Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
0004  * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
0005  */
0006 #include <linux/kernel.h>
0007 #include <linux/wait.h>
0008 #include <linux/blkdev.h>
0009 #include <linux/slab.h>
0010 #include <linux/raid/md_p.h>
0011 #include <linux/crc32c.h>
0012 #include <linux/random.h>
0013 #include <linux/kthread.h>
0014 #include <linux/types.h>
0015 #include "md.h"
0016 #include "raid5.h"
0017 #include "md-bitmap.h"
0018 #include "raid5-log.h"
0019 
0020 /*
0021  * metadata/data stored in disk with 4k size unit (a block) regardless
0022  * underneath hardware sector size. only works with PAGE_SIZE == 4096
0023  */
0024 #define BLOCK_SECTORS (8)
0025 #define BLOCK_SECTOR_SHIFT (3)
0026 
0027 /*
0028  * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
0029  *
0030  * In write through mode, the reclaim runs every log->max_free_space.
0031  * This can prevent the recovery scans for too long
0032  */
0033 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
0034 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
0035 
0036 /* wake up reclaim thread periodically */
0037 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
0038 /* start flush with these full stripes */
0039 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
0040 /* reclaim stripes in groups */
0041 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
0042 
0043 /*
0044  * We only need 2 bios per I/O unit to make progress, but ensure we
0045  * have a few more available to not get too tight.
0046  */
0047 #define R5L_POOL_SIZE   4
0048 
0049 static char *r5c_journal_mode_str[] = {"write-through",
0050                        "write-back"};
0051 /*
0052  * raid5 cache state machine
0053  *
0054  * With the RAID cache, each stripe works in two phases:
0055  *  - caching phase
0056  *  - writing-out phase
0057  *
0058  * These two phases are controlled by bit STRIPE_R5C_CACHING:
0059  *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
0060  *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
0061  *
0062  * When there is no journal, or the journal is in write-through mode,
0063  * the stripe is always in writing-out phase.
0064  *
0065  * For write-back journal, the stripe is sent to caching phase on write
0066  * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
0067  * the write-out phase by clearing STRIPE_R5C_CACHING.
0068  *
0069  * Stripes in caching phase do not write the raid disks. Instead, all
0070  * writes are committed from the log device. Therefore, a stripe in
0071  * caching phase handles writes as:
0072  *  - write to log device
0073  *  - return IO
0074  *
0075  * Stripes in writing-out phase handle writes as:
0076  *  - calculate parity
0077  *  - write pending data and parity to journal
0078  *  - write data and parity to raid disks
0079  *  - return IO for pending writes
0080  */
0081 
0082 struct r5l_log {
0083     struct md_rdev *rdev;
0084 
0085     u32 uuid_checksum;
0086 
0087     sector_t device_size;       /* log device size, round to
0088                      * BLOCK_SECTORS */
0089     sector_t max_free_space;    /* reclaim run if free space is at
0090                      * this size */
0091 
0092     sector_t last_checkpoint;   /* log tail. where recovery scan
0093                      * starts from */
0094     u64 last_cp_seq;        /* log tail sequence */
0095 
0096     sector_t log_start;     /* log head. where new data appends */
0097     u64 seq;            /* log head sequence */
0098 
0099     sector_t next_checkpoint;
0100 
0101     struct mutex io_mutex;
0102     struct r5l_io_unit *current_io; /* current io_unit accepting new data */
0103 
0104     spinlock_t io_list_lock;
0105     struct list_head running_ios;   /* io_units which are still running,
0106                      * and have not yet been completely
0107                      * written to the log */
0108     struct list_head io_end_ios;    /* io_units which have been completely
0109                      * written to the log but not yet written
0110                      * to the RAID */
0111     struct list_head flushing_ios;  /* io_units which are waiting for log
0112                      * cache flush */
0113     struct list_head finished_ios;  /* io_units which settle down in log disk */
0114     struct bio flush_bio;
0115 
0116     struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
0117 
0118     struct kmem_cache *io_kc;
0119     mempool_t io_pool;
0120     struct bio_set bs;
0121     mempool_t meta_pool;
0122 
0123     struct md_thread *reclaim_thread;
0124     unsigned long reclaim_target;   /* number of space that need to be
0125                      * reclaimed.  if it's 0, reclaim spaces
0126                      * used by io_units which are in
0127                      * IO_UNIT_STRIPE_END state (eg, reclaim
0128                      * dones't wait for specific io_unit
0129                      * switching to IO_UNIT_STRIPE_END
0130                      * state) */
0131     wait_queue_head_t iounit_wait;
0132 
0133     struct list_head no_space_stripes; /* pending stripes, log has no space */
0134     spinlock_t no_space_stripes_lock;
0135 
0136     bool need_cache_flush;
0137 
0138     /* for r5c_cache */
0139     enum r5c_journal_mode r5c_journal_mode;
0140 
0141     /* all stripes in r5cache, in the order of seq at sh->log_start */
0142     struct list_head stripe_in_journal_list;
0143 
0144     spinlock_t stripe_in_journal_lock;
0145     atomic_t stripe_in_journal_count;
0146 
0147     /* to submit async io_units, to fulfill ordering of flush */
0148     struct work_struct deferred_io_work;
0149     /* to disable write back during in degraded mode */
0150     struct work_struct disable_writeback_work;
0151 
0152     /* to for chunk_aligned_read in writeback mode, details below */
0153     spinlock_t tree_lock;
0154     struct radix_tree_root big_stripe_tree;
0155 };
0156 
0157 /*
0158  * Enable chunk_aligned_read() with write back cache.
0159  *
0160  * Each chunk may contain more than one stripe (for example, a 256kB
0161  * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
0162  * chunk_aligned_read, these stripes are grouped into one "big_stripe".
0163  * For each big_stripe, we count how many stripes of this big_stripe
0164  * are in the write back cache. These data are tracked in a radix tree
0165  * (big_stripe_tree). We use radix_tree item pointer as the counter.
0166  * r5c_tree_index() is used to calculate keys for the radix tree.
0167  *
0168  * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
0169  * big_stripe of each chunk in the tree. If this big_stripe is in the
0170  * tree, chunk_aligned_read() aborts. This look up is protected by
0171  * rcu_read_lock().
0172  *
0173  * It is necessary to remember whether a stripe is counted in
0174  * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
0175  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
0176  * two flags are set, the stripe is counted in big_stripe_tree. This
0177  * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
0178  * r5c_try_caching_write(); and moving clear_bit of
0179  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
0180  * r5c_finish_stripe_write_out().
0181  */
0182 
0183 /*
0184  * radix tree requests lowest 2 bits of data pointer to be 2b'00.
0185  * So it is necessary to left shift the counter by 2 bits before using it
0186  * as data pointer of the tree.
0187  */
0188 #define R5C_RADIX_COUNT_SHIFT 2
0189 
0190 /*
0191  * calculate key for big_stripe_tree
0192  *
0193  * sect: align_bi->bi_iter.bi_sector or sh->sector
0194  */
0195 static inline sector_t r5c_tree_index(struct r5conf *conf,
0196                       sector_t sect)
0197 {
0198     sector_div(sect, conf->chunk_sectors);
0199     return sect;
0200 }
0201 
0202 /*
0203  * an IO range starts from a meta data block and end at the next meta data
0204  * block. The io unit's the meta data block tracks data/parity followed it. io
0205  * unit is written to log disk with normal write, as we always flush log disk
0206  * first and then start move data to raid disks, there is no requirement to
0207  * write io unit with FLUSH/FUA
0208  */
0209 struct r5l_io_unit {
0210     struct r5l_log *log;
0211 
0212     struct page *meta_page; /* store meta block */
0213     int meta_offset;    /* current offset in meta_page */
0214 
0215     struct bio *current_bio;/* current_bio accepting new data */
0216 
0217     atomic_t pending_stripe;/* how many stripes not flushed to raid */
0218     u64 seq;        /* seq number of the metablock */
0219     sector_t log_start; /* where the io_unit starts */
0220     sector_t log_end;   /* where the io_unit ends */
0221     struct list_head log_sibling; /* log->running_ios */
0222     struct list_head stripe_list; /* stripes added to the io_unit */
0223 
0224     int state;
0225     bool need_split_bio;
0226     struct bio *split_bio;
0227 
0228     unsigned int has_flush:1;       /* include flush request */
0229     unsigned int has_fua:1;         /* include fua request */
0230     unsigned int has_null_flush:1;      /* include null flush request */
0231     unsigned int has_flush_payload:1;   /* include flush payload  */
0232     /*
0233      * io isn't sent yet, flush/fua request can only be submitted till it's
0234      * the first IO in running_ios list
0235      */
0236     unsigned int io_deferred:1;
0237 
0238     struct bio_list flush_barriers;   /* size == 0 flush bios */
0239 };
0240 
0241 /* r5l_io_unit state */
0242 enum r5l_io_unit_state {
0243     IO_UNIT_RUNNING = 0,    /* accepting new IO */
0244     IO_UNIT_IO_START = 1,   /* io_unit bio start writing to log,
0245                  * don't accepting new bio */
0246     IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
0247     IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
0248 };
0249 
0250 bool r5c_is_writeback(struct r5l_log *log)
0251 {
0252     return (log != NULL &&
0253         log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
0254 }
0255 
0256 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
0257 {
0258     start += inc;
0259     if (start >= log->device_size)
0260         start = start - log->device_size;
0261     return start;
0262 }
0263 
0264 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
0265                   sector_t end)
0266 {
0267     if (end >= start)
0268         return end - start;
0269     else
0270         return end + log->device_size - start;
0271 }
0272 
0273 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
0274 {
0275     sector_t used_size;
0276 
0277     used_size = r5l_ring_distance(log, log->last_checkpoint,
0278                     log->log_start);
0279 
0280     return log->device_size > used_size + size;
0281 }
0282 
0283 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
0284                     enum r5l_io_unit_state state)
0285 {
0286     if (WARN_ON(io->state >= state))
0287         return;
0288     io->state = state;
0289 }
0290 
0291 static void
0292 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
0293 {
0294     struct bio *wbi, *wbi2;
0295 
0296     wbi = dev->written;
0297     dev->written = NULL;
0298     while (wbi && wbi->bi_iter.bi_sector <
0299            dev->sector + RAID5_STRIPE_SECTORS(conf)) {
0300         wbi2 = r5_next_bio(conf, wbi, dev->sector);
0301         md_write_end(conf->mddev);
0302         bio_endio(wbi);
0303         wbi = wbi2;
0304     }
0305 }
0306 
0307 void r5c_handle_cached_data_endio(struct r5conf *conf,
0308                   struct stripe_head *sh, int disks)
0309 {
0310     int i;
0311 
0312     for (i = sh->disks; i--; ) {
0313         if (sh->dev[i].written) {
0314             set_bit(R5_UPTODATE, &sh->dev[i].flags);
0315             r5c_return_dev_pending_writes(conf, &sh->dev[i]);
0316             md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
0317                        RAID5_STRIPE_SECTORS(conf),
0318                        !test_bit(STRIPE_DEGRADED, &sh->state),
0319                        0);
0320         }
0321     }
0322 }
0323 
0324 void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
0325 
0326 /* Check whether we should flush some stripes to free up stripe cache */
0327 void r5c_check_stripe_cache_usage(struct r5conf *conf)
0328 {
0329     int total_cached;
0330 
0331     if (!r5c_is_writeback(conf->log))
0332         return;
0333 
0334     total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
0335         atomic_read(&conf->r5c_cached_full_stripes);
0336 
0337     /*
0338      * The following condition is true for either of the following:
0339      *   - stripe cache pressure high:
0340      *          total_cached > 3/4 min_nr_stripes ||
0341      *          empty_inactive_list_nr > 0
0342      *   - stripe cache pressure moderate:
0343      *          total_cached > 1/2 min_nr_stripes
0344      */
0345     if (total_cached > conf->min_nr_stripes * 1 / 2 ||
0346         atomic_read(&conf->empty_inactive_list_nr) > 0)
0347         r5l_wake_reclaim(conf->log, 0);
0348 }
0349 
0350 /*
0351  * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
0352  * stripes in the cache
0353  */
0354 void r5c_check_cached_full_stripe(struct r5conf *conf)
0355 {
0356     if (!r5c_is_writeback(conf->log))
0357         return;
0358 
0359     /*
0360      * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
0361      * or a full stripe (chunk size / 4k stripes).
0362      */
0363     if (atomic_read(&conf->r5c_cached_full_stripes) >=
0364         min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
0365         conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf)))
0366         r5l_wake_reclaim(conf->log, 0);
0367 }
0368 
0369 /*
0370  * Total log space (in sectors) needed to flush all data in cache
0371  *
0372  * To avoid deadlock due to log space, it is necessary to reserve log
0373  * space to flush critical stripes (stripes that occupying log space near
0374  * last_checkpoint). This function helps check how much log space is
0375  * required to flush all cached stripes.
