0001
0002
0003
0004
0005
0006
0007
0008
0009 #include <asm/div64.h>
0010 #include <media/dvb_frontend.h>
0011
0012 #include "atbm8830.h"
0013 #include "atbm8830_priv.h"
0014
0015 #define dprintk(args...) \
0016 do { \
0017 if (debug) \
0018 printk(KERN_DEBUG "atbm8830: " args); \
0019 } while (0)
0020
0021 static int debug;
0022
0023 module_param(debug, int, 0644);
0024 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
0025
0026 static int atbm8830_write_reg(struct atbm_state *priv, u16 reg, u8 data)
0027 {
0028 int ret = 0;
0029 u8 dev_addr;
0030 u8 buf1[] = { reg >> 8, reg & 0xFF };
0031 u8 buf2[] = { data };
0032 struct i2c_msg msg1 = { .flags = 0, .buf = buf1, .len = 2 };
0033 struct i2c_msg msg2 = { .flags = 0, .buf = buf2, .len = 1 };
0034
0035 dev_addr = priv->config->demod_address;
0036 msg1.addr = dev_addr;
0037 msg2.addr = dev_addr;
0038
0039 if (debug >= 2)
0040 dprintk("%s: reg=0x%04X, data=0x%02X\n", __func__, reg, data);
0041
0042 ret = i2c_transfer(priv->i2c, &msg1, 1);
0043 if (ret != 1)
0044 return -EIO;
0045
0046 ret = i2c_transfer(priv->i2c, &msg2, 1);
0047 return (ret != 1) ? -EIO : 0;
0048 }
0049
0050 static int atbm8830_read_reg(struct atbm_state *priv, u16 reg, u8 *p_data)
0051 {
0052 int ret;
0053 u8 dev_addr;
0054
0055 u8 buf1[] = { reg >> 8, reg & 0xFF };
0056 u8 buf2[] = { 0 };
0057 struct i2c_msg msg1 = { .flags = 0, .buf = buf1, .len = 2 };
0058 struct i2c_msg msg2 = { .flags = I2C_M_RD, .buf = buf2, .len = 1 };
0059
0060 dev_addr = priv->config->demod_address;
0061 msg1.addr = dev_addr;
0062 msg2.addr = dev_addr;
0063
0064 ret = i2c_transfer(priv->i2c, &msg1, 1);
0065 if (ret != 1) {
0066 dprintk("%s: error reg=0x%04x, ret=%i\n", __func__, reg, ret);
0067 return -EIO;
0068 }
0069
0070 ret = i2c_transfer(priv->i2c, &msg2, 1);
0071 if (ret != 1)
0072 return -EIO;
0073
0074 *p_data = buf2[0];
0075 if (debug >= 2)
0076 dprintk("%s: reg=0x%04X, data=0x%02X\n",
0077 __func__, reg, buf2[0]);
0078
0079 return 0;
0080 }
0081
0082
0083 static inline int atbm8830_reglatch_lock(struct atbm_state *priv, int lock)
0084 {
0085 return atbm8830_write_reg(priv, REG_READ_LATCH, lock ? 1 : 0);
0086 }
0087
0088 static int set_osc_freq(struct atbm_state *priv, u32 freq )
0089 {
0090 u32 val;
0091 u64 t;
0092
0093
0094 t = (u64)0x100000 * freq;
0095 do_div(t, 30400);
0096 val = t;
0097
0098 atbm8830_write_reg(priv, REG_OSC_CLK, val);
0099 atbm8830_write_reg(priv, REG_OSC_CLK + 1, val >> 8);
0100 atbm8830_write_reg(priv, REG_OSC_CLK + 2, val >> 16);
0101
0102 return 0;
0103 }
0104
0105 static int set_if_freq(struct atbm_state *priv, u32 freq )
0106 {
0107
0108 u32 fs = priv->config->osc_clk_freq;
0109 u64 t;
0110 u32 val;
0111 u8 dat;
0112
0113 if (freq != 0) {
0114
0115 t = (u64) 2 * 31416 * (freq - fs);
0116 t <<= 22;
0117 do_div(t, fs);
0118 do_div(t, 1000);
0119 val = t;
0120
0121 atbm8830_write_reg(priv, REG_TUNER_BASEBAND, 1);
0122 atbm8830_write_reg(priv, REG_IF_FREQ, val);
0123 atbm8830_write_reg(priv, REG_IF_FREQ+1, val >> 8);
0124 atbm8830_write_reg(priv, REG_IF_FREQ+2, val >> 16);
0125
