Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright (C) 2011-2012 Red Hat UK.
0003  *
0004  * This file is released under the GPL.
0005  */
0006 
0007 #include "dm-thin-metadata.h"
0008 #include "dm-bio-prison-v1.h"
0009 #include "dm.h"
0010 
0011 #include <linux/device-mapper.h>
0012 #include <linux/dm-io.h>
0013 #include <linux/dm-kcopyd.h>
0014 #include <linux/jiffies.h>
0015 #include <linux/log2.h>
0016 #include <linux/list.h>
0017 #include <linux/rculist.h>
0018 #include <linux/init.h>
0019 #include <linux/module.h>
0020 #include <linux/slab.h>
0021 #include <linux/vmalloc.h>
0022 #include <linux/sort.h>
0023 #include <linux/rbtree.h>
0024 
0025 #define DM_MSG_PREFIX   "thin"
0026 
0027 /*
0028  * Tunable constants
0029  */
0030 #define ENDIO_HOOK_POOL_SIZE 1024
0031 #define MAPPING_POOL_SIZE 1024
0032 #define COMMIT_PERIOD HZ
0033 #define NO_SPACE_TIMEOUT_SECS 60
0034 
0035 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
0036 
0037 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
0038         "A percentage of time allocated for copy on write");
0039 
0040 /*
0041  * The block size of the device holding pool data must be
0042  * between 64KB and 1GB.
0043  */
0044 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
0045 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
0046 
0047 /*
0048  * Device id is restricted to 24 bits.
0049  */
0050 #define MAX_DEV_ID ((1 << 24) - 1)
0051 
0052 /*
0053  * How do we handle breaking sharing of data blocks?
0054  * =================================================
0055  *
0056  * We use a standard copy-on-write btree to store the mappings for the
0057  * devices (note I'm talking about copy-on-write of the metadata here, not
0058  * the data).  When you take an internal snapshot you clone the root node
0059  * of the origin btree.  After this there is no concept of an origin or a
0060  * snapshot.  They are just two device trees that happen to point to the
0061  * same data blocks.
0062  *
0063  * When we get a write in we decide if it's to a shared data block using
0064  * some timestamp magic.  If it is, we have to break sharing.
0065  *
0066  * Let's say we write to a shared block in what was the origin.  The
0067  * steps are:
0068  *
0069  * i) plug io further to this physical block. (see bio_prison code).
0070  *
0071  * ii) quiesce any read io to that shared data block.  Obviously
0072  * including all devices that share this block.  (see dm_deferred_set code)
0073  *
0074  * iii) copy the data block to a newly allocate block.  This step can be
0075  * missed out if the io covers the block. (schedule_copy).
0076  *
0077  * iv) insert the new mapping into the origin's btree
0078  * (process_prepared_mapping).  This act of inserting breaks some
0079  * sharing of btree nodes between the two devices.  Breaking sharing only
0080  * effects the btree of that specific device.  Btrees for the other
0081  * devices that share the block never change.  The btree for the origin
0082  * device as it was after the last commit is untouched, ie. we're using
0083  * persistent data structures in the functional programming sense.
0084  *
0085  * v) unplug io to this physical block, including the io that triggered
0086  * the breaking of sharing.
0087  *
0088  * Steps (ii) and (iii) occur in parallel.
0089  *
0090  * The metadata _doesn't_ need to be committed before the io continues.  We
0091  * get away with this because the io is always written to a _new_ block.
0092  * If there's a crash, then:
0093  *
0094  * - The origin mapping will point to the old origin block (the shared
0095  * one).  This will contain the data as it was before the io that triggered
0096  * the breaking of sharing came in.
0097  *
0098  * - The snap mapping still points to the old block.  As it would after
0099  * the commit.
0100  *
0101  * The downside of this scheme is the timestamp magic isn't perfect, and
0102  * will continue to think that data block in the snapshot device is shared
0103  * even after the write to the origin has broken sharing.  I suspect data
0104  * blocks will typically be shared by many different devices, so we're
0105  * breaking sharing n + 1 times, rather than n, where n is the number of
0106  * devices that reference this data block.  At the moment I think the
0107  * benefits far, far outweigh the disadvantages.
0108  */
0109 
0110 /*----------------------------------------------------------------*/
0111 
0112 /*
0113  * Key building.
0114  */
0115 enum lock_space {
0116     VIRTUAL,
0117     PHYSICAL
0118 };
0119 
0120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
0121               dm_block_t b, dm_block_t e, struct dm_cell_key *key)
0122 {
0123     key->virtual = (ls == VIRTUAL);
0124     key->dev = dm_thin_dev_id(td);
0125     key->block_begin = b;
0126     key->block_end = e;
0127 }
0128 
0129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
0130                struct dm_cell_key *key)
0131 {
0132     build_key(td, PHYSICAL, b, b + 1llu, key);
0133 }
0134 
0135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
0136                   struct dm_cell_key *key)
0137 {
0138     build_key(td, VIRTUAL, b, b + 1llu, key);
0139 }
0140 
0141 /*----------------------------------------------------------------*/
0142 
0143 #define THROTTLE_THRESHOLD (1 * HZ)
0144 
0145 struct throttle {
0146     struct rw_semaphore lock;
0147     unsigned long threshold;
0148     bool throttle_applied;
0149 };
0150 
0151 static void throttle_init(struct throttle *t)
0152 {
0153     init_rwsem(&t->lock);
0154     t->throttle_applied = false;
0155 }
0156 
0157 static void throttle_work_start(struct throttle *t)
0158 {
0159     t->threshold = jiffies + THROTTLE_THRESHOLD;
0160 }
0161 
0162 static void throttle_work_update(struct throttle *t)
0163 {
0164     if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
0165         down_write(&t->lock);
0166         t->throttle_applied = true;
0167     }
0168 }
0169 
0170 static void throttle_work_complete(struct throttle *t)
0171 {
0172     if (t->throttle_applied) {
0173         t->throttle_applied = false;
0174         up_write(&t->lock);
0175     }
0176 }
0177 
0178 static void throttle_lock(struct throttle *t)
0179 {
0180     down_read(&t->lock);
0181 }
0182 
0183 static void throttle_unlock(struct throttle *t)
0184 {
0185     up_read(&t->lock);
0186 }
0187 
0188 /*----------------------------------------------------------------*/
0189 
0190 /*
0191  * A pool device ties together a metadata device and a data device.  It
0192  * also provides the interface for creating and destroying internal
0193  * devices.
0194  */
0195 struct dm_thin_new_mapping;
0196 
0197 /*
0198  * The pool runs in various modes.  Ordered in degraded order for comparisons.
0199  */
0200 enum pool_mode {
0201     PM_WRITE,       /* metadata may be changed */
0202     PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
0203 
0204     /*
0205      * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
0206      */
0207     PM_OUT_OF_METADATA_SPACE,
0208     PM_READ_ONLY,       /* metadata may not be changed */
0209 
0210     PM_FAIL,        /* all I/O fails */
0211 };
0212 
0213 struct pool_features {
0214     enum pool_mode mode;
0215 
0216     bool zero_new_blocks:1;
0217     bool discard_enabled:1;
0218     bool discard_passdown:1;
0219     bool error_if_no_space:1;
0220 };
0221 
0222 struct thin_c;
0223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
0224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
0225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
0226 
0227 #define CELL_SORT_ARRAY_SIZE 8192
0228 
0229 struct pool {
0230     struct list_head list;
0231     struct dm_target *ti;   /* Only set if a pool target is bound */
0232 
0233     struct mapped_device *pool_md;
0234     struct block_device *data_dev;
0235     struct block_device *md_dev;
0236     struct dm_pool_metadata *pmd;
0237 
0238     dm_block_t low_water_blocks;
0239     uint32_t sectors_per_block;
0240     int sectors_per_block_shift;
0241 
0242     struct pool_features pf;
0243     bool low_water_triggered:1; /* A dm event has been sent */
0244     bool suspended:1;
0245     bool out_of_data_space:1;
0246 
0247     struct dm_bio_prison *prison;
0248     struct dm_kcopyd_client *copier;
0249 
0250     struct work_struct worker;
0251     struct workqueue_struct *wq;
0252     struct throttle throttle;
0253     struct delayed_work waker;
0254     struct delayed_work no_space_timeout;
0255 
0256     unsigned long last_commit_jiffies;
0257     unsigned ref_count;
0258 
0259     spinlock_t lock;
0260     struct bio_list deferred_flush_bios;
0261     struct bio_list deferred_flush_completions;
0262     struct list_head prepared_mappings;
0263     struct list_head prepared_discards;
0264     struct list_head prepared_discards_pt2;
0265     struct list_head active_thins;
0266 
0267     struct dm_deferred_set *shared_read_ds;
0268     struct dm_deferred_set *all_io_ds;
0269 
0270     struct dm_thin_new_mapping *next_mapping;
0271 
0272     process_bio_fn process_bio;
0273     process_bio_fn process_discard;
0274 
0275     process_cell_fn process_cell;
0276     process_cell_fn process_discard_cell;
0277 
0278     process_mapping_fn process_prepared_mapping;
0279     process_mapping_fn process_prepared_discard;
0280     process_mapping_fn process_prepared_discard_pt2;
0281 
0282     struct dm_bio_prison_cell **cell_sort_array;
0283 
0284     mempool_t mapping_pool;
0285 };
0286 
0287 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
0288 
0289 static enum pool_mode get_pool_mode(struct pool *pool)
0290 {
0291     return pool->pf.mode;
0292 }
0293 
0294 static void notify_of_pool_mode_change(struct pool *pool)
0295 {
0296     const char *descs[] = {
0297         "write",
0298         "out-of-data-space",
0299         "read-only",
0300         "read-only",
0301         "fail"
0302     };
0303     const char *extra_desc = NULL;
0304     enum pool_mode mode = get_pool_mode(pool);
0305 
0306     if (mode == PM_OUT_OF_DATA_SPACE) {
0307         if (!pool->pf.error_if_no_space)
0308             extra_desc = " (queue IO)";
0309         else
0310             extra_desc = " (error IO)";
0311     }
0312 
0313     dm_table_event(pool->ti->table);
0314     DMINFO("%s: switching pool to %s%s mode",
0315            dm_device_name(pool->pool_md),
0316            descs[(int)mode], extra_desc ? : "");
0317 }
0318 
0319 /*
0320  * Target context for a pool.
0321  */
0322 struct pool_c {
0323     struct dm_target *ti;
0324     struct pool *pool;
0325     struct dm_dev *data_dev;
0326     struct dm_dev *metadata_dev;
0327 
0328     dm_block_t low_water_blocks;
0329     struct pool_features requested_pf; /* Features requested during table load */
0330     struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
0331 };
0332 
0333 /*
0334  * Target context for a thin.
0335  */
0336 struct thin_c {
0337     struct list_head list;
0338     struct dm_dev *pool_dev;
0339     struct dm_dev *origin_dev;
0340     sector_t origin_size;
0341     dm_thin_id dev_id;
0342 
0343     struct pool *pool;
0344     struct dm_thin_device *td;
0345     struct mapped_device *thin_md;
0346 
0347     bool requeue_mode:1;
0348     spinlock_t lock;
0349     struct list_head deferred_cells;
0350     struct bio_list deferred_bio_list;
0351     struct bio_list retry_on_resume_list;
0352     struct rb_root sort_bio_list; /* sorted list of deferred bios */
0353 
0354     /*
0355      * Ensures the thin is not destroyed until the worker has finished
0356      * iterating the active_thins list.
0357      */
0358     refcount_t refcount;
0359     struct completion can_destroy;
0360 };
0361 
0362 /*----------------------------------------------------------------*/
0363 
0364 static bool block_size_is_power_of_two(struct pool *pool)
0365 {
0366     return pool->sectors_per_block_shift >= 0;
0367 }
0368 
0369 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
0370 {
0371     return block_size_is_power_of_two(pool) ?
0372         (b << pool->sectors_per_block_shift) :
0373         (b * pool->sectors_per_block);
0374 }
0375 
0376 /*----------------------------------------------------------------*/
0377 
0378 struct discard_op {
0379     struct thin_c *tc;
0380     struct blk_plug plug;
0381     struct bio *parent_bio;
0382     struct bio *bio;
0383 };
0384 
0385 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
0386 {
0387     BUG_ON(!parent);
0388 
0389     op->tc = tc;
0390     blk_start_plug(&op->plug);
0391     op->parent_bio = parent;
0392     op->bio = NULL;
0393 }
0394 
0395 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
0396 {
0397     struct thin_c *tc = op->tc;
0398     sector_t s = block_to_sectors(tc->pool, data_b);
0399     sector_t len = block_to_sectors(tc->pool, data_e - data_b);
0400 
0401     return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOWAIT,
0402                       &op->bio);
0403 }
0404 
0405 static void end_discard(struct discard_op *op, int r)
0406 {
0407     if (op->bio) {
0408         /*
0409          * Even if one of the calls to issue_discard failed, we
0410          * need to wait for the chain to complete.
0411          */
0412         bio_chain(op->bio, op->parent_bio);
0413         bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
0414         submit_bio(op->bio);
0415     }
0416 
0417     blk_finish_plug(&op->plug);
0418 
0419     /*
0420      * Even if r is set, there could be sub discards in flight that we
0421      * need to wait for.
0422      */
0423     if (r && !op->parent_bio->bi_status)
0424         op->parent_bio->bi_status = errno_to_blk_status(r);
0425     bio_endio(op->parent_bio);
0426 }
0427 
0428 /*----------------------------------------------------------------*/
0429 
0430 /*
0431  * wake_worker() is used when new work is queued and when pool_resume is
0432  * ready to continue deferred IO processing.
0433  */
0434 static void wake_worker(struct pool *pool)
0435 {
0436     queue_work(pool->wq, &pool->worker);
0437 }
0438 
0439 /*----------------------------------------------------------------*/
0440 
0441 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
0442               struct dm_bio_prison_cell **cell_result)
0443 {
0444     int r;
0445     struct dm_bio_prison_cell *cell_prealloc;
0446 
0447     /*
0448      * Allocate a cell from the prison's mempool.
0449      * This might block but it can't fail.
0450      */
0451     cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
0452 
0453     r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
0454     if (r)
0455         /*
0456          * We reused an old cell; we can get rid of
0457          * the new one.
0458          */
0459         dm_bio_prison_free_cell(pool->prison, cell_prealloc);
0460 
0461     return r;
0462 }
0463 
0464 static void cell_release(struct pool *pool,
0465              struct dm_bio_prison_cell *cell,
0466              struct bio_list *bios)
0467 {
0468     dm_cell_release(pool->prison, cell, bios);
0469     dm_bio_prison_free_cell(pool->prison, cell);
0470 }
0471 
0472 static void cell_visit_release(struct pool *pool,
0473                    void (*fn)(void *, struct dm_bio_prison_cell *),
0474                    void *context,
0475                    struct dm_bio_prison_cell *cell)
0476 {
0477     dm_cell_visit_release(pool->prison, fn, context, cell);
0478     dm_bio_prison_free_cell(pool->prison, cell);
0479 }
0480 
0481 static void cell_release_no_holder(struct pool *pool,
0482                    struct dm_bio_prison_cell *cell,
0483                    struct bio_list *bios)
0484 {
0485     dm_cell_release_no_holder(pool->prison, cell, bios);
0486     dm_bio_prison_free_cell(pool->prison, cell);
0487 }
0488 
0489 static void cell_error_with_code(struct pool *pool,
0490         struct dm_bio_prison_cell *cell, blk_status_t error_code)
0491 {
0492     dm_cell_error(pool->prison, cell, error_code);
0493     dm_bio_prison_free_cell(pool->prison, cell);
0494 }
0495 
0496 static blk_status_t get_pool_io_error_code(struct pool *pool)
0497 {
0498     return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
0499 }
0500 
0501 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
0502 {
0503     cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
0504 }
0505 
0506 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
0507 {
0508     cell_error_with_code(pool, cell, 0);
0509 }
0510 
0511 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
0512 {
0513     cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
0514 }
0515 
0516 /*----------------------------------------------------------------*/
0517 
0518 /*
0519  * A global list of pools that uses a struct mapped_device as a key.
