Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright (C) 2010-2011 Neil Brown
0003  * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved.
0004  *
0005  * This file is released under the GPL.
0006  */
0007 
0008 #include <linux/slab.h>
0009 #include <linux/module.h>
0010 
0011 #include "md.h"
0012 #include "raid1.h"
0013 #include "raid5.h"
0014 #include "raid10.h"
0015 #include "md-bitmap.h"
0016 
0017 #include <linux/device-mapper.h>
0018 
0019 #define DM_MSG_PREFIX "raid"
0020 #define MAX_RAID_DEVICES    253 /* md-raid kernel limit */
0021 
0022 /*
0023  * Minimum sectors of free reshape space per raid device
0024  */
0025 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
0026 
0027 /*
0028  * Minimum journal space 4 MiB in sectors.
0029  */
0030 #define MIN_RAID456_JOURNAL_SPACE (4*2048)
0031 
0032 static bool devices_handle_discard_safely = false;
0033 
0034 /*
0035  * The following flags are used by dm-raid.c to set up the array state.
0036  * They must be cleared before md_run is called.
0037  */
0038 #define FirstUse 10     /* rdev flag */
0039 
0040 struct raid_dev {
0041     /*
0042      * Two DM devices, one to hold metadata and one to hold the
0043      * actual data/parity.  The reason for this is to not confuse
0044      * ti->len and give more flexibility in altering size and
0045      * characteristics.
0046      *
0047      * While it is possible for this device to be associated
0048      * with a different physical device than the data_dev, it
0049      * is intended for it to be the same.
0050      *    |--------- Physical Device ---------|
0051      *    |- meta_dev -|------ data_dev ------|
0052      */
0053     struct dm_dev *meta_dev;
0054     struct dm_dev *data_dev;
0055     struct md_rdev rdev;
0056 };
0057 
0058 /*
0059  * Bits for establishing rs->ctr_flags
0060  *
0061  * 1 = no flag value
0062  * 2 = flag with value
0063  */
0064 #define __CTR_FLAG_SYNC         0  /* 1 */ /* Not with raid0! */
0065 #define __CTR_FLAG_NOSYNC       1  /* 1 */ /* Not with raid0! */
0066 #define __CTR_FLAG_REBUILD      2  /* 2 */ /* Not with raid0! */
0067 #define __CTR_FLAG_DAEMON_SLEEP     3  /* 2 */ /* Not with raid0! */
0068 #define __CTR_FLAG_MIN_RECOVERY_RATE    4  /* 2 */ /* Not with raid0! */
0069 #define __CTR_FLAG_MAX_RECOVERY_RATE    5  /* 2 */ /* Not with raid0! */
0070 #define __CTR_FLAG_MAX_WRITE_BEHIND 6  /* 2 */ /* Only with raid1! */
0071 #define __CTR_FLAG_WRITE_MOSTLY     7  /* 2 */ /* Only with raid1! */
0072 #define __CTR_FLAG_STRIPE_CACHE     8  /* 2 */ /* Only with raid4/5/6! */
0073 #define __CTR_FLAG_REGION_SIZE      9  /* 2 */ /* Not with raid0! */
0074 #define __CTR_FLAG_RAID10_COPIES    10 /* 2 */ /* Only with raid10 */
0075 #define __CTR_FLAG_RAID10_FORMAT    11 /* 2 */ /* Only with raid10 */
0076 /* New for v1.9.0 */
0077 #define __CTR_FLAG_DELTA_DISKS      12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
0078 #define __CTR_FLAG_DATA_OFFSET      13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
0079 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
0080 
0081 /* New for v1.10.0 */
0082 #define __CTR_FLAG_JOURNAL_DEV      15 /* 2 */ /* Only with raid4/5/6 (journal device)! */
0083 
0084 /* New for v1.11.1 */
0085 #define __CTR_FLAG_JOURNAL_MODE     16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */
0086 
0087 /*
0088  * Flags for rs->ctr_flags field.
0089  */
0090 #define CTR_FLAG_SYNC           (1 << __CTR_FLAG_SYNC)
0091 #define CTR_FLAG_NOSYNC         (1 << __CTR_FLAG_NOSYNC)
0092 #define CTR_FLAG_REBUILD        (1 << __CTR_FLAG_REBUILD)
0093 #define CTR_FLAG_DAEMON_SLEEP       (1 << __CTR_FLAG_DAEMON_SLEEP)
0094 #define CTR_FLAG_MIN_RECOVERY_RATE  (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
0095 #define CTR_FLAG_MAX_RECOVERY_RATE  (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
0096 #define CTR_FLAG_MAX_WRITE_BEHIND   (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
0097 #define CTR_FLAG_WRITE_MOSTLY       (1 << __CTR_FLAG_WRITE_MOSTLY)
0098 #define CTR_FLAG_STRIPE_CACHE       (1 << __CTR_FLAG_STRIPE_CACHE)
0099 #define CTR_FLAG_REGION_SIZE        (1 << __CTR_FLAG_REGION_SIZE)
0100 #define CTR_FLAG_RAID10_COPIES      (1 << __CTR_FLAG_RAID10_COPIES)
0101 #define CTR_FLAG_RAID10_FORMAT      (1 << __CTR_FLAG_RAID10_FORMAT)
0102 #define CTR_FLAG_DELTA_DISKS        (1 << __CTR_FLAG_DELTA_DISKS)
0103 #define CTR_FLAG_DATA_OFFSET        (1 << __CTR_FLAG_DATA_OFFSET)
0104 #define CTR_FLAG_RAID10_USE_NEAR_SETS   (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
0105 #define CTR_FLAG_JOURNAL_DEV        (1 << __CTR_FLAG_JOURNAL_DEV)
0106 #define CTR_FLAG_JOURNAL_MODE       (1 << __CTR_FLAG_JOURNAL_MODE)
0107 
0108 /*
0109  * Definitions of various constructor flags to
0110  * be used in checks of valid / invalid flags
0111  * per raid level.
0112  */
0113 /* Define all any sync flags */
0114 #define CTR_FLAGS_ANY_SYNC      (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
0115 
0116 /* Define flags for options without argument (e.g. 'nosync') */
0117 #define CTR_FLAG_OPTIONS_NO_ARGS    (CTR_FLAGS_ANY_SYNC | \
0118                      CTR_FLAG_RAID10_USE_NEAR_SETS)
0119 
0120 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
0121 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
0122                   CTR_FLAG_WRITE_MOSTLY | \
0123                   CTR_FLAG_DAEMON_SLEEP | \
0124                   CTR_FLAG_MIN_RECOVERY_RATE | \
0125                   CTR_FLAG_MAX_RECOVERY_RATE | \
0126                   CTR_FLAG_MAX_WRITE_BEHIND | \
0127                   CTR_FLAG_STRIPE_CACHE | \
0128                   CTR_FLAG_REGION_SIZE | \
0129                   CTR_FLAG_RAID10_COPIES | \
0130                   CTR_FLAG_RAID10_FORMAT | \
0131                   CTR_FLAG_DELTA_DISKS | \
0132                   CTR_FLAG_DATA_OFFSET | \
0133                   CTR_FLAG_JOURNAL_DEV | \
0134                   CTR_FLAG_JOURNAL_MODE)
0135 
0136 /* Valid options definitions per raid level... */
0137 
0138 /* "raid0" does only accept data offset */
0139 #define RAID0_VALID_FLAGS   (CTR_FLAG_DATA_OFFSET)
0140 
0141 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
0142 #define RAID1_VALID_FLAGS   (CTR_FLAGS_ANY_SYNC | \
0143                  CTR_FLAG_REBUILD | \
0144                  CTR_FLAG_WRITE_MOSTLY | \
0145                  CTR_FLAG_DAEMON_SLEEP | \
0146                  CTR_FLAG_MIN_RECOVERY_RATE | \
0147                  CTR_FLAG_MAX_RECOVERY_RATE | \
0148                  CTR_FLAG_MAX_WRITE_BEHIND | \
0149                  CTR_FLAG_REGION_SIZE | \
0150                  CTR_FLAG_DELTA_DISKS | \
0151                  CTR_FLAG_DATA_OFFSET)
0152 
0153 /* "raid10" does not accept any raid1 or stripe cache options */
0154 #define RAID10_VALID_FLAGS  (CTR_FLAGS_ANY_SYNC | \
0155                  CTR_FLAG_REBUILD | \
0156                  CTR_FLAG_DAEMON_SLEEP | \
0157                  CTR_FLAG_MIN_RECOVERY_RATE | \
0158                  CTR_FLAG_MAX_RECOVERY_RATE | \
0159                  CTR_FLAG_REGION_SIZE | \
0160                  CTR_FLAG_RAID10_COPIES | \
0161                  CTR_FLAG_RAID10_FORMAT | \
0162                  CTR_FLAG_DELTA_DISKS | \
0163                  CTR_FLAG_DATA_OFFSET | \
0164                  CTR_FLAG_RAID10_USE_NEAR_SETS)
0165 
0166 /*
0167  * "raid4/5/6" do not accept any raid1 or raid10 specific options
0168  *
0169  * "raid6" does not accept "nosync", because it is not guaranteed
0170  * that both parity and q-syndrome are being written properly with
0171  * any writes
0172  */
0173 #define RAID45_VALID_FLAGS  (CTR_FLAGS_ANY_SYNC | \
0174                  CTR_FLAG_REBUILD | \
0175                  CTR_FLAG_DAEMON_SLEEP | \
0176                  CTR_FLAG_MIN_RECOVERY_RATE | \
0177                  CTR_FLAG_MAX_RECOVERY_RATE | \
0178                  CTR_FLAG_STRIPE_CACHE | \
0179                  CTR_FLAG_REGION_SIZE | \
0180                  CTR_FLAG_DELTA_DISKS | \
0181                  CTR_FLAG_DATA_OFFSET | \
0182                  CTR_FLAG_JOURNAL_DEV | \
0183                  CTR_FLAG_JOURNAL_MODE)
0184 
0185 #define RAID6_VALID_FLAGS   (CTR_FLAG_SYNC | \
0186                  CTR_FLAG_REBUILD | \
0187                  CTR_FLAG_DAEMON_SLEEP | \
0188                  CTR_FLAG_MIN_RECOVERY_RATE | \
0189                  CTR_FLAG_MAX_RECOVERY_RATE | \
0190                  CTR_FLAG_STRIPE_CACHE | \
0191                  CTR_FLAG_REGION_SIZE | \
0192                  CTR_FLAG_DELTA_DISKS | \
0193                  CTR_FLAG_DATA_OFFSET | \
0194                  CTR_FLAG_JOURNAL_DEV | \
0195                  CTR_FLAG_JOURNAL_MODE)
0196 /* ...valid options definitions per raid level */
0197 
0198 /*
0199  * Flags for rs->runtime_flags field
0200  * (RT_FLAG prefix meaning "runtime flag")
0201  *
0202  * These are all internal and used to define runtime state,
0203  * e.g. to prevent another resume from preresume processing
0204  * the raid set all over again.