0126 atbm8830_read_reg(priv, REG_ADC_CONFIG, &dat);
0127 dat &= 0xFC;
0128 atbm8830_write_reg(priv, REG_ADC_CONFIG, dat);
0129 } else {
0130
0131 atbm8830_write_reg(priv, REG_TUNER_BASEBAND, 0);
0132
0133 atbm8830_read_reg(priv, REG_ADC_CONFIG, &dat);
0134 dat &= 0xFC;
0135 dat |= 0x02;
0136 atbm8830_write_reg(priv, REG_ADC_CONFIG, dat);
0137
0138 if (priv->config->zif_swap_iq)
0139 atbm8830_write_reg(priv, REG_SWAP_I_Q, 0x03);
0140 else
0141 atbm8830_write_reg(priv, REG_SWAP_I_Q, 0x01);
0142 }
0143
0144 return 0;
0145 }
0146
0147 static int is_locked(struct atbm_state *priv, u8 *locked)
0148 {
0149 u8 status;
0150
0151 atbm8830_read_reg(priv, REG_LOCK_STATUS, &status);
0152
0153 if (locked != NULL)
0154 *locked = (status == 1);
0155 return 0;
0156 }
0157
0158 static int set_agc_config(struct atbm_state *priv,
0159 u8 min, u8 max, u8 hold_loop)
0160 {
0161
0162 if (!min && !max)
0163 return 0;
0164
0165 atbm8830_write_reg(priv, REG_AGC_MIN, min);
0166 atbm8830_write_reg(priv, REG_AGC_MAX, max);
0167 atbm8830_write_reg(priv, REG_AGC_HOLD_LOOP, hold_loop);
0168
0169 return 0;
0170 }
0171
0172 static int set_static_channel_mode(struct atbm_state *priv)
0173 {
0174 int i;
0175
0176 for (i = 0; i < 5; i++)
0177 atbm8830_write_reg(priv, 0x099B + i, 0x08);
0178
0179 atbm8830_write_reg(priv, 0x095B, 0x7F);
0180 atbm8830_write_reg(priv, 0x09CB, 0x01);
0181 atbm8830_write_reg(priv, 0x09CC, 0x7F);
0182 atbm8830_write_reg(priv, 0x09CD, 0x7F);
0183 atbm8830_write_reg(priv, 0x0E01, 0x20);
0184
0185
0186 atbm8830_write_reg(priv, 0x0B03, 0x0A);
0187 atbm8830_write_reg(priv, 0x0935, 0x10);
0188 atbm8830_write_reg(priv, 0x0936, 0x08);
0189 atbm8830_write_reg(priv, 0x093E, 0x08);
0190 atbm8830_write_reg(priv, 0x096E, 0x06);
0191
0192
0193 atbm8830_write_reg(priv, 0x0B09, 0x00);
0194
0195 atbm8830_write_reg(priv, 0x0B0A, 0x08);
0196
0197 return 0;
0198 }
0199
0200 static int set_ts_config(struct atbm_state *priv)
0201 {
0202 const struct atbm8830_config *cfg = priv->config;
0203
0204
0205 atbm8830_write_reg(priv, REG_TS_SERIAL, cfg->serial_ts ? 1 : 0);
0206 atbm8830_write_reg(priv, REG_TS_CLK_MODE, cfg->serial_ts ? 1 : 0);
0207
0208 atbm8830_write_reg(priv, REG_TS_SAMPLE_EDGE,
0209 cfg->ts_sampling_edge ? 1 : 0);
0210
0211 atbm8830_write_reg(priv, REG_TS_CLK_FREERUN,
0212 cfg->ts_clk_gated ? 0 : 1);
0213
0214 return 0;
0215 }
0216
0217 static int atbm8830_init(struct dvb_frontend *fe)
0218 {
0219 struct atbm_state *priv = fe->demodulator_priv;
0220 const struct atbm8830_config *cfg = priv->config;
0221
0222
0223 set_osc_freq(priv, cfg->osc_clk_freq);
0224
0225
0226 set_if_freq(priv, cfg->if_freq);
0227
0228
0229 set_agc_config(priv, cfg->agc_min, cfg->agc_max,
0230 cfg->agc_hold_loop);
0231
0232
0233 set_static_channel_mode(priv);
0234
0235 set_ts_config(priv);
0236
0237 atbm8830_write_reg(priv, 0x000A, 0);
0238
0239
0240 atbm8830_write_reg(priv, 0x020C, 11);
0241
0242
0243 atbm8830_write_reg(priv, REG_DEMOD_RUN, 1);
0244
0245 return 0;
0246 }
0247
0248
0249 static void atbm8830_release(struct dvb_frontend *fe)
0250 {