0520  */
0521 static struct dm_thin_pool_table {
0522     struct mutex mutex;
0523     struct list_head pools;
0524 } dm_thin_pool_table;
0525 
0526 static void pool_table_init(void)
0527 {
0528     mutex_init(&dm_thin_pool_table.mutex);
0529     INIT_LIST_HEAD(&dm_thin_pool_table.pools);
0530 }
0531 
0532 static void pool_table_exit(void)
0533 {
0534     mutex_destroy(&dm_thin_pool_table.mutex);
0535 }
0536 
0537 static void __pool_table_insert(struct pool *pool)
0538 {
0539     BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
0540     list_add(&pool->list, &dm_thin_pool_table.pools);
0541 }
0542 
0543 static void __pool_table_remove(struct pool *pool)
0544 {
0545     BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
0546     list_del(&pool->list);
0547 }
0548 
0549 static struct pool *__pool_table_lookup(struct mapped_device *md)
0550 {
0551     struct pool *pool = NULL, *tmp;
0552 
0553     BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
0554 
0555     list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
0556         if (tmp->pool_md == md) {
0557             pool = tmp;
0558             break;
0559         }
0560     }
0561 
0562     return pool;
0563 }
0564 
0565 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
0566 {
0567     struct pool *pool = NULL, *tmp;
0568 
0569     BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
0570 
0571     list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
0572         if (tmp->md_dev == md_dev) {
0573             pool = tmp;
0574             break;
0575         }
0576     }
0577 
0578     return pool;
0579 }
0580 
0581 /*----------------------------------------------------------------*/
0582 
0583 struct dm_thin_endio_hook {
0584     struct thin_c *tc;
0585     struct dm_deferred_entry *shared_read_entry;
0586     struct dm_deferred_entry *all_io_entry;
0587     struct dm_thin_new_mapping *overwrite_mapping;
0588     struct rb_node rb_node;
0589     struct dm_bio_prison_cell *cell;
0590 };
0591 
0592 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
0593 {
0594     bio_list_merge(bios, master);
0595     bio_list_init(master);
0596 }
0597 
0598 static void error_bio_list(struct bio_list *bios, blk_status_t error)
0599 {
0600     struct bio *bio;
0601 
0602     while ((bio = bio_list_pop(bios))) {
0603         bio->bi_status = error;
0604         bio_endio(bio);
0605     }
0606 }
0607 
0608 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
0609         blk_status_t error)
0610 {
0611     struct bio_list bios;
0612 
0613     bio_list_init(&bios);
0614 
0615     spin_lock_irq(&tc->lock);
0616     __merge_bio_list(&bios, master);
0617     spin_unlock_irq(&tc->lock);
0618 
0619     error_bio_list(&bios, error);
0620 }
0621 
0622 static void requeue_deferred_cells(struct thin_c *tc)
0623 {
0624     struct pool *pool = tc->pool;
0625     struct list_head cells;
0626     struct dm_bio_prison_cell *cell, *tmp;
0627 
0628     INIT_LIST_HEAD(&cells);
0629 
0630     spin_lock_irq(&tc->lock);
0631     list_splice_init(&tc->deferred_cells, &cells);
0632     spin_unlock_irq(&tc->lock);
0633 
0634     list_for_each_entry_safe(cell, tmp, &cells, user_list)
0635         cell_requeue(pool, cell);
0636 }
0637 
0638 static void requeue_io(struct thin_c *tc)
0639 {
0640     struct bio_list bios;
0641 
0642     bio_list_init(&bios);
0643 
0644     spin_lock_irq(&tc->lock);
0645     __merge_bio_list(&bios, &tc->deferred_bio_list);
0646     __merge_bio_list(&bios, &tc->retry_on_resume_list);
0647     spin_unlock_irq(&tc->lock);
0648 
0649     error_bio_list(&bios, BLK_STS_DM_REQUEUE);
0650     requeue_deferred_cells(tc);
0651 }
0652 
0653 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
0654 {
0655     struct thin_c *tc;
0656 
0657     rcu_read_lock();
0658     list_for_each_entry_rcu(tc, &pool->active_thins, list)
0659         error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
0660     rcu_read_unlock();
0661 }
0662 
0663 static void error_retry_list(struct pool *pool)
0664 {
0665     error_retry_list_with_code(pool, get_pool_io_error_code(pool));
0666 }
0667 
0668 /*
0669  * This section of code contains the logic for processing a thin device's IO.
0670  * Much of the code depends on pool object resources (lists, workqueues, etc)
0671  * but most is exclusively called from the thin target rather than the thin-pool
0672  * target.
0673  */
0674 
0675 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
0676 {
0677     struct pool *pool = tc->pool;
0678     sector_t block_nr = bio->bi_iter.bi_sector;
0679 
0680     if (block_size_is_power_of_two(pool))
0681         block_nr >>= pool->sectors_per_block_shift;
0682     else
0683         (void) sector_div(block_nr, pool->sectors_per_block);
0684 
0685     return block_nr;
0686 }
0687 
0688 /*
0689  * Returns the _complete_ blocks that this bio covers.
0690  */
0691 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
0692                 dm_block_t *begin, dm_block_t *end)
0693 {
0694     struct pool *pool = tc->pool;
0695     sector_t b = bio->bi_iter.bi_sector;
0696     sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
0697 
0698     b += pool->sectors_per_block - 1ull; /* so we round up */
0699 
0700     if (block_size_is_power_of_two(pool)) {
0701         b >>= pool->sectors_per_block_shift;
0702         e >>= pool->sectors_per_block_shift;
0703     } else {
0704         (void) sector_div(b, pool->sectors_per_block);
0705         (void) sector_div(e, pool->sectors_per_block);
0706     }
0707 
0708     if (e < b)
0709         /* Can happen if the bio is within a single block. */
0710         e = b;
0711 
0712     *begin = b;
0713     *end = e;
0714 }
0715 
0716 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
0717 {
0718     struct pool *pool = tc->pool;
0719     sector_t bi_sector = bio->bi_iter.bi_sector;
0720 
0721     bio_set_dev(bio, tc->pool_dev->bdev);
0722     if (block_size_is_power_of_two(pool))
0723         bio->bi_iter.bi_sector =
0724             (block << pool->sectors_per_block_shift) |
0725             (bi_sector & (pool->sectors_per_block - 1));
0726     else
0727         bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
0728                  sector_div(bi_sector, pool->sectors_per_block);
0729 }
0730 
0731 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
0732 {
0733     bio_set_dev(bio, tc->origin_dev->bdev);
0734 }
0735 
0736 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
0737 {
0738     return op_is_flush(bio->bi_opf) &&
0739         dm_thin_changed_this_transaction(tc->td);
0740 }
0741 
0742 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
0743 {
0744     struct dm_thin_endio_hook *h;
0745 
0746     if (bio_op(bio) == REQ_OP_DISCARD)
0747         return;
0748 
0749     h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
0750     h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
0751 }
0752 
0753 static void issue(struct thin_c *tc, struct bio *bio)
0754 {
0755     struct pool *pool = tc->pool;
0756 
0757     if (!bio_triggers_commit(tc, bio)) {
0758         dm_submit_bio_remap(bio, NULL);
0759         return;
0760     }
0761 
0762     /*
0763      * Complete bio with an error if earlier I/O caused changes to
0764      * the metadata that can't be committed e.g, due to I/O errors
0765      * on the metadata device.
0766      */
0767     if (dm_thin_aborted_changes(tc->td)) {
0768         bio_io_error(bio);
0769         return;
0770     }
0771 
0772     /*
0773      * Batch together any bios that trigger commits and then issue a
0774      * single commit for them in process_deferred_bios().
0775      */
0776     spin_lock_irq(&pool->lock);
0777     bio_list_add(&pool->deferred_flush_bios, bio);
0778     spin_unlock_irq(&pool->lock);
0779 }
0780 
0781 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
0782 {
0783     remap_to_origin(tc, bio);
0784     issue(tc, bio);
0785 }
0786 
0787 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
0788                 dm_block_t block)
0789 {
0790     remap(tc, bio, block);
0791     issue(tc, bio);
0792 }
0793 
0794 /*----------------------------------------------------------------*/
0795 
0796 /*
0797  * Bio endio functions.
0798  */
0799 struct dm_thin_new_mapping {
0800     struct list_head list;
0801 
0802     bool pass_discard:1;
0803     bool maybe_shared:1;
0804 
0805     /*
0806      * Track quiescing, copying and zeroing preparation actions.  When this
0807      * counter hits zero the block is prepared and can be inserted into the
0808      * btree.
0809      */
0810     atomic_t prepare_actions;
0811 
0812     blk_status_t status;
0813     struct thin_c *tc;
0814     dm_block_t virt_begin, virt_end;
0815     dm_block_t data_block;
0816     struct dm_bio_prison_cell *cell;
0817 
0818     /*
0819      * If the bio covers the whole area of a block then we can avoid
0820      * zeroing or copying.  Instead this bio is hooked.  The bio will
0821      * still be in the cell, so care has to be taken to avoid issuing
0822      * the bio twice.
0823      */
0824     struct bio *bio;
0825     bio_end_io_t *saved_bi_end_io;
0826 };
0827 
0828 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
0829 {
0830     struct pool *pool = m->tc->pool;
0831 
0832     if (atomic_dec_and_test(&m->prepare_actions)) {
0833         list_add_tail(&m->list, &pool->prepared_mappings);
0834         wake_worker(pool);
0835     }
0836 }
0837 
0838 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
0839 {
0840     unsigned long flags;
0841     struct pool *pool = m->tc->pool;
0842 
0843     spin_lock_irqsave(&pool->lock, flags);
0844     __complete_mapping_preparation(m);
0845     spin_unlock_irqrestore(&pool->lock, flags);
0846 }
0847 
0848 static void copy_complete(int read_err, unsigned long write_err, void *context)
0849 {
0850     struct dm_thin_new_mapping *m = context;
0851 
0852     m->status = read_err || write_err ? BLK_STS_IOERR : 0;
0853     complete_mapping_preparation(m);
0854 }
0855 
0856 static void overwrite_endio(struct bio *bio)
0857 {
0858     struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
0859     struct dm_thin_new_mapping *m = h->overwrite_mapping;
0860 
0861     bio->bi_end_io = m->saved_bi_end_io;
0862 
0863     m->status = bio->bi_status;
0864     complete_mapping_preparation(m);
0865 }
0866 
0867 /*----------------------------------------------------------------*/
0868 
0869 /*
0870  * Workqueue.
0871  */
0872 
0873 /*
0874  * Prepared mapping jobs.
0875  */
0876 
0877 /*
0878  * This sends the bios in the cell, except the original holder, back
0879  * to the deferred_bios list.
0880  */
0881 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
0882 {
0883     struct pool *pool = tc->pool;
0884     unsigned long flags;
0885     int has_work;
0886 
0887     spin_lock_irqsave(&tc->lock, flags);
0888     cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
0889     has_work = !bio_list_empty(&tc->deferred_bio_list);
0890     spin_unlock_irqrestore(&tc->lock, flags);
0891 
0892     if (has_work)
0893         wake_worker(pool);
0894 }
0895 
0896 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
0897 
0898 struct remap_info {
0899     struct thin_c *tc;
0900     struct bio_list defer_bios;
0901     struct bio_list issue_bios;
0902 };
0903 
0904 static void __inc_remap_and_issue_cell(void *context,
0905                        struct dm_bio_prison_cell *cell)
0906 {
0907     struct remap_info *info = context;
0908     struct bio *bio;
0909 
0910     while ((bio = bio_list_pop(&cell->bios))) {
0911         if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
0912             bio_list_add(&info->defer_bios, bio);
0913         else {
0914             inc_all_io_entry(info->tc->pool, bio);
0915 
0916             /*
0917              * We can't issue the bios with the bio prison lock
0918              * held, so we add them to a list to issue on
0919              * return from this function.
0920              */
0921             bio_list_add(&info->issue_bios, bio);
0922         }
0923     }
0924 }
0925 
0926 static void inc_remap_and_issue_cell(struct thin_c *tc,
0927                      struct dm_bio_prison_cell *cell,
0928                      dm_block_t block)
0929 {
0930     struct bio *bio;
0931     struct remap_info info;
0932 
0933     info.tc = tc;
0934     bio_list_init(&info.defer_bios);
0935     bio_list_init(&info.issue_bios);
0936 
0937     /*
0938      * We have to be careful to inc any bios we're about to issue
0939      * before the cell is released, and avoid a race with new bios
0940      * being added to the cell.
0941      */
0942     cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
0943                &info, cell);
0944 
0945     while ((bio = bio_list_pop(&info.defer_bios)))
0946         thin_defer_bio(tc, bio);
0947 
0948     while ((bio = bio_list_pop(&info.issue_bios)))
0949         remap_and_issue(info.tc, bio, block);
0950 }
0951 
0952 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
0953 {
0954     cell_error(m->tc->pool, m->cell);
0955     list_del(&m->list);
0956     mempool_free(m, &m->tc->pool->mapping_pool);
0957 }
0958 
0959 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
0960 {
0961     struct pool *pool = tc->pool;
0962 
0963     /*
0964      * If the bio has the REQ_FUA flag set we must commit the metadata
0965      * before signaling its completion.
0966      */
0967     if (!bio_triggers_commit(tc, bio)) {
0968         bio_endio(bio);
0969         return;
0970     }
0971 
0972     /*
0973      * Complete bio with an error if earlier I/O caused changes to the
0974      * metadata that can't be committed, e.g, due to I/O errors on the
0975      * metadata device.
0976      */
0977     if (dm_thin_aborted_changes(tc->td)) {
0978         bio_io_error(bio);
0979         return;
0980     }
0981 
0982     /*
0983      * Batch together any bios that trigger commits and then issue a
0984      * single commit for them in process_deferred_bios().
0985      */
0986     spin_lock_irq(&pool->lock);
0987     bio_list_add(&pool->deferred_flush_completions, bio);
0988     spin_unlock_irq(&pool->lock);
0989 }
0990 
0991 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
0992 {
0993     struct thin_c *tc = m->tc;
0994     struct pool *pool = tc->pool;
0995     struct bio *bio = m->bio;
0996     int r;
0997 
0998     if (m->status) {
0999         cell_error(pool, m->cell);
1000         goto out;
1001     }
1002 
1003     /*
1004      * Commit the prepared block into the mapping btree.
1005      * Any I/O for this block arriving after this point will get
1006      * remapped to it directly.
1007      */
1008     r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1009     if (r) {
1010         metadata_operation_failed(pool, "dm_thin_insert_block", r);
1011         cell_error(pool, m->cell);
1012         goto out;
1013     }
1014 
1015     /*
1016      * Release any bios held while the block was being provisioned.
1017      * If we are processing a write bio that completely covers the block,
1018      * we already processed it so can ignore it now when processing
1019      * the bios in the cell.
1020      */
1021     if (bio) {
1022         inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1023         complete_overwrite_bio(tc, bio);
1024     } else {
1025         inc_all_io_entry(tc->pool, m->cell->holder);
1026         remap_and_issue(tc, m->cell->holder, m->data_block);
1027         inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1028     }
1029 
1030 out:
1031     list_del(&m->list);
1032     mempool_free(m, &pool->mapping_pool);
1033 }
1034 
1035 /*----------------------------------------------------------------*/
1036 
1037 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1038 {
1039     struct thin_c *tc = m->tc;
1040     if (m->cell)
1041         cell_defer_no_holder(tc, m->cell);
1042     mempool_free(m, &tc->pool->mapping_pool);
1043 }
1044 
1045 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1046 {
1047     bio_io_error(m->bio);
1048     free_discard_mapping(m);
1049 }
1050 
1051 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1052 {
1053     bio_endio(m->bio);
1054     free_discard_mapping(m);
1055 }
1056 
1057 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1058 {
1059     int r;
1060     struct thin_c *tc = m->tc;
1061 
1062     r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1063     if (r) {
1064         metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1065         bio_io_error(m->bio);
1066     } else
1067         bio_endio(m->bio);
1068 
1069     cell_defer_no_holder(tc, m->cell);
1070     mempool_free(m, &tc->pool->mapping_pool);
1071 }
1072 
1073 /*----------------------------------------------------------------*/
1074 
1075 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1076                            struct bio *discard_parent)
1077 {
1078     /*
1079      * We've already unmapped this range of blocks, but before we
1080      * passdown we have to check that these blocks are now unused.
1081      */
1082     int r = 0;
1083     bool shared = true;
1084     struct thin_c *tc = m->tc;
1085     struct pool *pool = tc->pool;
1086     dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1087     struct discard_op op;
1088 
1089     begin_discard(&op, tc, discard_parent);
1090     while (b != end) {
1091         /* find start of unmapped run */
1092         for (; b < end; b++) {
1093             r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1094             if (r)
1095                 goto out;
1096 
1097             if (!shared)
1098                 break;
1099         }
1100 
1101         if (b == end)
1102             break;
1103 
1104         /* find end of run */
1105         for (e = b + 1; e != end; e++) {
1106             r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1107             if (r)
1108                 goto out;
1109 
1110             if (shared)
1111                 break;
1112         }
1113 
1114         r = issue_discard(&op, b, e);
1115         if (r)
1116             goto out;
1117 
1118         b = e;
1119     }
1120 out:
1121     end_discard(&op, r);
1122 }
1123 
1124 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1125 {
1126     unsigned long flags;
1127     struct pool *pool = m->tc->pool;
1128 
1129     spin_lock_irqsave(&pool->lock, flags);
1130     list_add_tail(&m->list, &pool->prepared_discards_pt2);
1131     spin_unlock_irqrestore(&pool->lock, flags);
1132     wake_worker(pool);
1133 }
1134 
1135 static void passdown_endio(struct bio *bio)
1136 {
1137     /*
1138      * It doesn't matter if the passdown discard failed, we still want
1139      * to unmap (we ignore err).