0376  *
0377  * To reduce log space requirements, two mechanisms are used to give cache
0378  * flush higher priorities:
0379  *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
0380  *       stripes ALREADY in journal can be flushed w/o pending writes;
0381  *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
0382  *       can be delayed (r5l_add_no_space_stripe).
0383  *
0384  * In cache flush, the stripe goes through 1 and then 2. For a stripe that
0385  * already passed 1, flushing it requires at most (conf->max_degraded + 1)
0386  * pages of journal space. For stripes that has not passed 1, flushing it
0387  * requires (conf->raid_disks + 1) pages of journal space. There are at
0388  * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
0389  * required to flush all cached stripes (in pages) is:
0390  *
0391  *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
0392  *     (group_cnt + 1) * (raid_disks + 1)
0393  * or
0394  *     (stripe_in_journal_count) * (max_degraded + 1) +
0395  *     (group_cnt + 1) * (raid_disks - max_degraded)
0396  */
0397 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
0398 {
0399     struct r5l_log *log = conf->log;
0400 
0401     if (!r5c_is_writeback(log))
0402         return 0;
0403 
0404     return BLOCK_SECTORS *
0405         ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
0406          (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
0407 }
0408 
0409 /*
0410  * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
0411  *
0412  * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
0413  * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
0414  * device is less than 2x of reclaim_required_space.
0415  */
0416 static inline void r5c_update_log_state(struct r5l_log *log)
0417 {
0418     struct r5conf *conf = log->rdev->mddev->private;
0419     sector_t free_space;
0420     sector_t reclaim_space;
0421     bool wake_reclaim = false;
0422 
0423     if (!r5c_is_writeback(log))
0424         return;
0425 
0426     free_space = r5l_ring_distance(log, log->log_start,
0427                        log->last_checkpoint);
0428     reclaim_space = r5c_log_required_to_flush_cache(conf);
0429     if (free_space < 2 * reclaim_space)
0430         set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
0431     else {
0432         if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
0433             wake_reclaim = true;
0434         clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
0435     }
0436     if (free_space < 3 * reclaim_space)
0437         set_bit(R5C_LOG_TIGHT, &conf->cache_state);
0438     else
0439         clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
0440 
0441     if (wake_reclaim)
0442         r5l_wake_reclaim(log, 0);
0443 }
0444 
0445 /*
0446  * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
0447  * This function should only be called in write-back mode.
0448  */
0449 void r5c_make_stripe_write_out(struct stripe_head *sh)
0450 {
0451     struct r5conf *conf = sh->raid_conf;
0452     struct r5l_log *log = conf->log;
0453 
0454     BUG_ON(!r5c_is_writeback(log));
0455 
0456     WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
0457     clear_bit(STRIPE_R5C_CACHING, &sh->state);
0458 
0459     if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
0460         atomic_inc(&conf->preread_active_stripes);
0461 }
0462 
0463 static void r5c_handle_data_cached(struct stripe_head *sh)
0464 {
0465     int i;
0466 
0467     for (i = sh->disks; i--; )
0468         if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
0469             set_bit(R5_InJournal, &sh->dev[i].flags);
0470             clear_bit(R5_LOCKED, &sh->dev[i].flags);
0471         }
0472     clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
0473 }
0474 
0475 /*
0476  * this journal write must contain full parity,
0477  * it may also contain some data pages
0478  */
0479 static void r5c_handle_parity_cached(struct stripe_head *sh)
0480 {
0481     int i;
0482 
0483     for (i = sh->disks; i--; )
0484         if (test_bit(R5_InJournal, &sh->dev[i].flags))
0485             set_bit(R5_Wantwrite, &sh->dev[i].flags);
0486 }
0487 
0488 /*
0489  * Setting proper flags after writing (or flushing) data and/or parity to the
0490  * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
0491  */
0492 static void r5c_finish_cache_stripe(struct stripe_head *sh)
0493 {
0494     struct r5l_log *log = sh->raid_conf->log;
0495 
0496     if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
0497         BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
0498         /*
0499          * Set R5_InJournal for parity dev[pd_idx]. This means
0500          * all data AND parity in the journal. For RAID 6, it is
0501          * NOT necessary to set the flag for dev[qd_idx], as the
0502          * two parities are written out together.
0503          */
0504         set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
0505     } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
0506         r5c_handle_data_cached(sh);
0507     } else {
0508         r5c_handle_parity_cached(sh);
0509         set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
0510     }
0511 }
0512 
0513 static void r5l_io_run_stripes(struct r5l_io_unit *io)
0514 {
0515     struct stripe_head *sh, *next;
0516 
0517     list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
0518         list_del_init(&sh->log_list);
0519 
0520         r5c_finish_cache_stripe(sh);
0521 
0522         set_bit(STRIPE_HANDLE, &sh->state);
0523         raid5_release_stripe(sh);
0524     }
0525 }
0526 
0527 static void r5l_log_run_stripes(struct r5l_log *log)
0528 {
0529     struct r5l_io_unit *io, *next;
0530 
0531     lockdep_assert_held(&log->io_list_lock);
0532 
0533     list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
0534         /* don't change list order */
0535         if (io->state < IO_UNIT_IO_END)
0536             break;
0537 
0538         list_move_tail(&io->log_sibling, &log->finished_ios);
0539         r5l_io_run_stripes(io);
0540     }
0541 }
0542 
0543 static void r5l_move_to_end_ios(struct r5l_log *log)
0544 {
0545     struct r5l_io_unit *io, *next;
0546 
0547     lockdep_assert_held(&log->io_list_lock);
0548 
0549     list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
0550         /* don't change list order */
0551         if (io->state < IO_UNIT_IO_END)
0552             break;
0553         list_move_tail(&io->log_sibling, &log->io_end_ios);
0554     }
0555 }
0556 
0557 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
0558 static void r5l_log_endio(struct bio *bio)
0559 {
0560     struct r5l_io_unit *io = bio->bi_private;
0561     struct r5l_io_unit *io_deferred;
0562     struct r5l_log *log = io->log;
0563     unsigned long flags;
0564     bool has_null_flush;
0565     bool has_flush_payload;
0566 
0567     if (bio->bi_status)
0568         md_error(log->rdev->mddev, log->rdev);
0569 
0570     bio_put(bio);
0571     mempool_free(io->meta_page, &log->meta_pool);
0572 
0573     spin_lock_irqsave(&log->io_list_lock, flags);
0574     __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
0575 
0576     /*
0577      * if the io doesn't not have null_flush or flush payload,
0578      * it is not safe to access it after releasing io_list_lock.
0579      * Therefore, it is necessary to check the condition with
0580      * the lock held.
0581      */
0582     has_null_flush = io->has_null_flush;
0583     has_flush_payload = io->has_flush_payload;
0584 
0585     if (log->need_cache_flush && !list_empty(&io->stripe_list))
0586         r5l_move_to_end_ios(log);
0587     else
0588         r5l_log_run_stripes(log);
0589     if (!list_empty(&log->running_ios)) {
0590         /*
0591          * FLUSH/FUA io_unit is deferred because of ordering, now we
0592          * can dispatch it
0593          */
0594         io_deferred = list_first_entry(&log->running_ios,
0595                            struct r5l_io_unit, log_sibling);
0596         if (io_deferred->io_deferred)
0597             schedule_work(&log->deferred_io_work);
0598     }
0599 
0600     spin_unlock_irqrestore(&log->io_list_lock, flags);
0601 
0602     if (log->need_cache_flush)
0603         md_wakeup_thread(log->rdev->mddev->thread);
0604 
0605     /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
0606     if (has_null_flush) {
0607         struct bio *bi;
0608 
0609         WARN_ON(bio_list_empty(&io->flush_barriers));
0610         while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
0611             bio_endio(bi);
0612             if (atomic_dec_and_test(&io->pending_stripe)) {
0613                 __r5l_stripe_write_finished(io);
0614                 return;
0615             }
0616         }
0617     }
0618     /* decrease pending_stripe for flush payload */
0619     if (has_flush_payload)
0620         if (atomic_dec_and_test(&io->pending_stripe))
0621             __r5l_stripe_write_finished(io);
0622 }
0623 
0624 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
0625 {
0626     unsigned long flags;
0627 
0628     spin_lock_irqsave(&log->io_list_lock, flags);
0629     __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
0630     spin_unlock_irqrestore(&log->io_list_lock, flags);
0631 
0632     /*
0633      * In case of journal device failures, submit_bio will get error
0634      * and calls endio, then active stripes will continue write
0635      * process. Therefore, it is not necessary to check Faulty bit
0636      * of journal device here.
0637      *
0638      * We can't check split_bio after current_bio is submitted. If
0639      * io->split_bio is null, after current_bio is submitted, current_bio
0640      * might already be completed and the io_unit is freed. We submit
0641      * split_bio first to avoid the issue.
0642      */
0643     if (io->split_bio) {
0644         if (io->has_flush)
0645             io->split_bio->bi_opf |= REQ_PREFLUSH;
0646         if (io->has_fua)
0647             io->split_bio->bi_opf |= REQ_FUA;
0648         submit_bio(io->split_bio);
0649     }
0650 
0651     if (io->has_flush)
0652         io->current_bio->bi_opf |= REQ_PREFLUSH;
0653     if (io->has_fua)
0654         io->current_bio->bi_opf |= REQ_FUA;
0655     submit_bio(io->current_bio);
0656 }
0657 
0658 /* deferred io_unit will be dispatched here */
0659 static void r5l_submit_io_async(struct work_struct *work)
0660 {
0661     struct r5l_log *log = container_of(work, struct r5l_log,
0662                        deferred_io_work);
0663     struct r5l_io_unit *io = NULL;
0664     unsigned long flags;
0665 
0666     spin_lock_irqsave(&log->io_list_lock, flags);
0667     if (!list_empty(&log->running_ios)) {
0668         io = list_first_entry(&log->running_ios, struct r5l_io_unit,
0669                       log_sibling);
0670         if (!io->io_deferred)
0671             io = NULL;
0672         else
0673             io->io_deferred = 0;
0674     }
0675     spin_unlock_irqrestore(&log->io_list_lock, flags);
0676     if (io)
0677         r5l_do_submit_io(log, io);
0678 }
0679 
0680 static void r5c_disable_writeback_async(struct work_struct *work)
0681 {
0682     struct r5l_log *log = container_of(work, struct r5l_log,
0683                        disable_writeback_work);
0684     struct mddev *mddev = log->rdev->mddev;
0685     struct r5conf *conf = mddev->private;
0686     int locked = 0;
0687 
0688     if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
0689         return;
0690     pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
0691         mdname(mddev));
0692 
0693     /* wait superblock change before suspend */
0694     wait_event(mddev->sb_wait,
0695            conf->log == NULL ||
0696            (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) &&
0697             (locked = mddev_trylock(mddev))));
0698     if (locked) {
0699         mddev_suspend(mddev);
0700         log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
0701         mddev_resume(mddev);
0702         mddev_unlock(mddev);
0703     }
0704 }
0705 
0706 static void r5l_submit_current_io(struct r5l_log *log)
0707 {
0708     struct r5l_io_unit *io = log->current_io;
0709     struct r5l_meta_block *block;
0710     unsigned long flags;
0711     u32 crc;
0712     bool do_submit = true;
0713 
0714     if (!io)
0715         return;
0716 
0717     block = page_address(io->meta_page);
0718     block->meta_size = cpu_to_le32(io->meta_offset);
0719     crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
0720     block->checksum = cpu_to_le32(crc);
0721 
0722     log->current_io = NULL;
0723     spin_lock_irqsave(&log->io_list_lock, flags);
0724     if (io->has_flush || io->has_fua) {
0725         if (io != list_first_entry(&log->running_ios,
0726                        struct r5l_io_unit, log_sibling)) {
0727             io->io_deferred = 1;
0728             do_submit = false;
0729         }
0730     }
0731     spin_unlock_irqrestore(&log->io_list_lock, flags);
0732     if (do_submit)
0733         r5l_do_submit_io(log, io);
0734 }
0735 
0736 static struct bio *r5l_bio_alloc(struct r5l_log *log)
0737 {
0738     struct bio *bio = bio_alloc_bioset(log->rdev->bdev, BIO_MAX_VECS,
0739                        REQ_OP_WRITE, GFP_NOIO, &log->bs);
0740 
0741     bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
0742 
0743     return bio;
0744 }
0745 
0746 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
0747 {
0748     log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
0749 
0750     r5c_update_log_state(log);
0751     /*
0752      * If we filled up the log device start from the beginning again,
0753      * which will require a new bio.
0754      *
0755      * Note: for this to work properly the log size needs to me a multiple
0756      * of BLOCK_SECTORS.
