Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright (C) 2011-2012 Red Hat, Inc.
0003  *
0004  * This file is released under the GPL.
0005  */
0006 
0007 #include "dm-thin-metadata.h"
0008 #include "persistent-data/dm-btree.h"
0009 #include "persistent-data/dm-space-map.h"
0010 #include "persistent-data/dm-space-map-disk.h"
0011 #include "persistent-data/dm-transaction-manager.h"
0012 
0013 #include <linux/list.h>
0014 #include <linux/device-mapper.h>
0015 #include <linux/workqueue.h>
0016 
0017 /*--------------------------------------------------------------------------
0018  * As far as the metadata goes, there is:
0019  *
0020  * - A superblock in block zero, taking up fewer than 512 bytes for
0021  *   atomic writes.
0022  *
0023  * - A space map managing the metadata blocks.
0024  *
0025  * - A space map managing the data blocks.
0026  *
0027  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
0028  *
0029  * - A hierarchical btree, with 2 levels which effectively maps (thin
0030  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
0031  *   field holding the time in the low 24 bits, and block in the top 40
0032  *   bits.
0033  *
0034  * BTrees consist solely of btree_nodes, that fill a block.  Some are
0035  * internal nodes, as such their values are a __le64 pointing to other
0036  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
0037  * smaller than the block size).  The nodes consist of the header,
0038  * followed by an array of keys, followed by an array of values.  We have
0039  * to binary search on the keys so they're all held together to help the
0040  * cpu cache.
0041  *
0042  * Space maps have 2 btrees:
0043  *
0044  * - One maps a uint64_t onto a struct index_entry.  Which points to a
0045  *   bitmap block, and has some details about how many free entries there
0046  *   are etc.
0047  *
0048  * - The bitmap blocks have a header (for the checksum).  Then the rest
0049  *   of the block is pairs of bits.  With the meaning being:
0050  *
0051  *   0 - ref count is 0
0052  *   1 - ref count is 1
0053  *   2 - ref count is 2
0054  *   3 - ref count is higher than 2
0055  *
0056  * - If the count is higher than 2 then the ref count is entered in a
0057  *   second btree that directly maps the block_address to a uint32_t ref
0058  *   count.
0059  *
0060  * The space map metadata variant doesn't have a bitmaps btree.  Instead
0061  * it has one single blocks worth of index_entries.  This avoids
0062  * recursive issues with the bitmap btree needing to allocate space in
0063  * order to insert.  With a small data block size such as 64k the
0064  * metadata support data devices that are hundreds of terrabytes.
0065  *
0066  * The space maps allocate space linearly from front to back.  Space that
0067  * is freed in a transaction is never recycled within that transaction.
0068  * To try and avoid fragmenting _free_ space the allocator always goes
0069  * back and fills in gaps.
0070  *
0071  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
0072  * from the block manager.
0073  *--------------------------------------------------------------------------*/
0074 
0075 #define DM_MSG_PREFIX   "thin metadata"
0076 
0077 #define THIN_SUPERBLOCK_MAGIC 27022010
0078 #define THIN_SUPERBLOCK_LOCATION 0
0079 #define THIN_VERSION 2
0080 #define SECTOR_TO_BLOCK_SHIFT 3
0081 
0082 /*
0083  * For btree insert:
0084  *  3 for btree insert +
0085  *  2 for btree lookup used within space map
0086  * For btree remove:
0087  *  2 for shadow spine +
0088  *  4 for rebalance 3 child node
0089  */
0090 #define THIN_MAX_CONCURRENT_LOCKS 6
0091 
0092 /* This should be plenty */
0093 #define SPACE_MAP_ROOT_SIZE 128
0094 
0095 /*
0096  * Little endian on-disk superblock and device details.
0097  */
0098 struct thin_disk_superblock {
0099     __le32 csum;    /* Checksum of superblock except for this field. */
0100     __le32 flags;
0101     __le64 blocknr; /* This block number, dm_block_t. */
0102 
0103     __u8 uuid[16];
0104     __le64 magic;
0105     __le32 version;
0106     __le32 time;
0107 
0108     __le64 trans_id;
0109 
0110     /*
0111      * Root held by userspace transactions.
0112      */
0113     __le64 held_root;
0114 
0115     __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
0116     __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
0117 
0118     /*
0119      * 2-level btree mapping (dev_id, (dev block, time)) -> data block
0120      */
0121     __le64 data_mapping_root;
0122 
0123     /*
0124      * Device detail root mapping dev_id -> device_details
0125      */
0126     __le64 device_details_root;
0127 
0128     __le32 data_block_size;     /* In 512-byte sectors. */
0129 
0130     __le32 metadata_block_size; /* In 512-byte sectors. */
0131     __le64 metadata_nr_blocks;
0132 
0133     __le32 compat_flags;
0134     __le32 compat_ro_flags;
0135     __le32 incompat_flags;
0136 } __packed;
0137 
0138 struct disk_device_details {
0139     __le64 mapped_blocks;
0140     __le64 transaction_id;      /* When created. */
0141     __le32 creation_time;
0142     __le32 snapshotted_time;
0143 } __packed;
0144 
0145 struct dm_pool_metadata {
0146     struct hlist_node hash;
0147 
0148     struct block_device *bdev;
0149     struct dm_block_manager *bm;
0150     struct dm_space_map *metadata_sm;
0151     struct dm_space_map *data_sm;
0152     struct dm_transaction_manager *tm;
0153     struct dm_transaction_manager *nb_tm;
0154 
0155     /*
0156      * Two-level btree.
0157      * First level holds thin_dev_t.
0158      * Second level holds mappings.
0159      */
0160     struct dm_btree_info info;
0161 
0162     /*
0163      * Non-blocking version of the above.
0164      */
0165     struct dm_btree_info nb_info;
0166 
0167     /*
0168      * Just the top level for deleting whole devices.
0169      */
0170     struct dm_btree_info tl_info;
0171 
0172     /*
0173      * Just the bottom level for creating new devices.
0174      */
0175     struct dm_btree_info bl_info;
0176 
0177     /*
0178      * Describes the device details btree.
0179      */
0180     struct dm_btree_info details_info;
0181 
0182     struct rw_semaphore root_lock;
0183     uint32_t time;
0184     dm_block_t root;
0185     dm_block_t details_root;
0186     struct list_head thin_devices;
0187     uint64_t trans_id;
0188     unsigned long flags;
0189     sector_t data_block_size;
0190 
0191     /*
0192      * Pre-commit callback.
0193      *
0194      * This allows the thin provisioning target to run a callback before
0195      * the metadata are committed.
0196      */
0197     dm_pool_pre_commit_fn pre_commit_fn;
0198     void *pre_commit_context;
0199 
0200     /*
0201      * We reserve a section of the metadata for commit overhead.
0202      * All reported space does *not* include this.
0203      */
0204     dm_block_t metadata_reserve;
0205 
0206     /*
0207      * Set if a transaction has to be aborted but the attempt to roll back
0208      * to the previous (good) transaction failed.  The only pool metadata
0209      * operation possible in this state is the closing of the device.
0210      */
0211     bool fail_io:1;
0212 
0213     /*
0214      * Set once a thin-pool has been accessed through one of the interfaces
0215      * that imply the pool is in-service (e.g. thin devices created/deleted,
0216      * thin-pool message, metadata snapshots, etc).
0217      */
0218     bool in_service:1;
0219 
0220     /*
0221      * Reading the space map roots can fail, so we read it into these
0222      * buffers before the superblock is locked and updated.