1140      */
1141     queue_passdown_pt2(bio->bi_private);
1142     bio_put(bio);
1143 }
1144 
1145 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1146 {
1147     int r;
1148     struct thin_c *tc = m->tc;
1149     struct pool *pool = tc->pool;
1150     struct bio *discard_parent;
1151     dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1152 
1153     /*
1154      * Only this thread allocates blocks, so we can be sure that the
1155      * newly unmapped blocks will not be allocated before the end of
1156      * the function.
1157      */
1158     r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1159     if (r) {
1160         metadata_operation_failed(pool, "dm_thin_remove_range", r);
1161         bio_io_error(m->bio);
1162         cell_defer_no_holder(tc, m->cell);
1163         mempool_free(m, &pool->mapping_pool);
1164         return;
1165     }
1166 
1167     /*
1168      * Increment the unmapped blocks.  This prevents a race between the
1169      * passdown io and reallocation of freed blocks.
1170      */
1171     r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1172     if (r) {
1173         metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1174         bio_io_error(m->bio);
1175         cell_defer_no_holder(tc, m->cell);
1176         mempool_free(m, &pool->mapping_pool);
1177         return;
1178     }
1179 
1180     discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1181     discard_parent->bi_end_io = passdown_endio;
1182     discard_parent->bi_private = m;
1183     if (m->maybe_shared)
1184         passdown_double_checking_shared_status(m, discard_parent);
1185     else {
1186         struct discard_op op;
1187 
1188         begin_discard(&op, tc, discard_parent);
1189         r = issue_discard(&op, m->data_block, data_end);
1190         end_discard(&op, r);
1191     }
1192 }
1193 
1194 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1195 {
1196     int r;
1197     struct thin_c *tc = m->tc;
1198     struct pool *pool = tc->pool;
1199 
1200     /*
1201      * The passdown has completed, so now we can decrement all those
1202      * unmapped blocks.
1203      */
1204     r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1205                    m->data_block + (m->virt_end - m->virt_begin));
1206     if (r) {
1207         metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1208         bio_io_error(m->bio);
1209     } else
1210         bio_endio(m->bio);
1211 
1212     cell_defer_no_holder(tc, m->cell);
1213     mempool_free(m, &pool->mapping_pool);
1214 }
1215 
1216 static void process_prepared(struct pool *pool, struct list_head *head,
1217                  process_mapping_fn *fn)
1218 {
1219     struct list_head maps;
1220     struct dm_thin_new_mapping *m, *tmp;
1221 
1222     INIT_LIST_HEAD(&maps);
1223     spin_lock_irq(&pool->lock);
1224     list_splice_init(head, &maps);
1225     spin_unlock_irq(&pool->lock);
1226 
1227     list_for_each_entry_safe(m, tmp, &maps, list)
1228         (*fn)(m);
1229 }
1230 
1231 /*
1232  * Deferred bio jobs.
1233  */
1234 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1235 {
1236     return bio->bi_iter.bi_size ==
1237         (pool->sectors_per_block << SECTOR_SHIFT);
1238 }
1239 
1240 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1241 {
1242     return (bio_data_dir(bio) == WRITE) &&
1243         io_overlaps_block(pool, bio);
1244 }
1245 
1246 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1247                    bio_end_io_t *fn)
1248 {
1249     *save = bio->bi_end_io;
1250     bio->bi_end_io = fn;
1251 }
1252 
1253 static int ensure_next_mapping(struct pool *pool)
1254 {
1255     if (pool->next_mapping)
1256         return 0;
1257 
1258     pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1259 
1260     return pool->next_mapping ? 0 : -ENOMEM;
1261 }
1262 
1263 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1264 {
1265     struct dm_thin_new_mapping *m = pool->next_mapping;
1266 
1267     BUG_ON(!pool->next_mapping);
1268 
1269     memset(m, 0, sizeof(struct dm_thin_new_mapping));
1270     INIT_LIST_HEAD(&m->list);
1271     m->bio = NULL;
1272 
1273     pool->next_mapping = NULL;
1274 
1275     return m;
1276 }
1277 
1278 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1279             sector_t begin, sector_t end)
1280 {
1281     struct dm_io_region to;
1282 
1283     to.bdev = tc->pool_dev->bdev;
1284     to.sector = begin;
1285     to.count = end - begin;
1286 
1287     dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1288 }
1289 
1290 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1291                       dm_block_t data_begin,
1292                       struct dm_thin_new_mapping *m)
1293 {
1294     struct pool *pool = tc->pool;
1295     struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1296 
1297     h->overwrite_mapping = m;
1298     m->bio = bio;
1299     save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1300     inc_all_io_entry(pool, bio);
1301     remap_and_issue(tc, bio, data_begin);
1302 }
1303 
1304 /*
1305  * A partial copy also needs to zero the uncopied region.
1306  */
1307 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1308               struct dm_dev *origin, dm_block_t data_origin,
1309               dm_block_t data_dest,
1310               struct dm_bio_prison_cell *cell, struct bio *bio,
1311               sector_t len)
1312 {
1313     struct pool *pool = tc->pool;
1314     struct dm_thin_new_mapping *m = get_next_mapping(pool);
1315 
1316     m->tc = tc;
1317     m->virt_begin = virt_block;
1318     m->virt_end = virt_block + 1u;
1319     m->data_block = data_dest;
1320     m->cell = cell;
1321 
1322     /*
1323      * quiesce action + copy action + an extra reference held for the
1324      * duration of this function (we may need to inc later for a
1325      * partial zero).
1326      */
1327     atomic_set(&m->prepare_actions, 3);
1328 
1329     if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1330         complete_mapping_preparation(m); /* already quiesced */
1331 
1332     /*
1333      * IO to pool_dev remaps to the pool target's data_dev.
1334      *
1335      * If the whole block of data is being overwritten, we can issue the
1336      * bio immediately. Otherwise we use kcopyd to clone the data first.
1337      */
1338     if (io_overwrites_block(pool, bio))
1339         remap_and_issue_overwrite(tc, bio, data_dest, m);
1340     else {
1341         struct dm_io_region from, to;
1342 
1343         from.bdev = origin->bdev;
1344         from.sector = data_origin * pool->sectors_per_block;
1345         from.count = len;
1346 
1347         to.bdev = tc->pool_dev->bdev;
1348         to.sector = data_dest * pool->sectors_per_block;
1349         to.count = len;
1350 
1351         dm_kcopyd_copy(pool->copier, &from, 1, &to,
1352                    0, copy_complete, m);
1353 
1354         /*
1355          * Do we need to zero a tail region?
1356          */
1357         if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1358             atomic_inc(&m->prepare_actions);
1359             ll_zero(tc, m,
1360                 data_dest * pool->sectors_per_block + len,
1361                 (data_dest + 1) * pool->sectors_per_block);
1362         }
1363     }
1364 
1365     complete_mapping_preparation(m); /* drop our ref */
1366 }
1367 
1368 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1369                    dm_block_t data_origin, dm_block_t data_dest,
1370                    struct dm_bio_prison_cell *cell, struct bio *bio)
1371 {
1372     schedule_copy(tc, virt_block, tc->pool_dev,
1373               data_origin, data_dest, cell, bio,
1374               tc->pool->sectors_per_block);
1375 }
1376 
1377 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1378               dm_block_t data_block, struct dm_bio_prison_cell *cell,
1379               struct bio *bio)
1380 {
1381     struct pool *pool = tc->pool;
1382     struct dm_thin_new_mapping *m = get_next_mapping(pool);
1383 
1384     atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1385     m->tc = tc;
1386     m->virt_begin = virt_block;
1387     m->virt_end = virt_block + 1u;
1388     m->data_block = data_block;
1389     m->cell = cell;
1390 
1391     /*
1392      * If the whole block of data is being overwritten or we are not
1393      * zeroing pre-existing data, we can issue the bio immediately.
1394      * Otherwise we use kcopyd to zero the data first.
1395      */
1396     if (pool->pf.zero_new_blocks) {
1397         if (io_overwrites_block(pool, bio))
1398             remap_and_issue_overwrite(tc, bio, data_block, m);
1399         else
1400             ll_zero(tc, m, data_block * pool->sectors_per_block,
1401                 (data_block + 1) * pool->sectors_per_block);
1402     } else
1403         process_prepared_mapping(m);
1404 }
1405 
1406 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1407                    dm_block_t data_dest,
1408                    struct dm_bio_prison_cell *cell, struct bio *bio)
1409 {
1410     struct pool *pool = tc->pool;
1411     sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1412     sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1413 
1414     if (virt_block_end <= tc->origin_size)
1415         schedule_copy(tc, virt_block, tc->origin_dev,
1416                   virt_block, data_dest, cell, bio,
1417                   pool->sectors_per_block);
1418 
1419     else if (virt_block_begin < tc->origin_size)
1420         schedule_copy(tc, virt_block, tc->origin_dev,
1421                   virt_block, data_dest, cell, bio,
1422                   tc->origin_size - virt_block_begin);
1423 
1424     else
1425         schedule_zero(tc, virt_block, data_dest, cell, bio);
1426 }
1427 
1428 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1429 
1430 static void requeue_bios(struct pool *pool);
1431 
1432 static bool is_read_only_pool_mode(enum pool_mode mode)
1433 {
1434     return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1435 }
1436 
1437 static bool is_read_only(struct pool *pool)
1438 {
1439     return is_read_only_pool_mode(get_pool_mode(pool));
1440 }
1441 
1442 static void check_for_metadata_space(struct pool *pool)
1443 {
1444     int r;
1445     const char *ooms_reason = NULL;
1446     dm_block_t nr_free;
1447 
1448     r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1449     if (r)
1450         ooms_reason = "Could not get free metadata blocks";
1451     else if (!nr_free)
1452         ooms_reason = "No free metadata blocks";
1453 
1454     if (ooms_reason && !is_read_only(pool)) {
1455         DMERR("%s", ooms_reason);
1456         set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1457     }
1458 }
1459 
1460 static void check_for_data_space(struct pool *pool)
1461 {
1462     int r;
1463     dm_block_t nr_free;
1464 
1465     if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1466         return;
1467 
1468     r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1469     if (r)
1470         return;
1471 
1472     if (nr_free) {
1473         set_pool_mode(pool, PM_WRITE);
1474         requeue_bios(pool);
1475     }
1476 }
1477 
1478 /*
1479  * A non-zero return indicates read_only or fail_io mode.
1480  * Many callers don't care about the return value.
1481  */
1482 static int commit(struct pool *pool)
1483 {
1484     int r;
1485 
1486     if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1487         return -EINVAL;
1488 
1489     r = dm_pool_commit_metadata(pool->pmd);
1490     if (r)
1491         metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1492     else {
1493         check_for_metadata_space(pool);
1494         check_for_data_space(pool);
1495     }
1496 
1497     return r;
1498 }
1499 
1500 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1501 {
1502     if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1503         DMWARN("%s: reached low water mark for data device: sending event.",
1504                dm_device_name(pool->pool_md));
1505         spin_lock_irq(&pool->lock);
1506         pool->low_water_triggered = true;
1507         spin_unlock_irq(&pool->lock);
1508         dm_table_event(pool->ti->table);
1509     }
1510 }
1511 
1512 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1513 {
1514     int r;
1515     dm_block_t free_blocks;
1516     struct pool *pool = tc->pool;
1517 
1518     if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1519         return -EINVAL;
1520 
1521     r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1522     if (r) {
1523         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1524         return r;
1525     }
1526 
1527     check_low_water_mark(pool, free_blocks);
1528 
1529     if (!free_blocks) {
1530         /*
1531          * Try to commit to see if that will free up some
1532          * more space.
1533          */
1534         r = commit(pool);
1535         if (r)
1536             return r;
1537 
1538         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1539         if (r) {
1540             metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1541             return r;
1542         }
1543 
1544         if (!free_blocks) {
1545             set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1546             return -ENOSPC;
1547         }
1548     }
1549 
1550     r = dm_pool_alloc_data_block(pool->pmd, result);
1551     if (r) {
1552         if (r == -ENOSPC)
1553             set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1554         else
1555             metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1556         return r;
1557     }
1558 
1559     r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1560     if (r) {
1561         metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1562         return r;
1563     }
1564 
1565     if (!free_blocks) {
1566         /* Let's commit before we use up the metadata reserve. */
1567         r = commit(pool);
1568         if (r)
1569             return r;
1570     }
1571 
1572     return 0;
1573 }
1574 
1575 /*
1576  * If we have run out of space, queue bios until the device is
1577  * resumed, presumably after having been reloaded with more space.
1578  */
1579 static void retry_on_resume(struct bio *bio)
1580 {
1581     struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1582     struct thin_c *tc = h->tc;
1583 
1584     spin_lock_irq(&tc->lock);
1585     bio_list_add(&tc->retry_on_resume_list, bio);
1586     spin_unlock_irq(&tc->lock);
1587 }
1588 
1589 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1590 {
1591     enum pool_mode m = get_pool_mode(pool);
1592 
1593     switch (m) {
1594     case PM_WRITE:
1595         /* Shouldn't get here */
1596         DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1597         return BLK_STS_IOERR;
1598 
1599     case PM_OUT_OF_DATA_SPACE:
1600         return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1601 
1602     case PM_OUT_OF_METADATA_SPACE:
1603     case PM_READ_ONLY:
1604     case PM_FAIL:
1605         return BLK_STS_IOERR;
1606     default:
1607         /* Shouldn't get here */
1608         DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1609         return BLK_STS_IOERR;
1610     }
1611 }
1612 
1613 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1614 {
1615     blk_status_t error = should_error_unserviceable_bio(pool);
1616 
1617     if (error) {
1618         bio->bi_status = error;
1619         bio_endio(bio);
1620     } else
1621         retry_on_resume(bio);
1622 }
1623 
1624 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1625 {
1626     struct bio *bio;
1627     struct bio_list bios;
1628     blk_status_t error;
1629 
1630     error = should_error_unserviceable_bio(pool);
1631     if (error) {
1632         cell_error_with_code(pool, cell, error);
1633         return;
1634     }
1635 
1636     bio_list_init(&bios);
1637     cell_release(pool, cell, &bios);
1638 
1639     while ((bio = bio_list_pop(&bios)))
1640         retry_on_resume(bio);
1641 }
1642 
1643 static void process_discard_cell_no_passdown(struct thin_c *tc,
1644                          struct dm_bio_prison_cell *virt_cell)
1645 {
1646     struct pool *pool = tc->pool;
1647     struct dm_thin_new_mapping *m = get_next_mapping(pool);
1648 
1649     /*
1650      * We don't need to lock the data blocks, since there's no
1651      * passdown.  We only lock data blocks for allocation and breaking sharing.
1652      */
1653     m->tc = tc;
1654     m->virt_begin = virt_cell->key.block_begin;
1655     m->virt_end = virt_cell->key.block_end;
1656     m->cell = virt_cell;
1657     m->bio = virt_cell->holder;
1658 
1659     if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1660         pool->process_prepared_discard(m);
1661 }
1662 
1663 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1664                  struct bio *bio)
1665 {
1666     struct pool *pool = tc->pool;
1667 
1668     int r;
1669     bool maybe_shared;
1670     struct dm_cell_key data_key;
1671     struct dm_bio_prison_cell *data_cell;
1672     struct dm_thin_new_mapping *m;
1673     dm_block_t virt_begin, virt_end, data_begin;
1674 
1675     while (begin != end) {
1676         r = ensure_next_mapping(pool);
1677         if (r)
1678             /* we did our best */
1679             return;
1680 
1681         r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1682                           &data_begin, &maybe_shared);
1683         if (r)
1684             /*
1685              * Silently fail, letting any mappings we've
1686              * created complete.
1687              */
1688             break;
1689 
1690         build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1691         if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1692             /* contention, we'll give up with this range */
1693             begin = virt_end;
1694             continue;
1695         }
1696 
1697         /*
1698          * IO may still be going to the destination block.  We must
1699          * quiesce before we can do the removal.
1700          */
1701         m = get_next_mapping(pool);
1702         m->tc = tc;
1703         m->maybe_shared = maybe_shared;
1704         m->virt_begin = virt_begin;
1705         m->virt_end = virt_end;
1706         m->data_block = data_begin;
1707         m->cell = data_cell;
1708         m->bio = bio;
1709 
1710         /*
1711          * The parent bio must not complete before sub discard bios are
1712          * chained to it (see end_discard's bio_chain)!
1713          *
1714          * This per-mapping bi_remaining increment is paired with
1715          * the implicit decrement that occurs via bio_endio() in
1716          * end_discard().