0757      */
0758     if (log->log_start == 0)
0759         io->need_split_bio = true;
0760 
0761     io->log_end = log->log_start;
0762 }
0763 
0764 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
0765 {
0766     struct r5l_io_unit *io;
0767     struct r5l_meta_block *block;
0768 
0769     io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
0770     if (!io)
0771         return NULL;
0772     memset(io, 0, sizeof(*io));
0773 
0774     io->log = log;
0775     INIT_LIST_HEAD(&io->log_sibling);
0776     INIT_LIST_HEAD(&io->stripe_list);
0777     bio_list_init(&io->flush_barriers);
0778     io->state = IO_UNIT_RUNNING;
0779 
0780     io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
0781     block = page_address(io->meta_page);
0782     clear_page(block);
0783     block->magic = cpu_to_le32(R5LOG_MAGIC);
0784     block->version = R5LOG_VERSION;
0785     block->seq = cpu_to_le64(log->seq);
0786     block->position = cpu_to_le64(log->log_start);
0787 
0788     io->log_start = log->log_start;
0789     io->meta_offset = sizeof(struct r5l_meta_block);
0790     io->seq = log->seq++;
0791 
0792     io->current_bio = r5l_bio_alloc(log);
0793     io->current_bio->bi_end_io = r5l_log_endio;
0794     io->current_bio->bi_private = io;
0795     bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
0796 
0797     r5_reserve_log_entry(log, io);
0798 
0799     spin_lock_irq(&log->io_list_lock);
0800     list_add_tail(&io->log_sibling, &log->running_ios);
0801     spin_unlock_irq(&log->io_list_lock);
0802 
0803     return io;
0804 }
0805 
0806 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
0807 {
0808     if (log->current_io &&
0809         log->current_io->meta_offset + payload_size > PAGE_SIZE)
0810         r5l_submit_current_io(log);
0811 
0812     if (!log->current_io) {
0813         log->current_io = r5l_new_meta(log);
0814         if (!log->current_io)
0815             return -ENOMEM;
0816     }
0817 
0818     return 0;
0819 }
0820 
0821 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
0822                     sector_t location,
0823                     u32 checksum1, u32 checksum2,
0824                     bool checksum2_valid)
0825 {
0826     struct r5l_io_unit *io = log->current_io;
0827     struct r5l_payload_data_parity *payload;
0828 
0829     payload = page_address(io->meta_page) + io->meta_offset;
0830     payload->header.type = cpu_to_le16(type);
0831     payload->header.flags = cpu_to_le16(0);
0832     payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
0833                     (PAGE_SHIFT - 9));
0834     payload->location = cpu_to_le64(location);
0835     payload->checksum[0] = cpu_to_le32(checksum1);
0836     if (checksum2_valid)
0837         payload->checksum[1] = cpu_to_le32(checksum2);
0838 
0839     io->meta_offset += sizeof(struct r5l_payload_data_parity) +
0840         sizeof(__le32) * (1 + !!checksum2_valid);
0841 }
0842 
0843 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
0844 {
0845     struct r5l_io_unit *io = log->current_io;
0846 
0847     if (io->need_split_bio) {
0848         BUG_ON(io->split_bio);
0849         io->split_bio = io->current_bio;
0850         io->current_bio = r5l_bio_alloc(log);
0851         bio_chain(io->current_bio, io->split_bio);
0852         io->need_split_bio = false;
0853     }
0854 
0855     if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
0856         BUG();
0857 
0858     r5_reserve_log_entry(log, io);
0859 }
0860 
0861 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
0862 {
0863     struct mddev *mddev = log->rdev->mddev;
0864     struct r5conf *conf = mddev->private;
0865     struct r5l_io_unit *io;
0866     struct r5l_payload_flush *payload;
0867     int meta_size;
0868 
0869     /*
0870      * payload_flush requires extra writes to the journal.
0871      * To avoid handling the extra IO in quiesce, just skip
0872      * flush_payload
0873      */
0874     if (conf->quiesce)
0875         return;
0876 
0877     mutex_lock(&log->io_mutex);
0878     meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
0879 
0880     if (r5l_get_meta(log, meta_size)) {
0881         mutex_unlock(&log->io_mutex);
0882         return;
0883     }
0884 
0885     /* current implementation is one stripe per flush payload */
0886     io = log->current_io;
0887     payload = page_address(io->meta_page) + io->meta_offset;
0888     payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
0889     payload->header.flags = cpu_to_le16(0);
0890     payload->size = cpu_to_le32(sizeof(__le64));
0891     payload->flush_stripes[0] = cpu_to_le64(sect);
0892     io->meta_offset += meta_size;
0893     /* multiple flush payloads count as one pending_stripe */
0894     if (!io->has_flush_payload) {
0895         io->has_flush_payload = 1;
0896         atomic_inc(&io->pending_stripe);
0897     }
0898     mutex_unlock(&log->io_mutex);
0899 }
0900 
0901 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
0902                int data_pages, int parity_pages)
0903 {
0904     int i;
0905     int meta_size;
0906     int ret;
0907     struct r5l_io_unit *io;
0908 
0909     meta_size =
0910         ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
0911          * data_pages) +
0912         sizeof(struct r5l_payload_data_parity) +
0913         sizeof(__le32) * parity_pages;
0914 
0915     ret = r5l_get_meta(log, meta_size);
0916     if (ret)
0917         return ret;
0918 
0919     io = log->current_io;
0920 
0921     if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
0922         io->has_flush = 1;
0923 
0924     for (i = 0; i < sh->disks; i++) {
0925         if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
0926             test_bit(R5_InJournal, &sh->dev[i].flags))
0927             continue;
0928         if (i == sh->pd_idx || i == sh->qd_idx)
0929             continue;
0930         if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
0931             log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
0932             io->has_fua = 1;
0933             /*
0934              * we need to flush journal to make sure recovery can
0935              * reach the data with fua flag
0936              */
0937             io->has_flush = 1;
0938         }
0939         r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
0940                     raid5_compute_blocknr(sh, i, 0),
0941                     sh->dev[i].log_checksum, 0, false);
0942         r5l_append_payload_page(log, sh->dev[i].page);
0943     }
0944 
0945     if (parity_pages == 2) {
0946         r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
0947                     sh->sector, sh->dev[sh->pd_idx].log_checksum,
0948                     sh->dev[sh->qd_idx].log_checksum, true);
0949         r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
0950         r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
0951     } else if (parity_pages == 1) {
0952         r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
0953                     sh->sector, sh->dev[sh->pd_idx].log_checksum,
0954                     0, false);
0955         r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
0956     } else  /* Just writing data, not parity, in caching phase */
0957         BUG_ON(parity_pages != 0);
0958 
0959     list_add_tail(&sh->log_list, &io->stripe_list);
0960     atomic_inc(&io->pending_stripe);
0961     sh->log_io = io;
0962 
0963     if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
0964         return 0;
0965 
0966     if (sh->log_start == MaxSector) {
0967         BUG_ON(!list_empty(&sh->r5c));
0968         sh->log_start = io->log_start;
0969         spin_lock_irq(&log->stripe_in_journal_lock);
0970         list_add_tail(&sh->r5c,
0971                   &log->stripe_in_journal_list);
0972         spin_unlock_irq(&log->stripe_in_journal_lock);
0973         atomic_inc(&log->stripe_in_journal_count);
0974     }
0975     return 0;
0976 }
0977 
0978 /* add stripe to no_space_stripes, and then wake up reclaim */
0979 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
0980                        struct stripe_head *sh)
0981 {
0982     spin_lock(&log->no_space_stripes_lock);
0983     list_add_tail(&sh->log_list, &log->no_space_stripes);
0984     spin_unlock(&log->no_space_stripes_lock);
0985 }
0986 
0987 /*
0988  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
0989  * data from log to raid disks), so we shouldn't wait for reclaim here
0990  */
0991 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
0992 {
0993     struct r5conf *conf = sh->raid_conf;
0994     int write_disks = 0;
0995     int data_pages, parity_pages;
0996     int reserve;
0997     int i;
0998     int ret = 0;
0999     bool wake_reclaim = false;
1000 
1001     if (!log)
1002         return -EAGAIN;
1003     /* Don't support stripe batch */
1004     if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1005         test_bit(STRIPE_SYNCING, &sh->state)) {
1006         /* the stripe is written to log, we start writing it to raid */
1007         clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1008         return -EAGAIN;
1009     }
1010 
1011     WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1012 
1013     for (i = 0; i < sh->disks; i++) {
1014         void *addr;
1015 
1016         if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1017             test_bit(R5_InJournal, &sh->dev[i].flags))
1018             continue;
1019 
1020         write_disks++;
1021         /* checksum is already calculated in last run */
1022         if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1023             continue;
1024         addr = kmap_atomic(sh->dev[i].page);
1025         sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1026                             addr, PAGE_SIZE);
1027         kunmap_atomic(addr);
1028     }
1029     parity_pages = 1 + !!(sh->qd_idx >= 0);
1030     data_pages = write_disks - parity_pages;
1031 
1032     set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1033     /*
1034      * The stripe must enter state machine again to finish the write, so
1035      * don't delay.
1036      */
1037     clear_bit(STRIPE_DELAYED, &sh->state);
1038     atomic_inc(&sh->count);
1039 
1040     mutex_lock(&log->io_mutex);
1041     /* meta + data */
1042     reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1043 
1044     if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1045         if (!r5l_has_free_space(log, reserve)) {
1046             r5l_add_no_space_stripe(log, sh);
1047             wake_reclaim = true;
1048         } else {
1049             ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1050             if (ret) {
1051                 spin_lock_irq(&log->io_list_lock);
1052                 list_add_tail(&sh->log_list,
1053                           &log->no_mem_stripes);
1054                 spin_unlock_irq(&log->io_list_lock);
1055             }
1056         }
1057     } else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
1058         /*
1059          * log space critical, do not process stripes that are
1060          * not in cache yet (sh->log_start == MaxSector).
