Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
0003  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
0004  *
0005  * This file is released under the GPL.
0006  */
0007 
0008 #include "dm-core.h"
0009 #include "dm-rq.h"
0010 #include "dm-uevent.h"
0011 #include "dm-ima.h"
0012 
0013 #include <linux/init.h>
0014 #include <linux/module.h>
0015 #include <linux/mutex.h>
0016 #include <linux/sched/mm.h>
0017 #include <linux/sched/signal.h>
0018 #include <linux/blkpg.h>
0019 #include <linux/bio.h>
0020 #include <linux/mempool.h>
0021 #include <linux/dax.h>
0022 #include <linux/slab.h>
0023 #include <linux/idr.h>
0024 #include <linux/uio.h>
0025 #include <linux/hdreg.h>
0026 #include <linux/delay.h>
0027 #include <linux/wait.h>
0028 #include <linux/pr.h>
0029 #include <linux/refcount.h>
0030 #include <linux/part_stat.h>
0031 #include <linux/blk-crypto.h>
0032 #include <linux/blk-crypto-profile.h>
0033 
0034 #define DM_MSG_PREFIX "core"
0035 
0036 /*
0037  * Cookies are numeric values sent with CHANGE and REMOVE
0038  * uevents while resuming, removing or renaming the device.
0039  */
0040 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
0041 #define DM_COOKIE_LENGTH 24
0042 
0043 /*
0044  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
0045  * dm_io into one list, and reuse bio->bi_private as the list head. Before
0046  * ending this fs bio, we will recover its ->bi_private.
0047  */
0048 #define REQ_DM_POLL_LIST    REQ_DRV
0049 
0050 static const char *_name = DM_NAME;
0051 
0052 static unsigned int major = 0;
0053 static unsigned int _major = 0;
0054 
0055 static DEFINE_IDR(_minor_idr);
0056 
0057 static DEFINE_SPINLOCK(_minor_lock);
0058 
0059 static void do_deferred_remove(struct work_struct *w);
0060 
0061 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
0062 
0063 static struct workqueue_struct *deferred_remove_workqueue;
0064 
0065 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
0066 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
0067 
0068 void dm_issue_global_event(void)
0069 {
0070     atomic_inc(&dm_global_event_nr);
0071     wake_up(&dm_global_eventq);
0072 }
0073 
0074 DEFINE_STATIC_KEY_FALSE(stats_enabled);
0075 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
0076 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
0077 
0078 /*
0079  * One of these is allocated (on-stack) per original bio.
0080  */
0081 struct clone_info {
0082     struct dm_table *map;
0083     struct bio *bio;
0084     struct dm_io *io;
0085     sector_t sector;
0086     unsigned sector_count;
0087     bool is_abnormal_io:1;
0088     bool submit_as_polled:1;
0089 };
0090 
0091 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
0092 {
0093     return container_of(clone, struct dm_target_io, clone);
0094 }
0095 
0096 void *dm_per_bio_data(struct bio *bio, size_t data_size)
0097 {
0098     if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
0099         return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
0100     return (char *)bio - DM_IO_BIO_OFFSET - data_size;
0101 }
0102 EXPORT_SYMBOL_GPL(dm_per_bio_data);
0103 
0104 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
0105 {
0106     struct dm_io *io = (struct dm_io *)((char *)data + data_size);
0107     if (io->magic == DM_IO_MAGIC)
0108         return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
0109     BUG_ON(io->magic != DM_TIO_MAGIC);
0110     return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
0111 }
0112 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
0113 
0114 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
0115 {
0116     return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
0117 }
0118 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
0119 
0120 #define MINOR_ALLOCED ((void *)-1)
0121 
0122 #define DM_NUMA_NODE NUMA_NO_NODE
0123 static int dm_numa_node = DM_NUMA_NODE;
0124 
0125 #define DEFAULT_SWAP_BIOS   (8 * 1048576 / PAGE_SIZE)
0126 static int swap_bios = DEFAULT_SWAP_BIOS;
0127 static int get_swap_bios(void)
0128 {
0129     int latch = READ_ONCE(swap_bios);
0130     if (unlikely(latch <= 0))
0131         latch = DEFAULT_SWAP_BIOS;
0132     return latch;
0133 }
0134 
0135 struct table_device {
0136     struct list_head list;
0137     refcount_t count;
0138     struct dm_dev dm_dev;
0139 };
0140 
0141 /*
0142  * Bio-based DM's mempools' reserved IOs set by the user.
0143  */
0144 #define RESERVED_BIO_BASED_IOS      16
0145 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
0146 
0147 static int __dm_get_module_param_int(int *module_param, int min, int max)
0148 {
0149     int param = READ_ONCE(*module_param);
0150     int modified_param = 0;
0151     bool modified = true;
0152 
0153     if (param < min)
0154         modified_param = min;
0155     else if (param > max)
0156         modified_param = max;
0157     else
0158         modified = false;
0159 
0160     if (modified) {
0161         (void)cmpxchg(module_param, param, modified_param);
0162         param = modified_param;
0163     }
0164 
0165     return param;
0166 }
0167 
0168 unsigned __dm_get_module_param(unsigned *module_param,
0169                    unsigned def, unsigned max)
0170 {
0171     unsigned param = READ_ONCE(*module_param);
0172     unsigned modified_param = 0;
0173 
0174     if (!param)
0175         modified_param = def;
0176     else if (param > max)
0177         modified_param = max;
0178 
0179     if (modified_param) {
0180         (void)cmpxchg(module_param, param, modified_param);
0181         param = modified_param;
0182     }
0183 
0184     return param;
0185 }
0186 
0187 unsigned dm_get_reserved_bio_based_ios(void)
0188 {
0189     return __dm_get_module_param(&reserved_bio_based_ios,
0190                      RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
0191 }
0192 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
0193 
0194 static unsigned dm_get_numa_node(void)
0195 {
0196     return __dm_get_module_param_int(&dm_numa_node,
0197                      DM_NUMA_NODE, num_online_nodes() - 1);
0198 }
0199 
0200 static int __init local_init(void)
0201 {
0202     int r;
0203 
0204     r = dm_uevent_init();
0205     if (r)
0206         return r;
0207 
0208     deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
0209     if (!deferred_remove_workqueue) {
0210         r = -ENOMEM;
0211         goto out_uevent_exit;
0212     }
0213 
0214     _major = major;
0215     r = register_blkdev(_major, _name);
0216     if (r < 0)
0217         goto out_free_workqueue;
0218 
0219     if (!_major)
0220         _major = r;
0221 
0222     return 0;
0223 
0224 out_free_workqueue:
0225     destroy_workqueue(deferred_remove_workqueue);
0226 out_uevent_exit:
0227     dm_uevent_exit();
0228 
0229     return r;
0230 }
0231 
0232 static void local_exit(void)
0233 {
0234     flush_scheduled_work();
0235     destroy_workqueue(deferred_remove_workqueue);
0236 
0237     unregister_blkdev(_major, _name);
0238     dm_uevent_exit();
0239 
0240     _major = 0;
0241 
0242     DMINFO("cleaned up");
0243 }
0244 
0245 static int (*_inits[])(void) __initdata = {
0246     local_init,
0247     dm_target_init,
0248     dm_linear_init,
0249     dm_stripe_init,
0250     dm_io_init,
0251     dm_kcopyd_init,
0252     dm_interface_init,
0253     dm_statistics_init,
0254 };
0255 
0256 static void (*_exits[])(void) = {
0257     local_exit,
0258     dm_target_exit,
0259     dm_linear_exit,
0260     dm_stripe_exit,
0261     dm_io_exit,
0262     dm_kcopyd_exit,
0263     dm_interface_exit,
0264     dm_statistics_exit,
0265 };
0266 
0267 static int __init dm_init(void)
0268 {
0269     const int count = ARRAY_SIZE(_inits);
0270     int r, i;
0271 
0272 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
0273     DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
0274            " Duplicate IMA measurements will not be recorded in the IMA log.");
0275 #endif
0276 
0277     for (i = 0; i < count; i++) {
0278         r = _inits[i]();
0279         if (r)
0280             goto bad;
0281     }
0282 
0283     return 0;
0284 bad:
0285     while (i--)
0286         _exits[i]();
0287 
0288     return r;
0289 }
0290 
0291 static void __exit dm_exit(void)
0292 {
0293     int i = ARRAY_SIZE(_exits);
0294 
0295     while (i--)
0296         _exits[i]();
0297 
0298     /*
0299      * Should be empty by this point.
0300      */
0301     idr_destroy(&_minor_idr);
0302 }
0303 
0304 /*
0305  * Block device functions
0306  */
0307 int dm_deleting_md(struct mapped_device *md)
0308 {
0309     return test_bit(DMF_DELETING, &md->flags);
0310 }
0311 
0312 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
0313 {
0314     struct mapped_device *md;
0315 
0316     spin_lock(&_minor_lock);
0317 
0318     md = bdev->bd_disk->private_data;
0319     if (!md)
0320         goto out;
0321 
0322     if (test_bit(DMF_FREEING, &md->flags) ||
0323         dm_deleting_md(md)) {
0324         md = NULL;
0325         goto out;
0326     }
0327 
0328     dm_get(md);
0329     atomic_inc(&md->open_count);
0330 out:
0331     spin_unlock(&_minor_lock);
0332 
0333     return md ? 0 : -ENXIO;
0334 }
0335 
0336 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
0337 {
0338     struct mapped_device *md;
0339 
0340     spin_lock(&_minor_lock);
0341 
0342     md = disk->private_data;
0343     if (WARN_ON(!md))
0344         goto out;
0345 
0346     if (atomic_dec_and_test(&md->open_count) &&
0347         (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
0348         queue_work(deferred_remove_workqueue, &deferred_remove_work);
0349 
0350     dm_put(md);
0351 out:
0352     spin_unlock(&_minor_lock);
0353 }
0354 
0355 int dm_open_count(struct mapped_device *md)
0356 {
0357     return atomic_read(&md->open_count);
0358 }
0359 
0360 /*
0361  * Guarantees nothing is using the device before it's deleted.
0362  */
0363 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
0364 {
0365     int r = 0;
0366 
0367     spin_lock(&_minor_lock);
0368 
0369     if (dm_open_count(md)) {
0370         r = -EBUSY;
0371         if (mark_deferred)
0372             set_bit(DMF_DEFERRED_REMOVE, &md->flags);
0373     } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
0374         r = -EEXIST;
0375     else
0376         set_bit(DMF_DELETING, &md->flags);
0377 
0378     spin_unlock(&_minor_lock);
0379 
0380     return r;
0381 }
0382 
0383 int dm_cancel_deferred_remove(struct mapped_device *md)
0384 {
0385     int r = 0;
0386 
0387     spin_lock(&_minor_lock);
0388 
0389     if (test_bit(DMF_DELETING, &md->flags))
0390         r = -EBUSY;
0391     else
0392         clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
0393 
0394     spin_unlock(&_minor_lock);
0395 
0396     return r;
0397 }
0398 
0399 static void do_deferred_remove(struct work_struct *w)
0400 {
0401     dm_deferred_remove();
0402 }
0403 
0404 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
0405 {
0406     struct mapped_device *md = bdev->bd_disk->private_data;
0407 
0408     return dm_get_geometry(md, geo);
0409 }
0410 
0411 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
0412                 struct block_device **bdev)
0413 {
0414     struct dm_target *ti;
0415     struct dm_table *map;
0416     int r;
0417 
0418 retry:
0419     r = -ENOTTY;
0420     map = dm_get_live_table(md, srcu_idx);
0421     if (!map || !dm_table_get_size(map))
0422         return r;
0423 
0424     /* We only support devices that have a single target */
0425     if (map->num_targets != 1)
0426         return r;
0427 
0428     ti = dm_table_get_target(map, 0);
0429     if (!ti->type->prepare_ioctl)
0430         return r;
0431 
0432     if (dm_suspended_md(md))
0433         return -EAGAIN;
0434 
0435     r = ti->type->prepare_ioctl(ti, bdev);
0436     if (r == -ENOTCONN && !fatal_signal_pending(current)) {
0437         dm_put_live_table(md, *srcu_idx);
0438         msleep(10);
0439         goto retry;
0440     }
0441 
0442     return r;
0443 }
0444 
0445 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
0446 {
0447     dm_put_live_table(md, srcu_idx);
0448 }
0449 
0450 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
0451             unsigned int cmd, unsigned long arg)
0452 {
0453     struct mapped_device *md = bdev->bd_disk->private_data;
0454     int r, srcu_idx;
0455 
0456     r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
0457     if (r < 0)
0458         goto out;
0459 
0460     if (r > 0) {
0461         /*
0462          * Target determined this ioctl is being issued against a
0463          * subset of the parent bdev; require extra privileges.