1717          */
1718         bio_inc_remaining(bio);
1719         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1720             pool->process_prepared_discard(m);
1721 
1722         begin = virt_end;
1723     }
1724 }
1725 
1726 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1727 {
1728     struct bio *bio = virt_cell->holder;
1729     struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1730 
1731     /*
1732      * The virt_cell will only get freed once the origin bio completes.
1733      * This means it will remain locked while all the individual
1734      * passdown bios are in flight.
1735      */
1736     h->cell = virt_cell;
1737     break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1738 
1739     /*
1740      * We complete the bio now, knowing that the bi_remaining field
1741      * will prevent completion until the sub range discards have
1742      * completed.
1743      */
1744     bio_endio(bio);
1745 }
1746 
1747 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1748 {
1749     dm_block_t begin, end;
1750     struct dm_cell_key virt_key;
1751     struct dm_bio_prison_cell *virt_cell;
1752 
1753     get_bio_block_range(tc, bio, &begin, &end);
1754     if (begin == end) {
1755         /*
1756          * The discard covers less than a block.
1757          */
1758         bio_endio(bio);
1759         return;
1760     }
1761 
1762     build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1763     if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1764         /*
1765          * Potential starvation issue: We're relying on the
1766          * fs/application being well behaved, and not trying to
1767          * send IO to a region at the same time as discarding it.
1768          * If they do this persistently then it's possible this
1769          * cell will never be granted.
1770          */
1771         return;
1772 
1773     tc->pool->process_discard_cell(tc, virt_cell);
1774 }
1775 
1776 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1777               struct dm_cell_key *key,
1778               struct dm_thin_lookup_result *lookup_result,
1779               struct dm_bio_prison_cell *cell)
1780 {
1781     int r;
1782     dm_block_t data_block;
1783     struct pool *pool = tc->pool;
1784 
1785     r = alloc_data_block(tc, &data_block);
1786     switch (r) {
1787     case 0:
1788         schedule_internal_copy(tc, block, lookup_result->block,
1789                        data_block, cell, bio);
1790         break;
1791 
1792     case -ENOSPC:
1793         retry_bios_on_resume(pool, cell);
1794         break;
1795 
1796     default:
1797         DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1798                 __func__, r);
1799         cell_error(pool, cell);
1800         break;
1801     }
1802 }
1803 
1804 static void __remap_and_issue_shared_cell(void *context,
1805                       struct dm_bio_prison_cell *cell)
1806 {
1807     struct remap_info *info = context;
1808     struct bio *bio;
1809 
1810     while ((bio = bio_list_pop(&cell->bios))) {
1811         if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1812             bio_op(bio) == REQ_OP_DISCARD)
1813             bio_list_add(&info->defer_bios, bio);
1814         else {
1815             struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1816 
1817             h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1818             inc_all_io_entry(info->tc->pool, bio);
1819             bio_list_add(&info->issue_bios, bio);
1820         }
1821     }
1822 }
1823 
1824 static void remap_and_issue_shared_cell(struct thin_c *tc,
1825                     struct dm_bio_prison_cell *cell,
1826                     dm_block_t block)
1827 {
1828     struct bio *bio;
1829     struct remap_info info;
1830 
1831     info.tc = tc;
1832     bio_list_init(&info.defer_bios);
1833     bio_list_init(&info.issue_bios);
1834 
1835     cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1836                &info, cell);
1837 
1838     while ((bio = bio_list_pop(&info.defer_bios)))
1839         thin_defer_bio(tc, bio);
1840 
1841     while ((bio = bio_list_pop(&info.issue_bios)))
1842         remap_and_issue(tc, bio, block);
1843 }
1844 
1845 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1846                    dm_block_t block,
1847                    struct dm_thin_lookup_result *lookup_result,
1848                    struct dm_bio_prison_cell *virt_cell)
1849 {
1850     struct dm_bio_prison_cell *data_cell;
1851     struct pool *pool = tc->pool;
1852     struct dm_cell_key key;
1853 
1854     /*
1855      * If cell is already occupied, then sharing is already in the process
1856      * of being broken so we have nothing further to do here.
1857      */
1858     build_data_key(tc->td, lookup_result->block, &key);
1859     if (bio_detain(pool, &key, bio, &data_cell)) {
1860         cell_defer_no_holder(tc, virt_cell);
1861         return;
1862     }
1863 
1864     if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1865         break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1866         cell_defer_no_holder(tc, virt_cell);
1867     } else {
1868         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1869 
1870         h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1871         inc_all_io_entry(pool, bio);
1872         remap_and_issue(tc, bio, lookup_result->block);
1873 
1874         remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1875         remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1876     }
1877 }
1878 
1879 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1880                 struct dm_bio_prison_cell *cell)
1881 {
1882     int r;
1883     dm_block_t data_block;
1884     struct pool *pool = tc->pool;
1885 
1886     /*
1887      * Remap empty bios (flushes) immediately, without provisioning.
1888      */
1889     if (!bio->bi_iter.bi_size) {
1890         inc_all_io_entry(pool, bio);
1891         cell_defer_no_holder(tc, cell);
1892 
1893         remap_and_issue(tc, bio, 0);
1894         return;
1895     }
1896 
1897     /*
1898      * Fill read bios with zeroes and complete them immediately.
1899      */
1900     if (bio_data_dir(bio) == READ) {
1901         zero_fill_bio(bio);
1902         cell_defer_no_holder(tc, cell);
1903         bio_endio(bio);
1904         return;
1905     }
1906 
1907     r = alloc_data_block(tc, &data_block);
1908     switch (r) {
1909     case 0:
1910         if (tc->origin_dev)
1911             schedule_external_copy(tc, block, data_block, cell, bio);
1912         else
1913             schedule_zero(tc, block, data_block, cell, bio);
1914         break;
1915 
1916     case -ENOSPC:
1917         retry_bios_on_resume(pool, cell);
1918         break;
1919 
1920     default:
1921         DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1922                 __func__, r);
1923         cell_error(pool, cell);
1924         break;
1925     }
1926 }
1927 
1928 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1929 {
1930     int r;
1931     struct pool *pool = tc->pool;
1932     struct bio *bio = cell->holder;
1933     dm_block_t block = get_bio_block(tc, bio);
1934     struct dm_thin_lookup_result lookup_result;
1935 
1936     if (tc->requeue_mode) {
1937         cell_requeue(pool, cell);
1938         return;
1939     }
1940 
1941     r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1942     switch (r) {
1943     case 0:
1944         if (lookup_result.shared)
1945             process_shared_bio(tc, bio, block, &lookup_result, cell);
1946         else {
1947             inc_all_io_entry(pool, bio);
1948             remap_and_issue(tc, bio, lookup_result.block);
1949             inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1950         }
1951         break;
1952 
1953     case -ENODATA:
1954         if (bio_data_dir(bio) == READ && tc->origin_dev) {
1955             inc_all_io_entry(pool, bio);
1956             cell_defer_no_holder(tc, cell);
1957 
1958             if (bio_end_sector(bio) <= tc->origin_size)
1959                 remap_to_origin_and_issue(tc, bio);
1960 
1961             else if (bio->bi_iter.bi_sector < tc->origin_size) {
1962                 zero_fill_bio(bio);
1963                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1964                 remap_to_origin_and_issue(tc, bio);
1965 
1966             } else {
1967                 zero_fill_bio(bio);
1968                 bio_endio(bio);
1969             }
1970         } else
1971             provision_block(tc, bio, block, cell);
1972         break;
1973 
1974     default:
1975         DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1976                 __func__, r);
1977         cell_defer_no_holder(tc, cell);
1978         bio_io_error(bio);
1979         break;
1980     }
1981 }
1982 
1983 static void process_bio(struct thin_c *tc, struct bio *bio)
1984 {
1985     struct pool *pool = tc->pool;
1986     dm_block_t block = get_bio_block(tc, bio);
1987     struct dm_bio_prison_cell *cell;
1988     struct dm_cell_key key;
1989 
1990     /*
1991      * If cell is already occupied, then the block is already
1992      * being provisioned so we have nothing further to do here.
1993      */
1994     build_virtual_key(tc->td, block, &key);
1995     if (bio_detain(pool, &key, bio, &cell))
1996         return;
1997 
1998     process_cell(tc, cell);
1999 }
2000 
2001 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2002                     struct dm_bio_prison_cell *cell)
2003 {
2004     int r;
2005     int rw = bio_data_dir(bio);
2006     dm_block_t block = get_bio_block(tc, bio);
2007     struct dm_thin_lookup_result lookup_result;
2008 
2009     r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2010     switch (r) {
2011     case 0:
2012         if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2013             handle_unserviceable_bio(tc->pool, bio);
2014             if (cell)
2015                 cell_defer_no_holder(tc, cell);
2016         } else {
2017             inc_all_io_entry(tc->pool, bio);
2018             remap_and_issue(tc, bio, lookup_result.block);
2019             if (cell)
2020                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2021         }
2022         break;
2023 
2024     case -ENODATA:
2025         if (cell)
2026             cell_defer_no_holder(tc, cell);
2027         if (rw != READ) {
2028             handle_unserviceable_bio(tc->pool, bio);
2029             break;
2030         }
2031 
2032         if (tc->origin_dev) {
2033             inc_all_io_entry(tc->pool, bio);
2034             remap_to_origin_and_issue(tc, bio);
2035             break;
2036         }
2037 
2038         zero_fill_bio(bio);
2039         bio_endio(bio);
2040         break;
2041 
2042     default:
2043         DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2044                 __func__, r);
2045         if (cell)
2046             cell_defer_no_holder(tc, cell);
2047         bio_io_error(bio);
2048         break;
2049     }
2050 }
2051 
2052 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2053 {
2054     __process_bio_read_only(tc, bio, NULL);
2055 }
2056 
2057 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2058 {
2059     __process_bio_read_only(tc, cell->holder, cell);
2060 }
2061 
2062 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2063 {
2064     bio_endio(bio);
2065 }
2066 
2067 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2068 {
2069     bio_io_error(bio);
2070 }
2071 
2072 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2073 {
2074     cell_success(tc->pool, cell);
2075 }
2076 
2077 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2078 {
2079     cell_error(tc->pool, cell);
2080 }
2081 
2082 /*
2083  * FIXME: should we also commit due to size of transaction, measured in
2084  * metadata blocks?
2085  */
2086 static int need_commit_due_to_time(struct pool *pool)
2087 {
2088     return !time_in_range(jiffies, pool->last_commit_jiffies,
2089                   pool->last_commit_jiffies + COMMIT_PERIOD);
2090 }
2091 
2092 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2093 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2094 
2095 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2096 {
2097     struct rb_node **rbp, *parent;
2098     struct dm_thin_endio_hook *pbd;
2099     sector_t bi_sector = bio->bi_iter.bi_sector;
2100 
2101     rbp = &tc->sort_bio_list.rb_node;
2102     parent = NULL;
2103     while (*rbp) {
2104         parent = *rbp;
2105         pbd = thin_pbd(parent);
2106 
2107         if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2108             rbp = &(*rbp)->rb_left;
2109         else
2110             rbp = &(*rbp)->rb_right;
2111     }
2112 
2113     pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2114     rb_link_node(&pbd->rb_node, parent, rbp);
2115     rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2116 }
2117 
2118 static void __extract_sorted_bios(struct thin_c *tc)
2119 {
2120     struct rb_node *node;
2121     struct dm_thin_endio_hook *pbd;
2122     struct bio *bio;
2123 
2124     for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2125         pbd = thin_pbd(node);
2126         bio = thin_bio(pbd);
2127 
2128         bio_list_add(&tc->deferred_bio_list, bio);
2129         rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2130     }
2131 
2132     WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2133 }
2134 
2135 static void __sort_thin_deferred_bios(struct thin_c *tc)
2136 {
2137     struct bio *bio;
2138     struct bio_list bios;
2139 
2140     bio_list_init(&bios);
2141     bio_list_merge(&bios, &tc->deferred_bio_list);
2142     bio_list_init(&tc->deferred_bio_list);
2143 
2144     /* Sort deferred_bio_list using rb-tree */
2145     while ((bio = bio_list_pop(&bios)))
2146         __thin_bio_rb_add(tc, bio);
2147 
2148     /*
2149      * Transfer the sorted bios in sort_bio_list back to
2150      * deferred_bio_list to allow lockless submission of
2151      * all bios.
2152      */
2153     __extract_sorted_bios(tc);
2154 }
2155 
2156 static void process_thin_deferred_bios(struct thin_c *tc)
2157 {
2158     struct pool *pool = tc->pool;
2159     struct bio *bio;
2160     struct bio_list bios;
2161     struct blk_plug plug;
2162     unsigned count = 0;
2163 
2164     if (tc->requeue_mode) {
2165         error_thin_bio_list(tc, &tc->deferred_bio_list,
2166                 BLK_STS_DM_REQUEUE);
2167         return;
2168     }
2169 
2170     bio_list_init(&bios);
2171 
2172     spin_lock_irq(&tc->lock);
2173 
2174     if (bio_list_empty(&tc->deferred_bio_list)) {
2175         spin_unlock_irq(&tc->lock);
2176         return;
2177     }
2178 
2179     __sort_thin_deferred_bios(tc);
2180 
2181     bio_list_merge(&bios, &tc->deferred_bio_list);
2182     bio_list_init(&tc->deferred_bio_list);
2183 
2184     spin_unlock_irq(&tc->lock);
2185 
2186     blk_start_plug(&plug);
2187     while ((bio = bio_list_pop(&bios))) {
2188         /*
2189          * If we've got no free new_mapping structs, and processing
2190          * this bio might require one, we pause until there are some
2191          * prepared mappings to process.
2192          */
2193         if (ensure_next_mapping(pool)) {
2194             spin_lock_irq(&tc->lock);
2195             bio_list_add(&tc->deferred_bio_list, bio);
2196             bio_list_merge(&tc->deferred_bio_list, &bios);
2197             spin_unlock_irq(&tc->lock);
2198             break;
2199         }
2200 
2201         if (bio_op(bio) == REQ_OP_DISCARD)
2202             pool->process_discard(tc, bio);
2203         else
2204             pool->process_bio(tc, bio);
2205 
2206         if ((count++ & 127) == 0) {
2207             throttle_work_update(&pool->throttle);
2208             dm_pool_issue_prefetches(pool->pmd);
2209         }
2210     }
2211     blk_finish_plug(&plug);
2212 }
2213 
2214 static int cmp_cells(const void *lhs, const void *rhs)
2215 {
2216     struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2217     struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2218 
2219     BUG_ON(!lhs_cell->holder);
2220     BUG_ON(!rhs_cell->holder);
2221 
2222     if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2223         return -1;
2224 
2225     if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2226         return 1;
2227 
2228     return 0;
2229 }
2230 
2231 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2232 {
2233     unsigned count = 0;
2234     struct dm_bio_prison_cell *cell, *tmp;
2235 
2236     list_for_each_entry_safe(cell, tmp, cells, user_list) {
2237         if (count >= CELL_SORT_ARRAY_SIZE)
2238             break;
2239 
2240         pool->cell_sort_array[count++] = cell;
2241         list_del(&cell->user_list);
2242     }
2243 
2244     sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2245 
2246     return count;
2247 }
2248 
2249 static void process_thin_deferred_cells(struct thin_c *tc)
2250 {
2251     struct pool *pool = tc->pool;
2252     struct list_head cells;
2253     struct dm_bio_prison_cell *cell;
2254     unsigned i, j, count;
2255 
2256     INIT_LIST_HEAD(&cells);
2257 
2258     spin_lock_irq(&tc->lock);
2259     list_splice_init(&tc->deferred_cells, &cells);
2260     spin_unlock_irq(&tc->lock);
2261 
2262     if (list_empty(&cells))
2263         return;
2264 
2265     do {
2266         count = sort_cells(tc->pool, &cells);
2267 
2268         for (i = 0; i < count; i++) {
2269             cell = pool->cell_sort_array[i];
2270             BUG_ON(!cell->holder);
2271 
2272             /*
2273              * If we've got no free new_mapping structs, and processing
2274              * this bio might require one, we pause until there are some
2275              * prepared mappings to process.
2276              */
2277             if (ensure_next_mapping(pool)) {
2278                 for (j = i; j < count; j++)
2279                     list_add(&pool->cell_sort_array[j]->user_list, &cells);
2280 
2281                 spin_lock_irq(&tc->lock);
2282                 list_splice(&cells, &tc->deferred_cells);
2283                 spin_unlock_irq(&tc->lock);
2284                 return;
2285             }
2286 
2287             if (bio_op(cell->holder) == REQ_OP_DISCARD)
2288                 pool->process_discard_cell(tc, cell);
2289             else
2290                 pool->process_cell(tc, cell);
2291         }
2292     } while (!list_empty(&cells));
2293 }
2294 
2295 static void thin_get(struct thin_c *tc);
2296 static void thin_put(struct thin_c *tc);
2297 
2298 /*
2299  * We can't hold rcu_read_lock() around code that can block.  So we
2300  * find a thin with the rcu lock held; bump a refcount; then drop
2301  * the lock.
