0001
0002
0003
0004
0005
0006
0007
0008 #include <linux/module.h>
0009 #include <linux/moduleparam.h>
0010 #include <linux/delay.h>
0011 #include <linux/dvb/frontend.h>
0012 #include <linux/i2c.h>
0013 #include <linux/slab.h>
0014
0015 #include <media/dvb_frontend.h>
0016
0017 #include "itd1000.h"
0018 #include "itd1000_priv.h"
0019
0020
0021 #define MAX_XFER_SIZE 64
0022
0023 static int debug;
0024 module_param(debug, int, 0644);
0025 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
0026
0027 #define itd_dbg(args...) do { \
0028 if (debug) { \
0029 printk(KERN_DEBUG "ITD1000: " args);\
0030 } \
0031 } while (0)
0032
0033 #define itd_warn(args...) do { \
0034 printk(KERN_WARNING "ITD1000: " args); \
0035 } while (0)
0036
0037 #define itd_info(args...) do { \
0038 printk(KERN_INFO "ITD1000: " args); \
0039 } while (0)
0040
0041
0042 static int itd1000_write_regs(struct itd1000_state *state, u8 reg, u8 v[], u8 len)
0043 {
0044 u8 buf[MAX_XFER_SIZE];
0045 struct i2c_msg msg = {
0046 .addr = state->cfg->i2c_address, .flags = 0, .buf = buf, .len = len+1
0047 };
0048
0049 if (1 + len > sizeof(buf)) {
0050 printk(KERN_WARNING
0051 "itd1000: i2c wr reg=%04x: len=%d is too big!\n",
0052 reg, len);
0053 return -EINVAL;
0054 }
0055
0056 buf[0] = reg;
0057 memcpy(&buf[1], v, len);
0058
0059
0060
0061 if (i2c_transfer(state->i2c, &msg, 1) != 1) {
0062 printk(KERN_WARNING "itd1000 I2C write failed\n");
0063 return -EREMOTEIO;
0064 }
0065 return 0;
0066 }
0067
0068 static int itd1000_read_reg(struct itd1000_state *state, u8 reg)
0069 {
0070 u8 val;
0071 struct i2c_msg msg[2] = {
0072 { .addr = state->cfg->i2c_address, .flags = 0, .buf = ®, .len = 1 },
0073 { .addr = state->cfg->i2c_address, .flags = I2C_M_RD, .buf = &val, .len = 1 },
0074 };
0075
0076
0077 itd1000_write_regs(state, (reg - 1) & 0xff, &state->shadow[(reg - 1) & 0xff], 1);
0078
0079 if (i2c_transfer(state->i2c, msg, 2) != 2) {
0080 itd_warn("itd1000 I2C read failed\n");
0081 return -EREMOTEIO;
0082 }
0083 return val;
0084 }
0085
0086 static inline int itd1000_write_reg(struct itd1000_state *state, u8 r, u8 v)
0087 {
0088 u8 tmp = v;
0089 int ret = itd1000_write_regs(state, r, &tmp, 1);
0090 state->shadow[r] = tmp;
0091 return ret;
0092 }
0093
0094
0095 static struct {
0096 u32 symbol_rate;
0097 u8 pgaext : 4;
0098 u8 bbgvmin : 4;
0099 } itd1000_lpf_pga[] = {
0100 { 0, 0x8, 0x3 },
0101 { 5200000, 0x8, 0x3 },
0102 { 12200000, 0x4, 0x3 },
0103 { 15400000, 0x2, 0x3 },
0104 { 19800000, 0x2, 0x3 },
0105 { 21500000, 0x2, 0x3 },
0106 { 24500000, 0x2, 0x3 },
0107 { 28400000, 0x2, 0x3 },
0108 { 33400000, 0x2, 0x3 },
0109 { 34400000, 0x1, 0x4 },
0110 { 34400000, 0x1, 0x4 },
0111 { 38400000, 0x1, 0x4 },
0112 { 38400000, 0x1, 0x4 },
0113 { 40400000, 0x1, 0x4 },
0114 { 45400000, 0x1, 0x4 },
0115 };
0116
0117 static void itd1000_set_lpf_bw(struct itd1000_state *state, u32 symbol_rate)