0223      */
0224     __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
0225     __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
0226 };
0227 
0228 struct dm_thin_device {
0229     struct list_head list;
0230     struct dm_pool_metadata *pmd;
0231     dm_thin_id id;
0232 
0233     int open_count;
0234     bool changed:1;
0235     bool aborted_with_changes:1;
0236     uint64_t mapped_blocks;
0237     uint64_t transaction_id;
0238     uint32_t creation_time;
0239     uint32_t snapshotted_time;
0240 };
0241 
0242 /*----------------------------------------------------------------
0243  * superblock validator
0244  *--------------------------------------------------------------*/
0245 
0246 #define SUPERBLOCK_CSUM_XOR 160774
0247 
0248 static void sb_prepare_for_write(struct dm_block_validator *v,
0249                  struct dm_block *b,
0250                  size_t block_size)
0251 {
0252     struct thin_disk_superblock *disk_super = dm_block_data(b);
0253 
0254     disk_super->blocknr = cpu_to_le64(dm_block_location(b));
0255     disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
0256                               block_size - sizeof(__le32),
0257                               SUPERBLOCK_CSUM_XOR));
0258 }
0259 
0260 static int sb_check(struct dm_block_validator *v,
0261             struct dm_block *b,
0262             size_t block_size)
0263 {
0264     struct thin_disk_superblock *disk_super = dm_block_data(b);
0265     __le32 csum_le;
0266 
0267     if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
0268         DMERR("sb_check failed: blocknr %llu: "
0269               "wanted %llu", le64_to_cpu(disk_super->blocknr),
0270               (unsigned long long)dm_block_location(b));
0271         return -ENOTBLK;
0272     }
0273 
0274     if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
0275         DMERR("sb_check failed: magic %llu: "
0276               "wanted %llu", le64_to_cpu(disk_super->magic),
0277               (unsigned long long)THIN_SUPERBLOCK_MAGIC);
0278         return -EILSEQ;
0279     }
0280 
0281     csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
0282                          block_size - sizeof(__le32),
0283                          SUPERBLOCK_CSUM_XOR));
0284     if (csum_le != disk_super->csum) {
0285         DMERR("sb_check failed: csum %u: wanted %u",
0286               le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
0287         return -EILSEQ;
0288     }
0289 
0290     return 0;
0291 }
0292 
0293 static struct dm_block_validator sb_validator = {
0294     .name = "superblock",
0295     .prepare_for_write = sb_prepare_for_write,
0296     .check = sb_check
0297 };
0298 
0299 /*----------------------------------------------------------------
0300  * Methods for the btree value types
0301  *--------------------------------------------------------------*/
0302 
0303 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
0304 {
0305     return (b << 24) | t;
0306 }
0307 
0308 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
0309 {
0310     *b = v >> 24;
0311     *t = v & ((1 << 24) - 1);
0312 }
0313 
0314 /*
0315  * It's more efficient to call dm_sm_{inc,dec}_blocks as few times as
0316  * possible.  'with_runs' reads contiguous runs of blocks, and calls the
0317  * given sm function.
0318  */
0319 typedef int (*run_fn)(struct dm_space_map *, dm_block_t, dm_block_t);
0320 
0321 static void with_runs(struct dm_space_map *sm, const __le64 *value_le, unsigned count, run_fn fn)
0322 {
0323     uint64_t b, begin, end;
0324     uint32_t t;
0325     bool in_run = false;
0326     unsigned i;
0327 
0328     for (i = 0; i < count; i++, value_le++) {
0329         /* We know value_le is 8 byte aligned */
0330         unpack_block_time(le64_to_cpu(*value_le), &b, &t);
0331 
0332         if (in_run) {
0333             if (b == end) {
0334                 end++;
0335             } else {
0336                 fn(sm, begin, end);
0337                 begin = b;
0338                 end = b + 1;
0339             }
0340         } else {
0341             in_run = true;
0342             begin = b;
0343             end = b + 1;
0344         }
0345     }
0346 
0347     if (in_run)
0348         fn(sm, begin, end);
0349 }
0350 
0351 static void data_block_inc(void *context, const void *value_le, unsigned count)
0352 {
0353     with_runs((struct dm_space_map *) context,
0354           (const __le64 *) value_le, count, dm_sm_inc_blocks);
0355 }
0356 
0357 static void data_block_dec(void *context, const void *value_le, unsigned count)
0358 {
0359     with_runs((struct dm_space_map *) context,
0360           (const __le64 *) value_le, count, dm_sm_dec_blocks);
0361 }
0362 
0363 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
0364 {
0365     __le64 v1_le, v2_le;
0366     uint64_t b1, b2;
0367     uint32_t t;
0368 
0369     memcpy(&v1_le, value1_le, sizeof(v1_le));
0370     memcpy(&v2_le, value2_le, sizeof(v2_le));
0371     unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
0372     unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
0373 
0374     return b1 == b2;
0375 }
0376 
0377 static void subtree_inc(void *context, const void *value, unsigned count)
0378 {
0379     struct dm_btree_info *info = context;
0380     const __le64 *root_le = value;
0381     unsigned i;
0382 
0383     for (i = 0; i < count; i++, root_le++)
0384         dm_tm_inc(info->tm, le64_to_cpu(*root_le));
0385 }
0386 
0387 static void subtree_dec(void *context, const void *value, unsigned count)
0388 {
0389     struct dm_btree_info *info = context;
0390     const __le64 *root_le = value;
0391     unsigned i;
0392 
0393     for (i = 0; i < count; i++, root_le++)
0394         if (dm_btree_del(info, le64_to_cpu(*root_le)))
0395             DMERR("btree delete failed");
0396 }
0397 
0398 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
0399 {
0400     __le64 v1_le, v2_le;
0401     memcpy(&v1_le, value1_le, sizeof(v1_le));
0402     memcpy(&v2_le, value2_le, sizeof(v2_le));
0403 
0404     return v1_le == v2_le;
0405 }
0406 
0407 /*----------------------------------------------------------------*/
0408 
0409 /*
0410  * Variant that is used for in-core only changes or code that
0411  * shouldn't put the pool in service on its own (e.g. commit).
0412  */
0413 static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
0414     __acquires(pmd->root_lock)
0415 {
0416     down_write(&pmd->root_lock);
0417 }
0418 
0419 static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
0420 {
0421     pmd_write_lock_in_core(pmd);
0422     if (unlikely(!pmd->in_service))
0423         pmd->in_service = true;
0424 }
0425 
0426 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
0427     __releases(pmd->root_lock)
0428 {
0429     up_write(&pmd->root_lock);
0430 }
0431 
0432 /*----------------------------------------------------------------*/
0433 
0434 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
0435                 struct dm_block **sblock)
0436 {
0437     return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
0438                      &sb_validator, sblock);
0439 }
0440 
0441 static int superblock_lock(struct dm_pool_metadata *pmd,
0442                struct dm_block **sblock)
0443 {
0444     return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
0445                 &sb_validator, sblock);
0446 }
0447 
0448 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
0449 {
0450     int r;
0451     unsigned i;
0452     struct dm_block *b;
0453     __le64 *data_le, zero = cpu_to_le64(0);
0454     unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
0455 
0456     /*
0457      * We can't use a validator here - it may be all zeroes.