1061          */
1062         if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1063             sh->log_start == MaxSector) {
1064             r5l_add_no_space_stripe(log, sh);
1065             wake_reclaim = true;
1066             reserve = 0;
1067         } else if (!r5l_has_free_space(log, reserve)) {
1068             if (sh->log_start == log->last_checkpoint)
1069                 BUG();
1070             else
1071                 r5l_add_no_space_stripe(log, sh);
1072         } else {
1073             ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1074             if (ret) {
1075                 spin_lock_irq(&log->io_list_lock);
1076                 list_add_tail(&sh->log_list,
1077                           &log->no_mem_stripes);
1078                 spin_unlock_irq(&log->io_list_lock);
1079             }
1080         }
1081     }
1082 
1083     mutex_unlock(&log->io_mutex);
1084     if (wake_reclaim)
1085         r5l_wake_reclaim(log, reserve);
1086     return 0;
1087 }
1088 
1089 void r5l_write_stripe_run(struct r5l_log *log)
1090 {
1091     if (!log)
1092         return;
1093     mutex_lock(&log->io_mutex);
1094     r5l_submit_current_io(log);
1095     mutex_unlock(&log->io_mutex);
1096 }
1097 
1098 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1099 {
1100     if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1101         /*
1102          * in write through (journal only)
1103          * we flush log disk cache first, then write stripe data to
1104          * raid disks. So if bio is finished, the log disk cache is
1105          * flushed already. The recovery guarantees we can recovery
1106          * the bio from log disk, so we don't need to flush again
1107          */
1108         if (bio->bi_iter.bi_size == 0) {
1109             bio_endio(bio);
1110             return 0;
1111         }
1112         bio->bi_opf &= ~REQ_PREFLUSH;
1113     } else {
1114         /* write back (with cache) */
1115         if (bio->bi_iter.bi_size == 0) {
1116             mutex_lock(&log->io_mutex);
1117             r5l_get_meta(log, 0);
1118             bio_list_add(&log->current_io->flush_barriers, bio);
1119             log->current_io->has_flush = 1;
1120             log->current_io->has_null_flush = 1;
1121             atomic_inc(&log->current_io->pending_stripe);
1122             r5l_submit_current_io(log);
1123             mutex_unlock(&log->io_mutex);
1124             return 0;
1125         }
1126     }
1127     return -EAGAIN;
1128 }
1129 
1130 /* This will run after log space is reclaimed */
1131 static void r5l_run_no_space_stripes(struct r5l_log *log)
1132 {
1133     struct stripe_head *sh;
1134 
1135     spin_lock(&log->no_space_stripes_lock);
1136     while (!list_empty(&log->no_space_stripes)) {
1137         sh = list_first_entry(&log->no_space_stripes,
1138                       struct stripe_head, log_list);
1139         list_del_init(&sh->log_list);
1140         set_bit(STRIPE_HANDLE, &sh->state);
1141         raid5_release_stripe(sh);
1142     }
1143     spin_unlock(&log->no_space_stripes_lock);
1144 }
1145 
1146 /*
1147  * calculate new last_checkpoint
1148  * for write through mode, returns log->next_checkpoint
1149  * for write back, returns log_start of first sh in stripe_in_journal_list
1150  */
1151 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1152 {
1153     struct stripe_head *sh;
1154     struct r5l_log *log = conf->log;
1155     sector_t new_cp;
1156     unsigned long flags;
1157 
1158     if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1159         return log->next_checkpoint;
1160 
1161     spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1162     if (list_empty(&conf->log->stripe_in_journal_list)) {
1163         /* all stripes flushed */
1164         spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1165         return log->next_checkpoint;
1166     }
1167     sh = list_first_entry(&conf->log->stripe_in_journal_list,
1168                   struct stripe_head, r5c);
1169     new_cp = sh->log_start;
1170     spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1171     return new_cp;
1172 }
1173 
1174 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1175 {
1176     struct r5conf *conf = log->rdev->mddev->private;
1177 
1178     return r5l_ring_distance(log, log->last_checkpoint,
1179                  r5c_calculate_new_cp(conf));
1180 }
1181 
1182 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1183 {
1184     struct stripe_head *sh;
1185 
1186     lockdep_assert_held(&log->io_list_lock);
1187 
1188     if (!list_empty(&log->no_mem_stripes)) {
1189         sh = list_first_entry(&log->no_mem_stripes,
1190                       struct stripe_head, log_list);
1191         list_del_init(&sh->log_list);
1192         set_bit(STRIPE_HANDLE, &sh->state);
1193         raid5_release_stripe(sh);
1194     }
1195 }
1196 
1197 static bool r5l_complete_finished_ios(struct r5l_log *log)
1198 {
1199     struct r5l_io_unit *io, *next;
1200     bool found = false;
1201 
1202     lockdep_assert_held(&log->io_list_lock);
1203 
1204     list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1205         /* don't change list order */
1206         if (io->state < IO_UNIT_STRIPE_END)
1207             break;
1208 
1209         log->next_checkpoint = io->log_start;
1210 
1211         list_del(&io->log_sibling);
1212         mempool_free(io, &log->io_pool);
1213         r5l_run_no_mem_stripe(log);
1214 
1215         found = true;
1216     }
1217 
1218     return found;
1219 }
1220 
1221 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1222 {
1223     struct r5l_log *log = io->log;
1224     struct r5conf *conf = log->rdev->mddev->private;
1225     unsigned long flags;
1226 
1227     spin_lock_irqsave(&log->io_list_lock, flags);
1228     __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1229 
1230     if (!r5l_complete_finished_ios(log)) {
1231         spin_unlock_irqrestore(&log->io_list_lock, flags);
1232         return;
1233     }
1234 
1235     if (r5l_reclaimable_space(log) > log->max_free_space ||
1236         test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1237         r5l_wake_reclaim(log, 0);
1238 
1239     spin_unlock_irqrestore(&log->io_list_lock, flags);
1240     wake_up(&log->iounit_wait);
1241 }
1242 
1243 void r5l_stripe_write_finished(struct stripe_head *sh)
1244 {
1245     struct r5l_io_unit *io;
1246 
1247     io = sh->log_io;
1248     sh->log_io = NULL;
1249 
1250     if (io && atomic_dec_and_test(&io->pending_stripe))
1251         __r5l_stripe_write_finished(io);
1252 }
1253 
1254 static void r5l_log_flush_endio(struct bio *bio)
1255 {
1256     struct r5l_log *log = container_of(bio, struct r5l_log,
1257         flush_bio);
1258     unsigned long flags;
1259     struct r5l_io_unit *io;
1260 
1261     if (bio->bi_status)
1262         md_error(log->rdev->mddev, log->rdev);
1263 
1264     spin_lock_irqsave(&log->io_list_lock, flags);
1265     list_for_each_entry(io, &log->flushing_ios, log_sibling)
1266         r5l_io_run_stripes(io);
1267     list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1268     spin_unlock_irqrestore(&log->io_list_lock, flags);
1269 
1270     bio_uninit(bio);
1271 }
1272 
1273 /*
1274  * Starting dispatch IO to raid.
1275  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1276  * broken meta in the middle of a log causes recovery can't find meta at the
1277  * head of log. If operations require meta at the head persistent in log, we
1278  * must make sure meta before it persistent in log too. A case is:
1279  *
1280  * stripe data/parity is in log, we start write stripe to raid disks. stripe
1281  * data/parity must be persistent in log before we do the write to raid disks.
1282  *
1283  * The solution is we restrictly maintain io_unit list order. In this case, we
1284  * only write stripes of an io_unit to raid disks till the io_unit is the first
1285  * one whose data/parity is in log.
1286  */
1287 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1288 {
1289     bool do_flush;
1290 
1291     if (!log || !log->need_cache_flush)
1292         return;
1293 
1294     spin_lock_irq(&log->io_list_lock);
1295     /* flush bio is running */
1296     if (!list_empty(&log->flushing_ios)) {
1297         spin_unlock_irq(&log->io_list_lock);
1298         return;
1299     }
1300     list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1301     do_flush = !list_empty(&log->flushing_ios);
1302     spin_unlock_irq(&log->io_list_lock);
1303 
1304     if (!do_flush)
1305         return;
1306     bio_init(&log->flush_bio, log->rdev->bdev, NULL, 0,
1307           REQ_OP_WRITE | REQ_PREFLUSH);
1308     log->flush_bio.bi_end_io = r5l_log_flush_endio;
1309     submit_bio(&log->flush_bio);
1310 }
1311 
1312 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1313 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1314     sector_t end)
1315 {
1316     struct block_device *bdev = log->rdev->bdev;
1317     struct mddev *mddev;
1318 
1319     r5l_write_super(log, end);
1320 
1321     if (!bdev_max_discard_sectors(bdev))
1322         return;
1323 
1324     mddev = log->rdev->mddev;
1325     /*
1326      * Discard could zero data, so before discard we must make sure
1327      * superblock is updated to new log tail. Updating superblock (either
1328      * directly call md_update_sb() or depend on md thread) must hold
1329      * reconfig mutex. On the other hand, raid5_quiesce is called with
1330      * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1331      * for all IO finish, hence waitting for reclaim thread, while reclaim
1332      * thread is calling this function and waitting for reconfig mutex. So
1333      * there is a deadlock. We workaround this issue with a trylock.
1334      * FIXME: we could miss discard if we can't take reconfig mutex
1335      */
1336     set_mask_bits(&mddev->sb_flags, 0,
1337         BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1338     if (!mddev_trylock(mddev))
1339         return;
1340     md_update_sb(mddev, 1);
1341     mddev_unlock(mddev);
1342 
1343     /* discard IO error really doesn't matter, ignore it */
1344     if (log->last_checkpoint < end) {
1345         blkdev_issue_discard(bdev,
1346                 log->last_checkpoint + log->rdev->data_offset,
1347                 end - log->last_checkpoint, GFP_NOIO);
1348     } else {
1349         blkdev_issue_discard(bdev,
1350                 log->last_checkpoint + log->rdev->data_offset,
1351                 log->device_size - log->last_checkpoint,
1352                 GFP_NOIO);
1353         blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1354                 GFP_NOIO);
1355     }
1356 }
1357 
1358 /*
1359  * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1360  * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1361  *
1362  * must hold conf->device_lock
1363  */
1364 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1365 {
1366     BUG_ON(list_empty(&sh->lru));
1367     BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1368     BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1369 
1370     /*
1371      * The stripe is not ON_RELEASE_LIST, so it is safe to call
1372      * raid5_release_stripe() while holding conf->device_lock
1373      */
1374     BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1375     lockdep_assert_held(&conf->device_lock);
1376 
1377     list_del_init(&sh->lru);
1378     atomic_inc(&sh->count);
1379 
1380     set_bit(STRIPE_HANDLE, &sh->state);
1381     atomic_inc(&conf->active_stripes);
1382     r5c_make_stripe_write_out(sh);
1383 
1384     if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1385         atomic_inc(&conf->r5c_flushing_partial_stripes);
1386     else
1387         atomic_inc(&conf->r5c_flushing_full_stripes);
1388     raid5_release_stripe(sh);
1389 }
1390 
1391 /*
1392  * if num == 0, flush all full stripes
1393  * if num > 0, flush all full stripes. If less than num full stripes are
1394  *             flushed, flush some partial stripes until totally num stripes are
1395  *             flushed or there is no more cached stripes.
1396  */
1397 void r5c_flush_cache(struct r5conf *conf, int num)
1398 {
1399     int count;
1400     struct stripe_head *sh, *next;
1401 
1402     lockdep_assert_held(&conf->device_lock);
1403     if (!conf->log)
1404         return;
1405 
1406     count = 0;
1407     list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1408         r5c_flush_stripe(conf, sh);
1409         count++;
1410     }
1411 
1412     if (count >= num)
1413         return;
1414     list_for_each_entry_safe(sh, next,
1415                  &conf->r5c_partial_stripe_list, lru) {
1416         r5c_flush_stripe(conf, sh);
1417         if (++count >= num)
1418             break;
1419     }
1420 }
1421 
1422 static void r5c_do_reclaim(struct r5conf *conf)
1423 {
1424     struct r5l_log *log = conf->log;
1425     struct stripe_head *sh;
1426     int count = 0;
1427     unsigned long flags;
1428     int total_cached;
1429     int stripes_to_flush;
1430     int flushing_partial, flushing_full;
1431 
1432     if (!r5c_is_writeback(log))
1433         return;
1434 
1435     flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1436     flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1437     total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1438         atomic_read(&conf->r5c_cached_full_stripes) -
1439         flushing_full - flushing_partial;
1440 
1441     if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1442         atomic_read(&conf->empty_inactive_list_nr) > 0)
1443         /*
1444          * if stripe cache pressure high, flush all full stripes and
1445          * some partial stripes
1446          */
1447         stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1448     else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1449          atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1450          R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1451         /*
1452          * if stripe cache pressure moderate, or if there is many full
1453          * stripes,flush all full stripes
1454          */
1455         stripes_to_flush = 0;
1456     else
1457         /* no need to flush */
1458         stripes_to_flush = -1;
1459 
1460     if (stripes_to_flush >= 0) {
1461         spin_lock_irqsave(&conf->device_lock, flags);
1462         r5c_flush_cache(conf, stripes_to_flush);
1463         spin_unlock_irqrestore(&conf->device_lock, flags);
1464     }
1465 
1466     /* if log space is tight, flush stripes on stripe_in_journal_list */
1467     if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1468         spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1469         spin_lock(&conf->device_lock);
1470         list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1471             /*
1472              * stripes on stripe_in_journal_list could be in any
1473              * state of the stripe_cache state machine. In this
1474              * case, we only want to flush stripe on
1475              * r5c_cached_full/partial_stripes. The following
1476              * condition makes sure the stripe is on one of the
1477              * two lists.
1478              */
1479             if (!list_empty(&sh->lru) &&
1480                 !test_bit(STRIPE_HANDLE, &sh->state) &&
1481                 atomic_read(&sh->count) == 0) {
1482                 r5c_flush_stripe(conf, sh);
1483                 if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1484                     break;
1485             }
1486         }
1487         spin_unlock(&conf->device_lock);
1488         spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1489     }
1490 
1491     if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1492         r5l_run_no_space_stripes(log);
1493 
1494     md_wakeup_thread(conf->mddev->thread);
1495 }
1496 
1497 static void r5l_do_reclaim(struct r5l_log *log)
1498 {
1499     struct r5conf *conf = log->rdev->mddev->private;
1500     sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1501     sector_t reclaimable;
1502     sector_t next_checkpoint;
1503     bool write_super;
1504 
1505     spin_lock_irq(&log->io_list_lock);
1506     write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1507         reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1508     /*
1509      * move proper io_unit to reclaim list. We should not change the order.