0118 {
0119 u8 i;
0120 u8 con1 = itd1000_read_reg(state, CON1) & 0xfd;
0121 u8 pllfh = itd1000_read_reg(state, PLLFH) & 0x0f;
0122 u8 bbgvmin = itd1000_read_reg(state, BBGVMIN) & 0xf0;
0123 u8 bw = itd1000_read_reg(state, BW) & 0xf0;
0124
0125 itd_dbg("symbol_rate = %d\n", symbol_rate);
0126
0127
0128 itd1000_write_reg(state, CON1, con1 | (1 << 1));
0129
0130 for (i = 0; i < ARRAY_SIZE(itd1000_lpf_pga); i++)
0131 if (symbol_rate < itd1000_lpf_pga[i].symbol_rate) {
0132 itd_dbg("symrate: index: %d pgaext: %x, bbgvmin: %x\n", i, itd1000_lpf_pga[i].pgaext, itd1000_lpf_pga[i].bbgvmin);
0133 itd1000_write_reg(state, PLLFH, pllfh | (itd1000_lpf_pga[i].pgaext << 4));
0134 itd1000_write_reg(state, BBGVMIN, bbgvmin | (itd1000_lpf_pga[i].bbgvmin));
0135 itd1000_write_reg(state, BW, bw | (i & 0x0f));
0136 break;
0137 }
0138
0139 itd1000_write_reg(state, CON1, con1 | (0 << 1));
0140 }
0141
0142 static struct {
0143 u8 vcorg;
0144 u32 fmax_rg;
0145 } itd1000_vcorg[] = {
0146 { 1, 920000 },
0147 { 2, 971000 },
0148 { 3, 1031000 },
0149 { 4, 1091000 },
0150 { 5, 1171000 },
0151 { 6, 1281000 },
0152 { 7, 1381000 },
0153 { 8, 500000 },
0154 { 9, 1451000 },
0155 { 10, 1531000 },
0156 { 11, 1631000 },
0157 { 12, 1741000 },
0158 { 13, 1891000 },
0159 { 14, 2071000 },
0160 { 15, 2250000 },
0161 };
0162
0163 static void itd1000_set_vco(struct itd1000_state *state, u32 freq_khz)
0164 {
0165 u8 i;
0166 u8 gvbb_i2c = itd1000_read_reg(state, GVBB_I2C) & 0xbf;
0167 u8 vco_chp1_i2c = itd1000_read_reg(state, VCO_CHP1_I2C) & 0x0f;
0168 u8 adcout;
0169
0170
0171 itd1000_write_reg(state, GVBB_I2C, gvbb_i2c | (1 << 6));
0172
0173 for (i = 0; i < ARRAY_SIZE(itd1000_vcorg); i++) {
0174 if (freq_khz < itd1000_vcorg[i].fmax_rg) {
0175 itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | (itd1000_vcorg[i].vcorg << 4));
0176 msleep(1);
0177
0178 adcout = itd1000_read_reg(state, PLLLOCK) & 0x0f;
0179
0180 itd_dbg("VCO: %dkHz: %d -> ADCOUT: %d %02x\n", freq_khz, itd1000_vcorg[i].vcorg, adcout, vco_chp1_i2c);
0181
0182 if (adcout > 13) {
0183 if (!(itd1000_vcorg[i].vcorg == 7 || itd1000_vcorg[i].vcorg == 15))
0184 itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | ((itd1000_vcorg[i].vcorg + 1) << 4));
0185 } else if (adcout < 2) {
0186 if (!(itd1000_vcorg[i].vcorg == 1 || itd1000_vcorg[i].vcorg == 9))
0187 itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | ((itd1000_vcorg[i].vcorg - 1) << 4));
0188 }
0189 break;
0190 }
0191 }
0192 }
0193
0194 static const struct {
0195 u32 freq;
0196 u8 values[10];
0197 } itd1000_fre_values[] = {
0198 { 1075000, { 0x59, 0x1d, 0x1c, 0x17, 0x16, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
0199 { 1250000, { 0x89, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
0200 { 1450000, { 0x89, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
0201 { 1650000, { 0x69, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