0205  */
0206 #define RT_FLAG_RS_PRERESUMED       0
0207 #define RT_FLAG_RS_RESUMED      1
0208 #define RT_FLAG_RS_BITMAP_LOADED    2
0209 #define RT_FLAG_UPDATE_SBS      3
0210 #define RT_FLAG_RESHAPE_RS      4
0211 #define RT_FLAG_RS_SUSPENDED        5
0212 #define RT_FLAG_RS_IN_SYNC      6
0213 #define RT_FLAG_RS_RESYNCING        7
0214 #define RT_FLAG_RS_GROW         8
0215 
0216 /* Array elements of 64 bit needed for rebuild/failed disk bits */
0217 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
0218 
0219 /*
0220  * raid set level, layout and chunk sectors backup/restore
0221  */
0222 struct rs_layout {
0223     int new_level;
0224     int new_layout;
0225     int new_chunk_sectors;
0226 };
0227 
0228 struct raid_set {
0229     struct dm_target *ti;
0230 
0231     uint32_t stripe_cache_entries;
0232     unsigned long ctr_flags;
0233     unsigned long runtime_flags;
0234 
0235     uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
0236 
0237     int raid_disks;
0238     int delta_disks;
0239     int data_offset;
0240     int raid10_copies;
0241     int requested_bitmap_chunk_sectors;
0242 
0243     struct mddev md;
0244     struct raid_type *raid_type;
0245 
0246     sector_t array_sectors;
0247     sector_t dev_sectors;
0248 
0249     /* Optional raid4/5/6 journal device */
0250     struct journal_dev {
0251         struct dm_dev *dev;
0252         struct md_rdev rdev;
0253         int mode;
0254     } journal_dev;
0255 
0256     struct raid_dev dev[];
0257 };
0258 
0259 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
0260 {
0261     struct mddev *mddev = &rs->md;
0262 
0263     l->new_level = mddev->new_level;
0264     l->new_layout = mddev->new_layout;
0265     l->new_chunk_sectors = mddev->new_chunk_sectors;
0266 }
0267 
0268 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
0269 {
0270     struct mddev *mddev = &rs->md;
0271 
0272     mddev->new_level = l->new_level;
0273     mddev->new_layout = l->new_layout;
0274     mddev->new_chunk_sectors = l->new_chunk_sectors;
0275 }
0276 
0277 /* raid10 algorithms (i.e. formats) */
0278 #define ALGORITHM_RAID10_DEFAULT    0
0279 #define ALGORITHM_RAID10_NEAR       1
0280 #define ALGORITHM_RAID10_OFFSET     2
0281 #define ALGORITHM_RAID10_FAR        3
0282 
0283 /* Supported raid types and properties. */
0284 static struct raid_type {
0285     const char *name;       /* RAID algorithm. */
0286     const char *descr;      /* Descriptor text for logging. */
0287     const unsigned int parity_devs; /* # of parity devices. */
0288     const unsigned int minimal_devs;/* minimal # of devices in set. */
0289     const unsigned int level;   /* RAID level. */
0290     const unsigned int algorithm;   /* RAID algorithm. */
0291 } raid_types[] = {
0292     {"raid0",     "raid0 (striping)",               0, 2, 0,  0 /* NONE */},
0293     {"raid1",     "raid1 (mirroring)",              0, 2, 1,  0 /* NONE */},
0294     {"raid10_far",    "raid10 far (striped mirrors)",       0, 2, 10, ALGORITHM_RAID10_FAR},
0295     {"raid10_offset", "raid10 offset (striped mirrors)",        0, 2, 10, ALGORITHM_RAID10_OFFSET},
0296     {"raid10_near",   "raid10 near (striped mirrors)",      0, 2, 10, ALGORITHM_RAID10_NEAR},
0297     {"raid10",    "raid10 (striped mirrors)",           0, 2, 10, ALGORITHM_RAID10_DEFAULT},
0298     {"raid4",     "raid4 (dedicated first parity disk)",    1, 2, 5,  ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
0299     {"raid5_n",   "raid5 (dedicated last parity disk)",     1, 2, 5,  ALGORITHM_PARITY_N},
0300     {"raid5_ls",      "raid5 (left symmetric)",         1, 2, 5,  ALGORITHM_LEFT_SYMMETRIC},
0301     {"raid5_rs",      "raid5 (right symmetric)",            1, 2, 5,  ALGORITHM_RIGHT_SYMMETRIC},
0302     {"raid5_la",      "raid5 (left asymmetric)",            1, 2, 5,  ALGORITHM_LEFT_ASYMMETRIC},
0303     {"raid5_ra",      "raid5 (right asymmetric)",           1, 2, 5,  ALGORITHM_RIGHT_ASYMMETRIC},
0304     {"raid6_zr",      "raid6 (zero restart)",           2, 4, 6,  ALGORITHM_ROTATING_ZERO_RESTART},
0305     {"raid6_nr",      "raid6 (N restart)",              2, 4, 6,  ALGORITHM_ROTATING_N_RESTART},
0306     {"raid6_nc",      "raid6 (N continue)",             2, 4, 6,  ALGORITHM_ROTATING_N_CONTINUE},
0307     {"raid6_n_6",     "raid6 (dedicated parity/Q n/6)",     2, 4, 6,  ALGORITHM_PARITY_N_6},
0308     {"raid6_ls_6",    "raid6 (left symmetric dedicated Q 6)",   2, 4, 6,  ALGORITHM_LEFT_SYMMETRIC_6},
0309     {"raid6_rs_6",    "raid6 (right symmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_RIGHT_SYMMETRIC_6},
0310     {"raid6_la_6",    "raid6 (left asymmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_LEFT_ASYMMETRIC_6},
0311     {"raid6_ra_6",    "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6,  ALGORITHM_RIGHT_ASYMMETRIC_6}
0312 };
0313 
0314 /* True, if @v is in inclusive range [@min, @max] */
0315 static bool __within_range(long v, long min, long max)
0316 {
0317     return v >= min && v <= max;
0318 }
0319 
0320 /* All table line arguments are defined here */
0321 static struct arg_name_flag {
0322     const unsigned long flag;
0323     const char *name;
0324 } __arg_name_flags[] = {
0325     { CTR_FLAG_SYNC, "sync"},
0326     { CTR_FLAG_NOSYNC, "nosync"},
0327     { CTR_FLAG_REBUILD, "rebuild"},
0328     { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
0329     { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
0330     { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
0331     { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
0332     { CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
0333     { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
0334     { CTR_FLAG_REGION_SIZE, "region_size"},
0335     { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
0336     { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
0337     { CTR_FLAG_DATA_OFFSET, "data_offset"},
0338     { CTR_FLAG_DELTA_DISKS, "delta_disks"},
0339     { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
0340     { CTR_FLAG_JOURNAL_DEV, "journal_dev" },
0341     { CTR_FLAG_JOURNAL_MODE, "journal_mode" },
0342 };
0343 
0344 /* Return argument name string for given @flag */
0345 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
0346 {
0347     if (hweight32(flag) == 1) {
0348         struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
0349 
0350         while (anf-- > __arg_name_flags)
0351             if (flag & anf->flag)
0352                 return anf->name;
0353 
0354     } else
0355         DMERR("%s called with more than one flag!", __func__);
0356 
0357     return NULL;
0358 }
0359 
0360 /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */
0361 static struct {
0362     const int mode;
0363     const char *param;
0364 } _raid456_journal_mode[] = {
0365     { R5C_JOURNAL_MODE_WRITE_THROUGH , "writethrough" },
0366     { R5C_JOURNAL_MODE_WRITE_BACK    , "writeback" }
0367 };
0368 
0369 /* Return MD raid4/5/6 journal mode for dm @journal_mode one */
0370 static int dm_raid_journal_mode_to_md(const char *mode)
0371 {
0372     int m = ARRAY_SIZE(_raid456_journal_mode);
0373 
0374     while (m--)
0375         if (!strcasecmp(mode, _raid456_journal_mode[m].param))
0376             return _raid456_journal_mode[m].mode;
0377 
0378     return -EINVAL;
0379 }
0380 
0381 /* Return dm-raid raid4/5/6 journal mode string for @mode */
0382 static const char *md_journal_mode_to_dm_raid(const int mode)
0383 {
0384     int m = ARRAY_SIZE(_raid456_journal_mode);
0385 
0386     while (m--)
0387         if (mode == _raid456_journal_mode[m].mode)
0388             return _raid456_journal_mode[m].param;
0389 
0390     return "unknown";
0391 }
0392 
0393 /*
0394  * Bool helpers to test for various raid levels of a raid set.
0395  * It's level as reported by the superblock rather than
0396  * the requested raid_type passed to the constructor.
0397  */
0398 /* Return true, if raid set in @rs is raid0 */
0399 static bool rs_is_raid0(struct raid_set *rs)
0400 {
0401     return !rs->md.level;
0402 }
0403 
0404 /* Return true, if raid set in @rs is raid1 */
0405 static bool rs_is_raid1(struct raid_set *rs)
0406 {
0407     return rs->md.level == 1;
0408 }
0409 
0410 /* Return true, if raid set in @rs is raid10 */
0411 static bool rs_is_raid10(struct raid_set *rs)
0412 {
0413     return rs->md.level == 10;
0414 }
0415 
0416 /* Return true, if raid set in @rs is level 6 */
0417 static bool rs_is_raid6(struct raid_set *rs)
0418 {
0419     return rs->md.level == 6;
0420 }
0421 
0422 /* Return true, if raid set in @rs is level 4, 5 or 6 */
0423 static bool rs_is_raid456(struct raid_set *rs)
0424 {
0425     return __within_range(rs->md.level, 4, 6);
0426 }
0427 
0428 /* Return true, if raid set in @rs is reshapable */
0429 static bool __is_raid10_far(int layout);
0430 static bool rs_is_reshapable(struct raid_set *rs)
0431 {
0432     return rs_is_raid456(rs) ||
0433            (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
0434 }
0435 
0436 /* Return true, if raid set in @rs is recovering */
0437 static bool rs_is_recovering(struct raid_set *rs)
0438 {
0439     return rs->md.recovery_cp < rs->md.dev_sectors;
0440 }
0441 
0442 /* Return true, if raid set in @rs is reshaping */
0443 static bool rs_is_reshaping(struct raid_set *rs)
0444 {
0445     return rs->md.reshape_position != MaxSector;
0446 }
0447 
0448 /*
0449  * bool helpers to test for various raid levels of a raid type @rt
0450  */
0451 
0452 /* Return true, if raid type in @rt is raid0 */
0453 static bool rt_is_raid0(struct raid_type *rt)
0454 {
0455     return !rt->level;
0456 }
0457 
0458 /* Return true, if raid type in @rt is raid1 */
0459 static bool rt_is_raid1(struct raid_type *rt)
0460 {
0461     return rt->level == 1;
0462 }
0463 
0464 /* Return true, if raid type in @rt is raid10 */
0465 static bool rt_is_raid10(struct raid_type *rt)
0466 {
0467     return rt->level == 10;
0468 }
0469 
0470 /* Return true, if raid type in @rt is raid4/5 */
0471 static bool rt_is_raid45(struct raid_type *rt)
0472 {
0473     return __within_range(rt->level, 4, 5);
0474 }
0475 
0476 /* Return true, if raid type in @rt is raid6 */
0477 static bool rt_is_raid6(struct raid_type *rt)
0478 {
0479     return rt->level == 6;
0480 }
0481 
0482 /* Return true, if raid type in @rt is raid4/5/6 */
0483 static bool rt_is_raid456(struct raid_type *rt)
0484 {
0485     return __within_range(rt->level, 4, 6);
0486 }
0487 /* END: raid level bools */
0488 
0489 /* Return valid ctr flags for the raid level of @rs */
0490 static unsigned long __valid_flags(struct raid_set *rs)
0491 {
0492     if (rt_is_raid0(rs->raid_type))
0493         return RAID0_VALID_FLAGS;
0494     else if (rt_is_raid1(rs->raid_type))
0495         return RAID1_VALID_FLAGS;
0496     else if (rt_is_raid10(rs->raid_type))
0497         return RAID10_VALID_FLAGS;
0498     else if (rt_is_raid45(rs->raid_type))
0499         return RAID45_VALID_FLAGS;
0500     else if (rt_is_raid6(rs->raid_type))
0501         return RAID6_VALID_FLAGS;
0502 
0503     return 0;
0504 }
0505 
0506 /*
0507  * Check for valid flags set on @rs
0508  *
0509  * Has to be called after parsing of the ctr flags!
0510  */
0511 static int rs_check_for_valid_flags(struct raid_set *rs)
0512 {
0513     if (rs->ctr_flags & ~__valid_flags(rs)) {
0514         rs->ti->error = "Invalid flags combination";
0515         return -EINVAL;
0516     }
0517 
0518     return 0;
0519 }
0520 
0521 /* MD raid10 bit definitions and helpers */
0522 #define RAID10_OFFSET           (1 << 16) /* stripes with data copies area adjacent on devices */
0523 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
0524 #define RAID10_USE_FAR_SETS     (1 << 18) /* Use sets instead of whole stripe rotation */
0525 #define RAID10_FAR_COPIES_SHIFT     8     /* raid10 # far copies shift (2nd byte of layout) */
0526 
0527 /* Return md raid10 near copies for @layout */
0528 static unsigned int __raid10_near_copies(int layout)
0529 {
0530     return layout & 0xFF;
0531 }
0532 
0533 /* Return md raid10 far copies for @layout */
0534 static unsigned int __raid10_far_copies(int layout)
0535 {
0536     return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
0537 }
0538 
0539 /* Return true if md raid10 offset for @layout */
0540 static bool __is_raid10_offset(int layout)
0541 {
0542     return !!(layout & RAID10_OFFSET);
0543 }
0544 
0545 /* Return true if md raid10 near for @layout */
0546 static bool __is_raid10_near(int layout)
0547 {
0548     return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
0549 }
0550 
0551 /* Return true if md raid10 far for @layout */
0552 static bool __is_raid10_far(int layout)
0553 {
0554     return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
0555 }
0556 
0557 /* Return md raid10 layout string for @layout */
0558 static const char *raid10_md_layout_to_format(int layout)
0559 {
0560     /*
0561      * Bit 16 stands for "offset"
0562      * (i.e. adjacent stripes hold copies)
0563      *
0564      * Refer to MD's raid10.c for details
0565      */
0566     if (__is_raid10_offset(layout))
0567         return "offset";
0568 
0569     if (__raid10_near_copies(layout) > 1)
0570         return "near";
0571 
0572     if (__raid10_far_copies(layout) > 1)
0573         return "far";
0574 
0575     return "unknown";
0576 }
0577 
0578 /* Return md raid10 algorithm for @name */
0579 static int raid10_name_to_format(const char *name)
0580 {
0581     if (!strcasecmp(name, "near"))
0582         return ALGORITHM_RAID10_NEAR;
0583     else if (!strcasecmp(name, "offset"))
0584         return ALGORITHM_RAID10_OFFSET;
0585     else if (!strcasecmp(name, "far"))
0586         return ALGORITHM_RAID10_FAR;
0587 
0588     return -EINVAL;
0589 }
0590 
0591 /* Return md raid10 copies for @layout */
0592 static unsigned int raid10_md_layout_to_copies(int layout)
0593 {
0594     return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
0595 }
0596 
0597 /* Return md raid10 format id for @format string */
0598 static int raid10_format_to_md_layout(struct raid_set *rs,
0599                       unsigned int algorithm,
0600                       unsigned int copies)
0601 {
0602     unsigned int n = 1, f = 1, r = 0;
0603 
0604     /*
0605      * MD resilienece flaw:
0606      *
0607      * enabling use_far_sets for far/offset formats causes copies
0608      * to be colocated on the same devs together with their origins!