2302  */
2303 static struct thin_c *get_first_thin(struct pool *pool)
2304 {
2305     struct thin_c *tc = NULL;
2306 
2307     rcu_read_lock();
2308     if (!list_empty(&pool->active_thins)) {
2309         tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2310         thin_get(tc);
2311     }
2312     rcu_read_unlock();
2313 
2314     return tc;
2315 }
2316 
2317 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2318 {
2319     struct thin_c *old_tc = tc;
2320 
2321     rcu_read_lock();
2322     list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2323         thin_get(tc);
2324         thin_put(old_tc);
2325         rcu_read_unlock();
2326         return tc;
2327     }
2328     thin_put(old_tc);
2329     rcu_read_unlock();
2330 
2331     return NULL;
2332 }
2333 
2334 static void process_deferred_bios(struct pool *pool)
2335 {
2336     struct bio *bio;
2337     struct bio_list bios, bio_completions;
2338     struct thin_c *tc;
2339 
2340     tc = get_first_thin(pool);
2341     while (tc) {
2342         process_thin_deferred_cells(tc);
2343         process_thin_deferred_bios(tc);
2344         tc = get_next_thin(pool, tc);
2345     }
2346 
2347     /*
2348      * If there are any deferred flush bios, we must commit the metadata
2349      * before issuing them or signaling their completion.
2350      */
2351     bio_list_init(&bios);
2352     bio_list_init(&bio_completions);
2353 
2354     spin_lock_irq(&pool->lock);
2355     bio_list_merge(&bios, &pool->deferred_flush_bios);
2356     bio_list_init(&pool->deferred_flush_bios);
2357 
2358     bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2359     bio_list_init(&pool->deferred_flush_completions);
2360     spin_unlock_irq(&pool->lock);
2361 
2362     if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2363         !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2364         return;
2365 
2366     if (commit(pool)) {
2367         bio_list_merge(&bios, &bio_completions);
2368 
2369         while ((bio = bio_list_pop(&bios)))
2370             bio_io_error(bio);
2371         return;
2372     }
2373     pool->last_commit_jiffies = jiffies;
2374 
2375     while ((bio = bio_list_pop(&bio_completions)))
2376         bio_endio(bio);
2377 
2378     while ((bio = bio_list_pop(&bios))) {
2379         /*
2380          * The data device was flushed as part of metadata commit,
2381          * so complete redundant flushes immediately.
2382          */
2383         if (bio->bi_opf & REQ_PREFLUSH)
2384             bio_endio(bio);
2385         else
2386             dm_submit_bio_remap(bio, NULL);
2387     }
2388 }
2389 
2390 static void do_worker(struct work_struct *ws)
2391 {
2392     struct pool *pool = container_of(ws, struct pool, worker);
2393 
2394     throttle_work_start(&pool->throttle);
2395     dm_pool_issue_prefetches(pool->pmd);
2396     throttle_work_update(&pool->throttle);
2397     process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2398     throttle_work_update(&pool->throttle);
2399     process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2400     throttle_work_update(&pool->throttle);
2401     process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2402     throttle_work_update(&pool->throttle);
2403     process_deferred_bios(pool);
2404     throttle_work_complete(&pool->throttle);
2405 }
2406 
2407 /*
2408  * We want to commit periodically so that not too much
2409  * unwritten data builds up.
2410  */
2411 static void do_waker(struct work_struct *ws)
2412 {
2413     struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2414     wake_worker(pool);
2415     queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2416 }
2417 
2418 /*
2419  * We're holding onto IO to allow userland time to react.  After the
2420  * timeout either the pool will have been resized (and thus back in
2421  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2422  */
2423 static void do_no_space_timeout(struct work_struct *ws)
2424 {
2425     struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2426                      no_space_timeout);
2427 
2428     if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2429         pool->pf.error_if_no_space = true;
2430         notify_of_pool_mode_change(pool);
2431         error_retry_list_with_code(pool, BLK_STS_NOSPC);
2432     }
2433 }
2434 
2435 /*----------------------------------------------------------------*/
2436 
2437 struct pool_work {
2438     struct work_struct worker;
2439     struct completion complete;
2440 };
2441 
2442 static struct pool_work *to_pool_work(struct work_struct *ws)
2443 {
2444     return container_of(ws, struct pool_work, worker);
2445 }
2446 
2447 static void pool_work_complete(struct pool_work *pw)
2448 {
2449     complete(&pw->complete);
2450 }
2451 
2452 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2453                void (*fn)(struct work_struct *))
2454 {
2455     INIT_WORK_ONSTACK(&pw->worker, fn);
2456     init_completion(&pw->complete);
2457     queue_work(pool->wq, &pw->worker);
2458     wait_for_completion(&pw->complete);
2459 }
2460 
2461 /*----------------------------------------------------------------*/
2462 
2463 struct noflush_work {
2464     struct pool_work pw;
2465     struct thin_c *tc;
2466 };
2467 
2468 static struct noflush_work *to_noflush(struct work_struct *ws)
2469 {
2470     return container_of(to_pool_work(ws), struct noflush_work, pw);
2471 }
2472 
2473 static void do_noflush_start(struct work_struct *ws)
2474 {
2475     struct noflush_work *w = to_noflush(ws);
2476     w->tc->requeue_mode = true;
2477     requeue_io(w->tc);
2478     pool_work_complete(&w->pw);
2479 }
2480 
2481 static void do_noflush_stop(struct work_struct *ws)
2482 {
2483     struct noflush_work *w = to_noflush(ws);
2484     w->tc->requeue_mode = false;
2485     pool_work_complete(&w->pw);
2486 }
2487 
2488 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2489 {
2490     struct noflush_work w;
2491 
2492     w.tc = tc;
2493     pool_work_wait(&w.pw, tc->pool, fn);
2494 }
2495 
2496 /*----------------------------------------------------------------*/
2497 
2498 static bool passdown_enabled(struct pool_c *pt)
2499 {
2500     return pt->adjusted_pf.discard_passdown;
2501 }
2502 
2503 static void set_discard_callbacks(struct pool *pool)
2504 {
2505     struct pool_c *pt = pool->ti->private;
2506 
2507     if (passdown_enabled(pt)) {
2508         pool->process_discard_cell = process_discard_cell_passdown;
2509         pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2510         pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2511     } else {
2512         pool->process_discard_cell = process_discard_cell_no_passdown;
2513         pool->process_prepared_discard = process_prepared_discard_no_passdown;
2514     }
2515 }
2516 
2517 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2518 {
2519     struct pool_c *pt = pool->ti->private;
2520     bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2521     enum pool_mode old_mode = get_pool_mode(pool);
2522     unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2523 
2524     /*
2525      * Never allow the pool to transition to PM_WRITE mode if user
2526      * intervention is required to verify metadata and data consistency.
2527      */
2528     if (new_mode == PM_WRITE && needs_check) {
2529         DMERR("%s: unable to switch pool to write mode until repaired.",
2530               dm_device_name(pool->pool_md));
2531         if (old_mode != new_mode)
2532             new_mode = old_mode;
2533         else
2534             new_mode = PM_READ_ONLY;
2535     }
2536     /*
2537      * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2538      * not going to recover without a thin_repair.  So we never let the
2539      * pool move out of the old mode.
2540      */
2541     if (old_mode == PM_FAIL)
2542         new_mode = old_mode;
2543 
2544     switch (new_mode) {
2545     case PM_FAIL:
2546         dm_pool_metadata_read_only(pool->pmd);
2547         pool->process_bio = process_bio_fail;
2548         pool->process_discard = process_bio_fail;
2549         pool->process_cell = process_cell_fail;
2550         pool->process_discard_cell = process_cell_fail;
2551         pool->process_prepared_mapping = process_prepared_mapping_fail;
2552         pool->process_prepared_discard = process_prepared_discard_fail;
2553 
2554         error_retry_list(pool);
2555         break;
2556 
2557     case PM_OUT_OF_METADATA_SPACE:
2558     case PM_READ_ONLY:
2559         dm_pool_metadata_read_only(pool->pmd);
2560         pool->process_bio = process_bio_read_only;
2561         pool->process_discard = process_bio_success;
2562         pool->process_cell = process_cell_read_only;
2563         pool->process_discard_cell = process_cell_success;
2564         pool->process_prepared_mapping = process_prepared_mapping_fail;
2565         pool->process_prepared_discard = process_prepared_discard_success;
2566 
2567         error_retry_list(pool);
2568         break;
2569 
2570     case PM_OUT_OF_DATA_SPACE:
2571         /*
2572          * Ideally we'd never hit this state; the low water mark
2573          * would trigger userland to extend the pool before we
2574          * completely run out of data space.  However, many small
2575          * IOs to unprovisioned space can consume data space at an
2576          * alarming rate.  Adjust your low water mark if you're
2577          * frequently seeing this mode.
2578          */
2579         pool->out_of_data_space = true;
2580         pool->process_bio = process_bio_read_only;
2581         pool->process_discard = process_discard_bio;
2582         pool->process_cell = process_cell_read_only;
2583         pool->process_prepared_mapping = process_prepared_mapping;
2584         set_discard_callbacks(pool);
2585 
2586         if (!pool->pf.error_if_no_space && no_space_timeout)
2587             queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2588         break;
2589 
2590     case PM_WRITE:
2591         if (old_mode == PM_OUT_OF_DATA_SPACE)
2592             cancel_delayed_work_sync(&pool->no_space_timeout);
2593         pool->out_of_data_space = false;
2594         pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2595         dm_pool_metadata_read_write(pool->pmd);
2596         pool->process_bio = process_bio;
2597         pool->process_discard = process_discard_bio;
2598         pool->process_cell = process_cell;
2599         pool->process_prepared_mapping = process_prepared_mapping;
2600         set_discard_callbacks(pool);
2601         break;
2602     }
2603 
2604     pool->pf.mode = new_mode;
2605     /*
2606      * The pool mode may have changed, sync it so bind_control_target()
2607      * doesn't cause an unexpected mode transition on resume.
2608      */
2609     pt->adjusted_pf.mode = new_mode;
2610 
2611     if (old_mode != new_mode)
2612         notify_of_pool_mode_change(pool);
2613 }
2614 
2615 static void abort_transaction(struct pool *pool)
2616 {
2617     const char *dev_name = dm_device_name(pool->pool_md);
2618 
2619     DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2620     if (dm_pool_abort_metadata(pool->pmd)) {
2621         DMERR("%s: failed to abort metadata transaction", dev_name);
2622         set_pool_mode(pool, PM_FAIL);
2623     }
2624 
2625     if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2626         DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2627         set_pool_mode(pool, PM_FAIL);
2628     }
2629 }
2630 
2631 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2632 {
2633     DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2634             dm_device_name(pool->pool_md), op, r);
2635 
2636     abort_transaction(pool);
2637     set_pool_mode(pool, PM_READ_ONLY);
2638 }
2639 
2640 /*----------------------------------------------------------------*/
2641 
2642 /*
2643  * Mapping functions.
2644  */
2645 
2646 /*
2647  * Called only while mapping a thin bio to hand it over to the workqueue.
2648  */
2649 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2650 {
2651     struct pool *pool = tc->pool;
2652 
2653     spin_lock_irq(&tc->lock);
2654     bio_list_add(&tc->deferred_bio_list, bio);
2655     spin_unlock_irq(&tc->lock);
2656 
2657     wake_worker(pool);
2658 }
2659 
2660 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2661 {
2662     struct pool *pool = tc->pool;
2663 
2664     throttle_lock(&pool->throttle);
2665     thin_defer_bio(tc, bio);
2666     throttle_unlock(&pool->throttle);
2667 }
2668 
2669 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2670 {
2671     struct pool *pool = tc->pool;
2672 
2673     throttle_lock(&pool->throttle);
2674     spin_lock_irq(&tc->lock);
2675     list_add_tail(&cell->user_list, &tc->deferred_cells);
2676     spin_unlock_irq(&tc->lock);
2677     throttle_unlock(&pool->throttle);
2678 
2679     wake_worker(pool);
2680 }
2681 
2682 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2683 {
2684     struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2685 
2686     h->tc = tc;
2687     h->shared_read_entry = NULL;
2688     h->all_io_entry = NULL;
2689     h->overwrite_mapping = NULL;
2690     h->cell = NULL;
2691 }
2692 
2693 /*
2694  * Non-blocking function called from the thin target's map function.
2695  */
2696 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2697 {
2698     int r;
2699     struct thin_c *tc = ti->private;
2700     dm_block_t block = get_bio_block(tc, bio);
2701     struct dm_thin_device *td = tc->td;
2702     struct dm_thin_lookup_result result;
2703     struct dm_bio_prison_cell *virt_cell, *data_cell;
2704     struct dm_cell_key key;
2705 
2706     thin_hook_bio(tc, bio);
2707 
2708     if (tc->requeue_mode) {
2709         bio->bi_status = BLK_STS_DM_REQUEUE;
2710         bio_endio(bio);
2711         return DM_MAPIO_SUBMITTED;
2712     }
2713 
2714     if (get_pool_mode(tc->pool) == PM_FAIL) {
2715         bio_io_error(bio);
2716         return DM_MAPIO_SUBMITTED;
2717     }
2718 
2719     if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2720         thin_defer_bio_with_throttle(tc, bio);
2721         return DM_MAPIO_SUBMITTED;
2722     }
2723 
2724     /*
2725      * We must hold the virtual cell before doing the lookup, otherwise
2726      * there's a race with discard.
2727      */
2728     build_virtual_key(tc->td, block, &key);
2729     if (bio_detain(tc->pool, &key, bio, &virt_cell))
2730         return DM_MAPIO_SUBMITTED;
2731 
2732     r = dm_thin_find_block(td, block, 0, &result);
2733 
2734     /*
2735      * Note that we defer readahead too.
2736      */
2737     switch (r) {
2738     case 0:
2739         if (unlikely(result.shared)) {
2740             /*
2741              * We have a race condition here between the
2742              * result.shared value returned by the lookup and
2743              * snapshot creation, which may cause new
2744              * sharing.
2745              *
2746              * To avoid this always quiesce the origin before
2747              * taking the snap.  You want to do this anyway to
2748              * ensure a consistent application view
2749              * (i.e. lockfs).
2750              *
2751              * More distant ancestors are irrelevant. The
2752              * shared flag will be set in their case.
2753              */
2754             thin_defer_cell(tc, virt_cell);
2755             return DM_MAPIO_SUBMITTED;
2756         }
2757 
2758         build_data_key(tc->td, result.block, &key);
2759         if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2760             cell_defer_no_holder(tc, virt_cell);
2761             return DM_MAPIO_SUBMITTED;
2762         }
2763 
2764         inc_all_io_entry(tc->pool, bio);
2765         cell_defer_no_holder(tc, data_cell);
2766         cell_defer_no_holder(tc, virt_cell);
2767 
2768         remap(tc, bio, result.block);
2769         return DM_MAPIO_REMAPPED;
2770 
2771     case -ENODATA:
2772     case -EWOULDBLOCK:
2773         thin_defer_cell(tc, virt_cell);
2774         return DM_MAPIO_SUBMITTED;
2775 
2776     default:
2777         /*
2778          * Must always call bio_io_error on failure.
2779          * dm_thin_find_block can fail with -EINVAL if the
2780          * pool is switched to fail-io mode.
2781          */
2782         bio_io_error(bio);
2783         cell_defer_no_holder(tc, virt_cell);
2784         return DM_MAPIO_SUBMITTED;
2785     }
2786 }
2787 
2788 static void requeue_bios(struct pool *pool)
2789 {
2790     struct thin_c *tc;
2791 
2792     rcu_read_lock();
2793     list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2794         spin_lock_irq(&tc->lock);
2795         bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2796         bio_list_init(&tc->retry_on_resume_list);
2797         spin_unlock_irq(&tc->lock);
2798     }
2799     rcu_read_unlock();
2800 }
2801 
2802 /*----------------------------------------------------------------
2803  * Binding of control targets to a pool object
2804  *--------------------------------------------------------------*/
2805 static bool is_factor(sector_t block_size, uint32_t n)
2806 {
2807     return !sector_div(block_size, n);
2808 }
2809 
2810 /*
2811  * If discard_passdown was enabled verify that the data device
2812  * supports discards.  Disable discard_passdown if not.
2813  */
2814 static void disable_passdown_if_not_supported(struct pool_c *pt)
2815 {
2816     struct pool *pool = pt->pool;
2817     struct block_device *data_bdev = pt->data_dev->bdev;
2818     struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2819     const char *reason = NULL;
2820 
2821     if (!pt->adjusted_pf.discard_passdown)
2822         return;
2823 
2824     if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2825         reason = "discard unsupported";
2826 
2827     else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2828         reason = "max discard sectors smaller than a block";
2829 
2830     if (reason) {
2831         DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2832         pt->adjusted_pf.discard_passdown = false;
2833     }
2834 }
2835 
2836 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2837 {
2838     struct pool_c *pt = ti->private;
2839 
2840     /*
2841      * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2842      */
2843     enum pool_mode old_mode = get_pool_mode(pool);
2844     enum pool_mode new_mode = pt->adjusted_pf.mode;
2845 
2846     /*
2847      * Don't change the pool's mode until set_pool_mode() below.