1510      * reclaimable/unreclaimable io_unit can be mixed in the list, we
1511      * shouldn't reuse space of an unreclaimable io_unit
1512      */
1513     while (1) {
1514         reclaimable = r5l_reclaimable_space(log);
1515         if (reclaimable >= reclaim_target ||
1516             (list_empty(&log->running_ios) &&
1517              list_empty(&log->io_end_ios) &&
1518              list_empty(&log->flushing_ios) &&
1519              list_empty(&log->finished_ios)))
1520             break;
1521 
1522         md_wakeup_thread(log->rdev->mddev->thread);
1523         wait_event_lock_irq(log->iounit_wait,
1524                     r5l_reclaimable_space(log) > reclaimable,
1525                     log->io_list_lock);
1526     }
1527 
1528     next_checkpoint = r5c_calculate_new_cp(conf);
1529     spin_unlock_irq(&log->io_list_lock);
1530 
1531     if (reclaimable == 0 || !write_super)
1532         return;
1533 
1534     /*
1535      * write_super will flush cache of each raid disk. We must write super
1536      * here, because the log area might be reused soon and we don't want to
1537      * confuse recovery
1538      */
1539     r5l_write_super_and_discard_space(log, next_checkpoint);
1540 
1541     mutex_lock(&log->io_mutex);
1542     log->last_checkpoint = next_checkpoint;
1543     r5c_update_log_state(log);
1544     mutex_unlock(&log->io_mutex);
1545 
1546     r5l_run_no_space_stripes(log);
1547 }
1548 
1549 static void r5l_reclaim_thread(struct md_thread *thread)
1550 {
1551     struct mddev *mddev = thread->mddev;
1552     struct r5conf *conf = mddev->private;
1553     struct r5l_log *log = conf->log;
1554 
1555     if (!log)
1556         return;
1557     r5c_do_reclaim(conf);
1558     r5l_do_reclaim(log);
1559 }
1560 
1561 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1562 {
1563     unsigned long target;
1564     unsigned long new = (unsigned long)space; /* overflow in theory */
1565 
1566     if (!log)
1567         return;
1568     do {
1569         target = log->reclaim_target;
1570         if (new < target)
1571             return;
1572     } while (cmpxchg(&log->reclaim_target, target, new) != target);
1573     md_wakeup_thread(log->reclaim_thread);
1574 }
1575 
1576 void r5l_quiesce(struct r5l_log *log, int quiesce)
1577 {
1578     struct mddev *mddev;
1579 
1580     if (quiesce) {
1581         /* make sure r5l_write_super_and_discard_space exits */
1582         mddev = log->rdev->mddev;
1583         wake_up(&mddev->sb_wait);
1584         kthread_park(log->reclaim_thread->tsk);
1585         r5l_wake_reclaim(log, MaxSector);
1586         r5l_do_reclaim(log);
1587     } else
1588         kthread_unpark(log->reclaim_thread->tsk);
1589 }
1590 
1591 bool r5l_log_disk_error(struct r5conf *conf)
1592 {
1593     struct r5l_log *log = conf->log;
1594 
1595     /* don't allow write if journal disk is missing */
1596     if (!log)
1597         return test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1598     else
1599         return test_bit(Faulty, &log->rdev->flags);
1600 }
1601 
1602 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1603 
1604 struct r5l_recovery_ctx {
1605     struct page *meta_page;     /* current meta */
1606     sector_t meta_total_blocks; /* total size of current meta and data */
1607     sector_t pos;           /* recovery position */
1608     u64 seq;            /* recovery position seq */
1609     int data_parity_stripes;    /* number of data_parity stripes */
1610     int data_only_stripes;      /* number of data_only stripes */
1611     struct list_head cached_list;
1612 
1613     /*
1614      * read ahead page pool (ra_pool)
1615      * in recovery, log is read sequentially. It is not efficient to
1616      * read every page with sync_page_io(). The read ahead page pool
1617      * reads multiple pages with one IO, so further log read can
1618      * just copy data from the pool.
1619      */
1620     struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1621     struct bio_vec ra_bvec[R5L_RECOVERY_PAGE_POOL_SIZE];
1622     sector_t pool_offset;   /* offset of first page in the pool */
1623     int total_pages;    /* total allocated pages */
1624     int valid_pages;    /* pages with valid data */
1625 };
1626 
1627 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1628                         struct r5l_recovery_ctx *ctx)
1629 {
1630     struct page *page;
1631 
1632     ctx->valid_pages = 0;
1633     ctx->total_pages = 0;
1634     while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1635         page = alloc_page(GFP_KERNEL);
1636 
1637         if (!page)
1638             break;
1639         ctx->ra_pool[ctx->total_pages] = page;
1640         ctx->total_pages += 1;
1641     }
1642 
1643     if (ctx->total_pages == 0)
1644         return -ENOMEM;
1645 
1646     ctx->pool_offset = 0;
1647     return 0;
1648 }
1649 
1650 static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1651                     struct r5l_recovery_ctx *ctx)
1652 {
1653     int i;
1654 
1655     for (i = 0; i < ctx->total_pages; ++i)
1656         put_page(ctx->ra_pool[i]);
1657 }
1658 
1659 /*
1660  * fetch ctx->valid_pages pages from offset
1661  * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1662  * However, if the offset is close to the end of the journal device,
1663  * ctx->valid_pages could be smaller than ctx->total_pages
1664  */
1665 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1666                       struct r5l_recovery_ctx *ctx,
1667                       sector_t offset)
1668 {
1669     struct bio bio;
1670     int ret;
1671 
1672     bio_init(&bio, log->rdev->bdev, ctx->ra_bvec,
1673          R5L_RECOVERY_PAGE_POOL_SIZE, REQ_OP_READ);
1674     bio.bi_iter.bi_sector = log->rdev->data_offset + offset;
1675 
1676     ctx->valid_pages = 0;
1677     ctx->pool_offset = offset;
1678 
1679     while (ctx->valid_pages < ctx->total_pages) {
1680         __bio_add_page(&bio, ctx->ra_pool[ctx->valid_pages], PAGE_SIZE,
1681                    0);
1682         ctx->valid_pages += 1;
1683 
1684         offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1685 
1686         if (offset == 0)  /* reached end of the device */
1687             break;
1688     }
1689 
1690     ret = submit_bio_wait(&bio);
1691     bio_uninit(&bio);
1692     return ret;
1693 }
1694 
1695 /*
1696  * try read a page from the read ahead page pool, if the page is not in the
1697  * pool, call r5l_recovery_fetch_ra_pool
1698  */
1699 static int r5l_recovery_read_page(struct r5l_log *log,
1700                   struct r5l_recovery_ctx *ctx,
1701                   struct page *page,
1702                   sector_t offset)
1703 {
1704     int ret;
1705 
1706     if (offset < ctx->pool_offset ||
1707         offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1708         ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1709         if (ret)
1710             return ret;
1711     }
1712 
1713     BUG_ON(offset < ctx->pool_offset ||
1714            offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1715 
1716     memcpy(page_address(page),
1717            page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1718                      BLOCK_SECTOR_SHIFT]),
1719            PAGE_SIZE);
1720     return 0;
1721 }
1722 
1723 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1724                     struct r5l_recovery_ctx *ctx)
1725 {
1726     struct page *page = ctx->meta_page;
1727     struct r5l_meta_block *mb;
1728     u32 crc, stored_crc;
1729     int ret;
1730 
1731     ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1732     if (ret != 0)
1733         return ret;
1734 
1735     mb = page_address(page);
1736     stored_crc = le32_to_cpu(mb->checksum);
1737     mb->checksum = 0;
1738 
1739     if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1740         le64_to_cpu(mb->seq) != ctx->seq ||
1741         mb->version != R5LOG_VERSION ||
1742         le64_to_cpu(mb->position) != ctx->pos)
1743         return -EINVAL;
1744 
1745     crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1746     if (stored_crc != crc)
1747         return -EINVAL;
1748 
1749     if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1750         return -EINVAL;
1751 
1752     ctx->meta_total_blocks = BLOCK_SECTORS;
1753 
1754     return 0;
1755 }
1756 
1757 static void
1758 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1759                      struct page *page,
1760                      sector_t pos, u64 seq)
1761 {
1762     struct r5l_meta_block *mb;
1763 
1764     mb = page_address(page);
1765     clear_page(mb);
1766     mb->magic = cpu_to_le32(R5LOG_MAGIC);
1767     mb->version = R5LOG_VERSION;
1768     mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1769     mb->seq = cpu_to_le64(seq);
1770     mb->position = cpu_to_le64(pos);
1771 }
1772 
1773 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1774                       u64 seq)
1775 {
1776     struct page *page;
1777     struct r5l_meta_block *mb;
1778 
1779     page = alloc_page(GFP_KERNEL);
1780     if (!page)
1781         return -ENOMEM;
1782     r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1783     mb = page_address(page);
1784     mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1785                          mb, PAGE_SIZE));
1786     if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE |
1787               REQ_SYNC | REQ_FUA, false)) {
1788         __free_page(page);
1789         return -EIO;
1790     }
1791     __free_page(page);
1792     return 0;
1793 }
1794 
1795 /*
1796  * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1797  * to mark valid (potentially not flushed) data in the journal.
1798  *
1799  * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1800  * so there should not be any mismatch here.
1801  */
1802 static void r5l_recovery_load_data(struct r5l_log *log,
1803                    struct stripe_head *sh,
1804                    struct r5l_recovery_ctx *ctx,
1805                    struct r5l_payload_data_parity *payload,
1806                    sector_t log_offset)
1807 {
1808     struct mddev *mddev = log->rdev->mddev;
1809     struct r5conf *conf = mddev->private;
1810     int dd_idx;
1811 
1812     raid5_compute_sector(conf,
1813                  le64_to_cpu(payload->location), 0,
1814                  &dd_idx, sh);
1815     r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1816     sh->dev[dd_idx].log_checksum =
1817         le32_to_cpu(payload->checksum[0]);
1818     ctx->meta_total_blocks += BLOCK_SECTORS;
1819 
1820     set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1821     set_bit(STRIPE_R5C_CACHING, &sh->state);
1822 }
1823 
1824 static void r5l_recovery_load_parity(struct r5l_log *log,
1825                      struct stripe_head *sh,
1826                      struct r5l_recovery_ctx *ctx,
1827                      struct r5l_payload_data_parity *payload,
1828                      sector_t log_offset)
1829 {
1830     struct mddev *mddev = log->rdev->mddev;
1831     struct r5conf *conf = mddev->private;
1832 
1833     ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1834     r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1835     sh->dev[sh->pd_idx].log_checksum =
1836         le32_to_cpu(payload->checksum[0]);
1837     set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1838 
1839     if (sh->qd_idx >= 0) {
1840         r5l_recovery_read_page(
1841             log, ctx, sh->dev[sh->qd_idx].page,
1842             r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1843         sh->dev[sh->qd_idx].log_checksum =
1844             le32_to_cpu(payload->checksum[1]);
1845         set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1846     }
1847     clear_bit(STRIPE_R5C_CACHING, &sh->state);
1848 }
1849 
1850 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1851 {
1852     int i;
1853 
1854     sh->state = 0;
1855     sh->log_start = MaxSector;
1856     for (i = sh->disks; i--; )
1857         sh->dev[i].flags = 0;
1858 }
1859 
1860 static void
1861 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1862                    struct stripe_head *sh,
1863                    struct r5l_recovery_ctx *ctx)
1864 {
1865     struct md_rdev *rdev, *rrdev;
1866     int disk_index;
1867     int data_count = 0;
1868 
1869     for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1870         if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1871             continue;
1872         if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1873             continue;
1874         data_count++;
1875     }
1876 
1877     /*
1878      * stripes that only have parity must have been flushed
1879      * before the crash that we are now recovering from, so
1880      * there is nothing more to recovery.