0251 struct atbm_state *state = fe->demodulator_priv;
0252 dprintk("%s\n", __func__);
0253
0254 kfree(state);
0255 }
0256
0257 static int atbm8830_set_fe(struct dvb_frontend *fe)
0258 {
0259 struct atbm_state *priv = fe->demodulator_priv;
0260 int i;
0261 u8 locked = 0;
0262 dprintk("%s\n", __func__);
0263
0264
0265 if (fe->ops.tuner_ops.set_params) {
0266 if (fe->ops.i2c_gate_ctrl)
0267 fe->ops.i2c_gate_ctrl(fe, 1);
0268 fe->ops.tuner_ops.set_params(fe);
0269 if (fe->ops.i2c_gate_ctrl)
0270 fe->ops.i2c_gate_ctrl(fe, 0);
0271 }
0272
0273
0274 for (i = 0; i < 10; i++) {
0275 mdelay(100);
0276 dprintk("Try %d\n", i);
0277 is_locked(priv, &locked);
0278 if (locked != 0) {
0279 dprintk("ATBM8830 locked!\n");
0280 break;
0281 }
0282 }
0283
0284 return 0;
0285 }
0286
0287 static int atbm8830_get_fe(struct dvb_frontend *fe,
0288 struct dtv_frontend_properties *c)
0289 {
0290 dprintk("%s\n", __func__);
0291
0292
0293
0294 c->inversion = INVERSION_OFF;
0295
0296
0297 c->bandwidth_hz = 8000000;
0298
0299 c->code_rate_HP = FEC_AUTO;
0300 c->code_rate_LP = FEC_AUTO;
0301
0302 c->modulation = QAM_AUTO;
0303
0304
0305 c->transmission_mode = TRANSMISSION_MODE_AUTO;
0306
0307
0308 c->guard_interval = GUARD_INTERVAL_AUTO;
0309
0310
0311 c->hierarchy = HIERARCHY_NONE;
0312
0313 return 0;
0314 }
0315
0316 static int atbm8830_get_tune_settings(struct dvb_frontend *fe,
0317 struct dvb_frontend_tune_settings *fesettings)
0318 {
0319 fesettings->min_delay_ms = 0;
0320 fesettings->step_size = 0;
0321 fesettings->max_drift = 0;
0322 return 0;
0323 }
0324
0325 static int atbm8830_read_status(struct dvb_frontend *fe,
0326 enum fe_status *fe_status)
0327 {
0328 struct atbm_state *priv = fe->demodulator_priv;
0329 u8 locked = 0;
0330 u8 agc_locked = 0;
0331
0332 dprintk("%s\n", __func__);
0333 *fe_status = 0;
0334
0335 is_locked(priv, &locked);
0336 if (locked) {
0337 *fe_status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
0338 FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
0339 }
0340 dprintk("%s: fe_status=0x%x\n", __func__, *fe_status);
0341
0342 atbm8830_read_reg(priv, REG_AGC_LOCK, &agc_locked);
0343 dprintk("AGC Lock: %d\n", agc_locked);
0344
0345 return 0;
0346 }
0347
0348 static int atbm8830_read_ber(struct dvb_frontend *fe, u32 *ber)
0349 {
0350 struct atbm_state *priv = fe->demodulator_priv;
0351 u32 frame_err;
0352 u8 t;
0353
0354 dprintk("%s\n", __func__);
0355
0356 atbm8830_reglatch_lock(priv, 1);
0357
0358 atbm8830_read_reg(priv, REG_FRAME_ERR_CNT + 1, &t);
0359 frame_err = t & 0x7F;
0360 frame_err <<= 8;
0361 atbm8830_read_reg(priv, REG_FRAME_ERR_CNT, &t);
0362 frame_err |= t;
0363
0364 atbm8830_reglatch_lock(priv, 0);
0365
0366 *ber = frame_err * 100 / 32767;
0367
0368 dprintk("%s: ber=0x%x\n", __func__, *ber);
0369 return 0;
0370 }
0371
0372 static int atbm8830_read_signal_strength(struct dvb_frontend *fe, u16 *signal)
0373 {
0374 struct atbm_state *priv = fe->demodulator_priv;
0375 u32 pwm;
0376 u8 t;
0377
0378 dprintk("%s\n", __func__);
0379 atbm8830_reglatch_lock(priv, 1);
0380
0381 atbm8830_read_reg(priv, REG_AGC_PWM_VAL + 1, &t);