0464          */
0465         if (!capable(CAP_SYS_RAWIO)) {
0466             DMDEBUG_LIMIT(
0467     "%s: sending ioctl %x to DM device without required privilege.",
0468                 current->comm, cmd);
0469             r = -ENOIOCTLCMD;
0470             goto out;
0471         }
0472     }
0473 
0474     if (!bdev->bd_disk->fops->ioctl)
0475         r = -ENOTTY;
0476     else
0477         r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
0478 out:
0479     dm_unprepare_ioctl(md, srcu_idx);
0480     return r;
0481 }
0482 
0483 u64 dm_start_time_ns_from_clone(struct bio *bio)
0484 {
0485     return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
0486 }
0487 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
0488 
0489 static bool bio_is_flush_with_data(struct bio *bio)
0490 {
0491     return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
0492 }
0493 
0494 static void dm_io_acct(struct dm_io *io, bool end)
0495 {
0496     struct dm_stats_aux *stats_aux = &io->stats_aux;
0497     unsigned long start_time = io->start_time;
0498     struct mapped_device *md = io->md;
0499     struct bio *bio = io->orig_bio;
0500     unsigned int sectors;
0501 
0502     /*
0503      * If REQ_PREFLUSH set, don't account payload, it will be
0504      * submitted (and accounted) after this flush completes.
0505      */
0506     if (bio_is_flush_with_data(bio))
0507         sectors = 0;
0508     else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
0509         sectors = bio_sectors(bio);
0510     else
0511         sectors = io->sectors;
0512 
0513     if (!end)
0514         bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio),
0515                    start_time);
0516     else
0517         bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time);
0518 
0519     if (static_branch_unlikely(&stats_enabled) &&
0520         unlikely(dm_stats_used(&md->stats))) {
0521         sector_t sector;
0522 
0523         if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
0524             sector = bio->bi_iter.bi_sector;
0525         else
0526             sector = bio_end_sector(bio) - io->sector_offset;
0527 
0528         dm_stats_account_io(&md->stats, bio_data_dir(bio),
0529                     sector, sectors,
0530                     end, start_time, stats_aux);
0531     }
0532 }
0533 
0534 static void __dm_start_io_acct(struct dm_io *io)
0535 {
0536     dm_io_acct(io, false);
0537 }
0538 
0539 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
0540 {
0541     /*
0542      * Ensure IO accounting is only ever started once.
0543      */
0544     if (dm_io_flagged(io, DM_IO_ACCOUNTED))
0545         return;
0546 
0547     /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
0548     if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
0549         dm_io_set_flag(io, DM_IO_ACCOUNTED);
0550     } else {
0551         unsigned long flags;
0552         /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
0553         spin_lock_irqsave(&io->lock, flags);
0554         if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
0555             spin_unlock_irqrestore(&io->lock, flags);
0556             return;
0557         }
0558         dm_io_set_flag(io, DM_IO_ACCOUNTED);
0559         spin_unlock_irqrestore(&io->lock, flags);
0560     }
0561 
0562     __dm_start_io_acct(io);
0563 }
0564 
0565 static void dm_end_io_acct(struct dm_io *io)
0566 {
0567     dm_io_acct(io, true);
0568 }
0569 
0570 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
0571 {
0572     struct dm_io *io;
0573     struct dm_target_io *tio;
0574     struct bio *clone;
0575 
0576     clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
0577     tio = clone_to_tio(clone);
0578     tio->flags = 0;
0579     dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
0580     tio->io = NULL;
0581 
0582     io = container_of(tio, struct dm_io, tio);
0583     io->magic = DM_IO_MAGIC;
0584     io->status = BLK_STS_OK;
0585 
0586     /* one ref is for submission, the other is for completion */
0587     atomic_set(&io->io_count, 2);
0588     this_cpu_inc(*md->pending_io);
0589     io->orig_bio = bio;
0590     io->md = md;
0591     spin_lock_init(&io->lock);
0592     io->start_time = jiffies;
0593     io->flags = 0;
0594 
0595     if (static_branch_unlikely(&stats_enabled))
0596         dm_stats_record_start(&md->stats, &io->stats_aux);
0597 
0598     return io;
0599 }
0600 
0601 static void free_io(struct dm_io *io)
0602 {
0603     bio_put(&io->tio.clone);
0604 }
0605 
0606 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
0607                  unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
0608 {
0609     struct mapped_device *md = ci->io->md;
0610     struct dm_target_io *tio;
0611     struct bio *clone;
0612 
0613     if (!ci->io->tio.io) {
0614         /* the dm_target_io embedded in ci->io is available */
0615         tio = &ci->io->tio;
0616         /* alloc_io() already initialized embedded clone */
0617         clone = &tio->clone;
0618     } else {
0619         clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
0620                     &md->mempools->bs);
0621         if (!clone)
0622             return NULL;
0623 
0624         /* REQ_DM_POLL_LIST shouldn't be inherited */
0625         clone->bi_opf &= ~REQ_DM_POLL_LIST;
0626 
0627         tio = clone_to_tio(clone);
0628         tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
0629     }
0630 
0631     tio->magic = DM_TIO_MAGIC;
0632     tio->io = ci->io;
0633     tio->ti = ti;
0634     tio->target_bio_nr = target_bio_nr;
0635     tio->len_ptr = len;
0636     tio->old_sector = 0;
0637 
0638     /* Set default bdev, but target must bio_set_dev() before issuing IO */
0639     clone->bi_bdev = md->disk->part0;
0640     if (unlikely(ti->needs_bio_set_dev))
0641         bio_set_dev(clone, md->disk->part0);
0642 
0643     if (len) {
0644         clone->bi_iter.bi_size = to_bytes(*len);
0645         if (bio_integrity(clone))
0646             bio_integrity_trim(clone);
0647     }
0648 
0649     return clone;
0650 }
0651 
0652 static void free_tio(struct bio *clone)
0653 {
0654     if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
0655         return;
0656     bio_put(clone);
0657 }
0658 
0659 /*
0660  * Add the bio to the list of deferred io.
0661  */
0662 static void queue_io(struct mapped_device *md, struct bio *bio)
0663 {
0664     unsigned long flags;
0665 
0666     spin_lock_irqsave(&md->deferred_lock, flags);
0667     bio_list_add(&md->deferred, bio);
0668     spin_unlock_irqrestore(&md->deferred_lock, flags);
0669     queue_work(md->wq, &md->work);
0670 }
0671 
0672 /*
0673  * Everyone (including functions in this file), should use this
0674  * function to access the md->map field, and make sure they call
0675  * dm_put_live_table() when finished.
0676  */
0677 struct dm_table *dm_get_live_table(struct mapped_device *md,
0678                    int *srcu_idx) __acquires(md->io_barrier)
0679 {
0680     *srcu_idx = srcu_read_lock(&md->io_barrier);
0681 
0682     return srcu_dereference(md->map, &md->io_barrier);
0683 }
0684 
0685 void dm_put_live_table(struct mapped_device *md,
0686                int srcu_idx) __releases(md->io_barrier)
0687 {
0688     srcu_read_unlock(&md->io_barrier, srcu_idx);
0689 }
0690 
0691 void dm_sync_table(struct mapped_device *md)
0692 {
0693     synchronize_srcu(&md->io_barrier);
0694     synchronize_rcu_expedited();
0695 }
0696 
0697 /*
0698  * A fast alternative to dm_get_live_table/dm_put_live_table.
0699  * The caller must not block between these two functions.
0700  */
0701 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
0702 {
0703     rcu_read_lock();
0704     return rcu_dereference(md->map);
0705 }
0706 
0707 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
0708 {
0709     rcu_read_unlock();
0710 }
0711 
0712 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
0713                     int *srcu_idx, blk_opf_t bio_opf)
0714 {
0715     if (bio_opf & REQ_NOWAIT)
0716         return dm_get_live_table_fast(md);
0717     else
0718         return dm_get_live_table(md, srcu_idx);
0719 }
0720 
0721 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
0722                      blk_opf_t bio_opf)
0723 {
0724     if (bio_opf & REQ_NOWAIT)
0725         dm_put_live_table_fast(md);
0726     else
0727         dm_put_live_table(md, srcu_idx);
0728 }
0729 
0730 static char *_dm_claim_ptr = "I belong to device-mapper";
0731 
0732 /*
0733  * Open a table device so we can use it as a map destination.
0734  */
0735 static int open_table_device(struct table_device *td, dev_t dev,
0736                  struct mapped_device *md)
0737 {
0738     struct block_device *bdev;
0739     u64 part_off;
0740     int r;
0741 
0742     BUG_ON(td->dm_dev.bdev);
0743 
0744     bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
0745     if (IS_ERR(bdev))
0746         return PTR_ERR(bdev);
0747 
0748     r = bd_link_disk_holder(bdev, dm_disk(md));
0749     if (r) {
0750         blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
0751         return r;
0752     }
0753 
0754     td->dm_dev.bdev = bdev;
0755     td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL);
0756     return 0;
0757 }
0758 
0759 /*
0760  * Close a table device that we've been using.
0761  */
0762 static void close_table_device(struct table_device *td, struct mapped_device *md)
0763 {
0764     if (!td->dm_dev.bdev)
0765         return;
0766 
0767     bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
0768     blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
0769     put_dax(td->dm_dev.dax_dev);
0770     td->dm_dev.bdev = NULL;
0771     td->dm_dev.dax_dev = NULL;
0772 }
0773 
0774 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
0775                           fmode_t mode)
0776 {
0777     struct table_device *td;
0778 
0779     list_for_each_entry(td, l, list)
0780         if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
0781             return td;
0782 
0783     return NULL;
0784 }
0785 
0786 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
0787             struct dm_dev **result)
0788 {
0789     int r;
0790     struct table_device *td;
0791 
0792     mutex_lock(&md->table_devices_lock);
0793     td = find_table_device(&md->table_devices, dev, mode);
0794     if (!td) {
0795         td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
0796         if (!td) {
0797             mutex_unlock(&md->table_devices_lock);
0798             return -ENOMEM;
0799         }
0800 
0801         td->dm_dev.mode = mode;
0802         td->dm_dev.bdev = NULL;
0803 
0804         if ((r = open_table_device(td, dev, md))) {
0805             mutex_unlock(&md->table_devices_lock);
0806             kfree(td);
0807             return r;
0808         }
0809 
0810         format_dev_t(td->dm_dev.name, dev);
0811 
0812         refcount_set(&td->count, 1);
0813         list_add(&td->list, &md->table_devices);
0814     } else {
0815         refcount_inc(&td->count);
0816     }
0817     mutex_unlock(&md->table_devices_lock);
0818 
0819     *result = &td->dm_dev;
0820     return 0;
0821 }
0822 
0823 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
0824 {
0825     struct table_device *td = container_of(d, struct table_device, dm_dev);
0826 
0827     mutex_lock(&md->table_devices_lock);
0828     if (refcount_dec_and_test(&td->count)) {
0829         close_table_device(td, md);
0830         list_del(&td->list);
0831         kfree(td);
0832     }
0833     mutex_unlock(&md->table_devices_lock);
0834 }
0835 
0836 static void free_table_devices(struct list_head *devices)
0837 {
0838     struct list_head *tmp, *next;
0839 
0840     list_for_each_safe(tmp, next, devices) {
0841         struct table_device *td = list_entry(tmp, struct table_device, list);
0842 
0843         DMWARN("dm_destroy: %s still exists with %d references",
0844                td->dm_dev.name, refcount_read(&td->count));
0845         kfree(td);
0846     }
0847 }
0848 
0849 /*
0850  * Get the geometry associated with a dm device
0851  */
0852 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
0853 {
0854     *geo = md->geometry;
0855 
0856     return 0;
0857 }
0858 
0859 /*
0860  * Set the geometry of a device.
