq_vt_set(state, 0);
1057
1058 CREN = 0;
1059 AFCEN = 0;
1060 AFCEXEN = 1;
1061 TIMINT1 = 0;
1062 TIMINT2 = 1;
1063 TIMEXT = 2;
1064 S1T = 0;
1065 S0T = 0;
1066
1067 if (initial_set(state) < 0) {
1068 dprintk(verbose, MB86A16_ERROR, 1, "initial set failed");
1069 return -1;
1070 }
1071 if (DAGC_data_set(state, 3, 2) < 0) {
1072 dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1073 return -1;
1074 }
1075 if (EN_set(state, CREN, AFCEN) < 0) {
1076 dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1077 return -1;
1078 }
1079 if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1080 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1081 return -1;
1082 }
1083 if (CNTM_set(state, TIMINT1, TIMINT2, TIMEXT) < 0) {
1084 dprintk(verbose, MB86A16_ERROR, 1, "CNTM set error");
1085 return -1;
1086 }
1087 if (S01T_set(state, S1T, S0T) < 0) {
1088 dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1089 return -1;
1090 }
1091 smrt_info_get(state, state->srate);
1092 if (smrt_set(state, state->srate) < 0) {
1093 dprintk(verbose, MB86A16_ERROR, 1, "smrt info get error");
1094 return -1;
1095 }
1096
1097 R = vco_dev_get(state, state->srate);
1098 if (R == 1)
1099 fOSC_start = state->frequency;
1100
1101 else if (R == 0) {
1102 if (state->frequency % 2 == 0) {
1103 fOSC_start = state->frequency;
1104 } else {
1105 fOSC_start = state->frequency + 1;
1106 if (fOSC_start > 2150)
1107 fOSC_start = state->frequency - 1;
1108 }
1109 }
1110 loop = 1;
1111 ftemp = fOSC_start * 1000;
1112 vmax = 0 ;
1113 while (loop == 1) {
1114 ftemp = ftemp + swp_ofs;
1115 vmax++;
1116
1117
1118 if (ftemp > 2150000) {
1119 loop = 0;
1120 vmax--;
1121 } else {
1122 if ((ftemp == 2150000) ||
1123 (ftemp - state->frequency * 1000 >= fcp + state->srate / 4))
1124 loop = 0;
1125 }
1126 }
1127
1128 loop = 1;
1129 ftemp = fOSC_start * 1000;
1130 vmin = 0 ;
1131 while (loop == 1) {
1132 ftemp = ftemp - swp_ofs;
1133 vmin--;
1134
1135
1136 if (ftemp < 950000) {
1137 loop = 0;
1138 vmin++;
1139 } else {
1140 if ((ftemp == 950000) ||
1141 (state->frequency * 1000 - ftemp >= fcp + state->srate / 4))
1142 loop = 0;
1143 }
1144 }
1145
1146 wait_t = (8000 + state->srate / 2) / state->srate;
1147 if (wait_t == 0)
1148 wait_t = 1;
1149
1150 i = 0;
1151 j = 0;
1152 prev_freq_num = 0;
1153 loop = 1;
1154 signal = 0;
1155 vmax_his = 0;
1156 vmin_his = 0;
1157 v = 0;
1158
1159 while (loop == 1) {
1160 swp_info_get(state, fOSC_start, state->srate,
1161 v, R, swp_ofs, &fOSC,
1162 &afcex_freq, &AFCEX_L, &AFCEX_H);
1163
1164 udelay(100);
1165 if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1166 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1167 return -1;
1168 }
1169 udelay(100);
1170 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1171 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1172 return -1;
1173 }
1174 if (srst(state) < 0) {
1175 dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1176 return -1;
1177 }
1178 msleep_interruptible(wait_t);
1179
1180 if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1181 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1182 return -1;
1183 }
1184 V[30 + v] = SIG1 ;
1185 swp_freq = swp_freq_calcuation(state, i, v, V, vmax, vmin,
1186 SIG1MIN, fOSC, afcex_freq,
1187 swp_ofs, &SIG1);
1188
1189 signal_dupl = 0;
1190 for (j = 0; j < prev_freq_num; j++) {
1191 if ((abs(prev_swp_freq[j] - swp_freq)) < (swp_ofs * 3 / 2)) {
1192 signal_dupl = 1;
1193 dprintk(verbose, MB86A16_INFO, 1, "Probably Duplicate Signal, j = %d", j);
1194 }
1195 }
1196 if ((signal_dupl == 0) && (swp_freq > 0) && (abs(swp_freq - state->frequency * 1000) < fcp + state->srate / 6)) {
1197 dprintk(verbose, MB86A16_DEBUG, 1, "------ Signal detect ------ [swp_freq=[%07d, srate=%05d]]", swp_freq, state->srate);