0609      *
0610      * -> disable it for now in the definition above
0611      */
0612     if (algorithm == ALGORITHM_RAID10_DEFAULT ||
0613         algorithm == ALGORITHM_RAID10_NEAR)
0614         n = copies;
0615 
0616     else if (algorithm == ALGORITHM_RAID10_OFFSET) {
0617         f = copies;
0618         r = RAID10_OFFSET;
0619         if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
0620             r |= RAID10_USE_FAR_SETS;
0621 
0622     } else if (algorithm == ALGORITHM_RAID10_FAR) {
0623         f = copies;
0624         if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
0625             r |= RAID10_USE_FAR_SETS;
0626 
0627     } else
0628         return -EINVAL;
0629 
0630     return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
0631 }
0632 /* END: MD raid10 bit definitions and helpers */
0633 
0634 /* Check for any of the raid10 algorithms */
0635 static bool __got_raid10(struct raid_type *rtp, const int layout)
0636 {
0637     if (rtp->level == 10) {
0638         switch (rtp->algorithm) {
0639         case ALGORITHM_RAID10_DEFAULT:
0640         case ALGORITHM_RAID10_NEAR:
0641             return __is_raid10_near(layout);
0642         case ALGORITHM_RAID10_OFFSET:
0643             return __is_raid10_offset(layout);
0644         case ALGORITHM_RAID10_FAR:
0645             return __is_raid10_far(layout);
0646         default:
0647             break;
0648         }
0649     }
0650 
0651     return false;
0652 }
0653 
0654 /* Return raid_type for @name */
0655 static struct raid_type *get_raid_type(const char *name)
0656 {
0657     struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
0658 
0659     while (rtp-- > raid_types)
0660         if (!strcasecmp(rtp->name, name))
0661             return rtp;
0662 
0663     return NULL;
0664 }
0665 
0666 /* Return raid_type for @name based derived from @level and @layout */
0667 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
0668 {
0669     struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
0670 
0671     while (rtp-- > raid_types) {
0672         /* RAID10 special checks based on @layout flags/properties */
0673         if (rtp->level == level &&
0674             (__got_raid10(rtp, layout) || rtp->algorithm == layout))
0675             return rtp;
0676     }
0677 
0678     return NULL;
0679 }
0680 
0681 /* Adjust rdev sectors */
0682 static void rs_set_rdev_sectors(struct raid_set *rs)
0683 {
0684     struct mddev *mddev = &rs->md;
0685     struct md_rdev *rdev;
0686 
0687     /*
0688      * raid10 sets rdev->sector to the device size, which
0689      * is unintended in case of out-of-place reshaping
0690      */
0691     rdev_for_each(rdev, mddev)
0692         if (!test_bit(Journal, &rdev->flags))
0693             rdev->sectors = mddev->dev_sectors;
0694 }
0695 
0696 /*
0697  * Change bdev capacity of @rs in case of a disk add/remove reshape
0698  */
0699 static void rs_set_capacity(struct raid_set *rs)
0700 {
0701     struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
0702 
0703     set_capacity_and_notify(gendisk, rs->md.array_sectors);
0704 }
0705 
0706 /*
0707  * Set the mddev properties in @rs to the current
0708  * ones retrieved from the freshest superblock
0709  */
0710 static void rs_set_cur(struct raid_set *rs)
0711 {
0712     struct mddev *mddev = &rs->md;
0713 
0714     mddev->new_level = mddev->level;
0715     mddev->new_layout = mddev->layout;
0716     mddev->new_chunk_sectors = mddev->chunk_sectors;
0717 }
0718 
0719 /*
0720  * Set the mddev properties in @rs to the new
0721  * ones requested by the ctr
0722  */
0723 static void rs_set_new(struct raid_set *rs)
0724 {
0725     struct mddev *mddev = &rs->md;
0726 
0727     mddev->level = mddev->new_level;
0728     mddev->layout = mddev->new_layout;
0729     mddev->chunk_sectors = mddev->new_chunk_sectors;
0730     mddev->raid_disks = rs->raid_disks;
0731     mddev->delta_disks = 0;
0732 }
0733 
0734 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
0735                        unsigned int raid_devs)
0736 {
0737     unsigned int i;
0738     struct raid_set *rs;
0739 
0740     if (raid_devs <= raid_type->parity_devs) {
0741         ti->error = "Insufficient number of devices";
0742         return ERR_PTR(-EINVAL);
0743     }
0744 
0745     rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL);
0746     if (!rs) {
0747         ti->error = "Cannot allocate raid context";
0748         return ERR_PTR(-ENOMEM);
0749     }
0750 
0751     mddev_init(&rs->md);
0752 
0753     rs->raid_disks = raid_devs;
0754     rs->delta_disks = 0;
0755 
0756     rs->ti = ti;
0757     rs->raid_type = raid_type;
0758     rs->stripe_cache_entries = 256;
0759     rs->md.raid_disks = raid_devs;
0760     rs->md.level = raid_type->level;
0761     rs->md.new_level = rs->md.level;
0762     rs->md.layout = raid_type->algorithm;
0763     rs->md.new_layout = rs->md.layout;
0764     rs->md.delta_disks = 0;
0765     rs->md.recovery_cp = MaxSector;
0766 
0767     for (i = 0; i < raid_devs; i++)
0768         md_rdev_init(&rs->dev[i].rdev);
0769 
0770     /*
0771      * Remaining items to be initialized by further RAID params:
0772      *  rs->md.persistent
0773      *  rs->md.external
0774      *  rs->md.chunk_sectors
0775      *  rs->md.new_chunk_sectors
0776      *  rs->md.dev_sectors
0777      */
0778 
0779     return rs;
0780 }
0781 
0782 /* Free all @rs allocations */
0783 static void raid_set_free(struct raid_set *rs)
0784 {
0785     int i;
0786 
0787     if (rs->journal_dev.dev) {
0788         md_rdev_clear(&rs->journal_dev.rdev);
0789         dm_put_device(rs->ti, rs->journal_dev.dev);
0790     }
0791 
0792     for (i = 0; i < rs->raid_disks; i++) {
0793         if (rs->dev[i].meta_dev)
0794             dm_put_device(rs->ti, rs->dev[i].meta_dev);
0795         md_rdev_clear(&rs->dev[i].rdev);
0796         if (rs->dev[i].data_dev)
0797             dm_put_device(rs->ti, rs->dev[i].data_dev);
0798     }
0799 
0800     kfree(rs);
0801 }
0802 
0803 /*
0804  * For every device we have two words
0805  *  <meta_dev>: meta device name or '-' if missing
0806  *  <data_dev>: data device name or '-' if missing
0807  *
0808  * The following are permitted:
0809  *    - -
0810  *    - <data_dev>
0811  *    <meta_dev> <data_dev>
0812  *
0813  * The following is not allowed:
0814  *    <meta_dev> -
0815  *
0816  * This code parses those words.  If there is a failure,
0817  * the caller must use raid_set_free() to unwind the operations.
0818  */
0819 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
0820 {
0821     int i;
0822     int rebuild = 0;
0823     int metadata_available = 0;
0824     int r = 0;
0825     const char *arg;
0826 
0827     /* Put off the number of raid devices argument to get to dev pairs */
0828     arg = dm_shift_arg(as);
0829     if (!arg)
0830         return -EINVAL;
0831 
0832     for (i = 0; i < rs->raid_disks; i++) {
0833         rs->dev[i].rdev.raid_disk = i;
0834 
0835         rs->dev[i].meta_dev = NULL;
0836         rs->dev[i].data_dev = NULL;
0837 
0838         /*
0839          * There are no offsets initially.
0840          * Out of place reshape will set them accordingly.
0841          */
0842         rs->dev[i].rdev.data_offset = 0;
0843         rs->dev[i].rdev.new_data_offset = 0;
0844         rs->dev[i].rdev.mddev = &rs->md;
0845 
0846         arg = dm_shift_arg(as);
0847         if (!arg)
0848             return -EINVAL;
0849 
0850         if (strcmp(arg, "-")) {
0851             r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
0852                       &rs->dev[i].meta_dev);
0853             if (r) {
0854                 rs->ti->error = "RAID metadata device lookup failure";
0855                 return r;
0856             }
0857 
0858             rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
0859             if (!rs->dev[i].rdev.sb_page) {
0860                 rs->ti->error = "Failed to allocate superblock page";
0861                 return -ENOMEM;
0862             }
0863         }
0864 
0865         arg = dm_shift_arg(as);
0866         if (!arg)
0867             return -EINVAL;
0868 
0869         if (!strcmp(arg, "-")) {
0870             if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
0871                 (!rs->dev[i].rdev.recovery_offset)) {
0872                 rs->ti->error = "Drive designated for rebuild not specified";
0873                 return -EINVAL;
0874             }
0875 
0876             if (rs->dev[i].meta_dev) {
0877                 rs->ti->error = "No data device supplied with metadata device";
0878                 return -EINVAL;
0879             }
0880 
0881             continue;
0882         }
0883 
0884         r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
0885                   &rs->dev[i].data_dev);
0886         if (r) {
0887             rs->ti->error = "RAID device lookup failure";
0888             return r;
0889         }
0890 
0891         if (rs->dev[i].meta_dev) {
0892             metadata_available = 1;
0893             rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
0894         }
0895         rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
0896         list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
0897         if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
0898             rebuild++;
0899     }
0900 
0901     if (rs->journal_dev.dev)
0902         list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks);
0903 
0904     if (metadata_available) {
0905         rs->md.external = 0;
0906         rs->md.persistent = 1;
0907         rs->md.major_version = 2;
0908     } else if (rebuild && !rs->md.recovery_cp) {
0909         /*
0910          * Without metadata, we will not be able to tell if the array
0911          * is in-sync or not - we must assume it is not.  Therefore,
0912          * it is impossible to rebuild a drive.
0913          *
0914          * Even if there is metadata, the on-disk information may
0915          * indicate that the array is not in-sync and it will then
0916          * fail at that time.
0917          *
0918          * User could specify 'nosync' option if desperate.
0919          */
0920         rs->ti->error = "Unable to rebuild drive while array is not in-sync";
0921         return -EINVAL;
0922     }
0923 
0924     return 0;
0925 }
0926 
0927 /*
0928  * validate_region_size
0929  * @rs
0930  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
0931  *
0932  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
0933  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
0934  *
0935  * Returns: 0 on success, -EINVAL on failure.
0936  */
0937 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
0938 {
0939     unsigned long min_region_size = rs->ti->len / (1 << 21);
0940 
0941     if (rs_is_raid0(rs))
0942         return 0;
0943 
0944     if (!region_size) {
0945         /*
0946          * Choose a reasonable default.  All figures in sectors.
0947          */
0948         if (min_region_size > (1 << 13)) {
0949             /* If not a power of 2, make it the next power of 2 */
0950             region_size = roundup_pow_of_two(min_region_size);
0951             DMINFO("Choosing default region size of %lu sectors",
0952                    region_size);
0953         } else {
0954             DMINFO("Choosing default region size of 4MiB");
0955             region_size = 1 << 13; /* sectors */
0956         }
0957     } else {
0958         /*
0959          * Validate user-supplied value.
0960          */
0961         if (region_size > rs->ti->len) {
0962             rs->ti->error = "Supplied region size is too large";
0963             return -EINVAL;
0964         }
0965 
0966         if (region_size < min_region_size) {
0967             DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
0968                   region_size, min_region_size);
0969             rs->ti->error = "Supplied region size is too small";
0970             return -EINVAL;
0971         }
0972 
0973         if (!is_power_of_2(region_size)) {
0974             rs->ti->error = "Region size is not a power of 2";
0975             return -EINVAL;
0976         }
0977 
0978         if (region_size < rs->md.chunk_sectors) {
0979             rs->ti->error = "Region size is smaller than the chunk size";
0980             return -EINVAL;
0981         }
0982     }
0983 
0984     /*
0985      * Convert sectors to bytes.
0986      */
0987     rs->md.bitmap_info.chunksize = to_bytes(region_size);
0988 
0989     return 0;
0990 }
0991 
0992 /*
0993  * validate_raid_redundancy
0994  * @rs
0995  *
0996  * Determine if there are enough devices in the array that haven't
0997  * failed (or are being rebuilt) to form a usable array.
0998  *
0999  * Returns: 0 on success, -EINVAL on failure.
1000  */
1001 static int validate_raid_redundancy(struct raid_set *rs)
1002 {
1003     unsigned int i, rebuild_cnt = 0;
1004     unsigned int rebuilds_per_group = 0, copies, raid_disks;
1005     unsigned int group_size, last_group_start;
1006 
1007     for (i = 0; i < rs->raid_disks; i++)
1008         if (!test_bit(FirstUse, &rs->dev[i].rdev.flags) &&
1009             ((!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
1010               !rs->dev[i].rdev.sb_page)))
1011             rebuild_cnt++;
1012 
1013     switch (rs->md.level) {
1014     case 0:
1015         break;
1016     case 1:
1017         if (rebuild_cnt >= rs->md.raid_disks)
1018             goto too_many;
1019         break;
1020     case 4:
1021     case 5:
1022     case 6:
1023         if (rebuild_cnt > rs->raid_type->parity_devs)
1024             goto too_many;
1025         break;
1026     case 10:
1027         copies = raid10_md_layout_to_copies(rs->md.new_layout);
1028         if (copies < 2) {
1029             DMERR("Bogus raid10 data copies < 2!");
1030             return -EINVAL;
1031         }
1032 
1033         if (rebuild_cnt < copies)
1034             break;
1035 
1036         /*
1037          * It is possible to have a higher rebuild count for RAID10,
1038          * as long as the failed devices occur in different mirror
1039          * groups (i.e. different stripes).