0458      */
0459     r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
0460     if (r)
0461         return r;
0462 
0463     data_le = dm_block_data(b);
0464     *result = 1;
0465     for (i = 0; i < block_size; i++) {
0466         if (data_le[i] != zero) {
0467             *result = 0;
0468             break;
0469         }
0470     }
0471 
0472     dm_bm_unlock(b);
0473 
0474     return 0;
0475 }
0476 
0477 static void __setup_btree_details(struct dm_pool_metadata *pmd)
0478 {
0479     pmd->info.tm = pmd->tm;
0480     pmd->info.levels = 2;
0481     pmd->info.value_type.context = pmd->data_sm;
0482     pmd->info.value_type.size = sizeof(__le64);
0483     pmd->info.value_type.inc = data_block_inc;
0484     pmd->info.value_type.dec = data_block_dec;
0485     pmd->info.value_type.equal = data_block_equal;
0486 
0487     memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
0488     pmd->nb_info.tm = pmd->nb_tm;
0489 
0490     pmd->tl_info.tm = pmd->tm;
0491     pmd->tl_info.levels = 1;
0492     pmd->tl_info.value_type.context = &pmd->bl_info;
0493     pmd->tl_info.value_type.size = sizeof(__le64);
0494     pmd->tl_info.value_type.inc = subtree_inc;
0495     pmd->tl_info.value_type.dec = subtree_dec;
0496     pmd->tl_info.value_type.equal = subtree_equal;
0497 
0498     pmd->bl_info.tm = pmd->tm;
0499     pmd->bl_info.levels = 1;
0500     pmd->bl_info.value_type.context = pmd->data_sm;
0501     pmd->bl_info.value_type.size = sizeof(__le64);
0502     pmd->bl_info.value_type.inc = data_block_inc;
0503     pmd->bl_info.value_type.dec = data_block_dec;
0504     pmd->bl_info.value_type.equal = data_block_equal;
0505 
0506     pmd->details_info.tm = pmd->tm;
0507     pmd->details_info.levels = 1;
0508     pmd->details_info.value_type.context = NULL;
0509     pmd->details_info.value_type.size = sizeof(struct disk_device_details);
0510     pmd->details_info.value_type.inc = NULL;
0511     pmd->details_info.value_type.dec = NULL;
0512     pmd->details_info.value_type.equal = NULL;
0513 }
0514 
0515 static int save_sm_roots(struct dm_pool_metadata *pmd)
0516 {
0517     int r;
0518     size_t len;
0519 
0520     r = dm_sm_root_size(pmd->metadata_sm, &len);
0521     if (r < 0)
0522         return r;
0523 
0524     r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
0525     if (r < 0)
0526         return r;
0527 
0528     r = dm_sm_root_size(pmd->data_sm, &len);
0529     if (r < 0)
0530         return r;
0531 
0532     return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
0533 }
0534 
0535 static void copy_sm_roots(struct dm_pool_metadata *pmd,
0536               struct thin_disk_superblock *disk)
0537 {
0538     memcpy(&disk->metadata_space_map_root,
0539            &pmd->metadata_space_map_root,
0540            sizeof(pmd->metadata_space_map_root));
0541 
0542     memcpy(&disk->data_space_map_root,
0543            &pmd->data_space_map_root,
0544            sizeof(pmd->data_space_map_root));
0545 }
0546 
0547 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
0548 {
0549     int r;
0550     struct dm_block *sblock;
0551     struct thin_disk_superblock *disk_super;
0552     sector_t bdev_size = bdev_nr_sectors(pmd->bdev);
0553 
0554     if (bdev_size > THIN_METADATA_MAX_SECTORS)
0555         bdev_size = THIN_METADATA_MAX_SECTORS;
0556 
0557     r = dm_sm_commit(pmd->data_sm);
0558     if (r < 0)
0559         return r;
0560 
0561     r = dm_tm_pre_commit(pmd->tm);
0562     if (r < 0)
0563         return r;
0564 
0565     r = save_sm_roots(pmd);
0566     if (r < 0)
0567         return r;
0568 
0569     r = superblock_lock_zero(pmd, &sblock);
0570     if (r)
0571         return r;
0572 
0573     disk_super = dm_block_data(sblock);
0574     disk_super->flags = 0;
0575     memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
0576     disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
0577     disk_super->version = cpu_to_le32(THIN_VERSION);
0578     disk_super->time = 0;
0579     disk_super->trans_id = 0;
0580     disk_super->held_root = 0;
0581 
0582     copy_sm_roots(pmd, disk_super);
0583 
0584     disk_super->data_mapping_root = cpu_to_le64(pmd->root);
0585     disk_super->device_details_root = cpu_to_le64(pmd->details_root);
0586     disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
0587     disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
0588     disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
0589 
0590     return dm_tm_commit(pmd->tm, sblock);
0591 }
0592 
0593 static int __format_metadata(struct dm_pool_metadata *pmd)
0594 {
0595     int r;
0596 
0597     r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
0598                  &pmd->tm, &pmd->metadata_sm);
0599     if (r < 0) {
0600         DMERR("tm_create_with_sm failed");
0601         return r;
0602     }
0603 
0604     pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
0605     if (IS_ERR(pmd->data_sm)) {
0606         DMERR("sm_disk_create failed");
0607         r = PTR_ERR(pmd->data_sm);
0608         goto bad_cleanup_tm;
0609     }
0610 
0611     pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
0612     if (!pmd->nb_tm) {
0613         DMERR("could not create non-blocking clone tm");
0614         r = -ENOMEM;
0615         goto bad_cleanup_data_sm;
0616     }
0617 
0618     __setup_btree_details(pmd);
0619 
0620     r = dm_btree_empty(&pmd->info, &pmd->root);
0621     if (r < 0)
0622         goto bad_cleanup_nb_tm;
0623 
0624     r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
0625     if (r < 0) {
0626         DMERR("couldn't create devices root");
0627         goto bad_cleanup_nb_tm;
0628     }
0629 
0630     r = __write_initial_superblock(pmd);
0631     if (r)
0632         goto bad_cleanup_nb_tm;
0633 
0634     return 0;
0635 
0636 bad_cleanup_nb_tm:
0637     dm_tm_destroy(pmd->nb_tm);
0638 bad_cleanup_data_sm:
0639     dm_sm_destroy(pmd->data_sm);
0640 bad_cleanup_tm:
0641     dm_tm_destroy(pmd->tm);
0642     dm_sm_destroy(pmd->metadata_sm);
0643 
0644     return r;
0645 }
0646 
0647 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
0648                      struct dm_pool_metadata *pmd)
0649 {
0650     uint32_t features;
0651 
0652     features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
0653     if (features) {
0654         DMERR("could not access metadata due to unsupported optional features (%lx).",
0655               (unsigned long)features);
0656         return -EINVAL;
0657     }
0658 
0659     /*
0660      * Check for read-only metadata to skip the following RDWR checks.