1198 prev_swp_freq[prev_freq_num] = swp_freq;
1199 prev_freq_num++;
1200 swp_info_get2(state, state->srate, R, swp_freq,
1201 &afcex_freq, &fOSC,
1202 &AFCEX_L, &AFCEX_H);
1203
1204 if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1205 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1206 return -1;
1207 }
1208 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1209 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1210 return -1;
1211 }
1212 signal = signal_det(state, state->srate, &SIG1);
1213 if (signal == 1) {
1214 dprintk(verbose, MB86A16_ERROR, 1, "***** Signal Found *****");
1215 loop = 0;
1216 } else {
1217 dprintk(verbose, MB86A16_ERROR, 1, "!!!!! No signal !!!!!, try again...");
1218 smrt_info_get(state, state->srate);
1219 if (smrt_set(state, state->srate) < 0) {
1220 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1221 return -1;
1222 }
1223 }
1224 }
1225 if (v > vmax)
1226 vmax_his = 1 ;
1227 if (v < vmin)
1228 vmin_his = 1 ;
1229 i++;
1230
1231 if ((i % 2 == 1) && (vmax_his == 1))
1232 i++;
1233 if ((i % 2 == 0) && (vmin_his == 1))
1234 i++;
1235
1236 if (i % 2 == 1)
1237 v = (i + 1) / 2;
1238 else
1239 v = -i / 2;
1240
1241 if ((vmax_his == 1) && (vmin_his == 1))
1242 loop = 0 ;
1243 }
1244
1245 if (signal == 1) {
1246 dprintk(verbose, MB86A16_INFO, 1, " Start Freq Error Check");
1247 S1T = 7 ;
1248 S0T = 1 ;
1249 CREN = 0 ;
1250 AFCEN = 1 ;
1251 AFCEXEN = 0 ;
1252
1253 if (S01T_set(state, S1T, S0T) < 0) {
1254 dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1255 return -1;
1256 }
1257 smrt_info_get(state, state->srate);
1258 if (smrt_set(state, state->srate) < 0) {
1259 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1260 return -1;
1261 }
1262 if (EN_set(state, CREN, AFCEN) < 0) {
1263 dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1264 return -1;
1265 }
1266 if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1267 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1268 return -1;
1269 }
1270 afcex_info_get(state, afcex_freq, &AFCEX_L, &AFCEX_H);
1271 if (afcofs_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1272 dprintk(verbose, MB86A16_ERROR, 1, "AFCOFS data set error");
1273 return -1;
1274 }
1275 if (srst(state) < 0) {
1276 dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1277 return -1;
1278 }
1279
1280 wait_t = 200000 / state->master_clk + 200000 / state->srate;
1281 msleep(wait_t);
1282 afcerr = afcerr_chk(state);
1283 if (afcerr == -1)
1284 return -1;
1285
1286 swp_freq = fOSC * 1000 + afcerr ;
1287 AFCEXEN = 1 ;
1288 if (state->srate >= 1500)
1289 smrt_d = state->srate / 3;
1290 else
1291 smrt_d = state->srate / 2;
1292 smrt_info_get(state, smrt_d);
1293 if (smrt_set(state, smrt_d) < 0) {
1294 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1295 return -1;
1296 }
1297 if (AFCEXEN_set(state, AFCEXEN, smrt_d) < 0) {
1298 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1299 return -1;
1300 }
1301 R = vco_dev_get(state, smrt_d);
1302 if (DAGC_data_set(state, 2, 0) < 0) {
1303 dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1304 return -1;
1305 }
1306 for (i = 0; i < 3; i++) {
1307 temp_freq = swp_freq + (i - 1) * state->srate / 8;
1308 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1309 if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1310 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1311 return -1;
1312 }
1313 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1314 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1315 return -1;
1316 }
1317 wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1318 msleep(wait_t);
1319 dagcm[i] = dagcm_val_get(state);
1320 }
1321 if ((dagcm[0] > dagcm[1]) &&
1322 (dagcm[0] > dagcm[2]) &&
1323 (dagcm[0] - dagcm[1] > 2 * (dagcm[2] - dagcm[1]))) {