0861  */
0862 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
0863 {
0864     sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
0865 
0866     if (geo->start > sz) {
0867         DMWARN("Start sector is beyond the geometry limits.");
0868         return -EINVAL;
0869     }
0870 
0871     md->geometry = *geo;
0872 
0873     return 0;
0874 }
0875 
0876 static int __noflush_suspending(struct mapped_device *md)
0877 {
0878     return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
0879 }
0880 
0881 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
0882 {
0883     struct mapped_device *md = io->md;
0884 
0885     if (first_stage) {
0886         struct dm_io *next = md->requeue_list;
0887 
0888         md->requeue_list = io;
0889         io->next = next;
0890     } else {
0891         bio_list_add_head(&md->deferred, io->orig_bio);
0892     }
0893 }
0894 
0895 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
0896 {
0897     if (first_stage)
0898         queue_work(md->wq, &md->requeue_work);
0899     else
0900         queue_work(md->wq, &md->work);
0901 }
0902 
0903 /*
0904  * Return true if the dm_io's original bio is requeued.
0905  * io->status is updated with error if requeue disallowed.
0906  */
0907 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
0908 {
0909     struct bio *bio = io->orig_bio;
0910     bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
0911     bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
0912                      (bio->bi_opf & REQ_POLLED));
0913     struct mapped_device *md = io->md;
0914     bool requeued = false;
0915 
0916     if (handle_requeue || handle_polled_eagain) {
0917         unsigned long flags;
0918 
0919         if (bio->bi_opf & REQ_POLLED) {
0920             /*
0921              * Upper layer won't help us poll split bio
0922              * (io->orig_bio may only reflect a subset of the
0923              * pre-split original) so clear REQ_POLLED.
0924              */
0925             bio_clear_polled(bio);
0926         }
0927 
0928         /*
0929          * Target requested pushing back the I/O or
0930          * polled IO hit BLK_STS_AGAIN.
0931          */
0932         spin_lock_irqsave(&md->deferred_lock, flags);
0933         if ((__noflush_suspending(md) &&
0934              !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
0935             handle_polled_eagain || first_stage) {
0936             dm_requeue_add_io(io, first_stage);
0937             requeued = true;
0938         } else {
0939             /*
0940              * noflush suspend was interrupted or this is
0941              * a write to a zoned target.
0942              */
0943             io->status = BLK_STS_IOERR;
0944         }
0945         spin_unlock_irqrestore(&md->deferred_lock, flags);
0946     }
0947 
0948     if (requeued)
0949         dm_kick_requeue(md, first_stage);
0950 
0951     return requeued;
0952 }
0953 
0954 static void __dm_io_complete(struct dm_io *io, bool first_stage)
0955 {
0956     struct bio *bio = io->orig_bio;
0957     struct mapped_device *md = io->md;
0958     blk_status_t io_error;
0959     bool requeued;
0960 
0961     requeued = dm_handle_requeue(io, first_stage);
0962     if (requeued && first_stage)
0963         return;
0964 
0965     io_error = io->status;
0966     if (dm_io_flagged(io, DM_IO_ACCOUNTED))
0967         dm_end_io_acct(io);
0968     else if (!io_error) {
0969         /*
0970          * Must handle target that DM_MAPIO_SUBMITTED only to
0971          * then bio_endio() rather than dm_submit_bio_remap()
0972          */
0973         __dm_start_io_acct(io);
0974         dm_end_io_acct(io);
0975     }
0976     free_io(io);
0977     smp_wmb();
0978     this_cpu_dec(*md->pending_io);
0979 
0980     /* nudge anyone waiting on suspend queue */
0981     if (unlikely(wq_has_sleeper(&md->wait)))
0982         wake_up(&md->wait);
0983 
0984     /* Return early if the original bio was requeued */
0985     if (requeued)
0986         return;
0987 
0988     if (bio_is_flush_with_data(bio)) {
0989         /*
0990          * Preflush done for flush with data, reissue
0991          * without REQ_PREFLUSH.
0992          */
0993         bio->bi_opf &= ~REQ_PREFLUSH;
0994         queue_io(md, bio);
0995     } else {
0996         /* done with normal IO or empty flush */
0997         if (io_error)
0998             bio->bi_status = io_error;
0999         bio_endio(bio);
1000     }
1001 }
1002 
1003 static void dm_wq_requeue_work(struct work_struct *work)
1004 {
1005     struct mapped_device *md = container_of(work, struct mapped_device,
1006                         requeue_work);
1007     unsigned long flags;
1008     struct dm_io *io;
1009 
1010     /* reuse deferred lock to simplify dm_handle_requeue */
1011     spin_lock_irqsave(&md->deferred_lock, flags);
1012     io = md->requeue_list;
1013     md->requeue_list = NULL;
1014     spin_unlock_irqrestore(&md->deferred_lock, flags);
1015 
1016     while (io) {
1017         struct dm_io *next = io->next;
1018 
1019         dm_io_rewind(io, &md->disk->bio_split);
1020 
1021         io->next = NULL;
1022         __dm_io_complete(io, false);
1023         io = next;
1024     }
1025 }
1026 
1027 /*
1028  * Two staged requeue:
1029  *
1030  * 1) io->orig_bio points to the real original bio, and the part mapped to
1031  *    this io must be requeued, instead of other parts of the original bio.
1032  *
1033  * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1034  */
1035 static void dm_io_complete(struct dm_io *io)
1036 {
1037     bool first_requeue;
1038 
1039     /*
1040      * Only dm_io that has been split needs two stage requeue, otherwise
1041      * we may run into long bio clone chain during suspend and OOM could
1042      * be triggered.
1043      *
1044      * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1045      * also aren't handled via the first stage requeue.
1046      */
1047     if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1048         first_requeue = true;
1049     else
1050         first_requeue = false;
1051 
1052     __dm_io_complete(io, first_requeue);
1053 }
1054 
1055 /*
1056  * Decrements the number of outstanding ios that a bio has been
1057  * cloned into, completing the original io if necc.
1058  */
1059 static inline void __dm_io_dec_pending(struct dm_io *io)
1060 {
1061     if (atomic_dec_and_test(&io->io_count))
1062         dm_io_complete(io);
1063 }
1064 
1065 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1066 {
1067     unsigned long flags;
1068 
1069     /* Push-back supersedes any I/O errors */
1070     spin_lock_irqsave(&io->lock, flags);
1071     if (!(io->status == BLK_STS_DM_REQUEUE &&
1072           __noflush_suspending(io->md))) {
1073         io->status = error;
1074     }
1075     spin_unlock_irqrestore(&io->lock, flags);
1076 }
1077 
1078 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1079 {
1080     if (unlikely(error))
1081         dm_io_set_error(io, error);
1082 
1083     __dm_io_dec_pending(io);
1084 }
1085 
1086 void disable_discard(struct mapped_device *md)
1087 {
1088     struct queue_limits *limits = dm_get_queue_limits(md);
1089 
1090     /* device doesn't really support DISCARD, disable it */
1091     limits->max_discard_sectors = 0;
1092 }
1093 
1094 void disable_write_zeroes(struct mapped_device *md)
1095 {
1096     struct queue_limits *limits = dm_get_queue_limits(md);
1097 
1098     /* device doesn't really support WRITE ZEROES, disable it */
1099     limits->max_write_zeroes_sectors = 0;
1100 }
1101 
1102 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1103 {
1104     return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1105 }
1106 
1107 static void clone_endio(struct bio *bio)
1108 {
1109     blk_status_t error = bio->bi_status;
1110     struct dm_target_io *tio = clone_to_tio(bio);
1111     struct dm_target *ti = tio->ti;
1112     dm_endio_fn endio = ti->type->end_io;
1113     struct dm_io *io = tio->io;
1114     struct mapped_device *md = io->md;
1115 
1116     if (unlikely(error == BLK_STS_TARGET)) {
1117         if (bio_op(bio) == REQ_OP_DISCARD &&
1118             !bdev_max_discard_sectors(bio->bi_bdev))
1119             disable_discard(md);
1120         else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1121              !bdev_write_zeroes_sectors(bio->bi_bdev))
1122             disable_write_zeroes(md);
1123     }
1124 
1125     if (static_branch_unlikely(&zoned_enabled) &&
1126         unlikely(bdev_is_zoned(bio->bi_bdev)))
1127         dm_zone_endio(io, bio);
1128 
1129     if (endio) {
1130         int r = endio(ti, bio, &error);
1131         switch (r) {
1132         case DM_ENDIO_REQUEUE:
1133             if (static_branch_unlikely(&zoned_enabled)) {
1134                 /*
1135                  * Requeuing writes to a sequential zone of a zoned
1136                  * target will break the sequential write pattern:
1137                  * fail such IO.
1138                  */
1139                 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1140                     error = BLK_STS_IOERR;
1141                 else
1142                     error = BLK_STS_DM_REQUEUE;
1143             } else
1144                 error = BLK_STS_DM_REQUEUE;
1145             fallthrough;
1146         case DM_ENDIO_DONE:
1147             break;
1148         case DM_ENDIO_INCOMPLETE:
1149             /* The target will handle the io */
1150             return;
1151         default:
1152             DMWARN("unimplemented target endio return value: %d", r);
1153             BUG();
1154         }
1155     }
1156 
1157     if (static_branch_unlikely(&swap_bios_enabled) &&
1158         unlikely(swap_bios_limit(ti, bio)))
1159         up(&md->swap_bios_semaphore);
1160 
1161     free_tio(bio);
1162     dm_io_dec_pending(io, error);
1163 }
1164 
1165 /*
1166  * Return maximum size of I/O possible at the supplied sector up to the current
1167  * target boundary.
1168  */
1169 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1170                           sector_t target_offset)
1171 {
1172     return ti->len - target_offset;
1173 }
1174 
1175 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1176 {
1177     sector_t target_offset = dm_target_offset(ti, sector);
1178     sector_t len = max_io_len_target_boundary(ti, target_offset);
1179 
1180     /*
1181      * Does the target need to split IO even further?
1182      * - varied (per target) IO splitting is a tenet of DM; this
1183      *   explains why stacked chunk_sectors based splitting via
1184      *   bio_split_to_limits() isn't possible here.
1185      */
1186     if (!ti->max_io_len)
1187         return len;
1188     return min_t(sector_t, len,
1189         min(queue_max_sectors(ti->table->md->queue),
1190             blk_chunk_sectors_left(target_offset, ti->max_io_len)));
1191 }
1192 
1193 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1194 {
1195     if (len > UINT_MAX) {
1196         DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1197               (unsigned long long)len, UINT_MAX);
1198         ti->error = "Maximum size of target IO is too large";
1199         return -EINVAL;
1200     }
1201 
1202     ti->max_io_len = (uint32_t) len;
1203 
1204     return 0;
1205 }
1206 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1207 
1208 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1209                         sector_t sector, int *srcu_idx)
1210     __acquires(md->io_barrier)
1211 {
1212     struct dm_table *map;
1213     struct dm_target *ti;
1214 
1215     map = dm_get_live_table(md, srcu_idx);
1216     if (!map)
1217         return NULL;
1218 
1219     ti = dm_table_find_target(map, sector);
1220     if (!ti)
1221         return NULL;
1222 
1223     return ti;
1224 }
1225 
1226 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1227         long nr_pages, enum dax_access_mode mode, void **kaddr,
1228         pfn_t *pfn)
1229 {
1230     struct mapped_device *md = dax_get_private(dax_dev);
1231     sector_t sector = pgoff * PAGE_SECTORS;
1232     struct dm_target *ti;
1233     long len, ret = -EIO;
1234     int srcu_idx;
1235 
1236     ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1237 
1238     if (!ti)
1239         goto out;
1240     if (!ti->type->direct_access)
1241         goto out;
1242     len = max_io_len(ti, sector) / PAGE_SECTORS;
1243     if (len < 1)
1244         goto out;
1245     nr_pages = min(len, nr_pages);
1246     ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1247 
1248  out:
1249     dm_put_live_table(md, srcu_idx);
1250 
1251     return ret;
1252 }
1253 
1254 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1255                   size_t nr_pages)
1256 {
1257     struct mapped_device *md = dax_get_private(dax_dev);
1258     sector_t sector = pgoff * PAGE_SECTORS;
1259     struct dm_target *ti;
1260     int ret = -EIO;
1261     int srcu_idx;
1262 
1263     ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1264 
1265     if (!ti)
1266         goto out;
1267     if (WARN_ON(!ti->type->dax_zero_page_range)) {
1268         /*
1269          * ->zero_page_range() is mandatory dax operation. If we are
1270          *  here, something is wrong.