0382 pwm = t & 0x03;
0383 pwm <<= 8;
0384 atbm8830_read_reg(priv, REG_AGC_PWM_VAL, &t);
0385 pwm |= t;
0386
0387 atbm8830_reglatch_lock(priv, 0);
0388
0389 dprintk("AGC PWM = 0x%02X\n", pwm);
0390 pwm = 0x400 - pwm;
0391
0392 *signal = pwm * 0x10000 / 0x400;
0393
0394 return 0;
0395 }
0396
0397 static int atbm8830_read_snr(struct dvb_frontend *fe, u16 *snr)
0398 {
0399 dprintk("%s\n", __func__);
0400 *snr = 0;
0401 return 0;
0402 }
0403
0404 static int atbm8830_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
0405 {
0406 dprintk("%s\n", __func__);
0407 *ucblocks = 0;
0408 return 0;
0409 }
0410
0411 static int atbm8830_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
0412 {
0413 struct atbm_state *priv = fe->demodulator_priv;
0414
0415 return atbm8830_write_reg(priv, REG_I2C_GATE, enable ? 1 : 0);
0416 }
0417
0418 static const struct dvb_frontend_ops atbm8830_ops = {
0419 .delsys = { SYS_DTMB },
0420 .info = {
0421 .name = "AltoBeam ATBM8830/8831 DMB-TH",
0422 .frequency_min_hz = 474 * MHz,
0423 .frequency_max_hz = 858 * MHz,
0424 .frequency_stepsize_hz = 10 * kHz,
0425 .caps =
0426 FE_CAN_FEC_AUTO |
0427 FE_CAN_QAM_AUTO |
0428 FE_CAN_TRANSMISSION_MODE_AUTO |
0429 FE_CAN_GUARD_INTERVAL_AUTO
0430 },
0431
0432 .release = atbm8830_release,
0433
0434 .init = atbm8830_init,
0435 .sleep = NULL,
0436 .write = NULL,
0437 .i2c_gate_ctrl = atbm8830_i2c_gate_ctrl,
0438
0439 .set_frontend = atbm8830_set_fe,
0440 .get_frontend = atbm8830_get_fe,
0441 .get_tune_settings = atbm8830_get_tune_settings,
0442
0443 .read_status = atbm8830_read_status,
0444 .read_ber = atbm8830_read_ber,
0445 .read_signal_strength = atbm8830_read_signal_strength,
0446 .read_snr = atbm8830_read_snr,
0447 .read_ucblocks = atbm8830_read_ucblocks,
0448 };
0449
0450 struct dvb_frontend *atbm8830_attach(const struct atbm8830_config *config,
0451 struct i2c_adapter *i2c)
0452 {
0453 struct atbm_state *priv = NULL;
0454 u8 data = 0;
0455
0456 dprintk("%s()\n", __func__);
0457
0458 if (config == NULL || i2c == NULL)
0459 return NULL;
0460
0461 priv = kzalloc(sizeof(struct atbm_state), GFP_KERNEL);
0462 if (priv == NULL)
0463 goto error_out;
0464
0465 priv->config = config;
0466 priv->i2c = i2c;
0467
0468
0469 if (atbm8830_read_reg(priv, REG_CHIP_ID, &data) != 0) {
0470 dprintk("%s atbm8830/8831 not found at i2c addr 0x%02X\n",
0471 __func__, priv->config->demod_address);
0472 goto error_out;
0473 }
0474 dprintk("atbm8830 chip id: 0x%02X\n", data);
0475
0476 memcpy(&priv->frontend.ops, &atbm8830_ops,
0477 sizeof(struct dvb_frontend_ops));
0478 priv->frontend.demodulator_priv = priv;
0479
0480 atbm8830_init(&priv->frontend);
0481
0482 atbm8830_i2c_gate_ctrl(&priv->frontend, 1);
0483
0484 return &priv->frontend;
0485
0486 error_out:
0487 dprintk("%s() error_out\n", __func__);
0488 kfree(priv);
0489 return NULL;
0490
0491 }
0492 EXPORT_SYMBOL(atbm8830_attach);
0493
0494 MODULE_DESCRIPTION("AltoBeam ATBM8830/8831 GB20600 demodulator driver");
0495 MODULE_AUTHOR("David T. L. Wong <davidtlwong@gmail.com>");
0496 MODULE_LICENSE("GPL");