1324
1325 temp_freq = swp_freq - 2 * state->srate / 8;
1326 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1327 if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1328 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1329 return -1;
1330 }
1331 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1332 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1333 return -1;
1334 }
1335 wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1336 msleep(wait_t);
1337 dagcm[3] = dagcm_val_get(state);
1338 if (dagcm[3] > dagcm[1])
1339 delta_freq = (dagcm[2] - dagcm[0] + dagcm[1] - dagcm[3]) * state->srate / 300;
1340 else
1341 delta_freq = 0;
1342 } else if ((dagcm[2] > dagcm[1]) &&
1343 (dagcm[2] > dagcm[0]) &&
1344 (dagcm[2] - dagcm[1] > 2 * (dagcm[0] - dagcm[1]))) {
1345
1346 temp_freq = swp_freq + 2 * state->srate / 8;
1347 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1348 if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1349 dprintk(verbose, MB86A16_ERROR, 1, "rf val set");
1350 return -1;
1351 }
1352 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1353 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1354 return -1;
1355 }
1356 wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1357 msleep(wait_t);
1358 dagcm[3] = dagcm_val_get(state);
1359 if (dagcm[3] > dagcm[1])
1360 delta_freq = (dagcm[2] - dagcm[0] + dagcm[3] - dagcm[1]) * state->srate / 300;
1361 else
1362 delta_freq = 0 ;
1363
1364 } else {
1365 delta_freq = 0 ;
1366 }
1367 dprintk(verbose, MB86A16_INFO, 1, "SWEEP Frequency = %d", swp_freq);
1368 swp_freq += delta_freq;
1369 dprintk(verbose, MB86A16_INFO, 1, "Adjusting .., DELTA Freq = %d, SWEEP Freq=%d", delta_freq, swp_freq);
1370 if (abs(state->frequency * 1000 - swp_freq) > 3800) {
1371 dprintk(verbose, MB86A16_INFO, 1, "NO -- SIGNAL !");
1372 } else {
1373
1374 S1T = 0;
1375 S0T = 3;
1376 CREN = 1;
1377 AFCEN = 0;
1378 AFCEXEN = 1;
1379
1380 if (S01T_set(state, S1T, S0T) < 0) {
1381 dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1382 return -1;
1383 }
1384 if (DAGC_data_set(state, 0, 0) < 0) {
1385 dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1386 return -1;
1387 }
1388 R = vco_dev_get(state, state->srate);
1389 smrt_info_get(state, state->srate);
1390 if (smrt_set(state, state->srate) < 0) {
1391 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1392 return -1;
1393 }
1394 if (EN_set(state, CREN, AFCEN) < 0) {
1395 dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1396 return -1;
1397 }
1398 if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1399 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1400 return -1;
1401 }
1402 swp_info_get2(state, state->srate, R, swp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1403 if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1404 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1405 return -1;
1406 }
1407 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1408 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1409 return -1;
1410 }
1411 if (srst(state) < 0) {
1412 dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1413 return -1;
1414 }
1415 wait_t = 7 + (10000 + state->srate / 2) / state->srate;
1416 if (wait_t == 0)
1417 wait_t = 1;
1418 msleep_interruptible(wait_t);
1419 if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1420 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1421 return -EREMOTEIO;
1422 }
1423
1424 if (SIG1 > 110) {
1425 S2T = 4; S4T = 1; S5T = 6; ETH = 4; VIA = 6;
1426 wait_t = 7 + (917504 + state->srate / 2) / state->srate;
1427 } else if (SIG1 > 105) {
1428 S2T = 4; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1429 wait_t = 7 + (1048576 + state->srate / 2) / state->srate;