0661      */
0662     if (bdev_read_only(pmd->bdev))
0663         return 0;
0664 
0665     features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
0666     if (features) {
0667         DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
0668               (unsigned long)features);
0669         return -EINVAL;
0670     }
0671 
0672     return 0;
0673 }
0674 
0675 static int __open_metadata(struct dm_pool_metadata *pmd)
0676 {
0677     int r;
0678     struct dm_block *sblock;
0679     struct thin_disk_superblock *disk_super;
0680 
0681     r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
0682                 &sb_validator, &sblock);
0683     if (r < 0) {
0684         DMERR("couldn't read superblock");
0685         return r;
0686     }
0687 
0688     disk_super = dm_block_data(sblock);
0689 
0690     /* Verify the data block size hasn't changed */
0691     if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
0692         DMERR("changing the data block size (from %u to %llu) is not supported",
0693               le32_to_cpu(disk_super->data_block_size),
0694               (unsigned long long)pmd->data_block_size);
0695         r = -EINVAL;
0696         goto bad_unlock_sblock;
0697     }
0698 
0699     r = __check_incompat_features(disk_super, pmd);
0700     if (r < 0)
0701         goto bad_unlock_sblock;
0702 
0703     r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
0704                    disk_super->metadata_space_map_root,
0705                    sizeof(disk_super->metadata_space_map_root),
0706                    &pmd->tm, &pmd->metadata_sm);
0707     if (r < 0) {
0708         DMERR("tm_open_with_sm failed");
0709         goto bad_unlock_sblock;
0710     }
0711 
0712     pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
0713                        sizeof(disk_super->data_space_map_root));
0714     if (IS_ERR(pmd->data_sm)) {
0715         DMERR("sm_disk_open failed");
0716         r = PTR_ERR(pmd->data_sm);
0717         goto bad_cleanup_tm;
0718     }
0719 
0720     pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
0721     if (!pmd->nb_tm) {
0722         DMERR("could not create non-blocking clone tm");
0723         r = -ENOMEM;
0724         goto bad_cleanup_data_sm;
0725     }
0726 
0727     __setup_btree_details(pmd);
0728     dm_bm_unlock(sblock);
0729 
0730     return 0;
0731 
0732 bad_cleanup_data_sm:
0733     dm_sm_destroy(pmd->data_sm);
0734 bad_cleanup_tm:
0735     dm_tm_destroy(pmd->tm);
0736     dm_sm_destroy(pmd->metadata_sm);
0737 bad_unlock_sblock:
0738     dm_bm_unlock(sblock);
0739 
0740     return r;
0741 }
0742 
0743 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
0744 {
0745     int r, unformatted;
0746 
0747     r = __superblock_all_zeroes(pmd->bm, &unformatted);
0748     if (r)
0749         return r;
0750 
0751     if (unformatted)
0752         return format_device ? __format_metadata(pmd) : -EPERM;
0753 
0754     return __open_metadata(pmd);
0755 }
0756 
0757 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
0758 {
0759     int r;
0760 
0761     pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
0762                       THIN_MAX_CONCURRENT_LOCKS);
0763     if (IS_ERR(pmd->bm)) {
0764         DMERR("could not create block manager");
0765         r = PTR_ERR(pmd->bm);
0766         pmd->bm = NULL;
0767         return r;
0768     }
0769 
0770     r = __open_or_format_metadata(pmd, format_device);
0771     if (r) {
0772         dm_block_manager_destroy(pmd->bm);
0773         pmd->bm = NULL;
0774     }
0775 
0776     return r;
0777 }
0778 
0779 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
0780 {
0781     dm_sm_destroy(pmd->data_sm);
0782     dm_sm_destroy(pmd->metadata_sm);
0783     dm_tm_destroy(pmd->nb_tm);
0784     dm_tm_destroy(pmd->tm);
0785     dm_block_manager_destroy(pmd->bm);
0786 }
0787 
0788 static int __begin_transaction(struct dm_pool_metadata *pmd)
0789 {
0790     int r;
0791     struct thin_disk_superblock *disk_super;
0792     struct dm_block *sblock;
0793 
0794     /*
0795      * We re-read the superblock every time.  Shouldn't need to do this
0796      * really.
0797      */
0798     r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
0799                 &sb_validator, &sblock);
0800     if (r)
0801         return r;
0802 
0803     disk_super = dm_block_data(sblock);
0804     pmd->time = le32_to_cpu(disk_super->time);
0805     pmd->root = le64_to_cpu(disk_super->data_mapping_root);
0806     pmd->details_root = le64_to_cpu(disk_super->device_details_root);
0807     pmd->trans_id = le64_to_cpu(disk_super->trans_id);
0808     pmd->flags = le32_to_cpu(disk_super->flags);
0809     pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
0810 
0811     dm_bm_unlock(sblock);
0812     return 0;
0813 }
0814 
0815 static int __write_changed_details(struct dm_pool_metadata *pmd)
0816 {
0817     int r;
0818     struct dm_thin_device *td, *tmp;
0819     struct disk_device_details details;
0820     uint64_t key;
0821 
0822     list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
0823         if (!td->changed)
0824             continue;
0825 
0826         key = td->id;
0827 
0828         details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
0829         details.transaction_id = cpu_to_le64(td->transaction_id);
0830         details.creation_time = cpu_to_le32(td->creation_time);
0831         details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
0832         __dm_bless_for_disk(&details);
0833 
0834         r = dm_btree_insert(&pmd->details_info, pmd->details_root,
0835                     &key, &details, &pmd->details_root);
0836         if (r)
0837             return r;
0838 
0839         if (td->open_count)
0840             td->changed = false;
0841         else {
0842             list_del(&td->list);
0843             kfree(td);
0844         }
0845     }
0846 
0847     return 0;
0848 }
0849 
0850 static int __commit_transaction(struct dm_pool_metadata *pmd)
0851 {
0852     int r;
0853     struct thin_disk_superblock *disk_super;
0854     struct dm_block *sblock;
0855 
0856     /*
0857      * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
0858      */
0859     BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
0860     BUG_ON(!rwsem_is_locked(&pmd->root_lock));
0861 
0862     if (unlikely(!pmd->in_service))
0863         return 0;
0864 
0865     if (pmd->pre_commit_fn) {
0866         r = pmd->pre_commit_fn(pmd->pre_commit_context);
0867         if (r < 0) {
0868             DMERR("pre-commit callback failed");
0869             return r;
0870         }
0871     }
0872 
0873     r = __write_changed_details(pmd);
0874     if (r < 0)
0875         return r;
0876 
0877     r = dm_sm_commit(pmd->data_sm);
0878     if (r < 0)
0879         return r;
0880 
0881     r = dm_tm_pre_commit(pmd->tm);
0882     if (r < 0)
0883         return r;
0884 
0885     r = save_sm_roots(pmd);
0886     if (r < 0)
0887         return r;
0888 
0889     r = superblock_lock(pmd, &sblock);
0890     if (r)
0891         return r;
0892 
0893     disk_super = dm_block_data(sblock);
0894     disk_super->time = cpu_to_le32(pmd->time);
0895     disk_super->data_mapping_root = cpu_to_le64(pmd->root);
0896     disk_super->device_details_root = cpu_to_le64(pmd->details_root);
0897     disk_super->trans_id = cpu_to_le64(pmd->trans_id);
0898     disk_super->flags = cpu_to_le32(pmd->flags);
0899 
0900     copy_sm_roots(pmd, disk_super);
0901 
0902     return dm_tm_commit(pmd->tm, sblock);
0903 }
0904 
0905 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
0906 {
0907     int r;
0908     dm_block_t total;
0909     dm_block_t max_blocks = 4096; /* 16M */
0910 
0911     r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
0912     if (r) {
0913         DMERR("could not get size of metadata device");
0914         pmd->metadata_reserve = max_blocks;
0915     } else
0916         pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
0917 }
0918 
0919 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
0920                            sector_t data_block_size,
0921                            bool format_device)
0922 {
0923     int r;
0924     struct dm_pool_metadata *pmd;
0925 
0926     pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
0927     if (!pmd) {
0928         DMERR("could not allocate metadata struct");
0929         return ERR_PTR(-ENOMEM);
0930     }
0931 
0932     init_rwsem(&pmd->root_lock);
0933     pmd->time = 0;
0934     INIT_LIST_HEAD(&pmd->thin_devices);
0935     pmd->fail_io = false;
0936     pmd->in_service = false;
0937     pmd->bdev = bdev;
0938     pmd->data_block_size = data_block_size;
0939     pmd->pre_commit_fn = NULL;
0940     pmd->pre_commit_context = NULL;
0941 
0942     r = __create_persistent_data_objects(pmd, format_device);
0943     if (r) {
0944         kfree(pmd);
0945         return ERR_PTR(r);
0946     }
0947 
0948     r = __begin_transaction(pmd);
0949     if (r < 0) {
0950         if (dm_pool_metadata_close(pmd) < 0)
0951             DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
0952         return ERR_PTR(r);
0953     }
0954 
0955     __set_metadata_reserve(pmd);
0956 
0957     return pmd;
0958 }
0959 
0960 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
0961 {
0962     int r;
0963     unsigned open_devices = 0;
0964     struct dm_thin_device *td, *tmp;
0965 
0966     down_read(&pmd->root_lock);
0967     list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
0968         if (td->open_count)
0969             open_devices++;
0970         else {
0971             list_del(&td->list);
0972             kfree(td);
0973         }
0974     }
0975     up_read(&pmd->root_lock);
0976 
0977     if (open_devices) {
0978         DMERR("attempt to close pmd when %u device(s) are still open",
0979                open_devices);
0980         return -EBUSY;
0981     }
0982 
0983     pmd_write_lock_in_core(pmd);
0984     if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) {
0985         r = __commit_transaction(pmd);
0986         if (r < 0)
0987             DMWARN("%s: __commit_transaction() failed, error = %d",
0988                    __func__, r);
0989     }
0990     pmd_write_unlock(pmd);
0991     if (!pmd->fail_io)
0992         __destroy_persistent_data_objects(pmd);
0993 
0994     kfree(pmd);
0995     return 0;
0996 }
0997 
0998 /*
0999  * __open_device: Returns @td corresponding to device with id @dev,
1000  * creating it if @create is set and incrementing @td->open_count.