1881      */
1882     if (data_count == 0)
1883         goto out;
1884 
1885     for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1886         if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1887             continue;
1888 
1889         /* in case device is broken */
1890         rcu_read_lock();
1891         rdev = rcu_dereference(conf->disks[disk_index].rdev);
1892         if (rdev) {
1893             atomic_inc(&rdev->nr_pending);
1894             rcu_read_unlock();
1895             sync_page_io(rdev, sh->sector, PAGE_SIZE,
1896                      sh->dev[disk_index].page, REQ_OP_WRITE,
1897                      false);
1898             rdev_dec_pending(rdev, rdev->mddev);
1899             rcu_read_lock();
1900         }
1901         rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1902         if (rrdev) {
1903             atomic_inc(&rrdev->nr_pending);
1904             rcu_read_unlock();
1905             sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1906                      sh->dev[disk_index].page, REQ_OP_WRITE,
1907                      false);
1908             rdev_dec_pending(rrdev, rrdev->mddev);
1909             rcu_read_lock();
1910         }
1911         rcu_read_unlock();
1912     }
1913     ctx->data_parity_stripes++;
1914 out:
1915     r5l_recovery_reset_stripe(sh);
1916 }
1917 
1918 static struct stripe_head *
1919 r5c_recovery_alloc_stripe(
1920         struct r5conf *conf,
1921         sector_t stripe_sect,
1922         int noblock)
1923 {
1924     struct stripe_head *sh;
1925 
1926     sh = raid5_get_active_stripe(conf, stripe_sect, 0, noblock, 0);
1927     if (!sh)
1928         return NULL;  /* no more stripe available */
1929 
1930     r5l_recovery_reset_stripe(sh);
1931 
1932     return sh;
1933 }
1934 
1935 static struct stripe_head *
1936 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1937 {
1938     struct stripe_head *sh;
1939 
1940     list_for_each_entry(sh, list, lru)
1941         if (sh->sector == sect)
1942             return sh;
1943     return NULL;
1944 }
1945 
1946 static void
1947 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1948               struct r5l_recovery_ctx *ctx)
1949 {
1950     struct stripe_head *sh, *next;
1951 
1952     list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1953         r5l_recovery_reset_stripe(sh);
1954         list_del_init(&sh->lru);
1955         raid5_release_stripe(sh);
1956     }
1957 }
1958 
1959 static void
1960 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1961                 struct r5l_recovery_ctx *ctx)
1962 {
1963     struct stripe_head *sh, *next;
1964 
1965     list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1966         if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1967             r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1968             list_del_init(&sh->lru);
1969             raid5_release_stripe(sh);
1970         }
1971 }
1972 
1973 /* if matches return 0; otherwise return -EINVAL */
1974 static int
1975 r5l_recovery_verify_data_checksum(struct r5l_log *log,
1976                   struct r5l_recovery_ctx *ctx,
1977                   struct page *page,
1978                   sector_t log_offset, __le32 log_checksum)
1979 {
1980     void *addr;
1981     u32 checksum;
1982 
1983     r5l_recovery_read_page(log, ctx, page, log_offset);
1984     addr = kmap_atomic(page);
1985     checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1986     kunmap_atomic(addr);
1987     return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1988 }
1989 
1990 /*
1991  * before loading data to stripe cache, we need verify checksum for all data,
1992  * if there is mismatch for any data page, we drop all data in the mata block
1993  */
1994 static int
1995 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1996                      struct r5l_recovery_ctx *ctx)
1997 {
1998     struct mddev *mddev = log->rdev->mddev;
1999     struct r5conf *conf = mddev->private;
2000     struct r5l_meta_block *mb = page_address(ctx->meta_page);
2001     sector_t mb_offset = sizeof(struct r5l_meta_block);
2002     sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2003     struct page *page;
2004     struct r5l_payload_data_parity *payload;
2005     struct r5l_payload_flush *payload_flush;
2006 
2007     page = alloc_page(GFP_KERNEL);
2008     if (!page)
2009         return -ENOMEM;
2010 
2011     while (mb_offset < le32_to_cpu(mb->meta_size)) {
2012         payload = (void *)mb + mb_offset;
2013         payload_flush = (void *)mb + mb_offset;
2014 
2015         if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2016             if (r5l_recovery_verify_data_checksum(
2017                     log, ctx, page, log_offset,
2018                     payload->checksum[0]) < 0)
2019                 goto mismatch;
2020         } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2021             if (r5l_recovery_verify_data_checksum(
2022                     log, ctx, page, log_offset,
2023                     payload->checksum[0]) < 0)
2024                 goto mismatch;
2025             if (conf->max_degraded == 2 && /* q for RAID 6 */
2026                 r5l_recovery_verify_data_checksum(
2027                     log, ctx, page,
2028                     r5l_ring_add(log, log_offset,
2029                          BLOCK_SECTORS),
2030                     payload->checksum[1]) < 0)
2031                 goto mismatch;
2032         } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2033             /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2034         } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2035             goto mismatch;
2036 
2037         if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2038             mb_offset += sizeof(struct r5l_payload_flush) +
2039                 le32_to_cpu(payload_flush->size);
2040         } else {
2041             /* DATA or PARITY payload */
2042             log_offset = r5l_ring_add(log, log_offset,
2043                           le32_to_cpu(payload->size));
2044             mb_offset += sizeof(struct r5l_payload_data_parity) +
2045                 sizeof(__le32) *
2046                 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2047         }
2048 
2049     }
2050 
2051     put_page(page);
2052     return 0;
2053 
2054 mismatch:
2055     put_page(page);
2056     return -EINVAL;
2057 }
2058 
2059 /*
2060  * Analyze all data/parity pages in one meta block
2061  * Returns:
2062  * 0 for success
2063  * -EINVAL for unknown playload type
2064  * -EAGAIN for checksum mismatch of data page
2065  * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2066  */
2067 static int
2068 r5c_recovery_analyze_meta_block(struct r5l_log *log,
2069                 struct r5l_recovery_ctx *ctx,
2070                 struct list_head *cached_stripe_list)
2071 {
2072     struct mddev *mddev = log->rdev->mddev;
2073     struct r5conf *conf = mddev->private;
2074     struct r5l_meta_block *mb;
2075     struct r5l_payload_data_parity *payload;
2076     struct r5l_payload_flush *payload_flush;
2077     int mb_offset;
2078     sector_t log_offset;
2079     sector_t stripe_sect;
2080     struct stripe_head *sh;
2081     int ret;
2082 
2083     /*
2084      * for mismatch in data blocks, we will drop all data in this mb, but
2085      * we will still read next mb for other data with FLUSH flag, as
2086      * io_unit could finish out of order.
2087      */
2088     ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2089     if (ret == -EINVAL)
2090         return -EAGAIN;
2091     else if (ret)
2092         return ret;   /* -ENOMEM duo to alloc_page() failed */
2093 
2094     mb = page_address(ctx->meta_page);
2095     mb_offset = sizeof(struct r5l_meta_block);
2096     log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2097 
2098     while (mb_offset < le32_to_cpu(mb->meta_size)) {
2099         int dd;
2100 
2101         payload = (void *)mb + mb_offset;
2102         payload_flush = (void *)mb + mb_offset;
2103 
2104         if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2105             int i, count;
2106 
2107             count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2108             for (i = 0; i < count; ++i) {
2109                 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2110                 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2111                                 stripe_sect);
2112                 if (sh) {
2113                     WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2114                     r5l_recovery_reset_stripe(sh);
2115                     list_del_init(&sh->lru);
2116                     raid5_release_stripe(sh);
2117                 }
2118             }
2119 
2120             mb_offset += sizeof(struct r5l_payload_flush) +
2121                 le32_to_cpu(payload_flush->size);
2122             continue;
2123         }
2124 
2125         /* DATA or PARITY payload */
2126         stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2127             raid5_compute_sector(
2128                 conf, le64_to_cpu(payload->location), 0, &dd,
2129                 NULL)
2130             : le64_to_cpu(payload->location);
2131 
2132         sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2133                         stripe_sect);
2134 
2135         if (!sh) {
2136             sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1);
2137             /*
2138              * cannot get stripe from raid5_get_active_stripe
2139              * try replay some stripes
2140              */
2141             if (!sh) {
2142                 r5c_recovery_replay_stripes(
2143                     cached_stripe_list, ctx);
2144                 sh = r5c_recovery_alloc_stripe(
2145                     conf, stripe_sect, 1);
2146             }
2147             if (!sh) {
2148                 int new_size = conf->min_nr_stripes * 2;
2149                 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2150                     mdname(mddev),
2151                     new_size);
2152                 ret = raid5_set_cache_size(mddev, new_size);
2153                 if (conf->min_nr_stripes <= new_size / 2) {
2154                     pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
2155                         mdname(mddev),
2156                         ret,
2157                         new_size,
2158                         conf->min_nr_stripes,
2159                         conf->max_nr_stripes);
2160                     return -ENOMEM;
2161                 }
2162                 sh = r5c_recovery_alloc_stripe(
2163                     conf, stripe_sect, 0);
2164             }
2165             if (!sh) {
2166                 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2167                     mdname(mddev));
2168                 return -ENOMEM;
2169             }
2170             list_add_tail(&sh->lru, cached_stripe_list);
2171         }
2172 
2173         if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2174             if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2175                 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2176                 r5l_recovery_replay_one_stripe(conf, sh, ctx);
2177                 list_move_tail(&sh->lru, cached_stripe_list);
2178             }
2179             r5l_recovery_load_data(log, sh, ctx, payload,
2180                            log_offset);
2181         } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2182             r5l_recovery_load_parity(log, sh, ctx, payload,
2183                          log_offset);
2184         else
2185             return -EINVAL;
2186 
2187         log_offset = r5l_ring_add(log, log_offset,
2188                       le32_to_cpu(payload->size));
2189 
2190         mb_offset += sizeof(struct r5l_payload_data_parity) +
2191             sizeof(__le32) *
2192             (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2193     }
2194 
2195     return 0;
2196 }
2197 
2198 /*
2199  * Load the stripe into cache. The stripe will be written out later by
2200  * the stripe cache state machine.
2201  */
2202 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2203                      struct stripe_head *sh)
2204 {
2205     struct r5dev *dev;
2206     int i;
2207 
2208     for (i = sh->disks; i--; ) {
2209         dev = sh->dev + i;
2210         if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2211             set_bit(R5_InJournal, &dev->flags);
2212             set_bit(R5_UPTODATE, &dev->flags);
2213         }
2214     }
2215 }
2216 
2217 /*
2218  * Scan through the log for all to-be-flushed data
2219  *
2220  * For stripes with data and parity, namely Data-Parity stripe
2221  * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2222  *
2223  * For stripes with only data, namely Data-Only stripe
2224  * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2225  *
2226  * For a stripe, if we see data after parity, we should discard all previous
2227  * data and parity for this stripe, as these data are already flushed to
2228  * the array.
2229  *
2230  * At the end of the scan, we return the new journal_tail, which points to
2231  * first data-only stripe on the journal device, or next invalid meta block.
2232  */
2233 static int r5c_recovery_flush_log(struct r5l_log *log,
2234                   struct r5l_recovery_ctx *ctx)
2235 {
2236     struct stripe_head *sh;
2237     int ret = 0;
2238 
2239     /* scan through the log */
2240     while (1) {
2241         if (r5l_recovery_read_meta_block(log, ctx))
2242             break;
2243 
2244         ret = r5c_recovery_analyze_meta_block(log, ctx,
2245                               &ctx->cached_list);
2246         /*
2247          * -EAGAIN means mismatch in data block, in this case, we still
2248          * try scan the next metablock
2249          */
2250         if (ret && ret != -EAGAIN)
2251             break;   /* ret == -EINVAL or -ENOMEM */
2252         ctx->seq++;
2253         ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2254     }
2255 
2256     if (ret == -ENOMEM) {
2257         r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2258         return ret;
2259     }
2260 
2261     /* replay data-parity stripes */
2262     r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2263 
2264     /* load data-only stripes to stripe cache */
2265     list_for_each_entry(sh, &ctx->cached_list, lru) {
2266         WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2267         r5c_recovery_load_one_stripe(log, sh);
2268         ctx->data_only_stripes++;
2269     }
2270 
2271     return 0;
2272 }
2273 
2274 /*
2275  * we did a recovery. Now ctx.pos points to an invalid meta block. New
2276  * log will start here. but we can't let superblock point to last valid
2277  * meta block. The log might looks like:
2278  * | meta 1| meta 2| meta 3|
2279  * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2280  * superblock points to meta 1, we write a new valid meta 2n.  if crash
2281  * happens again, new recovery will start from meta 1. Since meta 2n is
2282  * valid now, recovery will think meta 3 is valid, which is wrong.
2283  * The solution is we create a new meta in meta2 with its seq == meta
2284  * 1's seq + 10000 and let superblock points to meta2. The same recovery
2285  * will not think meta 3 is a valid meta, because its seq doesn't match
2286  */
2287 
2288 /*
2289  * Before recovery, the log looks like the following
2290  *
2291  *   ---------------------------------------------
2292  *   |           valid log        | invalid log  |
2293  *   ---------------------------------------------
2294  *   ^
2295  *   |- log->last_checkpoint
2296  *   |- log->last_cp_seq
2297  *
2298  * Now we scan through the log until we see invalid entry
2299  *
2300  *   ---------------------------------------------
2301  *   |           valid log        | invalid log  |
2302  *   ---------------------------------------------
2303  *   ^                            ^
2304  *   |- log->last_checkpoint      |- ctx->pos
2305  *   |- log->last_cp_seq          |- ctx->seq
2306  *
2307  * From this point, we need to increase seq number by 10 to avoid
2308  * confusing next recovery.
2309  *
2310  *   ---------------------------------------------
2311  *   |           valid log        | invalid log  |
2312  *   ---------------------------------------------
2313  *   ^                              ^
2314  *   |- log->last_checkpoint        |- ctx->pos+1
2315  *   |- log->last_cp_seq            |- ctx->seq+10001
2316  *
2317  * However, it is not safe to start the state machine yet, because data only
2318  * parities are not yet secured in RAID. To save these data only parities, we
2319  * rewrite them from seq+11.
2320  *
2321  *   -----------------------------------------------------------------
2322  *   |           valid log        | data only stripes | invalid log  |
2323  *   -----------------------------------------------------------------
2324  *   ^                                                ^
2325  *   |- log->last_checkpoint                          |- ctx->pos+n
2326  *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2327  *
2328  * If failure happens again during this process, the recovery can safe start
2329  * again from log->last_checkpoint.
2330  *
2331  * Once data only stripes are rewritten to journal, we move log_tail
2332  *
2333  *   -----------------------------------------------------------------
2334  *   |     old log        |    data only stripes    | invalid log  |
2335  *   -----------------------------------------------------------------
2336  *                        ^                         ^
2337  *                        |- log->last_checkpoint   |- ctx->pos+n
2338  *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2339  *
2340  * Then we can safely start the state machine. If failure happens from this
2341  * point on, the recovery will start from new log->last_checkpoint.