1271          */
1272         goto out;
1273     }
1274     ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1275  out:
1276     dm_put_live_table(md, srcu_idx);
1277 
1278     return ret;
1279 }
1280 
1281 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1282         void *addr, size_t bytes, struct iov_iter *i)
1283 {
1284     struct mapped_device *md = dax_get_private(dax_dev);
1285     sector_t sector = pgoff * PAGE_SECTORS;
1286     struct dm_target *ti;
1287     int srcu_idx;
1288     long ret = 0;
1289 
1290     ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1291     if (!ti || !ti->type->dax_recovery_write)
1292         goto out;
1293 
1294     ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1295 out:
1296     dm_put_live_table(md, srcu_idx);
1297     return ret;
1298 }
1299 
1300 /*
1301  * A target may call dm_accept_partial_bio only from the map routine.  It is
1302  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1303  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1304  * __send_duplicate_bios().
1305  *
1306  * dm_accept_partial_bio informs the dm that the target only wants to process
1307  * additional n_sectors sectors of the bio and the rest of the data should be
1308  * sent in a next bio.
1309  *
1310  * A diagram that explains the arithmetics:
1311  * +--------------------+---------------+-------+
1312  * |         1          |       2       |   3   |
1313  * +--------------------+---------------+-------+
1314  *
1315  * <-------------- *tio->len_ptr --------------->
1316  *                      <----- bio_sectors ----->
1317  *                      <-- n_sectors -->
1318  *
1319  * Region 1 was already iterated over with bio_advance or similar function.
1320  *  (it may be empty if the target doesn't use bio_advance)
1321  * Region 2 is the remaining bio size that the target wants to process.
1322  *  (it may be empty if region 1 is non-empty, although there is no reason
1323  *   to make it empty)
1324  * The target requires that region 3 is to be sent in the next bio.
1325  *
1326  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1327  * the partially processed part (the sum of regions 1+2) must be the same for all
1328  * copies of the bio.
1329  */
1330 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1331 {
1332     struct dm_target_io *tio = clone_to_tio(bio);
1333     struct dm_io *io = tio->io;
1334     unsigned bio_sectors = bio_sectors(bio);
1335 
1336     BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1337     BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1338     BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1339     BUG_ON(bio_sectors > *tio->len_ptr);
1340     BUG_ON(n_sectors > bio_sectors);
1341 
1342     *tio->len_ptr -= bio_sectors - n_sectors;
1343     bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1344 
1345     /*
1346      * __split_and_process_bio() may have already saved mapped part
1347      * for accounting but it is being reduced so update accordingly.
1348      */
1349     dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1350     io->sectors = n_sectors;
1351     io->sector_offset = bio_sectors(io->orig_bio);
1352 }
1353 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1354 
1355 /*
1356  * @clone: clone bio that DM core passed to target's .map function
1357  * @tgt_clone: clone of @clone bio that target needs submitted
1358  *
1359  * Targets should use this interface to submit bios they take
1360  * ownership of when returning DM_MAPIO_SUBMITTED.
1361  *
1362  * Target should also enable ti->accounts_remapped_io
1363  */
1364 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1365 {
1366     struct dm_target_io *tio = clone_to_tio(clone);
1367     struct dm_io *io = tio->io;
1368 
1369     /* establish bio that will get submitted */
1370     if (!tgt_clone)
1371         tgt_clone = clone;
1372 
1373     /*
1374      * Account io->origin_bio to DM dev on behalf of target
1375      * that took ownership of IO with DM_MAPIO_SUBMITTED.
1376      */
1377     dm_start_io_acct(io, clone);
1378 
1379     trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1380                   tio->old_sector);
1381     submit_bio_noacct(tgt_clone);
1382 }
1383 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1384 
1385 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1386 {
1387     mutex_lock(&md->swap_bios_lock);
1388     while (latch < md->swap_bios) {
1389         cond_resched();
1390         down(&md->swap_bios_semaphore);
1391         md->swap_bios--;
1392     }
1393     while (latch > md->swap_bios) {
1394         cond_resched();
1395         up(&md->swap_bios_semaphore);
1396         md->swap_bios++;
1397     }
1398     mutex_unlock(&md->swap_bios_lock);
1399 }
1400 
1401 static void __map_bio(struct bio *clone)
1402 {
1403     struct dm_target_io *tio = clone_to_tio(clone);
1404     struct dm_target *ti = tio->ti;
1405     struct dm_io *io = tio->io;
1406     struct mapped_device *md = io->md;
1407     int r;
1408 
1409     clone->bi_end_io = clone_endio;
1410 
1411     /*
1412      * Map the clone.
1413      */
1414     tio->old_sector = clone->bi_iter.bi_sector;
1415 
1416     if (static_branch_unlikely(&swap_bios_enabled) &&
1417         unlikely(swap_bios_limit(ti, clone))) {
1418         int latch = get_swap_bios();
1419         if (unlikely(latch != md->swap_bios))
1420             __set_swap_bios_limit(md, latch);
1421         down(&md->swap_bios_semaphore);
1422     }
1423 
1424     if (static_branch_unlikely(&zoned_enabled)) {
1425         /*
1426          * Check if the IO needs a special mapping due to zone append
1427          * emulation on zoned target. In this case, dm_zone_map_bio()
1428          * calls the target map operation.
1429          */
1430         if (unlikely(dm_emulate_zone_append(md)))
1431             r = dm_zone_map_bio(tio);
1432         else
1433             r = ti->type->map(ti, clone);
1434     } else
1435         r = ti->type->map(ti, clone);
1436 
1437     switch (r) {
1438     case DM_MAPIO_SUBMITTED:
1439         /* target has assumed ownership of this io */
1440         if (!ti->accounts_remapped_io)
1441             dm_start_io_acct(io, clone);
1442         break;
1443     case DM_MAPIO_REMAPPED:
1444         dm_submit_bio_remap(clone, NULL);
1445         break;
1446     case DM_MAPIO_KILL:
1447     case DM_MAPIO_REQUEUE:
1448         if (static_branch_unlikely(&swap_bios_enabled) &&
1449             unlikely(swap_bios_limit(ti, clone)))
1450             up(&md->swap_bios_semaphore);
1451         free_tio(clone);
1452         if (r == DM_MAPIO_KILL)
1453             dm_io_dec_pending(io, BLK_STS_IOERR);
1454         else
1455             dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1456         break;
1457     default:
1458         DMWARN("unimplemented target map return value: %d", r);
1459         BUG();
1460     }
1461 }
1462 
1463 static void setup_split_accounting(struct clone_info *ci, unsigned len)
1464 {
1465     struct dm_io *io = ci->io;
1466 
1467     if (ci->sector_count > len) {
1468         /*
1469          * Split needed, save the mapped part for accounting.
1470          * NOTE: dm_accept_partial_bio() will update accordingly.
1471          */
1472         dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1473         io->sectors = len;
1474         io->sector_offset = bio_sectors(ci->bio);
1475     }
1476 }
1477 
1478 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1479                 struct dm_target *ti, unsigned num_bios)
1480 {
1481     struct bio *bio;
1482     int try;
1483 
1484     for (try = 0; try < 2; try++) {
1485         int bio_nr;
1486 
1487         if (try)
1488             mutex_lock(&ci->io->md->table_devices_lock);
1489         for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1490             bio = alloc_tio(ci, ti, bio_nr, NULL,
1491                     try ? GFP_NOIO : GFP_NOWAIT);
1492             if (!bio)
1493                 break;
1494 
1495             bio_list_add(blist, bio);
1496         }
1497         if (try)
1498             mutex_unlock(&ci->io->md->table_devices_lock);
1499         if (bio_nr == num_bios)
1500             return;
1501 
1502         while ((bio = bio_list_pop(blist)))
1503             free_tio(bio);
1504     }
1505 }
1506 
1507 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1508                  unsigned int num_bios, unsigned *len)
1509 {
1510     struct bio_list blist = BIO_EMPTY_LIST;
1511     struct bio *clone;
1512     unsigned int ret = 0;
1513 
1514     switch (num_bios) {
1515     case 0:
1516         break;
1517     case 1:
1518         if (len)
1519             setup_split_accounting(ci, *len);
1520         clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1521         __map_bio(clone);
1522         ret = 1;
1523         break;
1524     default:
1525         /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1526         alloc_multiple_bios(&blist, ci, ti, num_bios);
1527         while ((clone = bio_list_pop(&blist))) {
1528             dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1529             __map_bio(clone);
1530             ret += 1;
1531         }
1532         break;
1533     }
1534 
1535     return ret;
1536 }
1537 
1538 static void __send_empty_flush(struct clone_info *ci)
1539 {
1540     struct dm_table *t = ci->map;
1541     struct bio flush_bio;
1542 
1543     /*
1544      * Use an on-stack bio for this, it's safe since we don't
1545      * need to reference it after submit. It's just used as
1546      * the basis for the clone(s).
1547      */
1548     bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1549          REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1550 
1551     ci->bio = &flush_bio;
1552     ci->sector_count = 0;
1553     ci->io->tio.clone.bi_iter.bi_size = 0;
1554 
1555     for (unsigned int i = 0; i < t->num_targets; i++) {
1556         unsigned int bios;
1557         struct dm_target *ti = dm_table_get_target(t, i);
1558 
1559         atomic_add(ti->num_flush_bios, &ci->io->io_count);
1560         bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1561         atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1562     }
1563 
1564     /*
1565      * alloc_io() takes one extra reference for submission, so the
1566      * reference won't reach 0 without the following subtraction
1567      */
1568     atomic_sub(1, &ci->io->io_count);
1569 
1570     bio_uninit(ci->bio);
1571 }
1572 
1573 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1574                     unsigned num_bios)
1575 {
1576     unsigned len;
1577     unsigned int bios;
1578 
1579     len = min_t(sector_t, ci->sector_count,
1580             max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1581 
1582     atomic_add(num_bios, &ci->io->io_count);
1583     bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1584     /*
1585      * alloc_io() takes one extra reference for submission, so the
1586      * reference won't reach 0 without the following (+1) subtraction
1587      */
1588     atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1589 
1590     ci->sector += len;
1591     ci->sector_count -= len;
1592 }
1593 
1594 static bool is_abnormal_io(struct bio *bio)
1595 {
1596     enum req_op op = bio_op(bio);
1597 
1598     if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1599         switch (op) {
1600         case REQ_OP_DISCARD:
1601         case REQ_OP_SECURE_ERASE:
1602         case REQ_OP_WRITE_ZEROES:
1603             return true;
1604         default:
1605             break;
1606         }
1607     }
1608 
1609     return false;
1610 }
1611 
1612 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1613                       struct dm_target *ti)
1614 {
1615     unsigned num_bios = 0;
1616 
1617     switch (bio_op(ci->bio)) {
1618     case REQ_OP_DISCARD:
1619         num_bios = ti->num_discard_bios;
1620         break;
1621     case REQ_OP_SECURE_ERASE:
1622         num_bios = ti->num_secure_erase_bios;
1623         break;
1624     case REQ_OP_WRITE_ZEROES:
1625         num_bios = ti->num_write_zeroes_bios;
1626         break;
1627     default:
1628         break;
1629     }
1630 
1631     /*
1632      * Even though the device advertised support for this type of
1633      * request, that does not mean every target supports it, and
1634      * reconfiguration might also have changed that since the
1635      * check was performed.
1636      */
1637     if (unlikely(!num_bios))
1638         return BLK_STS_NOTSUPP;
1639 
1640     __send_changing_extent_only(ci, ti, num_bios);
1641     return BLK_STS_OK;
1642 }
1643 
1644 /*
1645  * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1646  * associated with this bio, and this bio's bi_private needs to be
1647  * stored in dm_io->data before the reuse.
1648  *
1649  * bio->bi_private is owned by fs or upper layer, so block layer won't
1650  * touch it after splitting. Meantime it won't be changed by anyone after
1651  * bio is submitted. So this reuse is safe.
1652  */
1653 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1654 {
1655     return (struct dm_io **)&bio->bi_private;
1656 }
1657 
1658 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1659 {
1660     struct dm_io **head = dm_poll_list_head(bio);
1661 
1662     if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1663         bio->bi_opf |= REQ_DM_POLL_LIST;
1664         /*
1665          * Save .bi_private into dm_io, so that we can reuse
1666          * .bi_private as dm_io list head for storing dm_io list
1667          */
1668         io->data = bio->bi_private;
1669 
1670         /* tell block layer to poll for completion */
1671         bio->bi_cookie = ~BLK_QC_T_NONE;
1672 
1673         io->next = NULL;
1674     } else {
1675         /*
1676          * bio recursed due to split, reuse original poll list,
1677          * and save bio->bi_private too.