1001  * On failure, @td is undefined.
1002  */
1003 static int __open_device(struct dm_pool_metadata *pmd,
1004              dm_thin_id dev, int create,
1005              struct dm_thin_device **td)
1006 {
1007     int r, changed = 0;
1008     struct dm_thin_device *td2;
1009     uint64_t key = dev;
1010     struct disk_device_details details_le;
1011 
1012     /*
1013      * If the device is already open, return it.
1014      */
1015     list_for_each_entry(td2, &pmd->thin_devices, list)
1016         if (td2->id == dev) {
1017             /*
1018              * May not create an already-open device.
1019              */
1020             if (create)
1021                 return -EEXIST;
1022 
1023             td2->open_count++;
1024             *td = td2;
1025             return 0;
1026         }
1027 
1028     /*
1029      * Check the device exists.
1030      */
1031     r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1032                 &key, &details_le);
1033     if (r) {
1034         if (r != -ENODATA || !create)
1035             return r;
1036 
1037         /*
1038          * Create new device.
1039          */
1040         changed = 1;
1041         details_le.mapped_blocks = 0;
1042         details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1043         details_le.creation_time = cpu_to_le32(pmd->time);
1044         details_le.snapshotted_time = cpu_to_le32(pmd->time);
1045     }
1046 
1047     *td = kmalloc(sizeof(**td), GFP_NOIO);
1048     if (!*td)
1049         return -ENOMEM;
1050 
1051     (*td)->pmd = pmd;
1052     (*td)->id = dev;
1053     (*td)->open_count = 1;
1054     (*td)->changed = changed;
1055     (*td)->aborted_with_changes = false;
1056     (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1057     (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1058     (*td)->creation_time = le32_to_cpu(details_le.creation_time);
1059     (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1060 
1061     list_add(&(*td)->list, &pmd->thin_devices);
1062 
1063     return 0;
1064 }
1065 
1066 static void __close_device(struct dm_thin_device *td)
1067 {
1068     --td->open_count;
1069 }
1070 
1071 static int __create_thin(struct dm_pool_metadata *pmd,
1072              dm_thin_id dev)
1073 {
1074     int r;
1075     dm_block_t dev_root;
1076     uint64_t key = dev;
1077     struct dm_thin_device *td;
1078     __le64 value;
1079 
1080     r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1081                 &key, NULL);
1082     if (!r)
1083         return -EEXIST;
1084 
1085     /*
1086      * Create an empty btree for the mappings.
1087      */
1088     r = dm_btree_empty(&pmd->bl_info, &dev_root);
1089     if (r)
1090         return r;
1091 
1092     /*
1093      * Insert it into the main mapping tree.
1094      */
1095     value = cpu_to_le64(dev_root);
1096     __dm_bless_for_disk(&value);
1097     r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1098     if (r) {
1099         dm_btree_del(&pmd->bl_info, dev_root);
1100         return r;
1101     }
1102 
1103     r = __open_device(pmd, dev, 1, &td);
1104     if (r) {
1105         dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1106         dm_btree_del(&pmd->bl_info, dev_root);
1107         return r;
1108     }
1109     __close_device(td);
1110 
1111     return r;
1112 }
1113 
1114 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1115 {
1116     int r = -EINVAL;
1117 
1118     pmd_write_lock(pmd);
1119     if (!pmd->fail_io)
1120         r = __create_thin(pmd, dev);
1121     pmd_write_unlock(pmd);
1122 
1123     return r;
1124 }
1125 
1126 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1127                   struct dm_thin_device *snap,
1128                   dm_thin_id origin, uint32_t time)
1129 {
1130     int r;
1131     struct dm_thin_device *td;
1132 
1133     r = __open_device(pmd, origin, 0, &td);
1134     if (r)
1135         return r;
1136 
1137     td->changed = true;
1138     td->snapshotted_time = time;
1139 
1140     snap->mapped_blocks = td->mapped_blocks;
1141     snap->snapshotted_time = time;
1142     __close_device(td);
1143 
1144     return 0;
1145 }
1146 
1147 static int __create_snap(struct dm_pool_metadata *pmd,
1148              dm_thin_id dev, dm_thin_id origin)
1149 {
1150     int r;
1151     dm_block_t origin_root;
1152     uint64_t key = origin, dev_key = dev;
1153     struct dm_thin_device *td;
1154     __le64 value;
1155 
1156     /* check this device is unused */
1157     r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1158                 &dev_key, NULL);
1159     if (!r)
1160         return -EEXIST;
1161 
1162     /* find the mapping tree for the origin */
1163     r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1164     if (r)
1165         return r;
1166     origin_root = le64_to_cpu(value);
1167 
1168     /* clone the origin, an inc will do */
1169     dm_tm_inc(pmd->tm, origin_root);
1170 
1171     /* insert into the main mapping tree */
1172     value = cpu_to_le64(origin_root);
1173     __dm_bless_for_disk(&value);
1174     key = dev;
1175     r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1176     if (r) {
1177         dm_tm_dec(pmd->tm, origin_root);
1178         return r;
1179     }
1180 
1181     pmd->time++;
1182 
1183     r = __open_device(pmd, dev, 1, &td);
1184     if (r)
1185         goto bad;
1186 
1187     r = __set_snapshot_details(pmd, td, origin, pmd->time);
1188     __close_device(td);
1189 
1190     if (r)
1191         goto bad;
1192 
1193     return 0;
1194 
1195 bad:
1196     dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1197     dm_btree_remove(&pmd->details_info, pmd->details_root,
1198             &key, &pmd->details_root);
1199     return r;
1200 }
1201 
1202 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1203                  dm_thin_id dev,
1204                  dm_thin_id origin)
1205 {
1206     int r = -EINVAL;
1207 
1208     pmd_write_lock(pmd);
1209     if (!pmd->fail_io)
1210         r = __create_snap(pmd, dev, origin);
1211     pmd_write_unlock(pmd);
1212 
1213     return r;
1214 }
1215 
1216 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1217 {
1218     int r;
1219     uint64_t key = dev;
1220     struct dm_thin_device *td;
1221 
1222     /* TODO: failure should mark the transaction invalid */
1223     r = __open_device(pmd, dev, 0, &td);
1224     if (r)
1225         return r;
1226 
1227     if (td->open_count > 1) {
1228         __close_device(td);
1229         return -EBUSY;
1230     }
1231 
1232     list_del(&td->list);
1233     kfree(td);
1234     r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1235                 &key, &pmd->details_root);
1236     if (r)
1237         return r;
1238 
1239     r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1240     if (r)
1241         return r;
1242 
1243     return 0;
1244 }
1245 
1246 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1247                    dm_thin_id dev)
1248 {
1249     int r = -EINVAL;
1250 
1251     pmd_write_lock(pmd);
1252     if (!pmd->fail_io)
1253         r = __delete_device(pmd, dev);
1254     pmd_write_unlock(pmd);
1255 
1256     return r;
1257 }
1258 
1259 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1260                     uint64_t current_id,
1261                     uint64_t new_id)
1262 {
1263     int r = -EINVAL;
1264 
1265     pmd_write_lock(pmd);
1266 
1267     if (pmd->fail_io)
1268         goto out;
1269 
1270     if (pmd->trans_id != current_id) {
1271         DMERR("mismatched transaction id");
1272         goto out;
1273     }
1274 
1275     pmd->trans_id = new_id;
1276     r = 0;
1277 
1278 out:
1279     pmd_write_unlock(pmd);
1280 
1281     return r;
1282 }
1283 
1284 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1285                     uint64_t *result)
1286 {
1287     int r = -EINVAL;
1288 
1289     down_read(&pmd->root_lock);
1290     if (!pmd->fail_io) {
1291         *result = pmd->trans_id;
1292         r = 0;
1293     }
1294     up_read(&pmd->root_lock);
1295 
1296     return r;
1297 }
1298 
1299 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1300 {
1301     int r, inc;
1302     struct thin_disk_superblock *disk_super;
1303     struct dm_block *copy, *sblock;
1304     dm_block_t held_root;
1305 
1306     /*
1307      * We commit to ensure the btree roots which we increment in a
1308      * moment are up to date.