2848      * Otherwise the pool's process_* function pointers may
2849      * not match the desired pool mode.
2850      */
2851     pt->adjusted_pf.mode = old_mode;
2852 
2853     pool->ti = ti;
2854     pool->pf = pt->adjusted_pf;
2855     pool->low_water_blocks = pt->low_water_blocks;
2856 
2857     set_pool_mode(pool, new_mode);
2858 
2859     return 0;
2860 }
2861 
2862 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2863 {
2864     if (pool->ti == ti)
2865         pool->ti = NULL;
2866 }
2867 
2868 /*----------------------------------------------------------------
2869  * Pool creation
2870  *--------------------------------------------------------------*/
2871 /* Initialize pool features. */
2872 static void pool_features_init(struct pool_features *pf)
2873 {
2874     pf->mode = PM_WRITE;
2875     pf->zero_new_blocks = true;
2876     pf->discard_enabled = true;
2877     pf->discard_passdown = true;
2878     pf->error_if_no_space = false;
2879 }
2880 
2881 static void __pool_destroy(struct pool *pool)
2882 {
2883     __pool_table_remove(pool);
2884 
2885     vfree(pool->cell_sort_array);
2886     if (dm_pool_metadata_close(pool->pmd) < 0)
2887         DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2888 
2889     dm_bio_prison_destroy(pool->prison);
2890     dm_kcopyd_client_destroy(pool->copier);
2891 
2892     if (pool->wq)
2893         destroy_workqueue(pool->wq);
2894 
2895     if (pool->next_mapping)
2896         mempool_free(pool->next_mapping, &pool->mapping_pool);
2897     mempool_exit(&pool->mapping_pool);
2898     dm_deferred_set_destroy(pool->shared_read_ds);
2899     dm_deferred_set_destroy(pool->all_io_ds);
2900     kfree(pool);
2901 }
2902 
2903 static struct kmem_cache *_new_mapping_cache;
2904 
2905 static struct pool *pool_create(struct mapped_device *pool_md,
2906                 struct block_device *metadata_dev,
2907                 struct block_device *data_dev,
2908                 unsigned long block_size,
2909                 int read_only, char **error)
2910 {
2911     int r;
2912     void *err_p;
2913     struct pool *pool;
2914     struct dm_pool_metadata *pmd;
2915     bool format_device = read_only ? false : true;
2916 
2917     pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2918     if (IS_ERR(pmd)) {
2919         *error = "Error creating metadata object";
2920         return (struct pool *)pmd;
2921     }
2922 
2923     pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2924     if (!pool) {
2925         *error = "Error allocating memory for pool";
2926         err_p = ERR_PTR(-ENOMEM);
2927         goto bad_pool;
2928     }
2929 
2930     pool->pmd = pmd;
2931     pool->sectors_per_block = block_size;
2932     if (block_size & (block_size - 1))
2933         pool->sectors_per_block_shift = -1;
2934     else
2935         pool->sectors_per_block_shift = __ffs(block_size);
2936     pool->low_water_blocks = 0;
2937     pool_features_init(&pool->pf);
2938     pool->prison = dm_bio_prison_create();
2939     if (!pool->prison) {
2940         *error = "Error creating pool's bio prison";
2941         err_p = ERR_PTR(-ENOMEM);
2942         goto bad_prison;
2943     }
2944 
2945     pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2946     if (IS_ERR(pool->copier)) {
2947         r = PTR_ERR(pool->copier);
2948         *error = "Error creating pool's kcopyd client";
2949         err_p = ERR_PTR(r);
2950         goto bad_kcopyd_client;
2951     }
2952 
2953     /*
2954      * Create singlethreaded workqueue that will service all devices
2955      * that use this metadata.
2956      */
2957     pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2958     if (!pool->wq) {
2959         *error = "Error creating pool's workqueue";
2960         err_p = ERR_PTR(-ENOMEM);
2961         goto bad_wq;
2962     }
2963 
2964     throttle_init(&pool->throttle);
2965     INIT_WORK(&pool->worker, do_worker);
2966     INIT_DELAYED_WORK(&pool->waker, do_waker);
2967     INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2968     spin_lock_init(&pool->lock);
2969     bio_list_init(&pool->deferred_flush_bios);
2970     bio_list_init(&pool->deferred_flush_completions);
2971     INIT_LIST_HEAD(&pool->prepared_mappings);
2972     INIT_LIST_HEAD(&pool->prepared_discards);
2973     INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2974     INIT_LIST_HEAD(&pool->active_thins);
2975     pool->low_water_triggered = false;
2976     pool->suspended = true;
2977     pool->out_of_data_space = false;
2978 
2979     pool->shared_read_ds = dm_deferred_set_create();
2980     if (!pool->shared_read_ds) {
2981         *error = "Error creating pool's shared read deferred set";
2982         err_p = ERR_PTR(-ENOMEM);
2983         goto bad_shared_read_ds;
2984     }
2985 
2986     pool->all_io_ds = dm_deferred_set_create();
2987     if (!pool->all_io_ds) {
2988         *error = "Error creating pool's all io deferred set";
2989         err_p = ERR_PTR(-ENOMEM);
2990         goto bad_all_io_ds;
2991     }
2992 
2993     pool->next_mapping = NULL;
2994     r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
2995                    _new_mapping_cache);
2996     if (r) {
2997         *error = "Error creating pool's mapping mempool";
2998         err_p = ERR_PTR(r);
2999         goto bad_mapping_pool;
3000     }
3001 
3002     pool->cell_sort_array =
3003         vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3004                    sizeof(*pool->cell_sort_array)));
3005     if (!pool->cell_sort_array) {
3006         *error = "Error allocating cell sort array";
3007         err_p = ERR_PTR(-ENOMEM);
3008         goto bad_sort_array;
3009     }
3010 
3011     pool->ref_count = 1;
3012     pool->last_commit_jiffies = jiffies;
3013     pool->pool_md = pool_md;
3014     pool->md_dev = metadata_dev;
3015     pool->data_dev = data_dev;
3016     __pool_table_insert(pool);
3017 
3018     return pool;
3019 
3020 bad_sort_array:
3021     mempool_exit(&pool->mapping_pool);
3022 bad_mapping_pool:
3023     dm_deferred_set_destroy(pool->all_io_ds);
3024 bad_all_io_ds:
3025     dm_deferred_set_destroy(pool->shared_read_ds);
3026 bad_shared_read_ds:
3027     destroy_workqueue(pool->wq);
3028 bad_wq:
3029     dm_kcopyd_client_destroy(pool->copier);
3030 bad_kcopyd_client:
3031     dm_bio_prison_destroy(pool->prison);
3032 bad_prison:
3033     kfree(pool);
3034 bad_pool:
3035     if (dm_pool_metadata_close(pmd))
3036         DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3037 
3038     return err_p;
3039 }
3040 
3041 static void __pool_inc(struct pool *pool)
3042 {
3043     BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3044     pool->ref_count++;
3045 }
3046 
3047 static void __pool_dec(struct pool *pool)
3048 {
3049     BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3050     BUG_ON(!pool->ref_count);
3051     if (!--pool->ref_count)
3052         __pool_destroy(pool);
3053 }
3054 
3055 static struct pool *__pool_find(struct mapped_device *pool_md,
3056                 struct block_device *metadata_dev,
3057                 struct block_device *data_dev,
3058                 unsigned long block_size, int read_only,
3059                 char **error, int *created)
3060 {
3061     struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3062 
3063     if (pool) {
3064         if (pool->pool_md != pool_md) {
3065             *error = "metadata device already in use by a pool";
3066             return ERR_PTR(-EBUSY);
3067         }
3068         if (pool->data_dev != data_dev) {
3069             *error = "data device already in use by a pool";
3070             return ERR_PTR(-EBUSY);
3071         }
3072         __pool_inc(pool);
3073 
3074     } else {
3075         pool = __pool_table_lookup(pool_md);
3076         if (pool) {
3077             if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3078                 *error = "different pool cannot replace a pool";
3079                 return ERR_PTR(-EINVAL);
3080             }
3081             __pool_inc(pool);
3082 
3083         } else {
3084             pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3085             *created = 1;
3086         }
3087     }
3088 
3089     return pool;
3090 }
3091 
3092 /*----------------------------------------------------------------
3093  * Pool target methods
3094  *--------------------------------------------------------------*/
3095 static void pool_dtr(struct dm_target *ti)
3096 {
3097     struct pool_c *pt = ti->private;
3098 
3099     mutex_lock(&dm_thin_pool_table.mutex);
3100 
3101     unbind_control_target(pt->pool, ti);
3102     __pool_dec(pt->pool);
3103     dm_put_device(ti, pt->metadata_dev);
3104     dm_put_device(ti, pt->data_dev);
3105     kfree(pt);
3106 
3107     mutex_unlock(&dm_thin_pool_table.mutex);
3108 }
3109 
3110 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3111                    struct dm_target *ti)
3112 {
3113     int r;
3114     unsigned argc;
3115     const char *arg_name;
3116 
3117     static const struct dm_arg _args[] = {
3118         {0, 4, "Invalid number of pool feature arguments"},
3119     };
3120 
3121     /*
3122      * No feature arguments supplied.
3123      */
3124     if (!as->argc)
3125         return 0;
3126 
3127     r = dm_read_arg_group(_args, as, &argc, &ti->error);
3128     if (r)
3129         return -EINVAL;
3130 
3131     while (argc && !r) {
3132         arg_name = dm_shift_arg(as);
3133         argc--;
3134 
3135         if (!strcasecmp(arg_name, "skip_block_zeroing"))
3136             pf->zero_new_blocks = false;
3137 
3138         else if (!strcasecmp(arg_name, "ignore_discard"))
3139             pf->discard_enabled = false;
3140 
3141         else if (!strcasecmp(arg_name, "no_discard_passdown"))
3142             pf->discard_passdown = false;
3143 
3144         else if (!strcasecmp(arg_name, "read_only"))
3145             pf->mode = PM_READ_ONLY;
3146 
3147         else if (!strcasecmp(arg_name, "error_if_no_space"))
3148             pf->error_if_no_space = true;
3149 
3150         else {
3151             ti->error = "Unrecognised pool feature requested";
3152             r = -EINVAL;
3153             break;
3154         }
3155     }
3156 
3157     return r;
3158 }
3159 
3160 static void metadata_low_callback(void *context)
3161 {
3162     struct pool *pool = context;
3163 
3164     DMWARN("%s: reached low water mark for metadata device: sending event.",
3165            dm_device_name(pool->pool_md));
3166 
3167     dm_table_event(pool->ti->table);
3168 }
3169 
3170 /*
3171  * We need to flush the data device **before** committing the metadata.
3172  *
3173  * This ensures that the data blocks of any newly inserted mappings are
3174  * properly written to non-volatile storage and won't be lost in case of a
3175  * crash.
3176  *
3177  * Failure to do so can result in data corruption in the case of internal or
3178  * external snapshots and in the case of newly provisioned blocks, when block
3179  * zeroing is enabled.
3180  */
3181 static int metadata_pre_commit_callback(void *context)
3182 {
3183     struct pool *pool = context;
3184 
3185     return blkdev_issue_flush(pool->data_dev);
3186 }
3187 
3188 static sector_t get_dev_size(struct block_device *bdev)
3189 {
3190     return bdev_nr_sectors(bdev);
3191 }
3192 
3193 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3194 {
3195     sector_t metadata_dev_size = get_dev_size(bdev);
3196 
3197     if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3198         DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3199                bdev, THIN_METADATA_MAX_SECTORS);
3200 }
3201 
3202 static sector_t get_metadata_dev_size(struct block_device *bdev)
3203 {
3204     sector_t metadata_dev_size = get_dev_size(bdev);
3205 
3206     if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3207         metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3208 
3209     return metadata_dev_size;
3210 }
3211 
3212 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3213 {
3214     sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3215 
3216     sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3217 
3218     return metadata_dev_size;
3219 }
3220 
3221 /*
3222  * When a metadata threshold is crossed a dm event is triggered, and
3223  * userland should respond by growing the metadata device.  We could let
3224  * userland set the threshold, like we do with the data threshold, but I'm
3225  * not sure they know enough to do this well.
3226  */
3227 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3228 {
3229     /*
3230      * 4M is ample for all ops with the possible exception of thin
3231      * device deletion which is harmless if it fails (just retry the
3232      * delete after you've grown the device).
3233      */
3234     dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3235     return min((dm_block_t)1024ULL /* 4M */, quarter);
3236 }
3237 
3238 /*
3239  * thin-pool <metadata dev> <data dev>
3240  *       <data block size (sectors)>
3241  *       <low water mark (blocks)>
3242  *       [<#feature args> [<arg>]*]
3243  *
3244  * Optional feature arguments are:
3245  *       skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3246  *       ignore_discard: disable discard
3247  *       no_discard_passdown: don't pass discards down to the data device
3248  *       read_only: Don't allow any changes to be made to the pool metadata.
3249  *       error_if_no_space: error IOs, instead of queueing, if no space.
3250  */
3251 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3252 {
3253     int r, pool_created = 0;
3254     struct pool_c *pt;
3255     struct pool *pool;
3256     struct pool_features pf;
3257     struct dm_arg_set as;
3258     struct dm_dev *data_dev;
3259     unsigned long block_size;
3260     dm_block_t low_water_blocks;
3261     struct dm_dev *metadata_dev;
3262     fmode_t metadata_mode;
3263 
3264     /*
3265      * FIXME Remove validation from scope of lock.
3266      */
3267     mutex_lock(&dm_thin_pool_table.mutex);
3268 
3269     if (argc < 4) {
3270         ti->error = "Invalid argument count";
3271         r = -EINVAL;
3272         goto out_unlock;
3273     }
3274 
3275     as.argc = argc;
3276     as.argv = argv;
3277 
3278     /* make sure metadata and data are different devices */
3279     if (!strcmp(argv[0], argv[1])) {
3280         ti->error = "Error setting metadata or data device";
3281         r = -EINVAL;
3282         goto out_unlock;
3283     }
3284 
3285     /*
3286      * Set default pool features.
3287      */
3288     pool_features_init(&pf);
3289 
3290     dm_consume_args(&as, 4);
3291     r = parse_pool_features(&as, &pf, ti);
3292     if (r)
3293         goto out_unlock;
3294 
3295     metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3296     r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3297     if (r) {
3298         ti->error = "Error opening metadata block device";
3299         goto out_unlock;
3300     }
3301     warn_if_metadata_device_too_big(metadata_dev->bdev);
3302 
3303     r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3304     if (r) {
3305         ti->error = "Error getting data device";
3306         goto out_metadata;
3307     }
3308 
3309     if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3310         block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3311         block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3312         block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3313         ti->error = "Invalid block size";
3314         r = -EINVAL;
3315         goto out;
3316     }
3317 
3318     if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3319         ti->error = "Invalid low water mark";
3320         r = -EINVAL;
3321         goto out;
3322     }
3323 
3324     pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3325     if (!pt) {
3326         r = -ENOMEM;
3327         goto out;
3328     }
3329 
3330     pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3331                block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3332     if (IS_ERR(pool)) {
3333         r = PTR_ERR(pool);
3334         goto out_free_pt;
3335     }
3336 
3337     /*
3338      * 'pool_created' reflects whether this is the first table load.
3339      * Top level discard support is not allowed to be changed after
3340      * initial load.  This would require a pool reload to trigger thin
3341      * device changes.
3342      */
3343     if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3344         ti->error = "Discard support cannot be disabled once enabled";
3345         r = -EINVAL;
3346         goto out_flags_changed;
3347     }
3348 
3349     pt->pool = pool;
3350     pt->ti = ti;
3351     pt->metadata_dev = metadata_dev;
3352     pt->data_dev = data_dev;
3353     pt->low_water_blocks = low_water_blocks;
3354     pt->adjusted_pf = pt->requested_pf = pf;
3355     ti->num_flush_bios = 1;
3356 
3357     /*
3358      * Only need to enable discards if the pool should pass
3359      * them down to the data device.  The thin device's discard
3360      * processing will cause mappings to be removed from the btree.
3361      */
3362     if (pf.discard_enabled && pf.discard_passdown) {
3363         ti->num_discard_bios = 1;
3364 
3365         /*
3366          * Setting 'discards_supported' circumvents the normal
3367          * stacking of discard limits (this keeps the pool and
3368          * thin devices' discard limits consistent).