1678          */
1679         io->data = (*head)->data;
1680         io->next = *head;
1681     }
1682 
1683     *head = io;
1684 }
1685 
1686 /*
1687  * Select the correct strategy for processing a non-flush bio.
1688  */
1689 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1690 {
1691     struct bio *clone;
1692     struct dm_target *ti;
1693     unsigned len;
1694 
1695     ti = dm_table_find_target(ci->map, ci->sector);
1696     if (unlikely(!ti))
1697         return BLK_STS_IOERR;
1698 
1699     if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1700         unlikely(!dm_target_supports_nowait(ti->type)))
1701         return BLK_STS_NOTSUPP;
1702 
1703     if (unlikely(ci->is_abnormal_io))
1704         return __process_abnormal_io(ci, ti);
1705 
1706     /*
1707      * Only support bio polling for normal IO, and the target io is
1708      * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1709      */
1710     ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1711 
1712     len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1713     setup_split_accounting(ci, len);
1714     clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1715     __map_bio(clone);
1716 
1717     ci->sector += len;
1718     ci->sector_count -= len;
1719 
1720     return BLK_STS_OK;
1721 }
1722 
1723 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1724                 struct dm_table *map, struct bio *bio, bool is_abnormal)
1725 {
1726     ci->map = map;
1727     ci->io = alloc_io(md, bio);
1728     ci->bio = bio;
1729     ci->is_abnormal_io = is_abnormal;
1730     ci->submit_as_polled = false;
1731     ci->sector = bio->bi_iter.bi_sector;
1732     ci->sector_count = bio_sectors(bio);
1733 
1734     /* Shouldn't happen but sector_count was being set to 0 so... */
1735     if (static_branch_unlikely(&zoned_enabled) &&
1736         WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1737         ci->sector_count = 0;
1738 }
1739 
1740 /*
1741  * Entry point to split a bio into clones and submit them to the targets.
1742  */
1743 static void dm_split_and_process_bio(struct mapped_device *md,
1744                      struct dm_table *map, struct bio *bio)
1745 {
1746     struct clone_info ci;
1747     struct dm_io *io;
1748     blk_status_t error = BLK_STS_OK;
1749     bool is_abnormal;
1750 
1751     is_abnormal = is_abnormal_io(bio);
1752     if (unlikely(is_abnormal)) {
1753         /*
1754          * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1755          * otherwise associated queue_limits won't be imposed.
1756          */
1757         bio = bio_split_to_limits(bio);
1758     }
1759 
1760     init_clone_info(&ci, md, map, bio, is_abnormal);
1761     io = ci.io;
1762 
1763     if (bio->bi_opf & REQ_PREFLUSH) {
1764         __send_empty_flush(&ci);
1765         /* dm_io_complete submits any data associated with flush */
1766         goto out;
1767     }
1768 
1769     error = __split_and_process_bio(&ci);
1770     if (error || !ci.sector_count)
1771         goto out;
1772     /*
1773      * Remainder must be passed to submit_bio_noacct() so it gets handled
1774      * *after* bios already submitted have been completely processed.
1775      */
1776     bio_trim(bio, io->sectors, ci.sector_count);
1777     trace_block_split(bio, bio->bi_iter.bi_sector);
1778     bio_inc_remaining(bio);
1779     submit_bio_noacct(bio);
1780 out:
1781     /*
1782      * Drop the extra reference count for non-POLLED bio, and hold one
1783      * reference for POLLED bio, which will be released in dm_poll_bio
1784      *
1785      * Add every dm_io instance into the dm_io list head which is stored
1786      * in bio->bi_private, so that dm_poll_bio can poll them all.
1787      */
1788     if (error || !ci.submit_as_polled) {
1789         /*
1790          * In case of submission failure, the extra reference for
1791          * submitting io isn't consumed yet
1792          */
1793         if (error)
1794             atomic_dec(&io->io_count);
1795         dm_io_dec_pending(io, error);
1796     } else
1797         dm_queue_poll_io(bio, io);
1798 }
1799 
1800 static void dm_submit_bio(struct bio *bio)
1801 {
1802     struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1803     int srcu_idx;
1804     struct dm_table *map;
1805     blk_opf_t bio_opf = bio->bi_opf;
1806 
1807     map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
1808 
1809     /* If suspended, or map not yet available, queue this IO for later */
1810     if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1811         unlikely(!map)) {
1812         if (bio->bi_opf & REQ_NOWAIT)
1813             bio_wouldblock_error(bio);
1814         else if (bio->bi_opf & REQ_RAHEAD)
1815             bio_io_error(bio);
1816         else
1817             queue_io(md, bio);
1818         goto out;
1819     }
1820 
1821     dm_split_and_process_bio(md, map, bio);
1822 out:
1823     dm_put_live_table_bio(md, srcu_idx, bio_opf);
1824 }
1825 
1826 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1827               unsigned int flags)
1828 {
1829     WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1830 
1831     /* don't poll if the mapped io is done */
1832     if (atomic_read(&io->io_count) > 1)
1833         bio_poll(&io->tio.clone, iob, flags);
1834 
1835     /* bio_poll holds the last reference */
1836     return atomic_read(&io->io_count) == 1;
1837 }
1838 
1839 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1840                unsigned int flags)
1841 {
1842     struct dm_io **head = dm_poll_list_head(bio);
1843     struct dm_io *list = *head;
1844     struct dm_io *tmp = NULL;
1845     struct dm_io *curr, *next;
1846 
1847     /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1848     if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1849         return 0;
1850 
1851     WARN_ON_ONCE(!list);
1852 
1853     /*
1854      * Restore .bi_private before possibly completing dm_io.
1855      *
1856      * bio_poll() is only possible once @bio has been completely
1857      * submitted via submit_bio_noacct()'s depth-first submission.
1858      * So there is no dm_queue_poll_io() race associated with
1859      * clearing REQ_DM_POLL_LIST here.
1860      */
1861     bio->bi_opf &= ~REQ_DM_POLL_LIST;
1862     bio->bi_private = list->data;
1863 
1864     for (curr = list, next = curr->next; curr; curr = next, next =
1865             curr ? curr->next : NULL) {
1866         if (dm_poll_dm_io(curr, iob, flags)) {
1867             /*
1868              * clone_endio() has already occurred, so no
1869              * error handling is needed here.
1870              */
1871             __dm_io_dec_pending(curr);
1872         } else {
1873             curr->next = tmp;
1874             tmp = curr;
1875         }
1876     }
1877 
1878     /* Not done? */
1879     if (tmp) {
1880         bio->bi_opf |= REQ_DM_POLL_LIST;
1881         /* Reset bio->bi_private to dm_io list head */
1882         *head = tmp;
1883         return 0;
1884     }
1885     return 1;
1886 }
1887 
1888 /*-----------------------------------------------------------------
1889  * An IDR is used to keep track of allocated minor numbers.
1890  *---------------------------------------------------------------*/
1891 static void free_minor(int minor)
1892 {
1893     spin_lock(&_minor_lock);
1894     idr_remove(&_minor_idr, minor);
1895     spin_unlock(&_minor_lock);
1896 }
1897 
1898 /*
1899  * See if the device with a specific minor # is free.
1900  */
1901 static int specific_minor(int minor)
1902 {
1903     int r;
1904 
1905     if (minor >= (1 << MINORBITS))
1906         return -EINVAL;
1907 
1908     idr_preload(GFP_KERNEL);
1909     spin_lock(&_minor_lock);
1910 
1911     r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1912 
1913     spin_unlock(&_minor_lock);
1914     idr_preload_end();
1915     if (r < 0)
1916         return r == -ENOSPC ? -EBUSY : r;
1917     return 0;
1918 }
1919 
1920 static int next_free_minor(int *minor)
1921 {
1922     int r;
1923 
1924     idr_preload(GFP_KERNEL);
1925     spin_lock(&_minor_lock);
1926 
1927     r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1928 
1929     spin_unlock(&_minor_lock);
1930     idr_preload_end();
1931     if (r < 0)
1932         return r;
1933     *minor = r;
1934     return 0;
1935 }
1936 
1937 static const struct block_device_operations dm_blk_dops;
1938 static const struct block_device_operations dm_rq_blk_dops;
1939 static const struct dax_operations dm_dax_ops;
1940 
1941 static void dm_wq_work(struct work_struct *work);
1942 
1943 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1944 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1945 {
1946     dm_destroy_crypto_profile(q->crypto_profile);
1947 }
1948 
1949 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1950 
1951 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1952 {
1953 }
1954 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1955 
1956 static void cleanup_mapped_device(struct mapped_device *md)
1957 {
1958     if (md->wq)
1959         destroy_workqueue(md->wq);
1960     dm_free_md_mempools(md->mempools);
1961 
1962     if (md->dax_dev) {
1963         dax_remove_host(md->disk);
1964         kill_dax(md->dax_dev);
1965         put_dax(md->dax_dev);
1966         md->dax_dev = NULL;
1967     }
1968 
1969     dm_cleanup_zoned_dev(md);
1970     if (md->disk) {
1971         spin_lock(&_minor_lock);
1972         md->disk->private_data = NULL;
1973         spin_unlock(&_minor_lock);
1974         if (dm_get_md_type(md) != DM_TYPE_NONE) {
1975             dm_sysfs_exit(md);
1976             del_gendisk(md->disk);
1977         }
1978         dm_queue_destroy_crypto_profile(md->queue);
1979         put_disk(md->disk);
1980     }
1981 
1982     if (md->pending_io) {
1983         free_percpu(md->pending_io);
1984         md->pending_io = NULL;
1985     }
1986 
1987     cleanup_srcu_struct(&md->io_barrier);
1988 
1989     mutex_destroy(&md->suspend_lock);
1990     mutex_destroy(&md->type_lock);
1991     mutex_destroy(&md->table_devices_lock);
1992     mutex_destroy(&md->swap_bios_lock);
1993 
1994     dm_mq_cleanup_mapped_device(md);
1995 }
1996 
1997 /*
1998  * Allocate and initialise a blank device with a given minor.
1999  */
2000 static struct mapped_device *alloc_dev(int minor)
2001 {
2002     int r, numa_node_id = dm_get_numa_node();
2003     struct mapped_device *md;
2004     void *old_md;
2005 
2006     md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2007     if (!md) {
2008         DMWARN("unable to allocate device, out of memory.");
2009         return NULL;
2010     }
2011 
2012     if (!try_module_get(THIS_MODULE))
2013         goto bad_module_get;
2014 
2015     /* get a minor number for the dev */
2016     if (minor == DM_ANY_MINOR)
2017         r = next_free_minor(&minor);
2018     else
2019         r = specific_minor(minor);
2020     if (r < 0)
2021         goto bad_minor;
2022 
2023     r = init_srcu_struct(&md->io_barrier);
2024     if (r < 0)
2025         goto bad_io_barrier;
2026 
2027     md->numa_node_id = numa_node_id;
2028     md->init_tio_pdu = false;
2029     md->type = DM_TYPE_NONE;
2030     mutex_init(&md->suspend_lock);
2031     mutex_init(&md->type_lock);
2032     mutex_init(&md->table_devices_lock);
2033     spin_lock_init(&md->deferred_lock);
2034     atomic_set(&md->holders, 1);
2035     atomic_set(&md->open_count, 0);
2036     atomic_set(&md->event_nr, 0);
2037     atomic_set(&md->uevent_seq, 0);
2038     INIT_LIST_HEAD(&md->uevent_list);
2039     INIT_LIST_HEAD(&md->table_devices);
2040     spin_lock_init(&md->uevent_lock);
2041 
2042     /*
2043      * default to bio-based until DM table is loaded and md->type
2044      * established. If request-based table is loaded: blk-mq will
2045      * override accordingly.