1309      */
1310     r = __commit_transaction(pmd);
1311     if (r < 0) {
1312         DMWARN("%s: __commit_transaction() failed, error = %d",
1313                __func__, r);
1314         return r;
1315     }
1316 
1317     /*
1318      * Copy the superblock.
1319      */
1320     dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1321     r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1322                    &sb_validator, &copy, &inc);
1323     if (r)
1324         return r;
1325 
1326     BUG_ON(!inc);
1327 
1328     held_root = dm_block_location(copy);
1329     disk_super = dm_block_data(copy);
1330 
1331     if (le64_to_cpu(disk_super->held_root)) {
1332         DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1333 
1334         dm_tm_dec(pmd->tm, held_root);
1335         dm_tm_unlock(pmd->tm, copy);
1336         return -EBUSY;
1337     }
1338 
1339     /*
1340      * Wipe the spacemap since we're not publishing this.
1341      */
1342     memset(&disk_super->data_space_map_root, 0,
1343            sizeof(disk_super->data_space_map_root));
1344     memset(&disk_super->metadata_space_map_root, 0,
1345            sizeof(disk_super->metadata_space_map_root));
1346 
1347     /*
1348      * Increment the data structures that need to be preserved.
1349      */
1350     dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1351     dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1352     dm_tm_unlock(pmd->tm, copy);
1353 
1354     /*
1355      * Write the held root into the superblock.
1356      */
1357     r = superblock_lock(pmd, &sblock);
1358     if (r) {
1359         dm_tm_dec(pmd->tm, held_root);
1360         return r;
1361     }
1362 
1363     disk_super = dm_block_data(sblock);
1364     disk_super->held_root = cpu_to_le64(held_root);
1365     dm_bm_unlock(sblock);
1366     return 0;
1367 }
1368 
1369 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1370 {
1371     int r = -EINVAL;
1372 
1373     pmd_write_lock(pmd);
1374     if (!pmd->fail_io)
1375         r = __reserve_metadata_snap(pmd);
1376     pmd_write_unlock(pmd);
1377 
1378     return r;
1379 }
1380 
1381 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1382 {
1383     int r;
1384     struct thin_disk_superblock *disk_super;
1385     struct dm_block *sblock, *copy;
1386     dm_block_t held_root;
1387 
1388     r = superblock_lock(pmd, &sblock);
1389     if (r)
1390         return r;
1391 
1392     disk_super = dm_block_data(sblock);
1393     held_root = le64_to_cpu(disk_super->held_root);
1394     disk_super->held_root = cpu_to_le64(0);
1395 
1396     dm_bm_unlock(sblock);
1397 
1398     if (!held_root) {
1399         DMWARN("No pool metadata snapshot found: nothing to release.");
1400         return -EINVAL;
1401     }
1402 
1403     r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1404     if (r)
1405         return r;
1406 
1407     disk_super = dm_block_data(copy);
1408     dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1409     dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1410     dm_sm_dec_block(pmd->metadata_sm, held_root);
1411 
1412     dm_tm_unlock(pmd->tm, copy);
1413 
1414     return 0;
1415 }
1416 
1417 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1418 {
1419     int r = -EINVAL;
1420 
1421     pmd_write_lock(pmd);
1422     if (!pmd->fail_io)
1423         r = __release_metadata_snap(pmd);
1424     pmd_write_unlock(pmd);
1425 
1426     return r;
1427 }
1428 
1429 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1430                    dm_block_t *result)
1431 {
1432     int r;
1433     struct thin_disk_superblock *disk_super;
1434     struct dm_block *sblock;
1435 
1436     r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1437                 &sb_validator, &sblock);
1438     if (r)
1439         return r;
1440 
1441     disk_super = dm_block_data(sblock);
1442     *result = le64_to_cpu(disk_super->held_root);
1443 
1444     dm_bm_unlock(sblock);
1445 
1446     return 0;
1447 }
1448 
1449 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1450                   dm_block_t *result)
1451 {
1452     int r = -EINVAL;
1453 
1454     down_read(&pmd->root_lock);
1455     if (!pmd->fail_io)
1456         r = __get_metadata_snap(pmd, result);
1457     up_read(&pmd->root_lock);
1458 
1459     return r;
1460 }
1461 
1462 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1463                  struct dm_thin_device **td)
1464 {
1465     int r = -EINVAL;
1466 
1467     pmd_write_lock_in_core(pmd);
1468     if (!pmd->fail_io)
1469         r = __open_device(pmd, dev, 0, td);
1470     pmd_write_unlock(pmd);
1471 
1472     return r;
1473 }
1474 
1475 int dm_pool_close_thin_device(struct dm_thin_device *td)
1476 {
1477     pmd_write_lock_in_core(td->pmd);
1478     __close_device(td);
1479     pmd_write_unlock(td->pmd);
1480 
1481     return 0;
1482 }
1483 
1484 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1485 {
1486     return td->id;
1487 }
1488 
1489 /*
1490  * Check whether @time (of block creation) is older than @td's last snapshot.
1491  * If so then the associated block is shared with the last snapshot device.
1492  * Any block on a device created *after* the device last got snapshotted is
1493  * necessarily not shared.