1040          *
1041          * When checking "near" format, make sure no adjacent devices
1042          * have failed beyond what can be handled.  In addition to the
1043          * simple case where the number of devices is a multiple of the
1044          * number of copies, we must also handle cases where the number
1045          * of devices is not a multiple of the number of copies.
1046          * E.g.    dev1 dev2 dev3 dev4 dev5
1047          *      A    A    B    B    C
1048          *      C    D    D    E    E
1049          */
1050         raid_disks = min(rs->raid_disks, rs->md.raid_disks);
1051         if (__is_raid10_near(rs->md.new_layout)) {
1052             for (i = 0; i < raid_disks; i++) {
1053                 if (!(i % copies))
1054                     rebuilds_per_group = 0;
1055                 if ((!rs->dev[i].rdev.sb_page ||
1056                     !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1057                     (++rebuilds_per_group >= copies))
1058                     goto too_many;
1059             }
1060             break;
1061         }
1062 
1063         /*
1064          * When checking "far" and "offset" formats, we need to ensure
1065          * that the device that holds its copy is not also dead or
1066          * being rebuilt.  (Note that "far" and "offset" formats only
1067          * support two copies right now.  These formats also only ever
1068          * use the 'use_far_sets' variant.)
1069          *
1070          * This check is somewhat complicated by the need to account
1071          * for arrays that are not a multiple of (far) copies.  This
1072          * results in the need to treat the last (potentially larger)
1073          * set differently.
1074          */
1075         group_size = (raid_disks / copies);
1076         last_group_start = (raid_disks / group_size) - 1;
1077         last_group_start *= group_size;
1078         for (i = 0; i < raid_disks; i++) {
1079             if (!(i % copies) && !(i > last_group_start))
1080                 rebuilds_per_group = 0;
1081             if ((!rs->dev[i].rdev.sb_page ||
1082                  !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1083                 (++rebuilds_per_group >= copies))
1084                     goto too_many;
1085         }
1086         break;
1087     default:
1088         if (rebuild_cnt)
1089             return -EINVAL;
1090     }
1091 
1092     return 0;
1093 
1094 too_many:
1095     return -EINVAL;
1096 }
1097 
1098 /*
1099  * Possible arguments are...
1100  *  <chunk_size> [optional_args]
1101  *
1102  * Argument definitions
1103  *    <chunk_size>          The number of sectors per disk that
1104  *                  will form the "stripe"
1105  *    [[no]sync]            Force or prevent recovery of the
1106  *                  entire array
1107  *    [rebuild <idx>]           Rebuild the drive indicated by the index
1108  *    [daemon_sleep <ms>]       Time between bitmap daemon work to
1109  *                  clear bits
1110  *    [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1111  *    [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1112  *    [write_mostly <idx>]      Indicate a write mostly drive via index
1113  *    [max_write_behind <sectors>]  See '-write-behind=' (man mdadm)
1114  *    [stripe_cache <sectors>]      Stripe cache size for higher RAIDs
1115  *    [region_size <sectors>]       Defines granularity of bitmap
1116  *    [journal_dev <dev>]       raid4/5/6 journaling deviice
1117  *                      (i.e. write hole closing log)
1118  *
1119  * RAID10-only options:
1120  *    [raid10_copies <# copies>]    Number of copies.  (Default: 2)
1121  *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near)
1122  */
1123 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1124                  unsigned int num_raid_params)
1125 {
1126     int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1127     unsigned int raid10_copies = 2;
1128     unsigned int i, write_mostly = 0;
1129     unsigned int region_size = 0;
1130     sector_t max_io_len;
1131     const char *arg, *key;
1132     struct raid_dev *rd;
1133     struct raid_type *rt = rs->raid_type;
1134 
1135     arg = dm_shift_arg(as);
1136     num_raid_params--; /* Account for chunk_size argument */
1137 
1138     if (kstrtoint(arg, 10, &value) < 0) {
1139         rs->ti->error = "Bad numerical argument given for chunk_size";
1140         return -EINVAL;
1141     }
1142 
1143     /*
1144      * First, parse the in-order required arguments
1145      * "chunk_size" is the only argument of this type.
1146      */
1147     if (rt_is_raid1(rt)) {
1148         if (value)
1149             DMERR("Ignoring chunk size parameter for RAID 1");
1150         value = 0;
1151     } else if (!is_power_of_2(value)) {
1152         rs->ti->error = "Chunk size must be a power of 2";
1153         return -EINVAL;
1154     } else if (value < 8) {
1155         rs->ti->error = "Chunk size value is too small";
1156         return -EINVAL;
1157     }
1158 
1159     rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1160 
1161     /*
1162      * We set each individual device as In_sync with a completed
1163      * 'recovery_offset'.  If there has been a device failure or
1164      * replacement then one of the following cases applies:
1165      *
1166      *   1) User specifies 'rebuild'.
1167      *  - Device is reset when param is read.
1168      *   2) A new device is supplied.
1169      *  - No matching superblock found, resets device.
1170      *   3) Device failure was transient and returns on reload.
1171      *  - Failure noticed, resets device for bitmap replay.
1172      *   4) Device hadn't completed recovery after previous failure.
1173      *  - Superblock is read and overrides recovery_offset.
1174      *
1175      * What is found in the superblocks of the devices is always
1176      * authoritative, unless 'rebuild' or '[no]sync' was specified.
1177      */
1178     for (i = 0; i < rs->raid_disks; i++) {
1179         set_bit(In_sync, &rs->dev[i].rdev.flags);
1180         rs->dev[i].rdev.recovery_offset = MaxSector;
1181     }
1182 
1183     /*
1184      * Second, parse the unordered optional arguments
1185      */
1186     for (i = 0; i < num_raid_params; i++) {
1187         key = dm_shift_arg(as);
1188         if (!key) {
1189             rs->ti->error = "Not enough raid parameters given";
1190             return -EINVAL;
1191         }
1192 
1193         if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1194             if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1195                 rs->ti->error = "Only one 'nosync' argument allowed";
1196                 return -EINVAL;
1197             }
1198             continue;
1199         }
1200         if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1201             if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1202                 rs->ti->error = "Only one 'sync' argument allowed";
1203                 return -EINVAL;
1204             }
1205             continue;
1206         }
1207         if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1208             if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1209                 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1210                 return -EINVAL;
1211             }
1212             continue;
1213         }
1214 
1215         arg = dm_shift_arg(as);
1216         i++; /* Account for the argument pairs */
1217         if (!arg) {
1218             rs->ti->error = "Wrong number of raid parameters given";
1219             return -EINVAL;
1220         }
1221 
1222         /*
1223          * Parameters that take a string value are checked here.
1224          */
1225         /* "raid10_format {near|offset|far} */
1226         if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1227             if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1228                 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1229                 return -EINVAL;
1230             }
1231             if (!rt_is_raid10(rt)) {
1232                 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1233                 return -EINVAL;
1234             }
1235             raid10_format = raid10_name_to_format(arg);
1236             if (raid10_format < 0) {
1237                 rs->ti->error = "Invalid 'raid10_format' value given";
1238                 return raid10_format;
1239             }
1240             continue;
1241         }
1242 
1243         /* "journal_dev <dev>" */
1244         if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) {
1245             int r;
1246             struct md_rdev *jdev;
1247 
1248             if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1249                 rs->ti->error = "Only one raid4/5/6 set journaling device allowed";
1250                 return -EINVAL;
1251             }
1252             if (!rt_is_raid456(rt)) {
1253                 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type";
1254                 return -EINVAL;
1255             }
1256             r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
1257                       &rs->journal_dev.dev);
1258             if (r) {
1259                 rs->ti->error = "raid4/5/6 journal device lookup failure";
1260                 return r;
1261             }
1262             jdev = &rs->journal_dev.rdev;
1263             md_rdev_init(jdev);
1264             jdev->mddev = &rs->md;
1265             jdev->bdev = rs->journal_dev.dev->bdev;
1266             jdev->sectors = bdev_nr_sectors(jdev->bdev);
1267             if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) {
1268                 rs->ti->error = "No space for raid4/5/6 journal";
1269                 return -ENOSPC;
1270             }
1271             rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
1272             set_bit(Journal, &jdev->flags);
1273             continue;
1274         }
1275 
1276         /* "journal_mode <mode>" ("journal_dev" mandatory!) */
1277         if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) {
1278             int r;
1279 
1280             if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1281                 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'";
1282                 return -EINVAL;
1283             }
1284             if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
1285                 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed";
1286                 return -EINVAL;
1287             }
1288             r = dm_raid_journal_mode_to_md(arg);
1289             if (r < 0) {
1290                 rs->ti->error = "Invalid 'journal_mode' argument";
1291                 return r;
1292             }
1293             rs->journal_dev.mode = r;
1294             continue;
1295         }
1296 
1297         /*
1298          * Parameters with number values from here on.
1299          */
1300         if (kstrtoint(arg, 10, &value) < 0) {
1301             rs->ti->error = "Bad numerical argument given in raid params";
1302             return -EINVAL;
1303         }
1304 
1305         if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1306             /*
1307              * "rebuild" is being passed in by userspace to provide
1308              * indexes of replaced devices and to set up additional
1309              * devices on raid level takeover.
1310              */
1311             if (!__within_range(value, 0, rs->raid_disks - 1)) {
1312                 rs->ti->error = "Invalid rebuild index given";
1313                 return -EINVAL;
1314             }
1315 
1316             if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1317                 rs->ti->error = "rebuild for this index already given";
1318                 return -EINVAL;
1319             }
1320 
1321             rd = rs->dev + value;
1322             clear_bit(In_sync, &rd->rdev.flags);
1323             clear_bit(Faulty, &rd->rdev.flags);
1324             rd->rdev.recovery_offset = 0;
1325             set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1326         } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1327             if (!rt_is_raid1(rt)) {
1328                 rs->ti->error = "write_mostly option is only valid for RAID1";
1329                 return -EINVAL;
1330             }
1331 
1332             if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1333                 rs->ti->error = "Invalid write_mostly index given";
1334                 return -EINVAL;
1335             }
1336 
1337             write_mostly++;
1338             set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1339             set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1340         } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1341             if (!rt_is_raid1(rt)) {
1342                 rs->ti->error = "max_write_behind option is only valid for RAID1";
1343                 return -EINVAL;
1344             }
1345 
1346             if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1347                 rs->ti->error = "Only one max_write_behind argument pair allowed";
1348                 return -EINVAL;
1349             }
1350 
1351             /*
1352              * In device-mapper, we specify things in sectors, but
1353              * MD records this value in kB
1354              */
1355             if (value < 0 || value / 2 > COUNTER_MAX) {
1356                 rs->ti->error = "Max write-behind limit out of range";
1357                 return -EINVAL;
1358             }
1359 
1360             rs->md.bitmap_info.max_write_behind = value / 2;
1361         } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1362             if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1363                 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1364                 return -EINVAL;
1365             }
1366             if (value < 0) {
1367                 rs->ti->error = "daemon sleep period out of range";
1368                 return -EINVAL;
1369             }
1370             rs->md.bitmap_info.daemon_sleep = value;
1371         } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1372             /* Userspace passes new data_offset after having extended the data image LV */
1373             if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1374                 rs->ti->error = "Only one data_offset argument pair allowed";
1375                 return -EINVAL;
1376             }
1377             /* Ensure sensible data offset */
1378             if (value < 0 ||
1379                 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1380                 rs->ti->error = "Bogus data_offset value";
1381                 return -EINVAL;
1382             }
1383             rs->data_offset = value;
1384         } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1385             /* Define the +/-# of disks to add to/remove from the given raid set */
1386             if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1387                 rs->ti->error = "Only one delta_disks argument pair allowed";
1388                 return -EINVAL;
1389             }
1390             /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1391             if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1392                 rs->ti->error = "Too many delta_disk requested";
1393                 return -EINVAL;
1394             }
1395 
1396             rs->delta_disks = value;
1397         } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1398             if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1399                 rs->ti->error = "Only one stripe_cache argument pair allowed";
1400                 return -EINVAL;
1401             }
1402 
1403             if (!rt_is_raid456(rt)) {
1404                 rs->ti->error = "Inappropriate argument: stripe_cache";
1405                 return -EINVAL;
1406             }
1407 
1408             if (value < 0) {
1409                 rs->ti->error = "Bogus stripe cache entries value";
1410                 return -EINVAL;
1411             }
1412             rs->stripe_cache_entries = value;
1413         } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1414             if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1415                 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1416                 return -EINVAL;
1417             }
1418 
1419             if (value < 0) {
1420                 rs->ti->error = "min_recovery_rate out of range";
1421                 return -EINVAL;
1422             }
1423             rs->md.sync_speed_min = value;
1424         } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1425             if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1426                 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1427                 return -EINVAL;
1428             }
1429 
1430             if (value < 0) {
1431                 rs->ti->error = "max_recovery_rate out of range";
1432                 return -EINVAL;
1433             }
1434             rs->md.sync_speed_max = value;
1435         } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1436             if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1437                 rs->ti->error = "Only one region_size argument pair allowed";
1438                 return -EINVAL;
1439             }
1440 
1441             region_size = value;
1442             rs->requested_bitmap_chunk_sectors = value;
1443         } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1444             if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1445                 rs->ti->error = "Only one raid10_copies argument pair allowed";
1446                 return -EINVAL;
1447             }
1448 
1449             if (!__within_range(value, 2, rs->md.raid_disks)) {
1450                 rs->ti->error = "Bad value for 'raid10_copies'";
1451                 return -EINVAL;
1452             }
1453 
1454             raid10_copies = value;
1455         } else {
1456             DMERR("Unable to parse RAID parameter: %s", key);
1457             rs->ti->error = "Unable to parse RAID parameter";
1458             return -EINVAL;
1459         }
1460     }
1461 
1462     if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1463         test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1464         rs->ti->error = "sync and nosync are mutually exclusive";
1465         return -EINVAL;
1466     }
1467 
1468     if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1469         (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1470          test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1471         rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1472         return -EINVAL;
1473     }
1474 
1475     if (write_mostly >= rs->md.raid_disks) {
1476         rs->ti->error = "Can't set all raid1 devices to write_mostly";
1477         return -EINVAL;
1478     }
1479 
1480     if (rs->md.sync_speed_max &&
1481         rs->md.sync_speed_min > rs->md.sync_speed_max) {
1482         rs->ti->error = "Bogus recovery rates";
1483         return -EINVAL;
1484     }
1485 
1486     if (validate_region_size(rs, region_size))
1487         return -EINVAL;
1488 
1489     if (rs->md.chunk_sectors)
1490         max_io_len = rs->md.chunk_sectors;
1491     else
1492         max_io_len = region_size;
1493 
1494     if (dm_set_target_max_io_len(rs->ti, max_io_len))
1495         return -EINVAL;
1496 
1497     if (rt_is_raid10(rt)) {
1498         if (raid10_copies > rs->md.raid_disks) {
1499             rs->ti->error = "Not enough devices to satisfy specification";
1500             return -EINVAL;
1501         }
1502 
1503         rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1504         if (rs->md.new_layout < 0) {
1505             rs->ti->error = "Error getting raid10 format";
1506             return rs->md.new_layout;
1507         }
1508 
1509         rt = get_raid_type_by_ll(10, rs->md.new_layout);
1510         if (!rt) {
1511             rs->ti->error = "Failed to recognize new raid10 layout";
1512             return -EINVAL;
1513         }
1514 
1515         if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1516              rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1517             test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1518             rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1519             return -EINVAL;
1520         }
1521     }
1522 
1523     rs->raid10_copies = raid10_copies;
1524 
1525     /* Assume there are no metadata devices until the drives are parsed */
1526     rs->md.persistent = 0;
1527     rs->md.external = 1;
1528 
1529     /* Check, if any invalid ctr arguments have been passed in for the raid level */
1530     return rs_check_for_valid_flags(rs);
1531 }
1532 
1533 /* Set raid4/5/6 cache size */
1534 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1535 {
1536     int r;
1537     struct r5conf *conf;
1538     struct mddev *mddev = &rs->md;
1539     uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1540     uint32_t nr_stripes = rs->stripe_cache_entries;
1541 
1542     if (!rt_is_raid456(rs->raid_type)) {
1543         rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1544         return -EINVAL;
1545     }
1546 
1547     if (nr_stripes < min_stripes) {
1548         DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1549                nr_stripes, min_stripes);
1550         nr_stripes = min_stripes;
1551     }
1552 
1553     conf = mddev->private;
1554     if (!conf) {
1555         rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1556         return -EINVAL;
1557     }
1558 
1559     /* Try setting number of stripes in raid456 stripe cache */
1560     if (conf->min_nr_stripes != nr_stripes) {
1561         r = raid5_set_cache_size(mddev, nr_stripes);
1562         if (r) {
1563             rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1564             return r;
1565         }
1566 
1567         DMINFO("%u stripe cache entries", nr_stripes);
1568     }
1569 
1570     return 0;
1571 }
1572 
1573 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1574 static unsigned int mddev_data_stripes(struct raid_set *rs)
1575 {
1576     return rs->md.raid_disks - rs->raid_type->parity_devs;
1577 }
1578 
1579 /* Return # of data stripes of @rs (i.e. as of ctr) */
1580 static unsigned int rs_data_stripes(struct raid_set *rs)
1581 {
1582     return rs->raid_disks - rs->raid_type->parity_devs;
1583 }
1584 
1585 /*
1586  * Retrieve rdev->sectors from any valid raid device of @rs
1587  * to allow userpace to pass in arbitray "- -" device tupples.