0202 { 1750000, { 0x69, 0x1e, 0x17, 0x15, 0x14, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
0203 { 1850000, { 0x69, 0x1d, 0x17, 0x16, 0x14, 0x0f, 0x0e, 0x0d, 0x0b, 0x0a } },
0204 { 1900000, { 0x69, 0x1d, 0x17, 0x15, 0x14, 0x0f, 0x0e, 0x0d, 0x0b, 0x0a } },
0205 { 1950000, { 0x69, 0x1d, 0x17, 0x16, 0x14, 0x13, 0x0e, 0x0d, 0x0b, 0x0a } },
0206 { 2050000, { 0x69, 0x1e, 0x1d, 0x17, 0x16, 0x14, 0x13, 0x0e, 0x0b, 0x0a } },
0207 { 2150000, { 0x69, 0x1d, 0x1c, 0x17, 0x15, 0x14, 0x13, 0x0f, 0x0e, 0x0b } }
0208 };
0209
0210
0211 #define FREF 16
0212
0213 static void itd1000_set_lo(struct itd1000_state *state, u32 freq_khz)
0214 {
0215 int i, j;
0216 u32 plln, pllf;
0217 u64 tmp;
0218
0219 plln = (freq_khz * 1000) / 2 / FREF;
0220
0221
0222 tmp = plln % 1000000;
0223 plln /= 1000000;
0224
0225 tmp *= 1048576;
0226 do_div(tmp, 1000000);
0227 pllf = (u32) tmp;
0228
0229 state->frequency = ((plln * 1000) + (pllf * 1000)/1048576) * 2*FREF;
0230 itd_dbg("frequency: %dkHz (wanted) %dkHz (set), PLLF = %d, PLLN = %d\n", freq_khz, state->frequency, pllf, plln);
0231
0232 itd1000_write_reg(state, PLLNH, 0x80);
0233 itd1000_write_reg(state, PLLNL, plln & 0xff);
0234 itd1000_write_reg(state, PLLFH, (itd1000_read_reg(state, PLLFH) & 0xf0) | ((pllf >> 16) & 0x0f));
0235 itd1000_write_reg(state, PLLFM, (pllf >> 8) & 0xff);
0236 itd1000_write_reg(state, PLLFL, (pllf >> 0) & 0xff);
0237
0238 for (i = 0; i < ARRAY_SIZE(itd1000_fre_values); i++) {
0239 if (freq_khz <= itd1000_fre_values[i].freq) {
0240 itd_dbg("fre_values: %d\n", i);
0241 itd1000_write_reg(state, RFTR, itd1000_fre_values[i].values[0]);
0242 for (j = 0; j < 9; j++)
0243 itd1000_write_reg(state, RFST1+j, itd1000_fre_values[i].values[j+1]);
0244 break;
0245 }
0246 }
0247
0248 itd1000_set_vco(state, freq_khz);
0249 }
0250
0251 static int itd1000_set_parameters(struct dvb_frontend *fe)
0252 {
0253 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
0254 struct itd1000_state *state = fe->tuner_priv;
0255 u8 pllcon1;
0256
0257 itd1000_set_lo(state, c->frequency);
0258 itd1000_set_lpf_bw(state, c->symbol_rate);
0259
0260 pllcon1 = itd1000_read_reg(state, PLLCON1) & 0x7f;
0261 itd1000_write_reg(state, PLLCON1, pllcon1 | (1 << 7));
0262 itd1000_write_reg(state, PLLCON1, pllcon1);
0263
0264 return 0;
0265 }
0266
0267 static int itd1000_get_frequency(struct dvb_frontend *fe, u32 *frequency)
0268 {
0269 struct itd1000_state *state = fe->tuner_priv;
0270 *frequency = state->frequency;
0271 return 0;
0272 }
0273
0274 static int itd1000_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
0275 {
0276 return 0;
0277 }
0278
0279 static u8 itd1000_init_tab[][2] = {
0280 { PLLCON1, 0x65 },
0281 { PLLNH, 0x80 },
0282 { RESERVED_0X6D, 0x3b },
0283 { VCO_CHP2_I2C, 0x12 },
0284 { 0x72, 0xf9 },
0285 { RESERVED_0X73, 0xff },
0286 { RESERVED_0X74, 0xb2 },
0287 { RESERVED_0X75, 0xc7 },