1430 } else if (SIG1 > 85) {
1431 S2T = 5; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1432 wait_t = 7 + (1310720 + state->srate / 2) / state->srate;
1433 } else if (SIG1 > 65) {
1434 S2T = 6; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1435 wait_t = 7 + (1572864 + state->srate / 2) / state->srate;
1436 } else {
1437 S2T = 7; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1438 wait_t = 7 + (2097152 + state->srate / 2) / state->srate;
1439 }
1440 wait_t *= 2;
1441 S2T_set(state, S2T);
1442 S45T_set(state, S4T, S5T);
1443 Vi_set(state, ETH, VIA);
1444 srst(state);
1445 msleep_interruptible(wait_t);
1446 sync = sync_chk(state, &VIRM);
1447 dprintk(verbose, MB86A16_INFO, 1, "-------- Viterbi=[%d] SYNC=[%d] ---------", VIRM, sync);
1448 if (VIRM) {
1449 if (VIRM == 4) {
1450
1451 if (SIG1 > 110)
1452 wait_t = (786432 + state->srate / 2) / state->srate;
1453 else
1454 wait_t = (1572864 + state->srate / 2) / state->srate;
1455
1456 msleep_interruptible(wait_t);
1457
1458 if (sync_chk(state, &junk) == 0) {
1459 iq_vt_set(state, 1);
1460 FEC_srst(state);
1461 }
1462 }
1463
1464 if (SIG1 > 110)
1465 wait_t = (786432 + state->srate / 2) / state->srate;
1466 else
1467 wait_t = (1572864 + state->srate / 2) / state->srate;
1468 msleep_interruptible(wait_t);
1469 SEQ_set(state, 1);
1470 } else {
1471 dprintk(verbose, MB86A16_INFO, 1, "NO -- SYNC");
1472 SEQ_set(state, 1);
1473 ret = -1;
1474 }
1475 }
1476 } else {
1477 dprintk(verbose, MB86A16_INFO, 1, "NO -- SIGNAL");
1478 ret = -1;
1479 }
1480
1481 sync = sync_chk(state, &junk);
1482 if (sync) {
1483 dprintk(verbose, MB86A16_INFO, 1, "******* SYNC *******");
1484 freqerr_chk(state, state->frequency, state->srate, 1);
1485 ret = 0;
1486 break;
1487 }
1488 }
1489
1490 mb86a16_read(state, 0x15, &agcval);
1491 mb86a16_read(state, 0x26, &cnmval);
1492 dprintk(verbose, MB86A16_INFO, 1, "AGC = %02x CNM = %02x", agcval, cnmval);
1493
1494 return ret;
1495 }
1496
1497 static int mb86a16_send_diseqc_msg(struct dvb_frontend *fe,
1498 struct dvb_diseqc_master_cmd *cmd)
1499 {
1500 struct mb86a16_state *state = fe->demodulator_priv;
1501 int i;
1502 u8 regs;
1503
1504 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1505 goto err;
1506 if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1507 goto err;
1508 if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1509 goto err;
1510
1511 regs = 0x18;
1512
1513 if (cmd->msg_len > 5 || cmd->msg_len < 4)
1514 return -EINVAL;
1515
1516 for (i = 0; i < cmd->msg_len; i++) {
1517 if (mb86a16_write(state, regs, cmd->msg[i]) < 0)
1518 goto err;
1519
1520 regs++;
1521 }
1522 i += 0x90;
1523
1524 msleep_interruptible(10);
1525
1526 if (mb86a16_write(state, MB86A16_DCC1, i) < 0)
1527 goto err;
1528 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1529 goto err;
1530
1531 return 0;
1532
1533 err:
1534 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1535 return -EREMOTEIO;
1536 }
1537
1538 static int mb86a16_send_diseqc_burst(struct dvb_frontend *fe,
1539 enum fe_sec_mini_cmd burst)
1540 {
1541 struct mb86a16_state *state = fe->demodulator_priv;
1542
1543 switch (burst) {
1544 case SEC_MINI_A:
1545 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1546 MB86A16_DCC1_TBEN |
1547 MB86A16_DCC1_TBO) < 0)
1548 goto err;
1549 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1550 goto err;
1551 break;
1552 case SEC_MINI_B:
1553 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1554 MB86A16_DCC1_TBEN) < 0)
1555 goto err;
1556 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1557 goto err;
1558 break;
1559 }
1560
1561 return 0;
1562 err:
1563 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1564 return -EREMOTEIO;
1565 }
1566
1567 static int mb86a16_set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone)