1588  */
1589 static sector_t __rdev_sectors(struct raid_set *rs)
1590 {
1591     int i;
1592 
1593     for (i = 0; i < rs->raid_disks; i++) {
1594         struct md_rdev *rdev = &rs->dev[i].rdev;
1595 
1596         if (!test_bit(Journal, &rdev->flags) &&
1597             rdev->bdev && rdev->sectors)
1598             return rdev->sectors;
1599     }
1600 
1601     return 0;
1602 }
1603 
1604 /* Check that calculated dev_sectors fits all component devices. */
1605 static int _check_data_dev_sectors(struct raid_set *rs)
1606 {
1607     sector_t ds = ~0;
1608     struct md_rdev *rdev;
1609 
1610     rdev_for_each(rdev, &rs->md)
1611         if (!test_bit(Journal, &rdev->flags) && rdev->bdev) {
1612             ds = min(ds, bdev_nr_sectors(rdev->bdev));
1613             if (ds < rs->md.dev_sectors) {
1614                 rs->ti->error = "Component device(s) too small";
1615                 return -EINVAL;
1616             }
1617         }
1618 
1619     return 0;
1620 }
1621 
1622 /* Calculate the sectors per device and per array used for @rs */
1623 static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev)
1624 {
1625     int delta_disks;
1626     unsigned int data_stripes;
1627     sector_t array_sectors = sectors, dev_sectors = sectors;
1628     struct mddev *mddev = &rs->md;
1629 
1630     if (use_mddev) {
1631         delta_disks = mddev->delta_disks;
1632         data_stripes = mddev_data_stripes(rs);
1633     } else {
1634         delta_disks = rs->delta_disks;
1635         data_stripes = rs_data_stripes(rs);
1636     }
1637 
1638     /* Special raid1 case w/o delta_disks support (yet) */
1639     if (rt_is_raid1(rs->raid_type))
1640         ;
1641     else if (rt_is_raid10(rs->raid_type)) {
1642         if (rs->raid10_copies < 2 ||
1643             delta_disks < 0) {
1644             rs->ti->error = "Bogus raid10 data copies or delta disks";
1645             return -EINVAL;
1646         }
1647 
1648         dev_sectors *= rs->raid10_copies;
1649         if (sector_div(dev_sectors, data_stripes))
1650             goto bad;
1651 
1652         array_sectors = (data_stripes + delta_disks) * dev_sectors;
1653         if (sector_div(array_sectors, rs->raid10_copies))
1654             goto bad;
1655 
1656     } else if (sector_div(dev_sectors, data_stripes))
1657         goto bad;
1658 
1659     else
1660         /* Striped layouts */
1661         array_sectors = (data_stripes + delta_disks) * dev_sectors;
1662 
1663     mddev->array_sectors = array_sectors;
1664     mddev->dev_sectors = dev_sectors;
1665     rs_set_rdev_sectors(rs);
1666 
1667     return _check_data_dev_sectors(rs);
1668 bad:
1669     rs->ti->error = "Target length not divisible by number of data devices";
1670     return -EINVAL;
1671 }
1672 
1673 /* Setup recovery on @rs */
1674 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1675 {
1676     /* raid0 does not recover */
1677     if (rs_is_raid0(rs))
1678         rs->md.recovery_cp = MaxSector;
1679     /*
1680      * A raid6 set has to be recovered either
1681      * completely or for the grown part to
1682      * ensure proper parity and Q-Syndrome
1683      */
1684     else if (rs_is_raid6(rs))
1685         rs->md.recovery_cp = dev_sectors;
1686     /*
1687      * Other raid set types may skip recovery
1688      * depending on the 'nosync' flag.
1689      */
1690     else
1691         rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1692                      ? MaxSector : dev_sectors;
1693 }
1694 
1695 static void do_table_event(struct work_struct *ws)
1696 {
1697     struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1698 
1699     smp_rmb(); /* Make sure we access most actual mddev properties */
1700     if (!rs_is_reshaping(rs)) {
1701         if (rs_is_raid10(rs))
1702             rs_set_rdev_sectors(rs);
1703         rs_set_capacity(rs);
1704     }
1705     dm_table_event(rs->ti->table);
1706 }
1707 
1708 /*
1709  * Make sure a valid takover (level switch) is being requested on @rs
1710  *
1711  * Conversions of raid sets from one MD personality to another
1712  * have to conform to restrictions which are enforced here.
1713  */
1714 static int rs_check_takeover(struct raid_set *rs)
1715 {
1716     struct mddev *mddev = &rs->md;
1717     unsigned int near_copies;
1718 
1719     if (rs->md.degraded) {
1720         rs->ti->error = "Can't takeover degraded raid set";
1721         return -EPERM;
1722     }
1723 
1724     if (rs_is_reshaping(rs)) {
1725         rs->ti->error = "Can't takeover reshaping raid set";
1726         return -EPERM;
1727     }
1728 
1729     switch (mddev->level) {
1730     case 0:
1731         /* raid0 -> raid1/5 with one disk */
1732         if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1733             mddev->raid_disks == 1)
1734             return 0;
1735 
1736         /* raid0 -> raid10 */
1737         if (mddev->new_level == 10 &&
1738             !(rs->raid_disks % mddev->raid_disks))
1739             return 0;
1740 
1741         /* raid0 with multiple disks -> raid4/5/6 */
1742         if (__within_range(mddev->new_level, 4, 6) &&
1743             mddev->new_layout == ALGORITHM_PARITY_N &&
1744             mddev->raid_disks > 1)
1745             return 0;
1746 
1747         break;
1748 
1749     case 10:
1750         /* Can't takeover raid10_offset! */
1751         if (__is_raid10_offset(mddev->layout))
1752             break;
1753 
1754         near_copies = __raid10_near_copies(mddev->layout);
1755 
1756         /* raid10* -> raid0 */
1757         if (mddev->new_level == 0) {
1758             /* Can takeover raid10_near with raid disks divisable by data copies! */
1759             if (near_copies > 1 &&
1760                 !(mddev->raid_disks % near_copies)) {
1761                 mddev->raid_disks /= near_copies;
1762                 mddev->delta_disks = mddev->raid_disks;
1763                 return 0;
1764             }
1765 
1766             /* Can takeover raid10_far */
1767             if (near_copies == 1 &&
1768                 __raid10_far_copies(mddev->layout) > 1)
1769                 return 0;
1770 
1771             break;
1772         }
1773 
1774         /* raid10_{near,far} -> raid1 */
1775         if (mddev->new_level == 1 &&
1776             max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1777             return 0;
1778 
1779         /* raid10_{near,far} with 2 disks -> raid4/5 */
1780         if (__within_range(mddev->new_level, 4, 5) &&
1781             mddev->raid_disks == 2)
1782             return 0;
1783         break;
1784 
1785     case 1:
1786         /* raid1 with 2 disks -> raid4/5 */
1787         if (__within_range(mddev->new_level, 4, 5) &&
1788             mddev->raid_disks == 2) {
1789             mddev->degraded = 1;
1790             return 0;
1791         }
1792 
1793         /* raid1 -> raid0 */
1794         if (mddev->new_level == 0 &&
1795             mddev->raid_disks == 1)
1796             return 0;
1797 
1798         /* raid1 -> raid10 */
1799         if (mddev->new_level == 10)
1800             return 0;
1801         break;
1802 
1803     case 4:
1804         /* raid4 -> raid0 */
1805         if (mddev->new_level == 0)
1806             return 0;
1807 
1808         /* raid4 -> raid1/5 with 2 disks */
1809         if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1810             mddev->raid_disks == 2)
1811             return 0;
1812 
1813         /* raid4 -> raid5/6 with parity N */
1814         if (__within_range(mddev->new_level, 5, 6) &&
1815             mddev->layout == ALGORITHM_PARITY_N)
1816             return 0;
1817         break;
1818 
1819     case 5:
1820         /* raid5 with parity N -> raid0 */
1821         if (mddev->new_level == 0 &&
1822             mddev->layout == ALGORITHM_PARITY_N)
1823             return 0;
1824 
1825         /* raid5 with parity N -> raid4 */
1826         if (mddev->new_level == 4 &&
1827             mddev->layout == ALGORITHM_PARITY_N)
1828             return 0;
1829 
1830         /* raid5 with 2 disks -> raid1/4/10 */
1831         if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1832             mddev->raid_disks == 2)
1833             return 0;
1834 
1835         /* raid5_* ->  raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1836         if (mddev->new_level == 6 &&
1837             ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1838               __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1839             return 0;
1840         break;
1841 
1842     case 6:
1843         /* raid6 with parity N -> raid0 */
1844         if (mddev->new_level == 0 &&
1845             mddev->layout == ALGORITHM_PARITY_N)
1846             return 0;
1847 
1848         /* raid6 with parity N -> raid4 */
1849         if (mddev->new_level == 4 &&
1850             mddev->layout == ALGORITHM_PARITY_N)
1851             return 0;
1852 
1853         /* raid6_*_n with Q-Syndrome N -> raid5_* */
1854         if (mddev->new_level == 5 &&
1855             ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1856              __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1857             return 0;
1858         break;
1859 
1860     default:
1861         break;
1862     }
1863 
1864     rs->ti->error = "takeover not possible";
1865     return -EINVAL;
1866 }
1867 
1868 /* True if @rs requested to be taken over */
1869 static bool rs_takeover_requested(struct raid_set *rs)
1870 {
1871     return rs->md.new_level != rs->md.level;
1872 }
1873 
1874 /* True if layout is set to reshape. */
1875 static bool rs_is_layout_change(struct raid_set *rs, bool use_mddev)
1876 {
1877     return (use_mddev ? rs->md.delta_disks : rs->delta_disks) ||
1878            rs->md.new_layout != rs->md.layout ||
1879            rs->md.new_chunk_sectors != rs->md.chunk_sectors;
1880 }
1881 
1882 /* True if @rs is requested to reshape by ctr */
1883 static bool rs_reshape_requested(struct raid_set *rs)
1884 {
1885     bool change;
1886     struct mddev *mddev = &rs->md;
1887 
1888     if (rs_takeover_requested(rs))
1889         return false;
1890 
1891     if (rs_is_raid0(rs))
1892         return false;
1893 
1894     change = rs_is_layout_change(rs, false);
1895 
1896     /* Historical case to support raid1 reshape without delta disks */
1897     if (rs_is_raid1(rs)) {
1898         if (rs->delta_disks)
1899             return !!rs->delta_disks;
1900 
1901         return !change &&
1902                mddev->raid_disks != rs->raid_disks;
1903     }
1904 
1905     if (rs_is_raid10(rs))
1906         return change &&
1907                !__is_raid10_far(mddev->new_layout) &&
1908                rs->delta_disks >= 0;
1909 
1910     return change;
1911 }
1912 
1913 /*  Features */
1914 #define FEATURE_FLAG_SUPPORTS_V190  0x1 /* Supports extended superblock */
1915 
1916 /* State flags for sb->flags */
1917 #define SB_FLAG_RESHAPE_ACTIVE      0x1
1918 #define SB_FLAG_RESHAPE_BACKWARDS   0x2
1919 
1920 /*
1921  * This structure is never routinely used by userspace, unlike md superblocks.