2046      */
2047     md->disk = blk_alloc_disk(md->numa_node_id);
2048     if (!md->disk)
2049         goto bad;
2050     md->queue = md->disk->queue;
2051 
2052     init_waitqueue_head(&md->wait);
2053     INIT_WORK(&md->work, dm_wq_work);
2054     INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2055     init_waitqueue_head(&md->eventq);
2056     init_completion(&md->kobj_holder.completion);
2057 
2058     md->requeue_list = NULL;
2059     md->swap_bios = get_swap_bios();
2060     sema_init(&md->swap_bios_semaphore, md->swap_bios);
2061     mutex_init(&md->swap_bios_lock);
2062 
2063     md->disk->major = _major;
2064     md->disk->first_minor = minor;
2065     md->disk->minors = 1;
2066     md->disk->flags |= GENHD_FL_NO_PART;
2067     md->disk->fops = &dm_blk_dops;
2068     md->disk->queue = md->queue;
2069     md->disk->private_data = md;
2070     sprintf(md->disk->disk_name, "dm-%d", minor);
2071 
2072     if (IS_ENABLED(CONFIG_FS_DAX)) {
2073         md->dax_dev = alloc_dax(md, &dm_dax_ops);
2074         if (IS_ERR(md->dax_dev)) {
2075             md->dax_dev = NULL;
2076             goto bad;
2077         }
2078         set_dax_nocache(md->dax_dev);
2079         set_dax_nomc(md->dax_dev);
2080         if (dax_add_host(md->dax_dev, md->disk))
2081             goto bad;
2082     }
2083 
2084     format_dev_t(md->name, MKDEV(_major, minor));
2085 
2086     md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2087     if (!md->wq)
2088         goto bad;
2089 
2090     md->pending_io = alloc_percpu(unsigned long);
2091     if (!md->pending_io)
2092         goto bad;
2093 
2094     dm_stats_init(&md->stats);
2095 
2096     /* Populate the mapping, nobody knows we exist yet */
2097     spin_lock(&_minor_lock);
2098     old_md = idr_replace(&_minor_idr, md, minor);
2099     spin_unlock(&_minor_lock);
2100 
2101     BUG_ON(old_md != MINOR_ALLOCED);
2102 
2103     return md;
2104 
2105 bad:
2106     cleanup_mapped_device(md);
2107 bad_io_barrier:
2108     free_minor(minor);
2109 bad_minor:
2110     module_put(THIS_MODULE);
2111 bad_module_get:
2112     kvfree(md);
2113     return NULL;
2114 }
2115 
2116 static void unlock_fs(struct mapped_device *md);
2117 
2118 static void free_dev(struct mapped_device *md)
2119 {
2120     int minor = MINOR(disk_devt(md->disk));
2121 
2122     unlock_fs(md);
2123 
2124     cleanup_mapped_device(md);
2125 
2126     free_table_devices(&md->table_devices);
2127     dm_stats_cleanup(&md->stats);
2128     free_minor(minor);
2129 
2130     module_put(THIS_MODULE);
2131     kvfree(md);
2132 }
2133 
2134 /*
2135  * Bind a table to the device.
2136  */
2137 static void event_callback(void *context)
2138 {
2139     unsigned long flags;
2140     LIST_HEAD(uevents);
2141     struct mapped_device *md = (struct mapped_device *) context;
2142 
2143     spin_lock_irqsave(&md->uevent_lock, flags);
2144     list_splice_init(&md->uevent_list, &uevents);
2145     spin_unlock_irqrestore(&md->uevent_lock, flags);
2146 
2147     dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2148 
2149     atomic_inc(&md->event_nr);
2150     wake_up(&md->eventq);
2151     dm_issue_global_event();
2152 }
2153 
2154 /*
2155  * Returns old map, which caller must destroy.
2156  */
2157 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2158                    struct queue_limits *limits)
2159 {
2160     struct dm_table *old_map;
2161     sector_t size;
2162     int ret;
2163 
2164     lockdep_assert_held(&md->suspend_lock);
2165 
2166     size = dm_table_get_size(t);
2167 
2168     /*
2169      * Wipe any geometry if the size of the table changed.
2170      */
2171     if (size != dm_get_size(md))
2172         memset(&md->geometry, 0, sizeof(md->geometry));
2173 
2174     if (!get_capacity(md->disk))
2175         set_capacity(md->disk, size);
2176     else
2177         set_capacity_and_notify(md->disk, size);
2178 
2179     dm_table_event_callback(t, event_callback, md);
2180 
2181     if (dm_table_request_based(t)) {
2182         /*
2183          * Leverage the fact that request-based DM targets are
2184          * immutable singletons - used to optimize dm_mq_queue_rq.
2185          */
2186         md->immutable_target = dm_table_get_immutable_target(t);
2187 
2188         /*
2189          * There is no need to reload with request-based dm because the
2190          * size of front_pad doesn't change.
2191          *
2192          * Note for future: If you are to reload bioset, prep-ed
2193          * requests in the queue may refer to bio from the old bioset,
2194          * so you must walk through the queue to unprep.
2195          */
2196         if (!md->mempools) {
2197             md->mempools = t->mempools;
2198             t->mempools = NULL;
2199         }
2200     } else {
2201         /*
2202          * The md may already have mempools that need changing.
2203          * If so, reload bioset because front_pad may have changed
2204          * because a different table was loaded.
2205          */
2206         dm_free_md_mempools(md->mempools);
2207         md->mempools = t->mempools;
2208         t->mempools = NULL;
2209     }
2210 
2211     ret = dm_table_set_restrictions(t, md->queue, limits);
2212     if (ret) {
2213         old_map = ERR_PTR(ret);
2214         goto out;
2215     }
2216 
2217     old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2218     rcu_assign_pointer(md->map, (void *)t);
2219     md->immutable_target_type = dm_table_get_immutable_target_type(t);
2220 
2221     if (old_map)
2222         dm_sync_table(md);
2223 out:
2224     return old_map;
2225 }
2226 
2227 /*
2228  * Returns unbound table for the caller to free.
2229  */
2230 static struct dm_table *__unbind(struct mapped_device *md)
2231 {
2232     struct dm_table *map = rcu_dereference_protected(md->map, 1);
2233 
2234     if (!map)
2235         return NULL;
2236 
2237     dm_table_event_callback(map, NULL, NULL);
2238     RCU_INIT_POINTER(md->map, NULL);
2239     dm_sync_table(md);
2240 
2241     return map;
2242 }
2243 
2244 /*
2245  * Constructor for a new device.
2246  */
2247 int dm_create(int minor, struct mapped_device **result)
2248 {
2249     struct mapped_device *md;
2250 
2251     md = alloc_dev(minor);
2252     if (!md)
2253         return -ENXIO;
2254 
2255     dm_ima_reset_data(md);
2256 
2257     *result = md;
2258     return 0;
2259 }
2260 
2261 /*
2262  * Functions to manage md->type.
2263  * All are required to hold md->type_lock.
2264  */
2265 void dm_lock_md_type(struct mapped_device *md)
2266 {
2267     mutex_lock(&md->type_lock);
2268 }
2269 
2270 void dm_unlock_md_type(struct mapped_device *md)
2271 {
2272     mutex_unlock(&md->type_lock);
2273 }
2274 
2275 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2276 {
2277     BUG_ON(!mutex_is_locked(&md->type_lock));
2278     md->type = type;
2279 }
2280 
2281 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2282 {
2283     return md->type;
2284 }
2285 
2286 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2287 {
2288     return md->immutable_target_type;
2289 }
2290 
2291 /*
2292  * The queue_limits are only valid as long as you have a reference
2293  * count on 'md'.
2294  */
2295 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2296 {
2297     BUG_ON(!atomic_read(&md->holders));
2298     return &md->queue->limits;
2299 }
2300 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2301 
2302 /*
2303  * Setup the DM device's queue based on md's type
2304  */
2305 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2306 {
2307     enum dm_queue_mode type = dm_table_get_type(t);
2308     struct queue_limits limits;
2309     int r;
2310 
2311     switch (type) {
2312     case DM_TYPE_REQUEST_BASED:
2313         md->disk->fops = &dm_rq_blk_dops;
2314         r = dm_mq_init_request_queue(md, t);
2315         if (r) {
2316             DMERR("Cannot initialize queue for request-based dm mapped device");
2317             return r;
2318         }
2319         break;
2320     case DM_TYPE_BIO_BASED:
2321     case DM_TYPE_DAX_BIO_BASED:
2322         break;
2323     case DM_TYPE_NONE:
2324         WARN_ON_ONCE(true);
2325         break;
2326     }
2327 
2328     r = dm_calculate_queue_limits(t, &limits);
2329     if (r) {
2330         DMERR("Cannot calculate initial queue limits");
2331         return r;
2332     }
2333     r = dm_table_set_restrictions(t, md->queue, &limits);
2334     if (r)
2335         return r;
2336 
2337     r = add_disk(md->disk);
2338     if (r)
2339         return r;
2340 
2341     r = dm_sysfs_init(md);
2342     if (r) {
2343         del_gendisk(md->disk);
2344         return r;
2345     }
2346     md->type = type;
2347     return 0;
2348 }
2349 
2350 struct mapped_device *dm_get_md(dev_t dev)
2351 {
2352     struct mapped_device *md;
2353     unsigned minor = MINOR(dev);
2354 
2355     if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2356         return NULL;
2357 
2358     spin_lock(&_minor_lock);
2359 
2360     md = idr_find(&_minor_idr, minor);
2361     if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2362         test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2363         md = NULL;
2364         goto out;
2365     }
2366     dm_get(md);
2367 out:
2368     spin_unlock(&_minor_lock);
2369 
2370     return md;
2371 }
2372 EXPORT_SYMBOL_GPL(dm_get_md);
2373 
2374 void *dm_get_mdptr(struct mapped_device *md)
2375 {
2376     return md->interface_ptr;
2377 }
2378 
2379 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2380 {
2381     md->interface_ptr = ptr;
2382 }
2383 
2384 void dm_get(struct mapped_device *md)
2385 {
2386     atomic_inc(&md->holders);
2387     BUG_ON(test_bit(DMF_FREEING, &md->flags));
2388 }
2389 
2390 int dm_hold(struct mapped_device *md)
2391 {
2392     spin_lock(&_minor_lock);
2393     if (test_bit(DMF_FREEING, &md->flags)) {
2394         spin_unlock(&_minor_lock);
2395         return -EBUSY;
2396     }
2397     dm_get(md);
2398     spin_unlock(&_minor_lock);
2399     return 0;
2400 }
2401 EXPORT_SYMBOL_GPL(dm_hold);
2402 
2403 const char *dm_device_name(struct mapped_device *md)
2404 {
2405     return md->name;
2406 }
2407 EXPORT_SYMBOL_GPL(dm_device_name);
2408 
2409 static void __dm_destroy(struct mapped_device *md, bool wait)
2410 {
2411     struct dm_table *map;
2412     int srcu_idx;
2413 
2414     might_sleep();
2415 
2416     spin_lock(&_minor_lock);
2417     idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2418     set_bit(DMF_FREEING, &md->flags);
2419     spin_unlock(&_minor_lock);
2420 
2421     blk_mark_disk_dead(md->disk);
2422 
2423     /*
2424      * Take suspend_lock so that presuspend and postsuspend methods
2425      * do not race with internal suspend.
2426      */
2427     mutex_lock(&md->suspend_lock);
2428     map = dm_get_live_table(md, &srcu_idx);
2429     if (!dm_suspended_md(md)) {
2430         dm_table_presuspend_targets(map);
2431         set_bit(DMF_SUSPENDED, &md->flags);
2432         set_bit(DMF_POST_SUSPENDING, &md->flags);
2433         dm_table_postsuspend_targets(map);
2434     }
2435     /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2436     dm_put_live_table(md, srcu_idx);
2437     mutex_unlock(&md->suspend_lock);
2438 
2439     /*
2440      * Rare, but there may be I/O requests still going to complete,
2441      * for example.  Wait for all references to disappear.
2442      * No one should increment the reference count of the mapped_device,
2443      * after the mapped_device state becomes DMF_FREEING.