1568 {
1569 struct mb86a16_state *state = fe->demodulator_priv;
1570
1571 switch (tone) {
1572 case SEC_TONE_ON:
1573 if (mb86a16_write(state, MB86A16_TONEOUT2, 0x00) < 0)
1574 goto err;
1575 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1576 MB86A16_DCC1_CTOE) < 0)
1577
1578 goto err;
1579 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1580 goto err;
1581 break;
1582 case SEC_TONE_OFF:
1583 if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1584 goto err;
1585 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1586 goto err;
1587 if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1588 goto err;
1589 break;
1590 default:
1591 return -EINVAL;
1592 }
1593 return 0;
1594
1595 err:
1596 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1597 return -EREMOTEIO;
1598 }
1599
1600 static enum dvbfe_search mb86a16_search(struct dvb_frontend *fe)
1601 {
1602 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1603 struct mb86a16_state *state = fe->demodulator_priv;
1604
1605 state->frequency = p->frequency / 1000;
1606 state->srate = p->symbol_rate / 1000;
1607
1608 if (!mb86a16_set_fe(state)) {
1609 dprintk(verbose, MB86A16_ERROR, 1, "Successfully acquired LOCK");
1610 return DVBFE_ALGO_SEARCH_SUCCESS;
1611 }
1612
1613 dprintk(verbose, MB86A16_ERROR, 1, "Lock acquisition failed!");
1614 return DVBFE_ALGO_SEARCH_FAILED;
1615 }
1616
1617 static void mb86a16_release(struct dvb_frontend *fe)
1618 {
1619 struct mb86a16_state *state = fe->demodulator_priv;
1620 kfree(state);
1621 }
1622
1623 static int mb86a16_init(struct dvb_frontend *fe)
1624 {
1625 return 0;
1626 }
1627
1628 static int mb86a16_sleep(struct dvb_frontend *fe)
1629 {
1630 return 0;
1631 }
1632
1633 static int mb86a16_read_ber(struct dvb_frontend *fe, u32 *ber)
1634 {
1635 u8 ber_mon, ber_tab, ber_lsb, ber_mid, ber_msb, ber_tim, ber_rst;
1636 u32 timer;
1637
1638 struct mb86a16_state *state = fe->demodulator_priv;
1639
1640 *ber = 0;
1641 if (mb86a16_read(state, MB86A16_BERMON, &ber_mon) != 2)
1642 goto err;
1643 if (mb86a16_read(state, MB86A16_BERTAB, &ber_tab) != 2)
1644 goto err;
1645 if (mb86a16_read(state, MB86A16_BERLSB, &ber_lsb) != 2)
1646 goto err;
1647 if (mb86a16_read(state, MB86A16_BERMID, &ber_mid) != 2)
1648 goto err;
1649 if (mb86a16_read(state, MB86A16_BERMSB, &ber_msb) != 2)
1650 goto err;
1651
1652 if (ber_mon & 0x04) {
1653
1654 *ber = ber_tab & 0x1f;
1655 dprintk(verbose, MB86A16_DEBUG, 1, "BER coarse=[0x%02x]", *ber);
1656 if (ber_mon & 0x01) {
1657
1658
1659
1660
1661
1662
1663 ber_rst = (ber_mon >> 3) & 0x03;
1664 *ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
1665 if (ber_rst == 0)
1666 timer = 12500000;
1667 else if (ber_rst == 1)
1668 timer = 25000000;
1669 else if (ber_rst == 2)
1670 timer = 50000000;
1671 else
1672 timer = 100000000;
1673
1674 *ber /= timer;
1675 dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
1676 } else {
1677
1678
1679
1680
1681
1682
1683 ber_tim = (ber_mon >> 1) & 0x01;
1684 *ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
1685 if (ber_tim == 0)
1686 timer = 16;
1687 else
1688 timer = 24;
1689
1690 *ber /= 2 ^ timer;
1691 dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
1692 }
1693 }
1694 return 0;
1695 err:
1696 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1697 return -EREMOTEIO;
1698 }
1699
1700 static int mb86a16_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1701 {
1702 u8 agcm = 0;
1703 struct mb86a16_state *state = fe->demodulator_priv;
1704
1705 *strength = 0;
1706 if (mb86a16_read(state, MB86A16_AGCM, &agcm) != 2) {
1707 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1708 return -EREMOTEIO;
1709 }
1710
1711 *strength = ((0xff - agcm) * 100) / 256;