3369          */
3370         ti->discards_supported = true;
3371     }
3372     ti->private = pt;
3373 
3374     r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3375                         calc_metadata_threshold(pt),
3376                         metadata_low_callback,
3377                         pool);
3378     if (r) {
3379         ti->error = "Error registering metadata threshold";
3380         goto out_flags_changed;
3381     }
3382 
3383     dm_pool_register_pre_commit_callback(pool->pmd,
3384                          metadata_pre_commit_callback, pool);
3385 
3386     mutex_unlock(&dm_thin_pool_table.mutex);
3387 
3388     return 0;
3389 
3390 out_flags_changed:
3391     __pool_dec(pool);
3392 out_free_pt:
3393     kfree(pt);
3394 out:
3395     dm_put_device(ti, data_dev);
3396 out_metadata:
3397     dm_put_device(ti, metadata_dev);
3398 out_unlock:
3399     mutex_unlock(&dm_thin_pool_table.mutex);
3400 
3401     return r;
3402 }
3403 
3404 static int pool_map(struct dm_target *ti, struct bio *bio)
3405 {
3406     int r;
3407     struct pool_c *pt = ti->private;
3408     struct pool *pool = pt->pool;
3409 
3410     /*
3411      * As this is a singleton target, ti->begin is always zero.
3412      */
3413     spin_lock_irq(&pool->lock);
3414     bio_set_dev(bio, pt->data_dev->bdev);
3415     r = DM_MAPIO_REMAPPED;
3416     spin_unlock_irq(&pool->lock);
3417 
3418     return r;
3419 }
3420 
3421 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3422 {
3423     int r;
3424     struct pool_c *pt = ti->private;
3425     struct pool *pool = pt->pool;
3426     sector_t data_size = ti->len;
3427     dm_block_t sb_data_size;
3428 
3429     *need_commit = false;
3430 
3431     (void) sector_div(data_size, pool->sectors_per_block);
3432 
3433     r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3434     if (r) {
3435         DMERR("%s: failed to retrieve data device size",
3436               dm_device_name(pool->pool_md));
3437         return r;
3438     }
3439 
3440     if (data_size < sb_data_size) {
3441         DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3442               dm_device_name(pool->pool_md),
3443               (unsigned long long)data_size, sb_data_size);
3444         return -EINVAL;
3445 
3446     } else if (data_size > sb_data_size) {
3447         if (dm_pool_metadata_needs_check(pool->pmd)) {
3448             DMERR("%s: unable to grow the data device until repaired.",
3449                   dm_device_name(pool->pool_md));
3450             return 0;
3451         }
3452 
3453         if (sb_data_size)
3454             DMINFO("%s: growing the data device from %llu to %llu blocks",
3455                    dm_device_name(pool->pool_md),
3456                    sb_data_size, (unsigned long long)data_size);
3457         r = dm_pool_resize_data_dev(pool->pmd, data_size);
3458         if (r) {
3459             metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3460             return r;
3461         }
3462 
3463         *need_commit = true;
3464     }
3465 
3466     return 0;
3467 }
3468 
3469 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3470 {
3471     int r;
3472     struct pool_c *pt = ti->private;
3473     struct pool *pool = pt->pool;
3474     dm_block_t metadata_dev_size, sb_metadata_dev_size;
3475 
3476     *need_commit = false;
3477 
3478     metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3479 
3480     r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3481     if (r) {
3482         DMERR("%s: failed to retrieve metadata device size",
3483               dm_device_name(pool->pool_md));
3484         return r;
3485     }
3486 
3487     if (metadata_dev_size < sb_metadata_dev_size) {
3488         DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3489               dm_device_name(pool->pool_md),
3490               metadata_dev_size, sb_metadata_dev_size);
3491         return -EINVAL;
3492 
3493     } else if (metadata_dev_size > sb_metadata_dev_size) {
3494         if (dm_pool_metadata_needs_check(pool->pmd)) {
3495             DMERR("%s: unable to grow the metadata device until repaired.",
3496                   dm_device_name(pool->pool_md));
3497             return 0;
3498         }
3499 
3500         warn_if_metadata_device_too_big(pool->md_dev);
3501         DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3502                dm_device_name(pool->pool_md),
3503                sb_metadata_dev_size, metadata_dev_size);
3504 
3505         if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3506             set_pool_mode(pool, PM_WRITE);
3507 
3508         r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3509         if (r) {
3510             metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3511             return r;
3512         }
3513 
3514         *need_commit = true;
3515     }
3516 
3517     return 0;
3518 }
3519 
3520 /*
3521  * Retrieves the number of blocks of the data device from
3522  * the superblock and compares it to the actual device size,
3523  * thus resizing the data device in case it has grown.
3524  *
3525  * This both copes with opening preallocated data devices in the ctr
3526  * being followed by a resume
3527  * -and-
3528  * calling the resume method individually after userspace has
3529  * grown the data device in reaction to a table event.
3530  */
3531 static int pool_preresume(struct dm_target *ti)
3532 {
3533     int r;
3534     bool need_commit1, need_commit2;
3535     struct pool_c *pt = ti->private;
3536     struct pool *pool = pt->pool;
3537 
3538     /*
3539      * Take control of the pool object.
3540      */
3541     r = bind_control_target(pool, ti);
3542     if (r)
3543         return r;
3544 
3545     r = maybe_resize_data_dev(ti, &need_commit1);
3546     if (r)
3547         return r;
3548 
3549     r = maybe_resize_metadata_dev(ti, &need_commit2);
3550     if (r)
3551         return r;
3552 
3553     if (need_commit1 || need_commit2)
3554         (void) commit(pool);
3555 
3556     return 0;
3557 }
3558 
3559 static void pool_suspend_active_thins(struct pool *pool)
3560 {
3561     struct thin_c *tc;
3562 
3563     /* Suspend all active thin devices */
3564     tc = get_first_thin(pool);
3565     while (tc) {
3566         dm_internal_suspend_noflush(tc->thin_md);
3567         tc = get_next_thin(pool, tc);
3568     }
3569 }
3570 
3571 static void pool_resume_active_thins(struct pool *pool)
3572 {
3573     struct thin_c *tc;
3574 
3575     /* Resume all active thin devices */
3576     tc = get_first_thin(pool);
3577     while (tc) {
3578         dm_internal_resume(tc->thin_md);
3579         tc = get_next_thin(pool, tc);
3580     }
3581 }
3582 
3583 static void pool_resume(struct dm_target *ti)
3584 {
3585     struct pool_c *pt = ti->private;
3586     struct pool *pool = pt->pool;
3587 
3588     /*
3589      * Must requeue active_thins' bios and then resume
3590      * active_thins _before_ clearing 'suspend' flag.
3591      */
3592     requeue_bios(pool);
3593     pool_resume_active_thins(pool);
3594 
3595     spin_lock_irq(&pool->lock);
3596     pool->low_water_triggered = false;
3597     pool->suspended = false;
3598     spin_unlock_irq(&pool->lock);
3599 
3600     do_waker(&pool->waker.work);
3601 }
3602 
3603 static void pool_presuspend(struct dm_target *ti)
3604 {
3605     struct pool_c *pt = ti->private;
3606     struct pool *pool = pt->pool;
3607 
3608     spin_lock_irq(&pool->lock);
3609     pool->suspended = true;
3610     spin_unlock_irq(&pool->lock);
3611 
3612     pool_suspend_active_thins(pool);
3613 }
3614 
3615 static void pool_presuspend_undo(struct dm_target *ti)
3616 {
3617     struct pool_c *pt = ti->private;
3618     struct pool *pool = pt->pool;
3619 
3620     pool_resume_active_thins(pool);
3621 
3622     spin_lock_irq(&pool->lock);
3623     pool->suspended = false;
3624     spin_unlock_irq(&pool->lock);
3625 }
3626 
3627 static void pool_postsuspend(struct dm_target *ti)
3628 {
3629     struct pool_c *pt = ti->private;
3630     struct pool *pool = pt->pool;
3631 
3632     cancel_delayed_work_sync(&pool->waker);
3633     cancel_delayed_work_sync(&pool->no_space_timeout);
3634     flush_workqueue(pool->wq);
3635     (void) commit(pool);
3636 }
3637 
3638 static int check_arg_count(unsigned argc, unsigned args_required)
3639 {
3640     if (argc != args_required) {
3641         DMWARN("Message received with %u arguments instead of %u.",
3642                argc, args_required);
3643         return -EINVAL;
3644     }
3645 
3646     return 0;
3647 }
3648 
3649 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3650 {
3651     if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3652         *dev_id <= MAX_DEV_ID)
3653         return 0;
3654 
3655     if (warning)
3656         DMWARN("Message received with invalid device id: %s", arg);
3657 
3658     return -EINVAL;
3659 }
3660 
3661 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3662 {
3663     dm_thin_id dev_id;
3664     int r;
3665 
3666     r = check_arg_count(argc, 2);
3667     if (r)
3668         return r;
3669 
3670     r = read_dev_id(argv[1], &dev_id, 1);
3671     if (r)
3672         return r;
3673 
3674     r = dm_pool_create_thin(pool->pmd, dev_id);
3675     if (r) {
3676         DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3677                argv[1]);
3678         return r;
3679     }
3680 
3681     return 0;
3682 }
3683 
3684 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3685 {
3686     dm_thin_id dev_id;
3687     dm_thin_id origin_dev_id;
3688     int r;
3689 
3690     r = check_arg_count(argc, 3);
3691     if (r)
3692         return r;
3693 
3694     r = read_dev_id(argv[1], &dev_id, 1);
3695     if (r)
3696         return r;
3697 
3698     r = read_dev_id(argv[2], &origin_dev_id, 1);
3699     if (r)
3700         return r;
3701 
3702     r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3703     if (r) {
3704         DMWARN("Creation of new snapshot %s of device %s failed.",
3705                argv[1], argv[2]);
3706         return r;
3707     }
3708 
3709     return 0;
3710 }
3711 
3712 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3713 {
3714     dm_thin_id dev_id;
3715     int r;
3716 
3717     r = check_arg_count(argc, 2);
3718     if (r)
3719         return r;
3720 
3721     r = read_dev_id(argv[1], &dev_id, 1);
3722     if (r)
3723         return r;
3724 
3725     r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3726     if (r)
3727         DMWARN("Deletion of thin device %s failed.", argv[1]);
3728 
3729     return r;
3730 }
3731 
3732 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3733 {
3734     dm_thin_id old_id, new_id;
3735     int r;
3736 
3737     r = check_arg_count(argc, 3);
3738     if (r)
3739         return r;
3740 
3741     if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3742         DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3743         return -EINVAL;
3744     }
3745 
3746     if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3747         DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3748         return -EINVAL;
3749     }
3750 
3751     r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3752     if (r) {
3753         DMWARN("Failed to change transaction id from %s to %s.",
3754                argv[1], argv[2]);
3755         return r;
3756     }
3757 
3758     return 0;
3759 }
3760 
3761 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3762 {
3763     int r;
3764 
3765     r = check_arg_count(argc, 1);
3766     if (r)
3767         return r;
3768 
3769     (void) commit(pool);
3770 
3771     r = dm_pool_reserve_metadata_snap(pool->pmd);
3772     if (r)
3773         DMWARN("reserve_metadata_snap message failed.");
3774 
3775     return r;
3776 }
3777 
3778 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3779 {
3780     int r;
3781 
3782     r = check_arg_count(argc, 1);
3783     if (r)
3784         return r;
3785 
3786     r = dm_pool_release_metadata_snap(pool->pmd);
3787     if (r)
3788         DMWARN("release_metadata_snap message failed.");
3789 
3790     return r;
3791 }
3792 
3793 /*
3794  * Messages supported:
3795  *   create_thin    <dev_id>
3796  *   create_snap    <dev_id> <origin_id>
3797  *   delete     <dev_id>
3798  *   set_transaction_id <current_trans_id> <new_trans_id>
3799  *   reserve_metadata_snap
3800  *   release_metadata_snap
3801  */
3802 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3803             char *result, unsigned maxlen)
3804 {
3805     int r = -EINVAL;
3806     struct pool_c *pt = ti->private;
3807     struct pool *pool = pt->pool;
3808 
3809     if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3810         DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3811               dm_device_name(pool->pool_md));
3812         return -EOPNOTSUPP;
3813     }
3814 
3815     if (!strcasecmp(argv[0], "create_thin"))
3816         r = process_create_thin_mesg(argc, argv, pool);
3817 
3818     else if (!strcasecmp(argv[0], "create_snap"))
3819         r = process_create_snap_mesg(argc, argv, pool);
3820 
3821     else if (!strcasecmp(argv[0], "delete"))
3822         r = process_delete_mesg(argc, argv, pool);
3823 
3824     else if (!strcasecmp(argv[0], "set_transaction_id"))
3825         r = process_set_transaction_id_mesg(argc, argv, pool);
3826 
3827     else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3828         r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3829 
3830     else if (!strcasecmp(argv[0], "release_metadata_snap"))
3831         r = process_release_metadata_snap_mesg(argc, argv, pool);
3832 
3833     else
3834         DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3835 
3836     if (!r)
3837         (void) commit(pool);
3838 
3839     return r;
3840 }
3841 
3842 static void emit_flags(struct pool_features *pf, char *result,
3843                unsigned sz, unsigned maxlen)
3844 {
3845     unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3846         !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3847         pf->error_if_no_space;
3848     DMEMIT("%u ", count);
3849 
3850     if (!pf->zero_new_blocks)
3851         DMEMIT("skip_block_zeroing ");
3852 
3853     if (!pf->discard_enabled)
3854         DMEMIT("ignore_discard ");
3855 
3856     if (!pf->discard_passdown)
3857         DMEMIT("no_discard_passdown ");
3858 
3859     if (pf->mode == PM_READ_ONLY)
3860         DMEMIT("read_only ");
3861 
3862     if (pf->error_if_no_space)
3863         DMEMIT("error_if_no_space ");
3864 }
3865 
3866 /*
3867  * Status line is:
3868  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3869  *    <used data sectors>/<total data sectors> <held metadata root>
3870  *    <pool mode> <discard config> <no space config> <needs_check>
3871  */
3872 static void pool_status(struct dm_target *ti, status_type_t type,
3873             unsigned status_flags, char *result, unsigned maxlen)
3874 {
3875     int r;
3876     unsigned sz = 0;
3877     uint64_t transaction_id;
3878     dm_block_t nr_free_blocks_data;
3879     dm_block_t nr_free_blocks_metadata;
3880     dm_block_t nr_blocks_data;
3881     dm_block_t nr_blocks_metadata;
3882     dm_block_t held_root;
3883     enum pool_mode mode;
3884     char buf[BDEVNAME_SIZE];
3885     char buf2[BDEVNAME_SIZE];
3886     struct pool_c *pt = ti->private;
3887     struct pool *pool = pt->pool;
3888 
3889     switch (type) {
3890     case STATUSTYPE_INFO:
3891         if (get_pool_mode(pool) == PM_FAIL) {
3892             DMEMIT("Fail");
3893             break;
3894         }
3895 
3896         /* Commit to ensure statistics aren't out-of-date */
3897         if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3898             (void) commit(pool);
3899 
3900         r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3901         if (r) {
3902             DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3903                   dm_device_name(pool->pool_md), r);
3904             goto err;
3905         }
3906 
3907         r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3908         if (r) {
3909             DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3910                   dm_device_name(pool->pool_md), r);
3911             goto err;
3912         }
3913 
3914         r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3915         if (r) {
3916             DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3917                   dm_device_name(pool->pool_md), r);
3918             goto err;
3919         }
3920 
3921         r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3922         if (r) {
3923             DMERR("%s: dm_pool_get_free_block_count returned %d",
3924                   dm_device_name(pool->pool_md), r);
3925             goto err;
3926         }
3927 
3928         r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3929         if (r) {
3930             DMERR("%s: dm_pool_get_data_dev_size returned %d",
3931                   dm_device_name(pool->pool_md), r);
3932             goto err;
3933         }
3934 
3935         r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3936         if (r) {
3937             DMERR("%s: dm_pool_get_metadata_snap returned %d",
3938                   dm_device_name(pool->pool_md), r);
3939             goto err;
3940         }
3941 
3942         DMEMIT("%llu %llu/%llu %llu/%llu ",
3943                (unsigned long long)transaction_id,
3944                (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3945                (unsigned long long)nr_blocks_metadata,
3946                (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3947                (unsigned long long)nr_blocks_data);
3948 
3949         if (held_root)
3950             DMEMIT("%llu ", held_root);
3951         else
3952             DMEMIT("- ");
3953 
3954         mode = get_pool_mode(pool);
3955         if (mode == PM_OUT_OF_DATA_SPACE)
3956             DMEMIT("out_of_data_space ");
3957         else if (is_read_only_pool_mode(mode))
3958             DMEMIT("ro ");
3959         else
3960             DMEMIT("rw ");
3961 
3962         if (!pool->pf.discard_enabled)
3963             DMEMIT("ignore_discard ");
3964         else if (pool->pf.discard_passdown)
3965             DMEMIT("discard_passdown ");
3966         else
3967             DMEMIT("no_discard_passdown ");
3968 
3969         if (pool->pf.error_if_no_space)
3970             DMEMIT("error_if_no_space ");
3971         else
3972             DMEMIT("queue_if_no_space ");
3973 
3974         if (dm_pool_metadata_needs_check(pool->pmd))
3975             DMEMIT("needs_check ");
3976         else
3977             DMEMIT("- ");
3978 
3979         DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
3980 
3981         break;
3982 
3983     case STATUSTYPE_TABLE:
3984         DMEMIT("%s %s %lu %llu ",
3985                format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3986                format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3987                (unsigned long)pool->sectors_per_block,
3988                (unsigned long long)pt->low_water_blocks);
3989         emit_flags(&pt->requested_pf, result, sz, maxlen);
3990         break;
3991 
3992     case STATUSTYPE_IMA:
3993         *result = '\0';
3994         break;
3995     }
3996     return;
3997 
3998 err:
3999     DMEMIT("Error");
4000 }
4001 
4002 static int pool_iterate_devices(struct dm_target *ti,
4003                 iterate_devices_callout_fn fn, void *data)
4004 {
4005     struct pool_c *pt = ti->private;
4006 
4007     return fn(ti, pt->data_dev, 0, ti->len, data);
4008 }
4009 
4010 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4011 {
4012     struct pool_c *pt = ti->private;
4013     struct pool *pool = pt->pool;
4014     sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4015 
4016     /*
4017      * If max_sectors is smaller than pool->sectors_per_block adjust it
4018      * to the highest possible power-of-2 factor of pool->sectors_per_block.