0288 { EXTGVBBRF, 0xf0 },
0289 { DIVAGCCK, 0x80 },
0290 { BBTR, 0xa0 },
0291 { RESERVED_0X7E, 0x4f },
0292 { 0x82, 0x88 },
0293 { 0x83, 0x80 },
0294 { 0x84, 0x80 },
0295 { RESERVED_0X85, 0x74 },
0296 { RESERVED_0X86, 0xff },
0297 { RESERVED_0X88, 0x02 },
0298 { RESERVED_0X89, 0x16 },
0299 { RFST0, 0x1f },
0300 { RESERVED_0X94, 0x66 },
0301 { RESERVED_0X95, 0x66 },
0302 { RESERVED_0X96, 0x77 },
0303 { RESERVED_0X97, 0x99 },
0304 { RESERVED_0X98, 0xff },
0305 { RESERVED_0X99, 0xfc },
0306 { RESERVED_0X9A, 0xba },
0307 { RESERVED_0X9B, 0xaa },
0308 };
0309
0310 static u8 itd1000_reinit_tab[][2] = {
0311 { VCO_CHP1_I2C, 0x8a },
0312 { BW, 0x87 },
0313 { GVBB_I2C, 0x03 },
0314 { BBGVMIN, 0x03 },
0315 { CON1, 0x2e },
0316 };
0317
0318
0319 static int itd1000_init(struct dvb_frontend *fe)
0320 {
0321 struct itd1000_state *state = fe->tuner_priv;
0322 int i;
0323
0324 for (i = 0; i < ARRAY_SIZE(itd1000_init_tab); i++)
0325 itd1000_write_reg(state, itd1000_init_tab[i][0], itd1000_init_tab[i][1]);
0326
0327 for (i = 0; i < ARRAY_SIZE(itd1000_reinit_tab); i++)
0328 itd1000_write_reg(state, itd1000_reinit_tab[i][0], itd1000_reinit_tab[i][1]);
0329
0330 return 0;
0331 }
0332
0333 static int itd1000_sleep(struct dvb_frontend *fe)
0334 {
0335 return 0;
0336 }
0337
0338 static void itd1000_release(struct dvb_frontend *fe)
0339 {
0340 kfree(fe->tuner_priv);
0341 fe->tuner_priv = NULL;
0342 }
0343
0344 static const struct dvb_tuner_ops itd1000_tuner_ops = {
0345 .info = {
0346 .name = "Integrant ITD1000",
0347 .frequency_min_hz = 950 * MHz,
0348 .frequency_max_hz = 2150 * MHz,
0349 .frequency_step_hz = 125 * kHz,
0350 },
0351
0352 .release = itd1000_release,
0353
0354 .init = itd1000_init,
0355 .sleep = itd1000_sleep,
0356
0357 .set_params = itd1000_set_parameters,
0358 .get_frequency = itd1000_get_frequency,
0359 .get_bandwidth = itd1000_get_bandwidth
0360 };
0361
0362
0363 struct dvb_frontend *itd1000_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct itd1000_config *cfg)
0364 {
0365 struct itd1000_state *state = NULL;
0366 u8 i = 0;
0367
0368 state = kzalloc(sizeof(struct itd1000_state), GFP_KERNEL);
0369 if (state == NULL)
0370 return NULL;
0371
0372 state->cfg = cfg;
0373 state->i2c = i2c;
0374
0375 i = itd1000_read_reg(state, 0);
0376 if (i != 0) {
0377 kfree(state);
0378 return NULL;
0379 }
0380 itd_info("successfully identified (ID: %d)\n", i);
0381
0382 memset(state->shadow, 0xff, sizeof(state->shadow));
0383 for (i = 0x65; i < 0x9c; i++)
0384 state->shadow[i] = itd1000_read_reg(state, i);
0385
0386 memcpy(&fe->ops.tuner_ops, &itd1000_tuner_ops, sizeof(struct dvb_tuner_ops));
0387
0388 fe->tuner_priv = state;
0389
0390 return fe;
0391 }
0392 EXPORT_SYMBOL(itd1000_attach);
0393
0394 MODULE_AUTHOR("Patrick Boettcher <pb@linuxtv.org>");
0395 MODULE_DESCRIPTION("Integrant ITD1000 driver");
0396 MODULE_LICENSE("GPL");