1494  */
1495 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1496 {
1497     return td->snapshotted_time > time;
1498 }
1499 
1500 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1501                  struct dm_thin_lookup_result *result)
1502 {
1503     uint64_t block_time = 0;
1504     dm_block_t exception_block;
1505     uint32_t exception_time;
1506 
1507     block_time = le64_to_cpu(value);
1508     unpack_block_time(block_time, &exception_block, &exception_time);
1509     result->block = exception_block;
1510     result->shared = __snapshotted_since(td, exception_time);
1511 }
1512 
1513 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1514             int can_issue_io, struct dm_thin_lookup_result *result)
1515 {
1516     int r;
1517     __le64 value;
1518     struct dm_pool_metadata *pmd = td->pmd;
1519     dm_block_t keys[2] = { td->id, block };
1520     struct dm_btree_info *info;
1521 
1522     if (can_issue_io) {
1523         info = &pmd->info;
1524     } else
1525         info = &pmd->nb_info;
1526 
1527     r = dm_btree_lookup(info, pmd->root, keys, &value);
1528     if (!r)
1529         unpack_lookup_result(td, value, result);
1530 
1531     return r;
1532 }
1533 
1534 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1535                int can_issue_io, struct dm_thin_lookup_result *result)
1536 {
1537     int r;
1538     struct dm_pool_metadata *pmd = td->pmd;
1539 
1540     down_read(&pmd->root_lock);
1541     if (pmd->fail_io) {
1542         up_read(&pmd->root_lock);
1543         return -EINVAL;
1544     }
1545 
1546     r = __find_block(td, block, can_issue_io, result);
1547 
1548     up_read(&pmd->root_lock);
1549     return r;
1550 }
1551 
1552 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1553                       dm_block_t *vblock,
1554                       struct dm_thin_lookup_result *result)
1555 {
1556     int r;
1557     __le64 value;
1558     struct dm_pool_metadata *pmd = td->pmd;
1559     dm_block_t keys[2] = { td->id, block };
1560 
1561     r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1562     if (!r)
1563         unpack_lookup_result(td, value, result);
1564 
1565     return r;
1566 }
1567 
1568 static int __find_mapped_range(struct dm_thin_device *td,
1569                    dm_block_t begin, dm_block_t end,
1570                    dm_block_t *thin_begin, dm_block_t *thin_end,
1571                    dm_block_t *pool_begin, bool *maybe_shared)
1572 {
1573     int r;
1574     dm_block_t pool_end;
1575     struct dm_thin_lookup_result lookup;
1576 
1577     if (end < begin)
1578         return -ENODATA;
1579 
1580     r = __find_next_mapped_block(td, begin, &begin, &lookup);
1581     if (r)
1582         return r;
1583 
1584     if (begin >= end)
1585         return -ENODATA;
1586 
1587     *thin_begin = begin;
1588     *pool_begin = lookup.block;
1589     *maybe_shared = lookup.shared;
1590 
1591     begin++;
1592     pool_end = *pool_begin + 1;
1593     while (begin != end) {
1594         r = __find_block(td, begin, true, &lookup);
1595         if (r) {
1596             if (r == -ENODATA)
1597                 break;
1598             else
1599                 return r;
1600         }
1601 
1602         if ((lookup.block != pool_end) ||
1603             (lookup.shared != *maybe_shared))
1604             break;
1605 
1606         pool_end++;
1607         begin++;
1608     }
1609 
1610     *thin_end = begin;
1611     return 0;
1612 }
1613 
1614 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1615                   dm_block_t begin, dm_block_t end,
1616                   dm_block_t *thin_begin, dm_block_t *thin_end,
1617                   dm_block_t *pool_begin, bool *maybe_shared)
1618 {
1619     int r = -EINVAL;
1620     struct dm_pool_metadata *pmd = td->pmd;
1621 
1622     down_read(&pmd->root_lock);
1623     if (!pmd->fail_io) {
1624         r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1625                     pool_begin, maybe_shared);
1626     }
1627     up_read(&pmd->root_lock);
1628 
1629     return r;
1630 }
1631 
1632 static int __insert(struct dm_thin_device *td, dm_block_t block,
1633             dm_block_t data_block)
1634 {
1635     int r, inserted;
1636     __le64 value;
1637     struct dm_pool_metadata *pmd = td->pmd;
1638     dm_block_t keys[2] = { td->id, block };
1639 
1640     value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1641     __dm_bless_for_disk(&value);
1642 
1643     r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1644                    &pmd->root, &inserted);
1645     if (r)
1646         return r;
1647 
1648     td->changed = true;
1649     if (inserted)
1650         td->mapped_blocks++;
1651 
1652     return 0;
1653 }
1654 
1655 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1656              dm_block_t data_block)
1657 {
1658     int r = -EINVAL;
1659 
1660     pmd_write_lock(td->pmd);
1661     if (!td->pmd->fail_io)
1662         r = __insert(td, block, data_block);
1663     pmd_write_unlock(td->pmd);
1664 
1665     return r;
1666 }
1667 
1668 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1669 {
1670     int r;
1671     unsigned count, total_count = 0;
1672     struct dm_pool_metadata *pmd = td->pmd;
1673     dm_block_t keys[1] = { td->id };
1674     __le64 value;
1675     dm_block_t mapping_root;
1676 
1677     /*
1678      * Find the mapping tree
1679      */
1680     r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1681     if (r)
1682         return r;
1683 
1684     /*
1685      * Remove from the mapping tree, taking care to inc the
1686      * ref count so it doesn't get deleted.
1687      */
1688     mapping_root = le64_to_cpu(value);
1689     dm_tm_inc(pmd->tm, mapping_root);
1690     r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1691     if (r)
1692         return r;
1693 
1694     /*
1695      * Remove leaves stops at the first unmapped entry, so we have to
1696      * loop round finding mapped ranges.
1697      */
1698     while (begin < end) {
1699         r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1700         if (r == -ENODATA)
1701             break;
1702 
1703         if (r)
1704             return r;
1705 
1706         if (begin >= end)
1707             break;
1708 
1709         r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1710         if (r)
1711             return r;
1712 
1713         total_count += count;
1714     }
1715 
1716     td->mapped_blocks -= total_count;
1717     td->changed = true;
1718 
1719     /*
1720      * Reinsert the mapping tree.
1721      */
1722     value = cpu_to_le64(mapping_root);
1723     __dm_bless_for_disk(&value);
1724     return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1725 }
1726 
1727 int dm_thin_remove_range(struct dm_thin_device *td,
1728              dm_block_t begin, dm_block_t end)
1729 {
1730     int r = -EINVAL;
1731 
1732     pmd_write_lock(td->pmd);
1733     if (!td->pmd->fail_io)
1734         r = __remove_range(td, begin, end);
1735     pmd_write_unlock(td->pmd);
1736 
1737     return r;
1738 }
1739 
1740 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1741 {
1742     int r;
1743     uint32_t ref_count;
1744 
1745     down_read(&pmd->root_lock);
1746     r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1747     if (!r)
1748         *result = (ref_count > 1);
1749     up_read(&pmd->root_lock);
1750 
1751     return r;
1752 }
1753 
1754 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1755 {
1756     int r = 0;
1757 
1758     pmd_write_lock(pmd);
1759     r = dm_sm_inc_blocks(pmd->data_sm, b, e);
1760     pmd_write_unlock(pmd);
1761 
1762     return r;
1763 }
1764 
1765 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1766 {
1767     int r = 0;
1768 
1769     pmd_write_lock(pmd);
1770     r = dm_sm_dec_blocks(pmd->data_sm, b, e);
1771     pmd_write_unlock(pmd);
1772 
1773     return r;
1774 }
1775 
1776 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1777 {
1778     int r;
1779 
1780     down_read(&td->pmd->root_lock);
1781     r = td->changed;
1782     up_read(&td->pmd->root_lock);
1783 
1784     return r;
1785 }
1786 
1787 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1788 {
1789     bool r = false;
1790     struct dm_thin_device *td, *tmp;
1791 
1792     down_read(&pmd->root_lock);
1793     list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1794         if (td->changed) {
1795             r = td->changed;
1796             break;
1797         }
1798     }
1799     up_read(&pmd->root_lock);
1800 
1801     return r;
1802 }
1803 
1804 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1805 {
1806     bool r;
1807 
1808     down_read(&td->pmd->root_lock);
1809     r = td->aborted_with_changes;
1810     up_read(&td->pmd->root_lock);
1811 
1812     return r;
1813 }
1814 
1815 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1816 {
1817     int r = -EINVAL;
1818 
1819     pmd_write_lock(pmd);
1820     if (!pmd->fail_io)
1821         r = dm_sm_new_block(pmd->data_sm, result);
1822     pmd_write_unlock(pmd);
1823 
1824     return r;
1825 }
1826 
1827 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1828 {
1829     int r = -EINVAL;
1830 
1831     /*
1832      * Care is taken to not have commit be what
1833      * triggers putting the thin-pool in-service.