2342  */
2343 static int
2344 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2345                        struct r5l_recovery_ctx *ctx)
2346 {
2347     struct stripe_head *sh;
2348     struct mddev *mddev = log->rdev->mddev;
2349     struct page *page;
2350     sector_t next_checkpoint = MaxSector;
2351 
2352     page = alloc_page(GFP_KERNEL);
2353     if (!page) {
2354         pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2355                mdname(mddev));
2356         return -ENOMEM;
2357     }
2358 
2359     WARN_ON(list_empty(&ctx->cached_list));
2360 
2361     list_for_each_entry(sh, &ctx->cached_list, lru) {
2362         struct r5l_meta_block *mb;
2363         int i;
2364         int offset;
2365         sector_t write_pos;
2366 
2367         WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2368         r5l_recovery_create_empty_meta_block(log, page,
2369                              ctx->pos, ctx->seq);
2370         mb = page_address(page);
2371         offset = le32_to_cpu(mb->meta_size);
2372         write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2373 
2374         for (i = sh->disks; i--; ) {
2375             struct r5dev *dev = &sh->dev[i];
2376             struct r5l_payload_data_parity *payload;
2377             void *addr;
2378 
2379             if (test_bit(R5_InJournal, &dev->flags)) {
2380                 payload = (void *)mb + offset;
2381                 payload->header.type = cpu_to_le16(
2382                     R5LOG_PAYLOAD_DATA);
2383                 payload->size = cpu_to_le32(BLOCK_SECTORS);
2384                 payload->location = cpu_to_le64(
2385                     raid5_compute_blocknr(sh, i, 0));
2386                 addr = kmap_atomic(dev->page);
2387                 payload->checksum[0] = cpu_to_le32(
2388                     crc32c_le(log->uuid_checksum, addr,
2389                           PAGE_SIZE));
2390                 kunmap_atomic(addr);
2391                 sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2392                          dev->page, REQ_OP_WRITE, false);
2393                 write_pos = r5l_ring_add(log, write_pos,
2394                              BLOCK_SECTORS);
2395                 offset += sizeof(__le32) +
2396                     sizeof(struct r5l_payload_data_parity);
2397 
2398             }
2399         }
2400         mb->meta_size = cpu_to_le32(offset);
2401         mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2402                              mb, PAGE_SIZE));
2403         sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2404                  REQ_OP_WRITE | REQ_SYNC | REQ_FUA, false);
2405         sh->log_start = ctx->pos;
2406         list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2407         atomic_inc(&log->stripe_in_journal_count);
2408         ctx->pos = write_pos;
2409         ctx->seq += 1;
2410         next_checkpoint = sh->log_start;
2411     }
2412     log->next_checkpoint = next_checkpoint;
2413     __free_page(page);
2414     return 0;
2415 }
2416 
2417 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2418                          struct r5l_recovery_ctx *ctx)
2419 {
2420     struct mddev *mddev = log->rdev->mddev;
2421     struct r5conf *conf = mddev->private;
2422     struct stripe_head *sh, *next;
2423     bool cleared_pending = false;
2424 
2425     if (ctx->data_only_stripes == 0)
2426         return;
2427 
2428     if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2429         cleared_pending = true;
2430         clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2431     }
2432     log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2433 
2434     list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2435         r5c_make_stripe_write_out(sh);
2436         set_bit(STRIPE_HANDLE, &sh->state);
2437         list_del_init(&sh->lru);
2438         raid5_release_stripe(sh);
2439     }
2440 
2441     /* reuse conf->wait_for_quiescent in recovery */
2442     wait_event(conf->wait_for_quiescent,
2443            atomic_read(&conf->active_stripes) == 0);
2444 
2445     log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2446     if (cleared_pending)
2447         set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2448 }
2449 
2450 static int r5l_recovery_log(struct r5l_log *log)
2451 {
2452     struct mddev *mddev = log->rdev->mddev;
2453     struct r5l_recovery_ctx *ctx;
2454     int ret;
2455     sector_t pos;
2456 
2457     ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2458     if (!ctx)
2459         return -ENOMEM;
2460 
2461     ctx->pos = log->last_checkpoint;
2462     ctx->seq = log->last_cp_seq;
2463     INIT_LIST_HEAD(&ctx->cached_list);
2464     ctx->meta_page = alloc_page(GFP_KERNEL);
2465 
2466     if (!ctx->meta_page) {
2467         ret =  -ENOMEM;
2468         goto meta_page;
2469     }
2470 
2471     if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2472         ret = -ENOMEM;
2473         goto ra_pool;
2474     }
2475 
2476     ret = r5c_recovery_flush_log(log, ctx);
2477 
2478     if (ret)
2479         goto error;
2480 
2481     pos = ctx->pos;
2482     ctx->seq += 10000;
2483 
2484     if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2485         pr_info("md/raid:%s: starting from clean shutdown\n",
2486              mdname(mddev));
2487     else
2488         pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2489              mdname(mddev), ctx->data_only_stripes,
2490              ctx->data_parity_stripes);
2491 
2492     if (ctx->data_only_stripes == 0) {
2493         log->next_checkpoint = ctx->pos;
2494         r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2495         ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2496     } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2497         pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2498                mdname(mddev));
2499         ret =  -EIO;
2500         goto error;
2501     }
2502 
2503     log->log_start = ctx->pos;
2504     log->seq = ctx->seq;
2505     log->last_checkpoint = pos;
2506     r5l_write_super(log, pos);
2507 
2508     r5c_recovery_flush_data_only_stripes(log, ctx);
2509     ret = 0;
2510 error:
2511     r5l_recovery_free_ra_pool(log, ctx);
2512 ra_pool:
2513     __free_page(ctx->meta_page);
2514 meta_page:
2515     kfree(ctx);
2516     return ret;
2517 }
2518 
2519 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2520 {
2521     struct mddev *mddev = log->rdev->mddev;
2522 
2523     log->rdev->journal_tail = cp;
2524     set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2525 }
2526 
2527 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2528 {
2529     struct r5conf *conf;
2530     int ret;
2531 
2532     ret = mddev_lock(mddev);
2533     if (ret)
2534         return ret;
2535 
2536     conf = mddev->private;
2537     if (!conf || !conf->log)
2538         goto out_unlock;
2539 
2540     switch (conf->log->r5c_journal_mode) {
2541     case R5C_JOURNAL_MODE_WRITE_THROUGH:
2542         ret = snprintf(
2543             page, PAGE_SIZE, "[%s] %s\n",
2544             r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2545             r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2546         break;
2547     case R5C_JOURNAL_MODE_WRITE_BACK:
2548         ret = snprintf(
2549             page, PAGE_SIZE, "%s [%s]\n",
2550             r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2551             r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2552         break;
2553     default:
2554         ret = 0;
2555     }
2556 
2557 out_unlock:
2558     mddev_unlock(mddev);
2559     return ret;
2560 }
2561 
2562 /*
2563  * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2564  *
2565  * @mode as defined in 'enum r5c_journal_mode'.
2566  *
2567  */
2568 int r5c_journal_mode_set(struct mddev *mddev, int mode)
2569 {
2570     struct r5conf *conf;
2571 
2572     if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2573         mode > R5C_JOURNAL_MODE_WRITE_BACK)
2574         return -EINVAL;
2575 
2576     conf = mddev->private;
2577     if (!conf || !conf->log)
2578         return -ENODEV;
2579 
2580     if (raid5_calc_degraded(conf) > 0 &&
2581         mode == R5C_JOURNAL_MODE_WRITE_BACK)
2582         return -EINVAL;
2583 
2584     mddev_suspend(mddev);
2585     conf->log->r5c_journal_mode = mode;
2586     mddev_resume(mddev);
2587 
2588     pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2589          mdname(mddev), mode, r5c_journal_mode_str[mode]);
2590     return 0;
2591 }
2592 EXPORT_SYMBOL(r5c_journal_mode_set);
2593 
2594 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2595                       const char *page, size_t length)
2596 {
2597     int mode = ARRAY_SIZE(r5c_journal_mode_str);
2598     size_t len = length;
2599     int ret;
2600 
2601     if (len < 2)
2602         return -EINVAL;
2603 
2604     if (page[len - 1] == '\n')
2605         len--;
2606 
2607     while (mode--)
2608         if (strlen(r5c_journal_mode_str[mode]) == len &&
2609             !strncmp(page, r5c_journal_mode_str[mode], len))
2610             break;
2611     ret = mddev_lock(mddev);
2612     if (ret)
2613         return ret;
2614     ret = r5c_journal_mode_set(mddev, mode);
2615     mddev_unlock(mddev);
2616     return ret ?: length;
2617 }
2618 
2619 struct md_sysfs_entry
2620 r5c_journal_mode = __ATTR(journal_mode, 0644,
2621               r5c_journal_mode_show, r5c_journal_mode_store);
2622 
2623 /*
2624  * Try handle write operation in caching phase. This function should only
2625  * be called in write-back mode.
2626  *
2627  * If all outstanding writes can be handled in caching phase, returns 0
2628  * If writes requires write-out phase, call r5c_make_stripe_write_out()
2629  * and returns -EAGAIN
2630  */
2631 int r5c_try_caching_write(struct r5conf *conf,
2632               struct stripe_head *sh,
2633               struct stripe_head_state *s,
2634               int disks)
2635 {
2636     struct r5l_log *log = conf->log;
2637     int i;
2638     struct r5dev *dev;
2639     int to_cache = 0;
2640     void __rcu **pslot;
2641     sector_t tree_index;
2642     int ret;
2643     uintptr_t refcount;
2644 
2645     BUG_ON(!r5c_is_writeback(log));
2646 
2647     if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2648         /*
2649          * There are two different scenarios here:
2650          *  1. The stripe has some data cached, and it is sent to
2651          *     write-out phase for reclaim
2652          *  2. The stripe is clean, and this is the first write
2653          *
2654          * For 1, return -EAGAIN, so we continue with
2655          * handle_stripe_dirtying().
2656          *
2657          * For 2, set STRIPE_R5C_CACHING and continue with caching
2658          * write.
2659          */
2660 
2661         /* case 1: anything injournal or anything in written */
2662         if (s->injournal > 0 || s->written > 0)
2663             return -EAGAIN;
2664         /* case 2 */
2665         set_bit(STRIPE_R5C_CACHING, &sh->state);
2666     }
2667 
2668     /*
2669      * When run in degraded mode, array is set to write-through mode.
2670      * This check helps drain pending write safely in the transition to
2671      * write-through mode.
2672      *
2673      * When a stripe is syncing, the write is also handled in write
2674      * through mode.
2675      */
2676     if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2677         r5c_make_stripe_write_out(sh);
2678         return -EAGAIN;
2679     }
2680 
2681     for (i = disks; i--; ) {
2682         dev = &sh->dev[i];
2683         /* if non-overwrite, use writing-out phase */
2684         if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2685             !test_bit(R5_InJournal, &dev->flags)) {
2686             r5c_make_stripe_write_out(sh);
2687             return -EAGAIN;
2688         }
2689     }
2690 
2691     /* if the stripe is not counted in big_stripe_tree, add it now */
2692     if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2693         !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2694         tree_index = r5c_tree_index(conf, sh->sector);
2695         spin_lock(&log->tree_lock);
2696         pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2697                            tree_index);
2698         if (pslot) {
2699             refcount = (uintptr_t)radix_tree_deref_slot_protected(
2700                 pslot, &log->tree_lock) >>
2701                 R5C_RADIX_COUNT_SHIFT;
2702             radix_tree_replace_slot(
2703                 &log->big_stripe_tree, pslot,
2704                 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2705         } else {
2706             /*
2707              * this radix_tree_insert can fail safely, so no
2708              * need to call radix_tree_preload()
2709              */
2710             ret = radix_tree_insert(
2711                 &log->big_stripe_tree, tree_index,
2712                 (void *)(1 << R5C_RADIX_COUNT_SHIFT));
2713             if (ret) {
2714                 spin_unlock(&log->tree_lock);
2715                 r5c_make_stripe_write_out(sh);
2716                 return -EAGAIN;
2717             }
2718         }
2719         spin_unlock(&log->tree_lock);
2720 
2721         /*
2722          * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2723          * counted in the radix tree
2724          */
2725         set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2726         atomic_inc(&conf->r5c_cached_partial_stripes);
2727     }
2728 
2729     for (i = disks; i--; ) {
2730         dev = &sh->dev[i];
2731         if (dev->towrite) {
2732             set_bit(R5_Wantwrite, &dev->flags);
2733             set_bit(R5_Wantdrain, &dev->flags);
2734             set_bit(R5_LOCKED, &dev->flags);
2735             to_cache++;
2736         }
2737     }
2738 
2739     if (to_cache) {
2740         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2741         /*
2742          * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2743          * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2744          * r5c_handle_data_cached()
2745          */
2746         set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2747     }
2748 
2749     return 0;
2750 }
2751 
2752 /*
2753  * free extra pages (orig_page) we allocated for prexor
2754  */
2755 void r5c_release_extra_page(struct stripe_head *sh)
2756 {
2757     struct r5conf *conf = sh->raid_conf;
2758     int i;
2759     bool using_disk_info_extra_page;
2760 
2761     using_disk_info_extra_page =
2762         sh->dev[0].orig_page == conf->disks[0].extra_page;
2763 
2764     for (i = sh->disks; i--; )
2765         if (sh->dev[i].page != sh->dev[i].orig_page) {
2766             struct page *p = sh->dev[i].orig_page;
2767 
2768             sh->dev[i].orig_page = sh->dev[i].page;
2769             clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2770 
2771             if (!using_disk_info_extra_page)
2772                 put_page(p);
2773         }
2774 
2775     if (using_disk_info_extra_page) {
2776         clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2777         md_wakeup_thread(conf->mddev->thread);
2778     }
2779 }
2780 
2781 void r5c_use_extra_page(struct stripe_head *sh)
2782 {
2783     struct r5conf *conf = sh->raid_conf;
2784     int i;
2785     struct r5dev *dev;
2786 
2787     for (i = sh->disks; i--; ) {
2788         dev = &sh->dev[i];
2789         if (dev->orig_page != dev->page)
2790             put_page(dev->orig_page);
2791         dev->orig_page = conf->disks[i].extra_page;
2792     }
2793 }
2794 
2795 /*
2796  * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2797  * stripe is committed to RAID disks.