1922  * Devices with this superblock should only ever be accessed via device-mapper.
1923  */
1924 #define DM_RAID_MAGIC 0x64526D44
1925 struct dm_raid_superblock {
1926     __le32 magic;       /* "DmRd" */
1927     __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1928 
1929     __le32 num_devices; /* Number of devices in this raid set. (Max 64) */
1930     __le32 array_position;  /* The position of this drive in the raid set */
1931 
1932     __le64 events;      /* Incremented by md when superblock updated */
1933     __le64 failed_devices;  /* Pre 1.9.0 part of bit field of devices to */
1934                 /* indicate failures (see extension below) */
1935 
1936     /*
1937      * This offset tracks the progress of the repair or replacement of
1938      * an individual drive.
1939      */
1940     __le64 disk_recovery_offset;
1941 
1942     /*
1943      * This offset tracks the progress of the initial raid set
1944      * synchronisation/parity calculation.
1945      */
1946     __le64 array_resync_offset;
1947 
1948     /*
1949      * raid characteristics
1950      */
1951     __le32 level;
1952     __le32 layout;
1953     __le32 stripe_sectors;
1954 
1955     /********************************************************************
1956      * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1957      *
1958      * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
1959      */
1960 
1961     __le32 flags; /* Flags defining array states for reshaping */
1962 
1963     /*
1964      * This offset tracks the progress of a raid
1965      * set reshape in order to be able to restart it
1966      */
1967     __le64 reshape_position;
1968 
1969     /*
1970      * These define the properties of the array in case of an interrupted reshape
1971      */
1972     __le32 new_level;
1973     __le32 new_layout;
1974     __le32 new_stripe_sectors;
1975     __le32 delta_disks;
1976 
1977     __le64 array_sectors; /* Array size in sectors */
1978 
1979     /*
1980      * Sector offsets to data on devices (reshaping).
1981      * Needed to support out of place reshaping, thus
1982      * not writing over any stripes whilst converting
1983      * them from old to new layout
1984      */
1985     __le64 data_offset;
1986     __le64 new_data_offset;
1987 
1988     __le64 sectors; /* Used device size in sectors */
1989 
1990     /*
1991      * Additonal Bit field of devices indicating failures to support
1992      * up to 256 devices with the 1.9.0 on-disk metadata format
1993      */
1994     __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1995 
1996     __le32 incompat_features;   /* Used to indicate any incompatible features */
1997 
1998     /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1999 } __packed;
2000 
2001 /*
2002  * Check for reshape constraints on raid set @rs:
2003  *
2004  * - reshape function non-existent
2005  * - degraded set
2006  * - ongoing recovery
2007  * - ongoing reshape
2008  *
2009  * Returns 0 if none or -EPERM if given constraint
2010  * and error message reference in @errmsg
2011  */
2012 static int rs_check_reshape(struct raid_set *rs)
2013 {
2014     struct mddev *mddev = &rs->md;
2015 
2016     if (!mddev->pers || !mddev->pers->check_reshape)
2017         rs->ti->error = "Reshape not supported";
2018     else if (mddev->degraded)
2019         rs->ti->error = "Can't reshape degraded raid set";
2020     else if (rs_is_recovering(rs))
2021         rs->ti->error = "Convert request on recovering raid set prohibited";
2022     else if (rs_is_reshaping(rs))
2023         rs->ti->error = "raid set already reshaping!";
2024     else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
2025         rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
2026     else
2027         return 0;
2028 
2029     return -EPERM;
2030 }
2031 
2032 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload)
2033 {
2034     BUG_ON(!rdev->sb_page);
2035 
2036     if (rdev->sb_loaded && !force_reload)
2037         return 0;
2038 
2039     rdev->sb_loaded = 0;
2040 
2041     if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) {
2042         DMERR("Failed to read superblock of device at position %d",
2043               rdev->raid_disk);
2044         md_error(rdev->mddev, rdev);
2045         set_bit(Faulty, &rdev->flags);
2046         return -EIO;
2047     }
2048 
2049     rdev->sb_loaded = 1;
2050 
2051     return 0;
2052 }
2053 
2054 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2055 {
2056     failed_devices[0] = le64_to_cpu(sb->failed_devices);
2057     memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
2058 
2059     if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2060         int i = ARRAY_SIZE(sb->extended_failed_devices);
2061 
2062         while (i--)
2063             failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
2064     }
2065 }
2066 
2067 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2068 {
2069     int i = ARRAY_SIZE(sb->extended_failed_devices);
2070 
2071     sb->failed_devices = cpu_to_le64(failed_devices[0]);
2072     while (i--)
2073         sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
2074 }
2075 
2076 /*
2077  * Synchronize the superblock members with the raid set properties
2078  *
2079  * All superblock data is little endian.
2080  */
2081 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
2082 {
2083     bool update_failed_devices = false;
2084     unsigned int i;
2085     uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2086     struct dm_raid_superblock *sb;
2087     struct raid_set *rs = container_of(mddev, struct raid_set, md);
2088 
2089     /* No metadata device, no superblock */
2090     if (!rdev->meta_bdev)
2091         return;
2092 
2093     BUG_ON(!rdev->sb_page);
2094 
2095     sb = page_address(rdev->sb_page);
2096 
2097     sb_retrieve_failed_devices(sb, failed_devices);
2098 
2099     for (i = 0; i < rs->raid_disks; i++)
2100         if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
2101             update_failed_devices = true;
2102             set_bit(i, (void *) failed_devices);
2103         }
2104 
2105     if (update_failed_devices)
2106         sb_update_failed_devices(sb, failed_devices);
2107 
2108     sb->magic = cpu_to_le32(DM_RAID_MAGIC);
2109     sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2110 
2111     sb->num_devices = cpu_to_le32(mddev->raid_disks);
2112     sb->array_position = cpu_to_le32(rdev->raid_disk);
2113 
2114     sb->events = cpu_to_le64(mddev->events);
2115 
2116     sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
2117     sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
2118 
2119     sb->level = cpu_to_le32(mddev->level);
2120     sb->layout = cpu_to_le32(mddev->layout);
2121     sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
2122 
2123     /********************************************************************
2124      * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
2125      *
2126      * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
2127      */
2128     sb->new_level = cpu_to_le32(mddev->new_level);
2129     sb->new_layout = cpu_to_le32(mddev->new_layout);
2130     sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
2131 
2132     sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2133 
2134     smp_rmb(); /* Make sure we access most recent reshape position */
2135     sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2136     if (le64_to_cpu(sb->reshape_position) != MaxSector) {
2137         /* Flag ongoing reshape */
2138         sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
2139 
2140         if (mddev->delta_disks < 0 || mddev->reshape_backwards)
2141             sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
2142     } else {
2143         /* Clear reshape flags */
2144         sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
2145     }
2146 
2147     sb->array_sectors = cpu_to_le64(mddev->array_sectors);
2148     sb->data_offset = cpu_to_le64(rdev->data_offset);
2149     sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
2150     sb->sectors = cpu_to_le64(rdev->sectors);
2151     sb->incompat_features = cpu_to_le32(0);
2152 
2153     /* Zero out the rest of the payload after the size of the superblock */
2154     memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
2155 }
2156 
2157 /*
2158  * super_load
2159  *
2160  * This function creates a superblock if one is not found on the device
2161  * and will decide which superblock to use if there's a choice.
2162  *
2163  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
2164  */
2165 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
2166 {
2167     int r;
2168     struct dm_raid_superblock *sb;
2169     struct dm_raid_superblock *refsb;
2170     uint64_t events_sb, events_refsb;
2171 
2172     r = read_disk_sb(rdev, rdev->sb_size, false);
2173     if (r)
2174         return r;
2175 
2176     sb = page_address(rdev->sb_page);
2177 
2178     /*
2179      * Two cases that we want to write new superblocks and rebuild:
2180      * 1) New device (no matching magic number)
2181      * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2182      */
2183     if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2184         (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2185         super_sync(rdev->mddev, rdev);
2186 
2187         set_bit(FirstUse, &rdev->flags);
2188         sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2189 
2190         /* Force writing of superblocks to disk */
2191         set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2192 
2193         /* Any superblock is better than none, choose that if given */
2194         return refdev ? 0 : 1;
2195     }
2196 
2197     if (!refdev)
2198         return 1;
2199 
2200     events_sb = le64_to_cpu(sb->events);
2201 
2202     refsb = page_address(refdev->sb_page);
2203     events_refsb = le64_to_cpu(refsb->events);
2204 
2205     return (events_sb > events_refsb) ? 1 : 0;
2206 }
2207 
2208 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2209 {
2210     int role;
2211     unsigned int d;
2212     struct mddev *mddev = &rs->md;
2213     uint64_t events_sb;
2214     uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2215     struct dm_raid_superblock *sb;
2216     uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2217     struct md_rdev *r;
2218     struct dm_raid_superblock *sb2;
2219 
2220     sb = page_address(rdev->sb_page);
2221     events_sb = le64_to_cpu(sb->events);
2222 
2223     /*
2224      * Initialise to 1 if this is a new superblock.
2225      */
2226     mddev->events = events_sb ? : 1;
2227 
2228     mddev->reshape_position = MaxSector;
2229 
2230     mddev->raid_disks = le32_to_cpu(sb->num_devices);
2231     mddev->level = le32_to_cpu(sb->level);
2232     mddev->layout = le32_to_cpu(sb->layout);
2233     mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2234 
2235     /*
2236      * Reshaping is supported, e.g. reshape_position is valid
2237      * in superblock and superblock content is authoritative.
2238      */
2239     if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2240         /* Superblock is authoritative wrt given raid set layout! */
2241         mddev->new_level = le32_to_cpu(sb->new_level);
2242         mddev->new_layout = le32_to_cpu(sb->new_layout);
2243         mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2244         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2245         mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2246 
2247         /* raid was reshaping and got interrupted */
2248         if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2249             if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2250                 DMERR("Reshape requested but raid set is still reshaping");
2251                 return -EINVAL;
2252             }
2253 
2254             if (mddev->delta_disks < 0 ||
2255                 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2256                 mddev->reshape_backwards = 1;
2257             else
2258                 mddev->reshape_backwards = 0;
2259 
2260             mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2261             rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2262         }
2263 
2264     } else {
2265         /*
2266          * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2267          */
2268         struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2269         struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2270 
2271         if (rs_takeover_requested(rs)) {
2272             if (rt_cur && rt_new)
2273                 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2274                       rt_cur->name, rt_new->name);
2275             else
2276                 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2277             return -EINVAL;
2278         } else if (rs_reshape_requested(rs)) {
2279             DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2280             if (mddev->layout != mddev->new_layout) {
2281                 if (rt_cur && rt_new)
2282                     DMERR("  current layout %s vs new layout %s",
2283                           rt_cur->name, rt_new->name);
2284                 else
2285                     DMERR("  current layout 0x%X vs new layout 0x%X",
2286                           le32_to_cpu(sb->layout), mddev->new_layout);
2287             }
2288             if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2289                 DMERR("  current stripe sectors %u vs new stripe sectors %u",
2290                       mddev->chunk_sectors, mddev->new_chunk_sectors);
2291             if (rs->delta_disks)
2292                 DMERR("  current %u disks vs new %u disks",
2293                       mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2294             if (rs_is_raid10(rs)) {
2295                 DMERR("  Old layout: %s w/ %u copies",
2296                       raid10_md_layout_to_format(mddev->layout),
2297                       raid10_md_layout_to_copies(mddev->layout));
2298                 DMERR("  New layout: %s w/ %u copies",
2299                       raid10_md_layout_to_format(mddev->new_layout),
2300                       raid10_md_layout_to_copies(mddev->new_layout));
2301             }
2302             return -EINVAL;
2303         }
2304 
2305         DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2306     }
2307 
2308     if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2309         mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2310 
2311     /*
2312      * During load, we set FirstUse if a new superblock was written.