2444      */
2445     if (wait)
2446         while (atomic_read(&md->holders))
2447             msleep(1);
2448     else if (atomic_read(&md->holders))
2449         DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2450                dm_device_name(md), atomic_read(&md->holders));
2451 
2452     dm_table_destroy(__unbind(md));
2453     free_dev(md);
2454 }
2455 
2456 void dm_destroy(struct mapped_device *md)
2457 {
2458     __dm_destroy(md, true);
2459 }
2460 
2461 void dm_destroy_immediate(struct mapped_device *md)
2462 {
2463     __dm_destroy(md, false);
2464 }
2465 
2466 void dm_put(struct mapped_device *md)
2467 {
2468     atomic_dec(&md->holders);
2469 }
2470 EXPORT_SYMBOL_GPL(dm_put);
2471 
2472 static bool dm_in_flight_bios(struct mapped_device *md)
2473 {
2474     int cpu;
2475     unsigned long sum = 0;
2476 
2477     for_each_possible_cpu(cpu)
2478         sum += *per_cpu_ptr(md->pending_io, cpu);
2479 
2480     return sum != 0;
2481 }
2482 
2483 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2484 {
2485     int r = 0;
2486     DEFINE_WAIT(wait);
2487 
2488     while (true) {
2489         prepare_to_wait(&md->wait, &wait, task_state);
2490 
2491         if (!dm_in_flight_bios(md))
2492             break;
2493 
2494         if (signal_pending_state(task_state, current)) {
2495             r = -EINTR;
2496             break;
2497         }
2498 
2499         io_schedule();
2500     }
2501     finish_wait(&md->wait, &wait);
2502 
2503     smp_rmb();
2504 
2505     return r;
2506 }
2507 
2508 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2509 {
2510     int r = 0;
2511 
2512     if (!queue_is_mq(md->queue))
2513         return dm_wait_for_bios_completion(md, task_state);
2514 
2515     while (true) {
2516         if (!blk_mq_queue_inflight(md->queue))
2517             break;
2518 
2519         if (signal_pending_state(task_state, current)) {
2520             r = -EINTR;
2521             break;
2522         }
2523 
2524         msleep(5);
2525     }
2526 
2527     return r;
2528 }
2529 
2530 /*
2531  * Process the deferred bios
2532  */
2533 static void dm_wq_work(struct work_struct *work)
2534 {
2535     struct mapped_device *md = container_of(work, struct mapped_device, work);
2536     struct bio *bio;
2537 
2538     while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2539         spin_lock_irq(&md->deferred_lock);
2540         bio = bio_list_pop(&md->deferred);
2541         spin_unlock_irq(&md->deferred_lock);
2542 
2543         if (!bio)
2544             break;
2545 
2546         submit_bio_noacct(bio);
2547     }
2548 }
2549 
2550 static void dm_queue_flush(struct mapped_device *md)
2551 {
2552     clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2553     smp_mb__after_atomic();
2554     queue_work(md->wq, &md->work);
2555 }
2556 
2557 /*
2558  * Swap in a new table, returning the old one for the caller to destroy.
2559  */
2560 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2561 {
2562     struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2563     struct queue_limits limits;
2564     int r;
2565 
2566     mutex_lock(&md->suspend_lock);
2567 
2568     /* device must be suspended */
2569     if (!dm_suspended_md(md))
2570         goto out;
2571 
2572     /*
2573      * If the new table has no data devices, retain the existing limits.
2574      * This helps multipath with queue_if_no_path if all paths disappear,
2575      * then new I/O is queued based on these limits, and then some paths
2576      * reappear.
2577      */
2578     if (dm_table_has_no_data_devices(table)) {
2579         live_map = dm_get_live_table_fast(md);
2580         if (live_map)
2581             limits = md->queue->limits;
2582         dm_put_live_table_fast(md);
2583     }
2584 
2585     if (!live_map) {
2586         r = dm_calculate_queue_limits(table, &limits);
2587         if (r) {
2588             map = ERR_PTR(r);
2589             goto out;
2590         }
2591     }
2592 
2593     map = __bind(md, table, &limits);
2594     dm_issue_global_event();
2595 
2596 out:
2597     mutex_unlock(&md->suspend_lock);
2598     return map;
2599 }
2600 
2601 /*
2602  * Functions to lock and unlock any filesystem running on the
2603  * device.
2604  */
2605 static int lock_fs(struct mapped_device *md)
2606 {
2607     int r;
2608 
2609     WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2610 
2611     r = freeze_bdev(md->disk->part0);
2612     if (!r)
2613         set_bit(DMF_FROZEN, &md->flags);
2614     return r;
2615 }
2616 
2617 static void unlock_fs(struct mapped_device *md)
2618 {
2619     if (!test_bit(DMF_FROZEN, &md->flags))
2620         return;
2621     thaw_bdev(md->disk->part0);
2622     clear_bit(DMF_FROZEN, &md->flags);
2623 }
2624 
2625 /*
2626  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2627  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2628  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2629  *
2630  * If __dm_suspend returns 0, the device is completely quiescent
2631  * now. There is no request-processing activity. All new requests
2632  * are being added to md->deferred list.
2633  */
2634 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2635             unsigned suspend_flags, unsigned int task_state,
2636             int dmf_suspended_flag)
2637 {
2638     bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2639     bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2640     int r;
2641 
2642     lockdep_assert_held(&md->suspend_lock);
2643 
2644     /*
2645      * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2646      * This flag is cleared before dm_suspend returns.
2647      */
2648     if (noflush)
2649         set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2650     else
2651         DMDEBUG("%s: suspending with flush", dm_device_name(md));
2652 
2653     /*
2654      * This gets reverted if there's an error later and the targets
2655      * provide the .presuspend_undo hook.
2656      */
2657     dm_table_presuspend_targets(map);
2658 
2659     /*
2660      * Flush I/O to the device.
2661      * Any I/O submitted after lock_fs() may not be flushed.
2662      * noflush takes precedence over do_lockfs.
2663      * (lock_fs() flushes I/Os and waits for them to complete.)
2664      */
2665     if (!noflush && do_lockfs) {
2666         r = lock_fs(md);
2667         if (r) {
2668             dm_table_presuspend_undo_targets(map);
2669             return r;
2670         }
2671     }
2672 
2673     /*
2674      * Here we must make sure that no processes are submitting requests
2675      * to target drivers i.e. no one may be executing
2676      * dm_split_and_process_bio from dm_submit_bio.
2677      *
2678      * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2679      * we take the write lock. To prevent any process from reentering
2680      * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2681      * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2682      * flush_workqueue(md->wq).
2683      */
2684     set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2685     if (map)
2686         synchronize_srcu(&md->io_barrier);
2687 
2688     /*
2689      * Stop md->queue before flushing md->wq in case request-based
2690      * dm defers requests to md->wq from md->queue.
2691      */
2692     if (dm_request_based(md))
2693         dm_stop_queue(md->queue);
2694 
2695     flush_workqueue(md->wq);
2696 
2697     /*
2698      * At this point no more requests are entering target request routines.
2699      * We call dm_wait_for_completion to wait for all existing requests
2700      * to finish.
2701      */
2702     r = dm_wait_for_completion(md, task_state);
2703     if (!r)
2704         set_bit(dmf_suspended_flag, &md->flags);
2705 
2706     if (noflush)
2707         clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2708     if (map)
2709         synchronize_srcu(&md->io_barrier);
2710 
2711     /* were we interrupted ? */
2712     if (r < 0) {
2713         dm_queue_flush(md);
2714 
2715         if (dm_request_based(md))
2716             dm_start_queue(md->queue);
2717 
2718         unlock_fs(md);
2719         dm_table_presuspend_undo_targets(map);
2720         /* pushback list is already flushed, so skip flush */
2721     }
2722 
2723     return r;
2724 }
2725 
2726 /*
2727  * We need to be able to change a mapping table under a mounted
2728  * filesystem.  For example we might want to move some data in
2729  * the background.  Before the table can be swapped with
2730  * dm_bind_table, dm_suspend must be called to flush any in
2731  * flight bios and ensure that any further io gets deferred.
2732  */
2733 /*
2734  * Suspend mechanism in request-based dm.
2735  *
2736  * 1. Flush all I/Os by lock_fs() if needed.
2737  * 2. Stop dispatching any I/O by stopping the request_queue.
2738  * 3. Wait for all in-flight I/Os to be completed or requeued.
2739  *
2740  * To abort suspend, start the request_queue.
2741  */
2742 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2743 {
2744     struct dm_table *map = NULL;
2745     int r = 0;
2746 
2747 retry:
2748     mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2749 
2750     if (dm_suspended_md(md)) {
2751         r = -EINVAL;
2752         goto out_unlock;
2753     }
2754 
2755     if (dm_suspended_internally_md(md)) {
2756         /* already internally suspended, wait for internal resume */
2757         mutex_unlock(&md->suspend_lock);
2758         r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2759         if (r)
2760             return r;
2761         goto retry;
2762     }
2763 
2764     map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2765 
2766     r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2767     if (r)
2768         goto out_unlock;
2769 
2770     set_bit(DMF_POST_SUSPENDING, &md->flags);
2771     dm_table_postsuspend_targets(map);
2772     clear_bit(DMF_POST_SUSPENDING, &md->flags);
2773 
2774 out_unlock:
2775     mutex_unlock(&md->suspend_lock);
2776     return r;
2777 }
2778 
2779 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2780 {
2781     if (map) {
2782         int r = dm_table_resume_targets(map);
2783         if (r)
2784             return r;
2785     }
2786 
2787     dm_queue_flush(md);
2788 
2789     /*
2790      * Flushing deferred I/Os must be done after targets are resumed
2791      * so that mapping of targets can work correctly.
2792      * Request-based dm is queueing the deferred I/Os in its request_queue.
2793      */
2794     if (dm_request_based(md))
2795         dm_start_queue(md->queue);
2796 
2797     unlock_fs(md);
2798 
2799     return 0;
2800 }
2801 
2802 int dm_resume(struct mapped_device *md)
2803 {
2804     int r;
2805     struct dm_table *map = NULL;
2806 
2807 retry:
2808     r = -EINVAL;
2809     mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2810 
2811     if (!dm_suspended_md(md))
2812         goto out;
2813 
2814     if (dm_suspended_internally_md(md)) {
2815         /* already internally suspended, wait for internal resume */
2816         mutex_unlock(&md->suspend_lock);
2817         r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2818         if (r)
2819             return r;
2820         goto retry;
2821     }
2822 
2823     map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2824     if (!map || !dm_table_get_size(map))
2825         goto out;
2826 
2827     r = __dm_resume(md, map);
2828     if (r)
2829         goto out;
2830 
2831     clear_bit(DMF_SUSPENDED, &md->flags);
2832 out:
2833     mutex_unlock(&md->suspend_lock);
2834 
2835     return r;
2836 }
2837 
2838 /*
2839  * Internal suspend/resume works like userspace-driven suspend. It waits
2840  * until all bios finish and prevents issuing new bios to the target drivers.
2841  * It may be used only from the kernel.
2842  */
2843 
2844 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2845 {
2846     struct dm_table *map = NULL;
2847 
2848     lockdep_assert_held(&md->suspend_lock);
2849 
2850     if (md->internal_suspend_count++)
2851         return; /* nested internal suspend */
2852 
2853     if (dm_suspended_md(md)) {
2854         set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2855         return; /* nest suspend */
2856     }
2857 
2858     map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2859 
2860     /*
2861      * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2862      * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2863      * would require changing .presuspend to return an error -- avoid this
2864      * until there is a need for more elaborate variants of internal suspend.
2865      */
2866     (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2867                 DMF_SUSPENDED_INTERNALLY);
2868 
2869     set_bit(DMF_POST_SUSPENDING, &md->flags);
2870     dm_table_postsuspend_targets(map);
2871     clear_bit(DMF_POST_SUSPENDING, &md->flags);
2872 }
2873 
2874 static void __dm_internal_resume(struct mapped_device *md)
2875 {
2876     BUG_ON(!md->internal_suspend_count);
2877 
2878     if (--md->internal_suspend_count)
2879         return; /* resume from nested internal suspend */
2880 
2881     if (dm_suspended_md(md))
2882         goto done; /* resume from nested suspend */
2883 
2884     /*
2885      * NOTE: existing callers don't need to call dm_table_resume_targets
2886      * (which may fail -- so best to avoid it for now by passing NULL map)
2887      */
2888     (void) __dm_resume(md, NULL);
2889 
2890 done:
2891     clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2892     smp_mb__after_atomic();
2893     wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2894 }
2895 
2896 void dm_internal_suspend_noflush(struct mapped_device *md)
2897 {
2898     mutex_lock(&md->suspend_lock);
2899     __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2900     mutex_unlock(&md->suspend_lock);
2901 }
2902 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2903 
2904 void dm_internal_resume(struct mapped_device *md)
2905 {
2906     mutex_lock(&md->suspend_lock);
2907     __dm_internal_resume(md);
2908     mutex_unlock(&md->suspend_lock);
2909 }
2910 EXPORT_SYMBOL_GPL(dm_internal_resume);
2911 
2912 /*
2913  * Fast variants of internal suspend/resume hold md->suspend_lock,
2914  * which prevents interaction with userspace-driven suspend.