1834      */
1835     pmd_write_lock_in_core(pmd);
1836     if (pmd->fail_io)
1837         goto out;
1838 
1839     r = __commit_transaction(pmd);
1840     if (r < 0)
1841         goto out;
1842 
1843     /*
1844      * Open the next transaction.
1845      */
1846     r = __begin_transaction(pmd);
1847 out:
1848     pmd_write_unlock(pmd);
1849     return r;
1850 }
1851 
1852 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1853 {
1854     struct dm_thin_device *td;
1855 
1856     list_for_each_entry(td, &pmd->thin_devices, list)
1857         td->aborted_with_changes = td->changed;
1858 }
1859 
1860 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1861 {
1862     int r = -EINVAL;
1863 
1864     pmd_write_lock(pmd);
1865     if (pmd->fail_io)
1866         goto out;
1867 
1868     __set_abort_with_changes_flags(pmd);
1869     __destroy_persistent_data_objects(pmd);
1870     r = __create_persistent_data_objects(pmd, false);
1871     if (r)
1872         pmd->fail_io = true;
1873 
1874 out:
1875     pmd_write_unlock(pmd);
1876 
1877     return r;
1878 }
1879 
1880 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1881 {
1882     int r = -EINVAL;
1883 
1884     down_read(&pmd->root_lock);
1885     if (!pmd->fail_io)
1886         r = dm_sm_get_nr_free(pmd->data_sm, result);
1887     up_read(&pmd->root_lock);
1888 
1889     return r;
1890 }
1891 
1892 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1893                       dm_block_t *result)
1894 {
1895     int r = -EINVAL;
1896 
1897     down_read(&pmd->root_lock);
1898     if (!pmd->fail_io)
1899         r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1900 
1901     if (!r) {
1902         if (*result < pmd->metadata_reserve)
1903             *result = 0;
1904         else
1905             *result -= pmd->metadata_reserve;
1906     }
1907     up_read(&pmd->root_lock);
1908 
1909     return r;
1910 }
1911 
1912 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1913                   dm_block_t *result)
1914 {
1915     int r = -EINVAL;
1916 
1917     down_read(&pmd->root_lock);
1918     if (!pmd->fail_io)
1919         r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1920     up_read(&pmd->root_lock);
1921 
1922     return r;
1923 }
1924 
1925 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1926 {
1927     int r = -EINVAL;
1928 
1929     down_read(&pmd->root_lock);
1930     if (!pmd->fail_io)
1931         r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1932     up_read(&pmd->root_lock);
1933 
1934     return r;
1935 }
1936 
1937 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1938 {
1939     int r = -EINVAL;
1940     struct dm_pool_metadata *pmd = td->pmd;
1941 
1942     down_read(&pmd->root_lock);
1943     if (!pmd->fail_io) {
1944         *result = td->mapped_blocks;
1945         r = 0;
1946     }
1947     up_read(&pmd->root_lock);
1948 
1949     return r;
1950 }
1951 
1952 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1953 {
1954     int r;
1955     __le64 value_le;
1956     dm_block_t thin_root;
1957     struct dm_pool_metadata *pmd = td->pmd;
1958 
1959     r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1960     if (r)
1961         return r;
1962 
1963     thin_root = le64_to_cpu(value_le);
1964 
1965     return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1966 }
1967 
1968 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1969                      dm_block_t *result)
1970 {
1971     int r = -EINVAL;
1972     struct dm_pool_metadata *pmd = td->pmd;
1973 
1974     down_read(&pmd->root_lock);
1975     if (!pmd->fail_io)
1976         r = __highest_block(td, result);
1977     up_read(&pmd->root_lock);
1978 
1979     return r;
1980 }
1981 
1982 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1983 {
1984     int r;
1985     dm_block_t old_count;
1986 
1987     r = dm_sm_get_nr_blocks(sm, &old_count);
1988     if (r)
1989         return r;
1990 
1991     if (new_count == old_count)
1992         return 0;
1993 
1994     if (new_count < old_count) {
1995         DMERR("cannot reduce size of space map");
1996         return -EINVAL;
1997     }
1998 
1999     return dm_sm_extend(sm, new_count - old_count);
2000 }
2001 
2002 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2003 {
2004     int r = -EINVAL;
2005 
2006     pmd_write_lock(pmd);
2007     if (!pmd->fail_io)
2008         r = __resize_space_map(pmd->data_sm, new_count);
2009     pmd_write_unlock(pmd);
2010 
2011     return r;
2012 }
2013 
2014 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2015 {
2016     int r = -EINVAL;
2017 
2018     pmd_write_lock(pmd);
2019     if (!pmd->fail_io) {
2020         r = __resize_space_map(pmd->metadata_sm, new_count);
2021         if (!r)
2022             __set_metadata_reserve(pmd);
2023     }
2024     pmd_write_unlock(pmd);
2025 
2026     return r;
2027 }
2028 
2029 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2030 {
2031     pmd_write_lock_in_core(pmd);
2032     dm_bm_set_read_only(pmd->bm);
2033     pmd_write_unlock(pmd);
2034 }
2035 
2036 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2037 {
2038     pmd_write_lock_in_core(pmd);
2039     dm_bm_set_read_write(pmd->bm);
2040     pmd_write_unlock(pmd);
2041 }
2042 
2043 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2044                     dm_block_t threshold,
2045                     dm_sm_threshold_fn fn,
2046                     void *context)
2047 {
2048     int r = -EINVAL;
2049 
2050     pmd_write_lock_in_core(pmd);
2051     if (!pmd->fail_io) {
2052         r = dm_sm_register_threshold_callback(pmd->metadata_sm,
2053                               threshold, fn, context);
2054     }
2055     pmd_write_unlock(pmd);
2056 
2057     return r;
2058 }
2059 
2060 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2061                       dm_pool_pre_commit_fn fn,
2062                       void *context)
2063 {
2064     pmd_write_lock_in_core(pmd);
2065     pmd->pre_commit_fn = fn;
2066     pmd->pre_commit_context = context;
2067     pmd_write_unlock(pmd);
2068 }
2069 
2070 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2071 {
2072     int r = -EINVAL;
2073     struct dm_block *sblock;
2074     struct thin_disk_superblock *disk_super;
2075 
2076     pmd_write_lock(pmd);
2077     if (pmd->fail_io)
2078         goto out;
2079 
2080     pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2081 
2082     r = superblock_lock(pmd, &sblock);
2083     if (r) {
2084         DMERR("couldn't lock superblock");
2085         goto out;
2086     }
2087 
2088     disk_super = dm_block_data(sblock);
2089     disk_super->flags = cpu_to_le32(pmd->flags);
2090 
2091     dm_bm_unlock(sblock);
2092 out:
2093     pmd_write_unlock(pmd);
2094     return r;
2095 }
2096 
2097 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2098 {
2099     bool needs_check;
2100 
2101     down_read(&pmd->root_lock);
2102     needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2103     up_read(&pmd->root_lock);
2104 
2105     return needs_check;
2106 }
2107 
2108 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2109 {
2110     down_read(&pmd->root_lock);
2111     if (!pmd->fail_io)
2112         dm_tm_issue_prefetches(pmd->tm);
2113     up_read(&pmd->root_lock);
2114 }