2313      * There are two reasons we might not have a superblock:
2314      * 1) The raid set is brand new - in which case, all of the
2315      *    devices must have their In_sync bit set.  Also,
2316      *    recovery_cp must be 0, unless forced.
2317      * 2) This is a new device being added to an old raid set
2318      *    and the new device needs to be rebuilt - in which
2319      *    case the In_sync bit will /not/ be set and
2320      *    recovery_cp must be MaxSector.
2321      * 3) This is/are a new device(s) being added to an old
2322      *    raid set during takeover to a higher raid level
2323      *    to provide capacity for redundancy or during reshape
2324      *    to add capacity to grow the raid set.
2325      */
2326     d = 0;
2327     rdev_for_each(r, mddev) {
2328         if (test_bit(Journal, &rdev->flags))
2329             continue;
2330 
2331         if (test_bit(FirstUse, &r->flags))
2332             new_devs++;
2333 
2334         if (!test_bit(In_sync, &r->flags)) {
2335             DMINFO("Device %d specified for rebuild; clearing superblock",
2336                 r->raid_disk);
2337             rebuilds++;
2338 
2339             if (test_bit(FirstUse, &r->flags))
2340                 rebuild_and_new++;
2341         }
2342 
2343         d++;
2344     }
2345 
2346     if (new_devs == rs->raid_disks || !rebuilds) {
2347         /* Replace a broken device */
2348         if (new_devs == rs->raid_disks) {
2349             DMINFO("Superblocks created for new raid set");
2350             set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2351         } else if (new_devs != rebuilds &&
2352                new_devs != rs->delta_disks) {
2353             DMERR("New device injected into existing raid set without "
2354                   "'delta_disks' or 'rebuild' parameter specified");
2355             return -EINVAL;
2356         }
2357     } else if (new_devs && new_devs != rebuilds) {
2358         DMERR("%u 'rebuild' devices cannot be injected into"
2359               " a raid set with %u other first-time devices",
2360               rebuilds, new_devs);
2361         return -EINVAL;
2362     } else if (rebuilds) {
2363         if (rebuild_and_new && rebuilds != rebuild_and_new) {
2364             DMERR("new device%s provided without 'rebuild'",
2365                   new_devs > 1 ? "s" : "");
2366             return -EINVAL;
2367         } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) {
2368             DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2369                   (unsigned long long) mddev->recovery_cp);
2370             return -EINVAL;
2371         } else if (rs_is_reshaping(rs)) {
2372             DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2373                   (unsigned long long) mddev->reshape_position);
2374             return -EINVAL;
2375         }
2376     }
2377 
2378     /*
2379      * Now we set the Faulty bit for those devices that are
2380      * recorded in the superblock as failed.
2381      */
2382     sb_retrieve_failed_devices(sb, failed_devices);
2383     rdev_for_each(r, mddev) {
2384         if (test_bit(Journal, &rdev->flags) ||
2385             !r->sb_page)
2386             continue;
2387         sb2 = page_address(r->sb_page);
2388         sb2->failed_devices = 0;
2389         memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2390 
2391         /*
2392          * Check for any device re-ordering.
2393          */
2394         if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2395             role = le32_to_cpu(sb2->array_position);
2396             if (role < 0)
2397                 continue;
2398 
2399             if (role != r->raid_disk) {
2400                 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2401                     if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2402                         rs->raid_disks % rs->raid10_copies) {
2403                         rs->ti->error =
2404                             "Cannot change raid10 near set to odd # of devices!";
2405                         return -EINVAL;
2406                     }
2407 
2408                     sb2->array_position = cpu_to_le32(r->raid_disk);
2409 
2410                 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2411                        !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2412                        !rt_is_raid1(rs->raid_type)) {
2413                     rs->ti->error = "Cannot change device positions in raid set";
2414                     return -EINVAL;
2415                 }
2416 
2417                 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2418             }
2419 
2420             /*
2421              * Partial recovery is performed on
2422              * returning failed devices.
2423              */
2424             if (test_bit(role, (void *) failed_devices))
2425                 set_bit(Faulty, &r->flags);
2426         }
2427     }
2428 
2429     return 0;
2430 }
2431 
2432 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2433 {
2434     struct mddev *mddev = &rs->md;
2435     struct dm_raid_superblock *sb;
2436 
2437     if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
2438         return 0;
2439 
2440     sb = page_address(rdev->sb_page);
2441 
2442     /*
2443      * If mddev->events is not set, we know we have not yet initialized
2444      * the array.
2445      */
2446     if (!mddev->events && super_init_validation(rs, rdev))
2447         return -EINVAL;
2448 
2449     if (le32_to_cpu(sb->compat_features) &&
2450         le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2451         rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2452         return -EINVAL;
2453     }
2454 
2455     if (sb->incompat_features) {
2456         rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2457         return -EINVAL;
2458     }
2459 
2460     /* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */
2461     mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096);
2462     mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2463 
2464     if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2465         /*
2466          * Retrieve rdev size stored in superblock to be prepared for shrink.
2467          * Check extended superblock members are present otherwise the size
2468          * will not be set!
2469          */
2470         if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190)
2471             rdev->sectors = le64_to_cpu(sb->sectors);
2472 
2473         rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2474         if (rdev->recovery_offset == MaxSector)
2475             set_bit(In_sync, &rdev->flags);
2476         /*
2477          * If no reshape in progress -> we're recovering single
2478          * disk(s) and have to set the device(s) to out-of-sync
2479          */
2480         else if (!rs_is_reshaping(rs))
2481             clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2482     }
2483 
2484     /*
2485      * If a device comes back, set it as not In_sync and no longer faulty.
2486      */
2487     if (test_and_clear_bit(Faulty, &rdev->flags)) {
2488         rdev->recovery_offset = 0;
2489         clear_bit(In_sync, &rdev->flags);
2490         rdev->saved_raid_disk = rdev->raid_disk;
2491     }
2492 
2493     /* Reshape support -> restore repective data offsets */
2494     rdev->data_offset = le64_to_cpu(sb->data_offset);
2495     rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2496 
2497     return 0;
2498 }
2499 
2500 /*
2501  * Analyse superblocks and select the freshest.
2502  */
2503 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2504 {
2505     int r;
2506     struct md_rdev *rdev, *freshest;
2507     struct mddev *mddev = &rs->md;
2508 
2509     freshest = NULL;
2510     rdev_for_each(rdev, mddev) {
2511         if (test_bit(Journal, &rdev->flags))
2512             continue;
2513 
2514         if (!rdev->meta_bdev)
2515             continue;
2516 
2517         /* Set superblock offset/size for metadata device. */
2518         rdev->sb_start = 0;
2519         rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
2520         if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) {
2521             DMERR("superblock size of a logical block is no longer valid");
2522             return -EINVAL;
2523         }
2524 
2525         /*
2526          * Skipping super_load due to CTR_FLAG_SYNC will cause
2527          * the array to undergo initialization again as
2528          * though it were new.  This is the intended effect
2529          * of the "sync" directive.
2530          *
2531          * With reshaping capability added, we must ensure that
2532          * that the "sync" directive is disallowed during the reshape.
2533          */
2534         if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2535             continue;
2536 
2537         r = super_load(rdev, freshest);
2538 
2539         switch (r) {
2540         case 1:
2541             freshest = rdev;
2542             break;
2543         case 0:
2544             break;
2545         default:
2546             /* This is a failure to read the superblock from the metadata device. */
2547             /*
2548              * We have to keep any raid0 data/metadata device pairs or
2549              * the MD raid0 personality will fail to start the array.
2550              */
2551             if (rs_is_raid0(rs))
2552                 continue;
2553 
2554             /*
2555              * We keep the dm_devs to be able to emit the device tuple
2556              * properly on the table line in raid_status() (rather than
2557              * mistakenly acting as if '- -' got passed into the constructor).
2558              *
2559              * The rdev has to stay on the same_set list to allow for
2560              * the attempt to restore faulty devices on second resume.
2561              */
2562             rdev->raid_disk = rdev->saved_raid_disk = -1;
2563             break;
2564         }
2565     }
2566 
2567     if (!freshest)
2568         return 0;
2569 
2570     /*
2571      * Validation of the freshest device provides the source of
2572      * validation for the remaining devices.
2573      */
2574     rs->ti->error = "Unable to assemble array: Invalid superblocks";
2575     if (super_validate(rs, freshest))
2576         return -EINVAL;
2577 
2578     if (validate_raid_redundancy(rs)) {
2579         rs->ti->error = "Insufficient redundancy to activate array";
2580         return -EINVAL;
2581     }
2582 
2583     rdev_for_each(rdev, mddev)
2584         if (!test_bit(Journal, &rdev->flags) &&
2585             rdev != freshest &&
2586             super_validate(rs, rdev))
2587             return -EINVAL;
2588     return 0;
2589 }
2590 
2591 /*
2592  * Adjust data_offset and new_data_offset on all disk members of @rs
2593  * for out of place reshaping if requested by contructor
2594  *
2595  * We need free space at the beginning of each raid disk for forward
2596  * and at the end for backward reshapes which userspace has to provide
2597  * via remapping/reordering of space.
2598  */
2599 static int rs_adjust_data_offsets(struct raid_set *rs)
2600 {
2601     sector_t data_offset = 0, new_data_offset = 0;
2602     struct md_rdev *rdev;
2603 
2604     /* Constructor did not request data offset change */
2605     if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2606         if (!rs_is_reshapable(rs))
2607             goto out;
2608 
2609         return 0;
2610     }
2611 
2612     /* HM FIXME: get In_Sync raid_dev? */
2613     rdev = &rs->dev[0].rdev;
2614 
2615     if (rs->delta_disks < 0) {
2616         /*
2617          * Removing disks (reshaping backwards):
2618          *
2619          * - before reshape: data is at offset 0 and free space
2620          *           is at end of each component LV
2621          *
2622          * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2623          */
2624         data_offset = 0;
2625         new_data_offset = rs->data_offset;
2626 
2627     } else if (rs->delta_disks > 0) {
2628         /*
2629          * Adding disks (reshaping forwards):
2630          *
2631          * - before reshape: data is at offset rs->data_offset != 0 and
2632          *           free space is at begin of each component LV
2633          *
2634          * - after reshape: data is at offset 0 on each component LV
2635          */
2636         data_offset = rs->data_offset;
2637         new_data_offset = 0;
2638 
2639     } else {
2640         /*
2641          * User space passes in 0 for data offset after having removed reshape space
2642          *
2643          * - or - (data offset != 0)
2644          *
2645          * Changing RAID layout or chunk size -> toggle offsets
2646          *
2647          * - before reshape: data is at offset rs->data_offset 0 and
2648          *           free space is at end of each component LV
2649          *           -or-
2650          *                   data is at offset rs->data_offset != 0 and
2651          *           free space is at begin of each component LV
2652          *
2653          * - after reshape: data is at offset 0 if it was at offset != 0
2654          *                  or at offset != 0 if it was at offset 0
2655          *                  on each component LV
2656          *
2657          */
2658         data_offset = rs->data_offset ? rdev->data_offset : 0;
2659         new_data_offset = data_offset ? 0 : rs->data_offset;
2660         set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2661     }
2662 
2663     /*
2664      * Make sure we got a minimum amount of free sectors per device
2665      */
2666     if (rs->data_offset &&
2667         bdev_nr_sectors(rdev->bdev) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) {
2668         rs->ti->error = data_offset ? "No space for forward reshape" :
2669                           "No space for backward reshape";
2670         return -ENOSPC;
2671     }
2672 out:
2673     /*
2674      * Raise recovery_cp in case data_offset != 0 to
2675      * avoid false recovery positives in the constructor.