1712 dprintk(verbose, MB86A16_DEBUG, 1, "Signal strength=[%d %%]", (u8) *strength);
1713 *strength = (0xffff - 0xff) + agcm;
1714
1715 return 0;
1716 }
1717
1718 struct cnr {
1719 u8 cn_reg;
1720 u8 cn_val;
1721 };
1722
1723 static const struct cnr cnr_tab[] = {
1724 { 35, 2 },
1725 { 40, 3 },
1726 { 50, 4 },
1727 { 60, 5 },
1728 { 70, 6 },
1729 { 80, 7 },
1730 { 92, 8 },
1731 { 103, 9 },
1732 { 115, 10 },
1733 { 138, 12 },
1734 { 162, 15 },
1735 { 180, 18 },
1736 { 185, 19 },
1737 { 189, 20 },
1738 { 195, 22 },
1739 { 199, 24 },
1740 { 201, 25 },
1741 { 202, 26 },
1742 { 203, 27 },
1743 { 205, 28 },
1744 { 208, 30 }
1745 };
1746
1747 static int mb86a16_read_snr(struct dvb_frontend *fe, u16 *snr)
1748 {
1749 struct mb86a16_state *state = fe->demodulator_priv;
1750 int i = 0;
1751 int low_tide = 2, high_tide = 30, q_level;
1752 u8 cn;
1753
1754 *snr = 0;
1755 if (mb86a16_read(state, 0x26, &cn) != 2) {
1756 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1757 return -EREMOTEIO;
1758 }
1759
1760 for (i = 0; i < ARRAY_SIZE(cnr_tab); i++) {
1761 if (cn < cnr_tab[i].cn_reg) {
1762 *snr = cnr_tab[i].cn_val;
1763 break;
1764 }
1765 }
1766 q_level = (*snr * 100) / (high_tide - low_tide);
1767 dprintk(verbose, MB86A16_ERROR, 1, "SNR (Quality) = [%d dB], Level=%d %%", *snr, q_level);
1768 *snr = (0xffff - 0xff) + *snr;
1769
1770 return 0;
1771 }
1772
1773 static int mb86a16_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1774 {
1775 u8 dist;
1776 struct mb86a16_state *state = fe->demodulator_priv;
1777
1778 if (mb86a16_read(state, MB86A16_DISTMON, &dist) != 2) {
1779 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1780 return -EREMOTEIO;
1781 }
1782 *ucblocks = dist;
1783
1784 return 0;
1785 }
1786
1787 static enum dvbfe_algo mb86a16_frontend_algo(struct dvb_frontend *fe)
1788 {
1789 return DVBFE_ALGO_CUSTOM;
1790 }
1791
1792 static const struct dvb_frontend_ops mb86a16_ops = {
1793 .delsys = { SYS_DVBS },
1794 .info = {
1795 .name = "Fujitsu MB86A16 DVB-S",
1796 .frequency_min_hz = 950 * MHz,
1797 .frequency_max_hz = 2150 * MHz,
1798 .frequency_stepsize_hz = 3 * MHz,
1799 .symbol_rate_min = 1000000,
1800 .symbol_rate_max = 45000000,
1801 .symbol_rate_tolerance = 500,
1802 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
1803 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 |
1804 FE_CAN_FEC_7_8 | FE_CAN_QPSK |
1805 FE_CAN_FEC_AUTO
1806 },
1807 .release = mb86a16_release,
1808
1809 .get_frontend_algo = mb86a16_frontend_algo,
1810 .search = mb86a16_search,
1811 .init = mb86a16_init,
1812 .sleep = mb86a16_sleep,
1813 .read_status = mb86a16_read_status,
1814
1815 .read_ber = mb86a16_read_ber,
1816 .read_signal_strength = mb86a16_read_signal_strength,
1817 .read_snr = mb86a16_read_snr,
1818 .read_ucblocks = mb86a16_read_ucblocks,
1819
1820 .diseqc_send_master_cmd = mb86a16_send_diseqc_msg,
1821 .diseqc_send_burst = mb86a16_send_diseqc_burst,
1822 .set_tone = mb86a16_set_tone,
1823 };
1824
1825 struct dvb_frontend *mb86a16_attach(const struct mb86a16_config *config,
1826 struct i2c_adapter *i2c_adap)
1827 {
1828 u8 dev_id = 0;
1829 struct mb86a16_state *state = NULL;
1830
1831 state = kmalloc(sizeof(struct mb86a16_state), GFP_KERNEL);
1832 if (state == NULL)
1833 goto error;
1834
1835 state->config = config;
1836 state->i2c_adap = i2c_adap;
1837
1838 mb86a16_read(state, 0x7f, &dev_id);
1839 if (dev_id != 0xfe)
1840 goto error;
1841
1842 memcpy(&state->frontend.ops, &mb86a16_ops, sizeof(struct dvb_frontend_ops));
1843 state->frontend.demodulator_priv = state;
1844 state->frontend.ops.set_voltage = state->config->set_voltage;
1845
1846 return &state->frontend;
1847 error:
1848 kfree(state);
1849 return NULL;
1850 }
1851 EXPORT_SYMBOL(mb86a16_attach);
1852 MODULE_LICENSE("GPL");
1853 MODULE_AUTHOR("Manu Abraham");