4019      * This is especially beneficial when the pool's data device is a RAID
4020      * device that has a full stripe width that matches pool->sectors_per_block
4021      * -- because even though partial RAID stripe-sized IOs will be issued to a
4022      *    single RAID stripe; when aggregated they will end on a full RAID stripe
4023      *    boundary.. which avoids additional partial RAID stripe writes cascading
4024      */
4025     if (limits->max_sectors < pool->sectors_per_block) {
4026         while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4027             if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4028                 limits->max_sectors--;
4029             limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4030         }
4031     }
4032 
4033     /*
4034      * If the system-determined stacked limits are compatible with the
4035      * pool's blocksize (io_opt is a factor) do not override them.
4036      */
4037     if (io_opt_sectors < pool->sectors_per_block ||
4038         !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4039         if (is_factor(pool->sectors_per_block, limits->max_sectors))
4040             blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4041         else
4042             blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4043         blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4044     }
4045 
4046     /*
4047      * pt->adjusted_pf is a staging area for the actual features to use.
4048      * They get transferred to the live pool in bind_control_target()
4049      * called from pool_preresume().
4050      */
4051     if (!pt->adjusted_pf.discard_enabled) {
4052         /*
4053          * Must explicitly disallow stacking discard limits otherwise the
4054          * block layer will stack them if pool's data device has support.
4055          */
4056         limits->discard_granularity = 0;
4057         return;
4058     }
4059 
4060     disable_passdown_if_not_supported(pt);
4061 
4062     /*
4063      * The pool uses the same discard limits as the underlying data
4064      * device.  DM core has already set this up.
4065      */
4066 }
4067 
4068 static struct target_type pool_target = {
4069     .name = "thin-pool",
4070     .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4071             DM_TARGET_IMMUTABLE,
4072     .version = {1, 22, 0},
4073     .module = THIS_MODULE,
4074     .ctr = pool_ctr,
4075     .dtr = pool_dtr,
4076     .map = pool_map,
4077     .presuspend = pool_presuspend,
4078     .presuspend_undo = pool_presuspend_undo,
4079     .postsuspend = pool_postsuspend,
4080     .preresume = pool_preresume,
4081     .resume = pool_resume,
4082     .message = pool_message,
4083     .status = pool_status,
4084     .iterate_devices = pool_iterate_devices,
4085     .io_hints = pool_io_hints,
4086 };
4087 
4088 /*----------------------------------------------------------------
4089  * Thin target methods
4090  *--------------------------------------------------------------*/
4091 static void thin_get(struct thin_c *tc)
4092 {
4093     refcount_inc(&tc->refcount);
4094 }
4095 
4096 static void thin_put(struct thin_c *tc)
4097 {
4098     if (refcount_dec_and_test(&tc->refcount))
4099         complete(&tc->can_destroy);
4100 }
4101 
4102 static void thin_dtr(struct dm_target *ti)
4103 {
4104     struct thin_c *tc = ti->private;
4105 
4106     spin_lock_irq(&tc->pool->lock);
4107     list_del_rcu(&tc->list);
4108     spin_unlock_irq(&tc->pool->lock);
4109     synchronize_rcu();
4110 
4111     thin_put(tc);
4112     wait_for_completion(&tc->can_destroy);
4113 
4114     mutex_lock(&dm_thin_pool_table.mutex);
4115 
4116     __pool_dec(tc->pool);
4117     dm_pool_close_thin_device(tc->td);
4118     dm_put_device(ti, tc->pool_dev);
4119     if (tc->origin_dev)
4120         dm_put_device(ti, tc->origin_dev);
4121     kfree(tc);
4122 
4123     mutex_unlock(&dm_thin_pool_table.mutex);
4124 }
4125 
4126 /*
4127  * Thin target parameters:
4128  *
4129  * <pool_dev> <dev_id> [origin_dev]
4130  *
4131  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4132  * dev_id: the internal device identifier
4133  * origin_dev: a device external to the pool that should act as the origin
4134  *
4135  * If the pool device has discards disabled, they get disabled for the thin
4136  * device as well.
4137  */
4138 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4139 {
4140     int r;
4141     struct thin_c *tc;
4142     struct dm_dev *pool_dev, *origin_dev;
4143     struct mapped_device *pool_md;
4144 
4145     mutex_lock(&dm_thin_pool_table.mutex);
4146 
4147     if (argc != 2 && argc != 3) {
4148         ti->error = "Invalid argument count";
4149         r = -EINVAL;
4150         goto out_unlock;
4151     }
4152 
4153     tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4154     if (!tc) {
4155         ti->error = "Out of memory";
4156         r = -ENOMEM;
4157         goto out_unlock;
4158     }
4159     tc->thin_md = dm_table_get_md(ti->table);
4160     spin_lock_init(&tc->lock);
4161     INIT_LIST_HEAD(&tc->deferred_cells);
4162     bio_list_init(&tc->deferred_bio_list);
4163     bio_list_init(&tc->retry_on_resume_list);
4164     tc->sort_bio_list = RB_ROOT;
4165 
4166     if (argc == 3) {
4167         if (!strcmp(argv[0], argv[2])) {
4168             ti->error = "Error setting origin device";
4169             r = -EINVAL;
4170             goto bad_origin_dev;
4171         }
4172 
4173         r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4174         if (r) {
4175             ti->error = "Error opening origin device";
4176             goto bad_origin_dev;
4177         }
4178         tc->origin_dev = origin_dev;
4179     }
4180 
4181     r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4182     if (r) {
4183         ti->error = "Error opening pool device";
4184         goto bad_pool_dev;
4185     }
4186     tc->pool_dev = pool_dev;
4187 
4188     if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4189         ti->error = "Invalid device id";
4190         r = -EINVAL;
4191         goto bad_common;
4192     }
4193 
4194     pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4195     if (!pool_md) {
4196         ti->error = "Couldn't get pool mapped device";
4197         r = -EINVAL;
4198         goto bad_common;
4199     }
4200 
4201     tc->pool = __pool_table_lookup(pool_md);
4202     if (!tc->pool) {
4203         ti->error = "Couldn't find pool object";
4204         r = -EINVAL;
4205         goto bad_pool_lookup;
4206     }
4207     __pool_inc(tc->pool);
4208 
4209     if (get_pool_mode(tc->pool) == PM_FAIL) {
4210         ti->error = "Couldn't open thin device, Pool is in fail mode";
4211         r = -EINVAL;
4212         goto bad_pool;
4213     }
4214 
4215     r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4216     if (r) {
4217         ti->error = "Couldn't open thin internal device";
4218         goto bad_pool;
4219     }
4220 
4221     r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4222     if (r)
4223         goto bad;
4224 
4225     ti->num_flush_bios = 1;
4226     ti->flush_supported = true;
4227     ti->accounts_remapped_io = true;
4228     ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4229 
4230     /* In case the pool supports discards, pass them on. */
4231     if (tc->pool->pf.discard_enabled) {
4232         ti->discards_supported = true;
4233         ti->num_discard_bios = 1;
4234     }
4235 
4236     mutex_unlock(&dm_thin_pool_table.mutex);
4237 
4238     spin_lock_irq(&tc->pool->lock);
4239     if (tc->pool->suspended) {
4240         spin_unlock_irq(&tc->pool->lock);
4241         mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4242         ti->error = "Unable to activate thin device while pool is suspended";
4243         r = -EINVAL;
4244         goto bad;
4245     }
4246     refcount_set(&tc->refcount, 1);
4247     init_completion(&tc->can_destroy);
4248     list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4249     spin_unlock_irq(&tc->pool->lock);
4250     /*
4251      * This synchronize_rcu() call is needed here otherwise we risk a
4252      * wake_worker() call finding no bios to process (because the newly
4253      * added tc isn't yet visible).  So this reduces latency since we
4254      * aren't then dependent on the periodic commit to wake_worker().
4255      */
4256     synchronize_rcu();
4257 
4258     dm_put(pool_md);
4259 
4260     return 0;
4261 
4262 bad:
4263     dm_pool_close_thin_device(tc->td);
4264 bad_pool:
4265     __pool_dec(tc->pool);
4266 bad_pool_lookup:
4267     dm_put(pool_md);
4268 bad_common:
4269     dm_put_device(ti, tc->pool_dev);
4270 bad_pool_dev:
4271     if (tc->origin_dev)
4272         dm_put_device(ti, tc->origin_dev);
4273 bad_origin_dev:
4274     kfree(tc);
4275 out_unlock:
4276     mutex_unlock(&dm_thin_pool_table.mutex);
4277 
4278     return r;
4279 }
4280 
4281 static int thin_map(struct dm_target *ti, struct bio *bio)
4282 {
4283     bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4284 
4285     return thin_bio_map(ti, bio);
4286 }
4287 
4288 static int thin_endio(struct dm_target *ti, struct bio *bio,
4289         blk_status_t *err)
4290 {
4291     unsigned long flags;
4292     struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4293     struct list_head work;
4294     struct dm_thin_new_mapping *m, *tmp;
4295     struct pool *pool = h->tc->pool;
4296 
4297     if (h->shared_read_entry) {
4298         INIT_LIST_HEAD(&work);
4299         dm_deferred_entry_dec(h->shared_read_entry, &work);
4300 
4301         spin_lock_irqsave(&pool->lock, flags);
4302         list_for_each_entry_safe(m, tmp, &work, list) {
4303             list_del(&m->list);
4304             __complete_mapping_preparation(m);
4305         }
4306         spin_unlock_irqrestore(&pool->lock, flags);
4307     }
4308 
4309     if (h->all_io_entry) {
4310         INIT_LIST_HEAD(&work);
4311         dm_deferred_entry_dec(h->all_io_entry, &work);
4312         if (!list_empty(&work)) {
4313             spin_lock_irqsave(&pool->lock, flags);
4314             list_for_each_entry_safe(m, tmp, &work, list)
4315                 list_add_tail(&m->list, &pool->prepared_discards);
4316             spin_unlock_irqrestore(&pool->lock, flags);
4317             wake_worker(pool);
4318         }
4319     }
4320 
4321     if (h->cell)
4322         cell_defer_no_holder(h->tc, h->cell);
4323 
4324     return DM_ENDIO_DONE;
4325 }
4326 
4327 static void thin_presuspend(struct dm_target *ti)
4328 {
4329     struct thin_c *tc = ti->private;
4330 
4331     if (dm_noflush_suspending(ti))
4332         noflush_work(tc, do_noflush_start);
4333 }
4334 
4335 static void thin_postsuspend(struct dm_target *ti)
4336 {
4337     struct thin_c *tc = ti->private;
4338 
4339     /*
4340      * The dm_noflush_suspending flag has been cleared by now, so
4341      * unfortunately we must always run this.
4342      */
4343     noflush_work(tc, do_noflush_stop);
4344 }
4345 
4346 static int thin_preresume(struct dm_target *ti)
4347 {
4348     struct thin_c *tc = ti->private;
4349 
4350     if (tc->origin_dev)
4351         tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4352 
4353     return 0;
4354 }
4355 
4356 /*
4357  * <nr mapped sectors> <highest mapped sector>
4358  */
4359 static void thin_status(struct dm_target *ti, status_type_t type,
4360             unsigned status_flags, char *result, unsigned maxlen)
4361 {
4362     int r;
4363     ssize_t sz = 0;
4364     dm_block_t mapped, highest;
4365     char buf[BDEVNAME_SIZE];
4366     struct thin_c *tc = ti->private;
4367 
4368     if (get_pool_mode(tc->pool) == PM_FAIL) {
4369         DMEMIT("Fail");
4370         return;
4371     }
4372 
4373     if (!tc->td)
4374         DMEMIT("-");
4375     else {
4376         switch (type) {
4377         case STATUSTYPE_INFO:
4378             r = dm_thin_get_mapped_count(tc->td, &mapped);
4379             if (r) {
4380                 DMERR("dm_thin_get_mapped_count returned %d", r);
4381                 goto err;
4382             }
4383 
4384             r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4385             if (r < 0) {
4386                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4387                 goto err;
4388             }
4389 
4390             DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4391             if (r)
4392                 DMEMIT("%llu", ((highest + 1) *
4393                         tc->pool->sectors_per_block) - 1);
4394             else
4395                 DMEMIT("-");
4396             break;
4397 
4398         case STATUSTYPE_TABLE:
4399             DMEMIT("%s %lu",
4400                    format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4401                    (unsigned long) tc->dev_id);
4402             if (tc->origin_dev)
4403                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4404             break;
4405 
4406         case STATUSTYPE_IMA:
4407             *result = '\0';
4408             break;
4409         }
4410     }
4411 
4412     return;
4413 
4414 err:
4415     DMEMIT("Error");
4416 }
4417 
4418 static int thin_iterate_devices(struct dm_target *ti,
4419                 iterate_devices_callout_fn fn, void *data)
4420 {
4421     sector_t blocks;
4422     struct thin_c *tc = ti->private;
4423     struct pool *pool = tc->pool;
4424 
4425     /*
4426      * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4427      * we follow a more convoluted path through to the pool's target.
4428      */
4429     if (!pool->ti)
4430         return 0;   /* nothing is bound */
4431 
4432     blocks = pool->ti->len;
4433     (void) sector_div(blocks, pool->sectors_per_block);
4434     if (blocks)
4435         return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4436 
4437     return 0;
4438 }
4439 
4440 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4441 {
4442     struct thin_c *tc = ti->private;
4443     struct pool *pool = tc->pool;
4444 
4445     if (!pool->pf.discard_enabled)
4446         return;
4447 
4448     limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4449     limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4450 }
4451 
4452 static struct target_type thin_target = {
4453     .name = "thin",
4454     .version = {1, 22, 0},
4455     .module = THIS_MODULE,
4456     .ctr = thin_ctr,
4457     .dtr = thin_dtr,
4458     .map = thin_map,
4459     .end_io = thin_endio,
4460     .preresume = thin_preresume,
4461     .presuspend = thin_presuspend,
4462     .postsuspend = thin_postsuspend,
4463     .status = thin_status,
4464     .iterate_devices = thin_iterate_devices,
4465     .io_hints = thin_io_hints,
4466 };
4467 
4468 /*----------------------------------------------------------------*/
4469 
4470 static int __init dm_thin_init(void)
4471 {
4472     int r = -ENOMEM;
4473 
4474     pool_table_init();
4475 
4476     _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4477     if (!_new_mapping_cache)
4478         return r;
4479 
4480     r = dm_register_target(&thin_target);
4481     if (r)
4482         goto bad_new_mapping_cache;
4483 
4484     r = dm_register_target(&pool_target);
4485     if (r)
4486         goto bad_thin_target;
4487 
4488     return 0;
4489 
4490 bad_thin_target:
4491     dm_unregister_target(&thin_target);
4492 bad_new_mapping_cache:
4493     kmem_cache_destroy(_new_mapping_cache);
4494 
4495     return r;
4496 }
4497 
4498 static void dm_thin_exit(void)
4499 {
4500     dm_unregister_target(&thin_target);
4501     dm_unregister_target(&pool_target);
4502 
4503     kmem_cache_destroy(_new_mapping_cache);
4504 
4505     pool_table_exit();
4506 }
4507 
4508 module_init(dm_thin_init);
4509 module_exit(dm_thin_exit);
4510 
4511 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4512 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4513 
4514 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4515 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4516 MODULE_LICENSE("GPL");