2798  */
2799 void r5c_finish_stripe_write_out(struct r5conf *conf,
2800                  struct stripe_head *sh,
2801                  struct stripe_head_state *s)
2802 {
2803     struct r5l_log *log = conf->log;
2804     int i;
2805     int do_wakeup = 0;
2806     sector_t tree_index;
2807     void __rcu **pslot;
2808     uintptr_t refcount;
2809 
2810     if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2811         return;
2812 
2813     WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2814     clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2815 
2816     if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2817         return;
2818 
2819     for (i = sh->disks; i--; ) {
2820         clear_bit(R5_InJournal, &sh->dev[i].flags);
2821         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2822             do_wakeup = 1;
2823     }
2824 
2825     /*
2826      * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2827      * We updated R5_InJournal, so we also update s->injournal.
2828      */
2829     s->injournal = 0;
2830 
2831     if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2832         if (atomic_dec_and_test(&conf->pending_full_writes))
2833             md_wakeup_thread(conf->mddev->thread);
2834 
2835     if (do_wakeup)
2836         wake_up(&conf->wait_for_overlap);
2837 
2838     spin_lock_irq(&log->stripe_in_journal_lock);
2839     list_del_init(&sh->r5c);
2840     spin_unlock_irq(&log->stripe_in_journal_lock);
2841     sh->log_start = MaxSector;
2842 
2843     atomic_dec(&log->stripe_in_journal_count);
2844     r5c_update_log_state(log);
2845 
2846     /* stop counting this stripe in big_stripe_tree */
2847     if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2848         test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2849         tree_index = r5c_tree_index(conf, sh->sector);
2850         spin_lock(&log->tree_lock);
2851         pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2852                            tree_index);
2853         BUG_ON(pslot == NULL);
2854         refcount = (uintptr_t)radix_tree_deref_slot_protected(
2855             pslot, &log->tree_lock) >>
2856             R5C_RADIX_COUNT_SHIFT;
2857         if (refcount == 1)
2858             radix_tree_delete(&log->big_stripe_tree, tree_index);
2859         else
2860             radix_tree_replace_slot(
2861                 &log->big_stripe_tree, pslot,
2862                 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2863         spin_unlock(&log->tree_lock);
2864     }
2865 
2866     if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2867         BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2868         atomic_dec(&conf->r5c_flushing_partial_stripes);
2869         atomic_dec(&conf->r5c_cached_partial_stripes);
2870     }
2871 
2872     if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2873         BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2874         atomic_dec(&conf->r5c_flushing_full_stripes);
2875         atomic_dec(&conf->r5c_cached_full_stripes);
2876     }
2877 
2878     r5l_append_flush_payload(log, sh->sector);
2879     /* stripe is flused to raid disks, we can do resync now */
2880     if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2881         set_bit(STRIPE_HANDLE, &sh->state);
2882 }
2883 
2884 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2885 {
2886     struct r5conf *conf = sh->raid_conf;
2887     int pages = 0;
2888     int reserve;
2889     int i;
2890     int ret = 0;
2891 
2892     BUG_ON(!log);
2893 
2894     for (i = 0; i < sh->disks; i++) {
2895         void *addr;
2896 
2897         if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2898             continue;
2899         addr = kmap_atomic(sh->dev[i].page);
2900         sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2901                             addr, PAGE_SIZE);
2902         kunmap_atomic(addr);
2903         pages++;
2904     }
2905     WARN_ON(pages == 0);
2906 
2907     /*
2908      * The stripe must enter state machine again to call endio, so
2909      * don't delay.
2910      */
2911     clear_bit(STRIPE_DELAYED, &sh->state);
2912     atomic_inc(&sh->count);
2913 
2914     mutex_lock(&log->io_mutex);
2915     /* meta + data */
2916     reserve = (1 + pages) << (PAGE_SHIFT - 9);
2917 
2918     if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2919         sh->log_start == MaxSector)
2920         r5l_add_no_space_stripe(log, sh);
2921     else if (!r5l_has_free_space(log, reserve)) {
2922         if (sh->log_start == log->last_checkpoint)
2923             BUG();
2924         else
2925             r5l_add_no_space_stripe(log, sh);
2926     } else {
2927         ret = r5l_log_stripe(log, sh, pages, 0);
2928         if (ret) {
2929             spin_lock_irq(&log->io_list_lock);
2930             list_add_tail(&sh->log_list, &log->no_mem_stripes);
2931             spin_unlock_irq(&log->io_list_lock);
2932         }
2933     }
2934 
2935     mutex_unlock(&log->io_mutex);
2936     return 0;
2937 }
2938 
2939 /* check whether this big stripe is in write back cache. */
2940 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2941 {
2942     struct r5l_log *log = conf->log;
2943     sector_t tree_index;
2944     void *slot;
2945 
2946     if (!log)
2947         return false;
2948 
2949     WARN_ON_ONCE(!rcu_read_lock_held());
2950     tree_index = r5c_tree_index(conf, sect);
2951     slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2952     return slot != NULL;
2953 }
2954 
2955 static int r5l_load_log(struct r5l_log *log)
2956 {
2957     struct md_rdev *rdev = log->rdev;
2958     struct page *page;
2959     struct r5l_meta_block *mb;
2960     sector_t cp = log->rdev->journal_tail;
2961     u32 stored_crc, expected_crc;
2962     bool create_super = false;
2963     int ret = 0;
2964 
2965     /* Make sure it's valid */
2966     if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2967         cp = 0;
2968     page = alloc_page(GFP_KERNEL);
2969     if (!page)
2970         return -ENOMEM;
2971 
2972     if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, false)) {
2973         ret = -EIO;
2974         goto ioerr;
2975     }
2976     mb = page_address(page);
2977 
2978     if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2979         mb->version != R5LOG_VERSION) {
2980         create_super = true;
2981         goto create;
2982     }
2983     stored_crc = le32_to_cpu(mb->checksum);
2984     mb->checksum = 0;
2985     expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2986     if (stored_crc != expected_crc) {
2987         create_super = true;
2988         goto create;
2989     }
2990     if (le64_to_cpu(mb->position) != cp) {
2991         create_super = true;
2992         goto create;
2993     }
2994 create:
2995     if (create_super) {
2996         log->last_cp_seq = prandom_u32();
2997         cp = 0;
2998         r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
2999         /*
3000          * Make sure super points to correct address. Log might have
3001          * data very soon. If super hasn't correct log tail address,
3002          * recovery can't find the log
3003          */
3004         r5l_write_super(log, cp);
3005     } else
3006         log->last_cp_seq = le64_to_cpu(mb->seq);
3007 
3008     log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
3009     log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3010     if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3011         log->max_free_space = RECLAIM_MAX_FREE_SPACE;
3012     log->last_checkpoint = cp;
3013 
3014     __free_page(page);
3015 
3016     if (create_super) {
3017         log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3018         log->seq = log->last_cp_seq + 1;
3019         log->next_checkpoint = cp;
3020     } else
3021         ret = r5l_recovery_log(log);
3022 
3023     r5c_update_log_state(log);
3024     return ret;
3025 ioerr:
3026     __free_page(page);
3027     return ret;
3028 }
3029 
3030 int r5l_start(struct r5l_log *log)
3031 {
3032     int ret;
3033 
3034     if (!log)
3035         return 0;
3036 
3037     ret = r5l_load_log(log);
3038     if (ret) {
3039         struct mddev *mddev = log->rdev->mddev;
3040         struct r5conf *conf = mddev->private;
3041 
3042         r5l_exit_log(conf);
3043     }
3044     return ret;
3045 }
3046 
3047 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3048 {
3049     struct r5conf *conf = mddev->private;
3050     struct r5l_log *log = conf->log;
3051 
3052     if (!log)
3053         return;
3054 
3055     if ((raid5_calc_degraded(conf) > 0 ||
3056          test_bit(Journal, &rdev->flags)) &&
3057         conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3058         schedule_work(&log->disable_writeback_work);
3059 }
3060 
3061 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3062 {
3063     struct request_queue *q = bdev_get_queue(rdev->bdev);
3064     struct r5l_log *log;
3065     int ret;
3066 
3067     pr_debug("md/raid:%s: using device %pg as journal\n",
3068          mdname(conf->mddev), rdev->bdev);
3069 
3070     if (PAGE_SIZE != 4096)
3071         return -EINVAL;
3072 
3073     /*
3074      * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3075      * raid_disks r5l_payload_data_parity.
3076      *
3077      * Write journal and cache does not work for very big array
3078      * (raid_disks > 203)
3079      */
3080     if (sizeof(struct r5l_meta_block) +
3081         ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3082          conf->raid_disks) > PAGE_SIZE) {
3083         pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3084                mdname(conf->mddev), conf->raid_disks);
3085         return -EINVAL;
3086     }
3087 
3088     log = kzalloc(sizeof(*log), GFP_KERNEL);
3089     if (!log)
3090         return -ENOMEM;
3091     log->rdev = rdev;
3092 
3093     log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
3094 
3095     log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3096                        sizeof(rdev->mddev->uuid));
3097 
3098     mutex_init(&log->io_mutex);
3099 
3100     spin_lock_init(&log->io_list_lock);
3101     INIT_LIST_HEAD(&log->running_ios);
3102     INIT_LIST_HEAD(&log->io_end_ios);
3103     INIT_LIST_HEAD(&log->flushing_ios);
3104     INIT_LIST_HEAD(&log->finished_ios);
3105 
3106     log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3107     if (!log->io_kc)
3108         goto io_kc;
3109 
3110     ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
3111     if (ret)
3112         goto io_pool;
3113 
3114     ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3115     if (ret)
3116         goto io_bs;
3117 
3118     ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
3119     if (ret)
3120         goto out_mempool;
3121 
3122     spin_lock_init(&log->tree_lock);
3123     INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3124 
3125     log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3126                          log->rdev->mddev, "reclaim");
3127     if (!log->reclaim_thread)
3128         goto reclaim_thread;
3129     log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3130 
3131     init_waitqueue_head(&log->iounit_wait);
3132 
3133     INIT_LIST_HEAD(&log->no_mem_stripes);
3134 
3135     INIT_LIST_HEAD(&log->no_space_stripes);
3136     spin_lock_init(&log->no_space_stripes_lock);
3137 
3138     INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3139     INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3140 
3141     log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3142     INIT_LIST_HEAD(&log->stripe_in_journal_list);
3143     spin_lock_init(&log->stripe_in_journal_lock);
3144     atomic_set(&log->stripe_in_journal_count, 0);
3145 
3146     conf->log = log;
3147 
3148     set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3149     return 0;
3150 
3151 reclaim_thread:
3152     mempool_exit(&log->meta_pool);
3153 out_mempool:
3154     bioset_exit(&log->bs);
3155 io_bs:
3156     mempool_exit(&log->io_pool);
3157 io_pool:
3158     kmem_cache_destroy(log->io_kc);
3159 io_kc:
3160     kfree(log);
3161     return -EINVAL;
3162 }
3163 
3164 void r5l_exit_log(struct r5conf *conf)
3165 {
3166     struct r5l_log *log = conf->log;
3167 
3168     /* Ensure disable_writeback_work wakes up and exits */
3169     wake_up(&conf->mddev->sb_wait);
3170     flush_work(&log->disable_writeback_work);
3171     md_unregister_thread(&log->reclaim_thread);
3172 
3173     conf->log = NULL;
3174 
3175     mempool_exit(&log->meta_pool);
3176     bioset_exit(&log->bs);
3177     mempool_exit(&log->io_pool);
3178     kmem_cache_destroy(log->io_kc);
3179     kfree(log);
3180 }