2915  */
2916 
2917 void dm_internal_suspend_fast(struct mapped_device *md)
2918 {
2919     mutex_lock(&md->suspend_lock);
2920     if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2921         return;
2922 
2923     set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2924     synchronize_srcu(&md->io_barrier);
2925     flush_workqueue(md->wq);
2926     dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2927 }
2928 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2929 
2930 void dm_internal_resume_fast(struct mapped_device *md)
2931 {
2932     if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2933         goto done;
2934 
2935     dm_queue_flush(md);
2936 
2937 done:
2938     mutex_unlock(&md->suspend_lock);
2939 }
2940 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2941 
2942 /*-----------------------------------------------------------------
2943  * Event notification.
2944  *---------------------------------------------------------------*/
2945 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2946                unsigned cookie)
2947 {
2948     int r;
2949     unsigned noio_flag;
2950     char udev_cookie[DM_COOKIE_LENGTH];
2951     char *envp[] = { udev_cookie, NULL };
2952 
2953     noio_flag = memalloc_noio_save();
2954 
2955     if (!cookie)
2956         r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2957     else {
2958         snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2959              DM_COOKIE_ENV_VAR_NAME, cookie);
2960         r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2961                        action, envp);
2962     }
2963 
2964     memalloc_noio_restore(noio_flag);
2965 
2966     return r;
2967 }
2968 
2969 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2970 {
2971     return atomic_add_return(1, &md->uevent_seq);
2972 }
2973 
2974 uint32_t dm_get_event_nr(struct mapped_device *md)
2975 {
2976     return atomic_read(&md->event_nr);
2977 }
2978 
2979 int dm_wait_event(struct mapped_device *md, int event_nr)
2980 {
2981     return wait_event_interruptible(md->eventq,
2982             (event_nr != atomic_read(&md->event_nr)));
2983 }
2984 
2985 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2986 {
2987     unsigned long flags;
2988 
2989     spin_lock_irqsave(&md->uevent_lock, flags);
2990     list_add(elist, &md->uevent_list);
2991     spin_unlock_irqrestore(&md->uevent_lock, flags);
2992 }
2993 
2994 /*
2995  * The gendisk is only valid as long as you have a reference
2996  * count on 'md'.
2997  */
2998 struct gendisk *dm_disk(struct mapped_device *md)
2999 {
3000     return md->disk;
3001 }
3002 EXPORT_SYMBOL_GPL(dm_disk);
3003 
3004 struct kobject *dm_kobject(struct mapped_device *md)
3005 {
3006     return &md->kobj_holder.kobj;
3007 }
3008 
3009 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3010 {
3011     struct mapped_device *md;
3012 
3013     md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3014 
3015     spin_lock(&_minor_lock);
3016     if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3017         md = NULL;
3018         goto out;
3019     }
3020     dm_get(md);
3021 out:
3022     spin_unlock(&_minor_lock);
3023 
3024     return md;
3025 }
3026 
3027 int dm_suspended_md(struct mapped_device *md)
3028 {
3029     return test_bit(DMF_SUSPENDED, &md->flags);
3030 }
3031 
3032 static int dm_post_suspending_md(struct mapped_device *md)
3033 {
3034     return test_bit(DMF_POST_SUSPENDING, &md->flags);
3035 }
3036 
3037 int dm_suspended_internally_md(struct mapped_device *md)
3038 {
3039     return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3040 }
3041 
3042 int dm_test_deferred_remove_flag(struct mapped_device *md)
3043 {
3044     return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3045 }
3046 
3047 int dm_suspended(struct dm_target *ti)
3048 {
3049     return dm_suspended_md(ti->table->md);
3050 }
3051 EXPORT_SYMBOL_GPL(dm_suspended);
3052 
3053 int dm_post_suspending(struct dm_target *ti)
3054 {
3055     return dm_post_suspending_md(ti->table->md);
3056 }
3057 EXPORT_SYMBOL_GPL(dm_post_suspending);
3058 
3059 int dm_noflush_suspending(struct dm_target *ti)
3060 {
3061     return __noflush_suspending(ti->table->md);
3062 }
3063 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3064 
3065 void dm_free_md_mempools(struct dm_md_mempools *pools)
3066 {
3067     if (!pools)
3068         return;
3069 
3070     bioset_exit(&pools->bs);
3071     bioset_exit(&pools->io_bs);
3072 
3073     kfree(pools);
3074 }
3075 
3076 struct dm_pr {
3077     u64 old_key;
3078     u64 new_key;
3079     u32 flags;
3080     bool    abort;
3081     bool    fail_early;
3082     int ret;
3083     enum pr_type type;
3084 };
3085 
3086 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3087               struct dm_pr *pr)
3088 {
3089     struct mapped_device *md = bdev->bd_disk->private_data;
3090     struct dm_table *table;
3091     struct dm_target *ti;
3092     int ret = -ENOTTY, srcu_idx;
3093 
3094     table = dm_get_live_table(md, &srcu_idx);
3095     if (!table || !dm_table_get_size(table))
3096         goto out;
3097 
3098     /* We only support devices that have a single target */
3099     if (table->num_targets != 1)
3100         goto out;
3101     ti = dm_table_get_target(table, 0);
3102 
3103     if (dm_suspended_md(md)) {
3104         ret = -EAGAIN;
3105         goto out;
3106     }
3107 
3108     ret = -EINVAL;
3109     if (!ti->type->iterate_devices)
3110         goto out;
3111 
3112     ti->type->iterate_devices(ti, fn, pr);
3113     ret = 0;
3114 out:
3115     dm_put_live_table(md, srcu_idx);
3116     return ret;
3117 }
3118 
3119 /*
3120  * For register / unregister we need to manually call out to every path.
3121  */
3122 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3123                 sector_t start, sector_t len, void *data)
3124 {
3125     struct dm_pr *pr = data;
3126     const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3127     int ret;
3128 
3129     if (!ops || !ops->pr_register) {
3130         pr->ret = -EOPNOTSUPP;
3131         return -1;
3132     }
3133 
3134     ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3135     if (!ret)
3136         return 0;
3137 
3138     if (!pr->ret)
3139         pr->ret = ret;
3140 
3141     if (pr->fail_early)
3142         return -1;
3143 
3144     return 0;
3145 }
3146 
3147 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3148               u32 flags)
3149 {
3150     struct dm_pr pr = {
3151         .old_key    = old_key,
3152         .new_key    = new_key,
3153         .flags      = flags,
3154         .fail_early = true,
3155         .ret        = 0,
3156     };
3157     int ret;
3158 
3159     ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3160     if (ret) {
3161         /* Didn't even get to register a path */
3162         return ret;
3163     }
3164 
3165     if (!pr.ret)
3166         return 0;
3167     ret = pr.ret;
3168 
3169     if (!new_key)
3170         return ret;
3171 
3172     /* unregister all paths if we failed to register any path */
3173     pr.old_key = new_key;
3174     pr.new_key = 0;
3175     pr.flags = 0;
3176     pr.fail_early = false;
3177     (void) dm_call_pr(bdev, __dm_pr_register, &pr);
3178     return ret;
3179 }
3180 
3181 
3182 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3183                sector_t start, sector_t len, void *data)
3184 {
3185     struct dm_pr *pr = data;
3186     const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3187 
3188     if (!ops || !ops->pr_reserve) {
3189         pr->ret = -EOPNOTSUPP;
3190         return -1;
3191     }
3192 
3193     pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3194     if (!pr->ret)
3195         return -1;
3196 
3197     return 0;
3198 }
3199 
3200 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3201              u32 flags)
3202 {
3203     struct dm_pr pr = {
3204         .old_key    = key,
3205         .flags      = flags,
3206         .type       = type,
3207         .fail_early = false,
3208         .ret        = 0,
3209     };
3210     int ret;
3211 
3212     ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3213     if (ret)
3214         return ret;
3215 
3216     return pr.ret;
3217 }
3218 
3219 /*
3220  * If there is a non-All Registrants type of reservation, the release must be
3221  * sent down the holding path. For the cases where there is no reservation or
3222  * the path is not the holder the device will also return success, so we must
3223  * try each path to make sure we got the correct path.
3224  */
3225 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3226                sector_t start, sector_t len, void *data)
3227 {
3228     struct dm_pr *pr = data;
3229     const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3230 
3231     if (!ops || !ops->pr_release) {
3232         pr->ret = -EOPNOTSUPP;
3233         return -1;
3234     }
3235 
3236     pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3237     if (pr->ret)
3238         return -1;
3239 
3240     return 0;
3241 }
3242 
3243 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3244 {
3245     struct dm_pr pr = {
3246         .old_key    = key,
3247         .type       = type,
3248         .fail_early = false,
3249     };
3250     int ret;
3251 
3252     ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3253     if (ret)
3254         return ret;
3255 
3256     return pr.ret;
3257 }
3258 
3259 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3260                sector_t start, sector_t len, void *data)
3261 {
3262     struct dm_pr *pr = data;
3263     const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3264 
3265     if (!ops || !ops->pr_preempt) {
3266         pr->ret = -EOPNOTSUPP;
3267         return -1;
3268     }
3269 
3270     pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3271                   pr->abort);
3272     if (!pr->ret)
3273         return -1;
3274 
3275     return 0;
3276 }
3277 
3278 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3279              enum pr_type type, bool abort)
3280 {
3281     struct dm_pr pr = {
3282         .new_key    = new_key,
3283         .old_key    = old_key,
3284         .type       = type,
3285         .fail_early = false,
3286     };
3287     int ret;
3288 
3289     ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3290     if (ret)
3291         return ret;
3292 
3293     return pr.ret;
3294 }
3295 
3296 static int dm_pr_clear(struct block_device *bdev, u64 key)
3297 {
3298     struct mapped_device *md = bdev->bd_disk->private_data;
3299     const struct pr_ops *ops;
3300     int r, srcu_idx;
3301 
3302     r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3303     if (r < 0)
3304         goto out;
3305 
3306     ops = bdev->bd_disk->fops->pr_ops;
3307     if (ops && ops->pr_clear)
3308         r = ops->pr_clear(bdev, key);
3309     else
3310         r = -EOPNOTSUPP;
3311 out:
3312     dm_unprepare_ioctl(md, srcu_idx);
3313     return r;
3314 }
3315 
3316 static const struct pr_ops dm_pr_ops = {
3317     .pr_register    = dm_pr_register,
3318     .pr_reserve = dm_pr_reserve,
3319     .pr_release = dm_pr_release,
3320     .pr_preempt = dm_pr_preempt,
3321     .pr_clear   = dm_pr_clear,
3322 };
3323 
3324 static const struct block_device_operations dm_blk_dops = {
3325     .submit_bio = dm_submit_bio,
3326     .poll_bio = dm_poll_bio,
3327     .open = dm_blk_open,
3328     .release = dm_blk_close,
3329     .ioctl = dm_blk_ioctl,
3330     .getgeo = dm_blk_getgeo,
3331     .report_zones = dm_blk_report_zones,
3332     .pr_ops = &dm_pr_ops,
3333     .owner = THIS_MODULE
3334 };
3335 
3336 static const struct block_device_operations dm_rq_blk_dops = {
3337     .open = dm_blk_open,
3338     .release = dm_blk_close,
3339     .ioctl = dm_blk_ioctl,
3340     .getgeo = dm_blk_getgeo,
3341     .pr_ops = &dm_pr_ops,
3342     .owner = THIS_MODULE
3343 };
3344 
3345 static const struct dax_operations dm_dax_ops = {
3346     .direct_access = dm_dax_direct_access,
3347     .zero_page_range = dm_dax_zero_page_range,
3348     .recovery_write = dm_dax_recovery_write,
3349 };
3350 
3351 /*
3352  * module hooks
3353  */
3354 module_init(dm_init);
3355 module_exit(dm_exit);
3356 
3357 module_param(major, uint, 0);
3358 MODULE_PARM_DESC(major, "The major number of the device mapper");
3359 
3360 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3361 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3362 
3363 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3364 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3365 
3366 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3367 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3368 
3369 MODULE_DESCRIPTION(DM_NAME " driver");
3370 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3371 MODULE_LICENSE("GPL");