2676      */
2677     if (rs->md.recovery_cp < rs->md.dev_sectors)
2678         rs->md.recovery_cp += rs->dev[0].rdev.data_offset;
2679 
2680     /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */
2681     rdev_for_each(rdev, &rs->md) {
2682         if (!test_bit(Journal, &rdev->flags)) {
2683             rdev->data_offset = data_offset;
2684             rdev->new_data_offset = new_data_offset;
2685         }
2686     }
2687 
2688     return 0;
2689 }
2690 
2691 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2692 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2693 {
2694     int i = 0;
2695     struct md_rdev *rdev;
2696 
2697     rdev_for_each(rdev, &rs->md) {
2698         if (!test_bit(Journal, &rdev->flags)) {
2699             rdev->raid_disk = i++;
2700             rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2701         }
2702     }
2703 }
2704 
2705 /*
2706  * Setup @rs for takeover by a different raid level
2707  */
2708 static int rs_setup_takeover(struct raid_set *rs)
2709 {
2710     struct mddev *mddev = &rs->md;
2711     struct md_rdev *rdev;
2712     unsigned int d = mddev->raid_disks = rs->raid_disks;
2713     sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2714 
2715     if (rt_is_raid10(rs->raid_type)) {
2716         if (rs_is_raid0(rs)) {
2717             /* Userpace reordered disks -> adjust raid_disk indexes */
2718             __reorder_raid_disk_indexes(rs);
2719 
2720             /* raid0 -> raid10_far layout */
2721             mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2722                                    rs->raid10_copies);
2723         } else if (rs_is_raid1(rs))
2724             /* raid1 -> raid10_near layout */
2725             mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2726                                    rs->raid_disks);
2727         else
2728             return -EINVAL;
2729 
2730     }
2731 
2732     clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2733     mddev->recovery_cp = MaxSector;
2734 
2735     while (d--) {
2736         rdev = &rs->dev[d].rdev;
2737 
2738         if (test_bit(d, (void *) rs->rebuild_disks)) {
2739             clear_bit(In_sync, &rdev->flags);
2740             clear_bit(Faulty, &rdev->flags);
2741             mddev->recovery_cp = rdev->recovery_offset = 0;
2742             /* Bitmap has to be created when we do an "up" takeover */
2743             set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2744         }
2745 
2746         rdev->new_data_offset = new_data_offset;
2747     }
2748 
2749     return 0;
2750 }
2751 
2752 /* Prepare @rs for reshape */
2753 static int rs_prepare_reshape(struct raid_set *rs)
2754 {
2755     bool reshape;
2756     struct mddev *mddev = &rs->md;
2757 
2758     if (rs_is_raid10(rs)) {
2759         if (rs->raid_disks != mddev->raid_disks &&
2760             __is_raid10_near(mddev->layout) &&
2761             rs->raid10_copies &&
2762             rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2763             /*
2764              * raid disk have to be multiple of data copies to allow this conversion,
2765              *
2766              * This is actually not a reshape it is a
2767              * rebuild of any additional mirrors per group
2768              */
2769             if (rs->raid_disks % rs->raid10_copies) {
2770                 rs->ti->error = "Can't reshape raid10 mirror groups";
2771                 return -EINVAL;
2772             }
2773 
2774             /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2775             __reorder_raid_disk_indexes(rs);
2776             mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2777                                    rs->raid10_copies);
2778             mddev->new_layout = mddev->layout;
2779             reshape = false;
2780         } else
2781             reshape = true;
2782 
2783     } else if (rs_is_raid456(rs))
2784         reshape = true;
2785 
2786     else if (rs_is_raid1(rs)) {
2787         if (rs->delta_disks) {
2788             /* Process raid1 via delta_disks */
2789             mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2790             reshape = true;
2791         } else {
2792             /* Process raid1 without delta_disks */
2793             mddev->raid_disks = rs->raid_disks;
2794             reshape = false;
2795         }
2796     } else {
2797         rs->ti->error = "Called with bogus raid type";
2798         return -EINVAL;
2799     }
2800 
2801     if (reshape) {
2802         set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2803         set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2804     } else if (mddev->raid_disks < rs->raid_disks)
2805         /* Create new superblocks and bitmaps, if any new disks */
2806         set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2807 
2808     return 0;
2809 }
2810 
2811 /* Get reshape sectors from data_offsets or raid set */
2812 static sector_t _get_reshape_sectors(struct raid_set *rs)
2813 {
2814     struct md_rdev *rdev;
2815     sector_t reshape_sectors = 0;
2816 
2817     rdev_for_each(rdev, &rs->md)
2818         if (!test_bit(Journal, &rdev->flags)) {
2819             reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ?
2820                     rdev->data_offset - rdev->new_data_offset :
2821                     rdev->new_data_offset - rdev->data_offset;
2822             break;
2823         }
2824 
2825     return max(reshape_sectors, (sector_t) rs->data_offset);
2826 }
2827 
2828 /*
2829  * Reshape:
2830  * - change raid layout
2831  * - change chunk size
2832  * - add disks
2833  * - remove disks
2834  */
2835 static int rs_setup_reshape(struct raid_set *rs)
2836 {
2837     int r = 0;
2838     unsigned int cur_raid_devs, d;
2839     sector_t reshape_sectors = _get_reshape_sectors(rs);
2840     struct mddev *mddev = &rs->md;
2841     struct md_rdev *rdev;
2842 
2843     mddev->delta_disks = rs->delta_disks;
2844     cur_raid_devs = mddev->raid_disks;
2845 
2846     /* Ignore impossible layout change whilst adding/removing disks */
2847     if (mddev->delta_disks &&
2848         mddev->layout != mddev->new_layout) {
2849         DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2850         mddev->new_layout = mddev->layout;
2851     }
2852 
2853     /*
2854      * Adjust array size:
2855      *
2856      * - in case of adding disk(s), array size has
2857      *   to grow after the disk adding reshape,
2858      *   which'll hapen in the event handler;
2859      *   reshape will happen forward, so space has to
2860      *   be available at the beginning of each disk
2861      *
2862      * - in case of removing disk(s), array size
2863      *   has to shrink before starting the reshape,
2864      *   which'll happen here;
2865      *   reshape will happen backward, so space has to
2866      *   be available at the end of each disk
2867      *
2868      * - data_offset and new_data_offset are
2869      *   adjusted for aforementioned out of place
2870      *   reshaping based on userspace passing in
2871      *   the "data_offset <sectors>" key/value
2872      *   pair via the constructor
2873      */
2874 
2875     /* Add disk(s) */
2876     if (rs->delta_disks > 0) {
2877         /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2878         for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2879             rdev = &rs->dev[d].rdev;
2880             clear_bit(In_sync, &rdev->flags);
2881 
2882             /*
2883              * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2884              * by md, which'll store that erroneously in the superblock on reshape
2885              */
2886             rdev->saved_raid_disk = -1;
2887             rdev->raid_disk = d;
2888 
2889             rdev->sectors = mddev->dev_sectors;
2890             rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2891         }
2892 
2893         mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */
2894 
2895     /* Remove disk(s) */
2896     } else if (rs->delta_disks < 0) {
2897         r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true);
2898         mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2899 
2900     /* Change layout and/or chunk size */
2901     } else {
2902         /*
2903          * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2904          *
2905          * keeping number of disks and do layout change ->
2906          *
2907          * toggle reshape_backward depending on data_offset:
2908          *
2909          * - free space upfront -> reshape forward
2910          *
2911          * - free space at the end -> reshape backward
2912          *
2913          *
2914          * This utilizes free reshape space avoiding the need
2915          * for userspace to move (parts of) LV segments in
2916          * case of layout/chunksize change  (for disk
2917          * adding/removing reshape space has to be at
2918          * the proper address (see above with delta_disks):
2919          *
2920          * add disk(s)   -> begin
2921          * remove disk(s)-> end
2922          */
2923         mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2924     }
2925 
2926     /*
2927      * Adjust device size for forward reshape
2928      * because md_finish_reshape() reduces it.
2929      */
2930     if (!mddev->reshape_backwards)
2931         rdev_for_each(rdev, &rs->md)
2932             if (!test_bit(Journal, &rdev->flags))
2933                 rdev->sectors += reshape_sectors;
2934 
2935     return r;
2936 }
2937 
2938 /*
2939  * If the md resync thread has updated superblock with max reshape position
2940  * at the end of a reshape but not (yet) reset the layout configuration
2941  * changes -> reset the latter.
2942  */
2943 static void rs_reset_inconclusive_reshape(struct raid_set *rs)
2944 {
2945     if (!rs_is_reshaping(rs) && rs_is_layout_change(rs, true)) {
2946         rs_set_cur(rs);
2947         rs->md.delta_disks = 0;
2948         rs->md.reshape_backwards = 0;
2949     }
2950 }
2951 
2952 /*
2953  * Enable/disable discard support on RAID set depending on
2954  * RAID level and discard properties of underlying RAID members.
2955  */
2956 static void configure_discard_support(struct raid_set *rs)
2957 {
2958     int i;
2959     bool raid456;
2960     struct dm_target *ti = rs->ti;
2961 
2962     /*
2963      * XXX: RAID level 4,5,6 require zeroing for safety.
2964      */
2965     raid456 = rs_is_raid456(rs);
2966 
2967     for (i = 0; i < rs->raid_disks; i++) {
2968         if (!rs->dev[i].rdev.bdev ||
2969             !bdev_max_discard_sectors(rs->dev[i].rdev.bdev))
2970             return;
2971 
2972         if (raid456) {
2973             if (!devices_handle_discard_safely) {
2974                 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2975                 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2976                 return;
2977             }
2978         }
2979     }
2980 
2981     ti->num_discard_bios = 1;
2982 }
2983 
2984 /*
2985  * Construct a RAID0/1/10/4/5/6 mapping:
2986  * Args:
2987  *  <raid_type> <#raid_params> <raid_params>{0,}    \
2988  *  <#raid_devs> [<meta_dev1> <dev1>]{1,}
2989  *
2990  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
2991  * details on possible <raid_params>.
2992  *
2993  * Userspace is free to initialize the metadata devices, hence the superblocks to
2994  * enforce recreation based on the passed in table parameters.
2995  *
2996  */
2997 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2998 {
2999     int r;
3000     bool resize = false;
3001     struct raid_type *rt;
3002     unsigned int num_raid_params, num_raid_devs;
3003     sector_t sb_array_sectors, rdev_sectors, reshape_sectors;
3004     struct raid_set *rs = NULL;
3005     const char *arg;
3006     struct rs_layout rs_layout;
3007     struct dm_arg_set as = { argc, argv }, as_nrd;
3008     struct dm_arg _args[] = {
3009         { 0, as.argc, "Cannot understand number of raid parameters" },
3010         { 1, 254, "Cannot understand number of raid devices parameters" }
3011     };
3012 
3013     arg = dm_shift_arg(&as);
3014     if (!arg) {
3015         ti->error = "No arguments";
3016         return -EINVAL;
3017     }
3018 
3019     rt = get_raid_type(arg);
3020     if (!rt) {
3021         ti->error = "Unrecognised raid_type";
3022         return -EINVAL;
3023     }
3024 
3025     /* Must have <#raid_params> */
3026     if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
3027         return -EINVAL;
3028 
3029     /* number of raid device tupples <meta_dev data_dev> */
3030     as_nrd = as;
3031     dm_consume_args(&as_nrd, num_raid_params);
3032     _args[1].max = (as_nrd.argc - 1) / 2;
3033     if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
3034         return -EINVAL;
3035 
3036     if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
3037         ti->error = "Invalid number of supplied raid devices";
3038         return -EINVAL;
3039     }
3040 
3041     rs = raid_set_alloc(ti, rt, num_raid_devs);
3042     if (IS_ERR(rs))
3043         return PTR_ERR(rs);
3044 
3045     r = parse_raid_params(rs, &as, num_raid_params);
3046     if (r)
3047         goto bad;
3048 
3049     r = parse_dev_params(rs, &as);
3050     if (r)
3051         goto bad;
3052 
3053     rs->md.sync_super = super_sync;
3054 
3055     /*
3056      * Calculate ctr requested array and device sizes to allow
3057      * for superblock analysis needing device sizes defined.
3058      *
3059      * Any existing superblock will overwrite the array and device sizes
3060      */
3061     r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3062     if (r)
3063         goto bad;
3064 
3065     /* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */
3066     rs->array_sectors = rs->md.array_sectors;
3067     rs->dev_sectors = rs->md.dev_sectors;
3068 
3069     /*
3070      * Backup any new raid set level, layout, ...
3071      * requested to be able to compare to superblock
3072      * members for conversion decisions.
3073      */
3074     rs_config_backup(rs, &rs_layout);
3075 
3076     r = analyse_superblocks(ti, rs);
3077     if (r)
3078         goto bad;
3079 
3080     /* All in-core metadata now as of current superblocks after calling analyse_superblocks() */
3081     sb_array_sectors = rs->md.array_sectors;
3082     rdev_sectors = __rdev_sectors(rs);
3083     if (!rdev_sectors) {
3084         ti->error = "Invalid rdev size";
3085         r = -EINVAL;
3086         goto bad;
3087     }
3088 
3089 
3090     reshape_sectors = _get_reshape_sectors(rs);
3091     if (rs->dev_sectors != rdev_sectors) {
3092         resize = (rs->dev_sectors != rdev_sectors - reshape_sectors);
3093         if (rs->dev_sectors > rdev_sectors - reshape_sectors)
3094             set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3095     }
3096 
3097     INIT_WORK(&rs->md.event_work, do_table_event);
3098     ti->private = rs;
3099     ti->num_flush_bios = 1;
3100     ti->needs_bio_set_dev = true;
3101 
3102     /* Restore any requested new layout for conversion decision */
3103     rs_config_restore(rs, &rs_layout);
3104 
3105     /*
3106      * Now that we have any superblock metadata available,
3107      * check for new, recovering, reshaping, to be taken over,
3108      * to be reshaped or an existing, unchanged raid set to
3109      * run in sequence.
3110      */
3111     if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
3112         /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
3113         if (rs_is_raid6(rs) &&
3114             test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
3115             ti->error = "'nosync' not allowed for new raid6 set";
3116             r = -EINVAL;
3117             goto bad;
3118         }
3119         rs_setup_recovery(rs, 0);
3120         set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3121         rs_set_new(rs);
3122     } else if (rs_is_recovering(rs)) {
3123         /* A recovering raid set may be resized */
3124         goto size_check;
3125     } else if (rs_is_reshaping(rs)) {
3126         /* Have to reject size change request during reshape */
3127         if (resize) {
3128             ti->error = "Can't resize a reshaping raid set";
3129             r = -EPERM;
3130             goto bad;
3131         }
3132         /* skip setup rs */
3133     } else if (rs_takeover_requested(rs)) {
3134         if (rs_is_reshaping(rs)) {
3135             ti->error = "Can't takeover a reshaping raid set";
3136             r = -EPERM;
3137             goto bad;
3138         }
3139 
3140         /* We can't takeover a journaled raid4/5/6 */
3141         if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3142             ti->error = "Can't takeover a journaled raid4/5/6 set";
3143             r = -EPERM;
3144             goto bad;
3145         }
3146 
3147         /*
3148          * If a takeover is needed, userspace sets any additional
3149          * devices to rebuild and we can check for a valid request here.
3150          *
3151          * If acceptible, set the level to the new requested
3152          * one, prohibit requesting recovery, allow the raid
3153          * set to run and store superblocks during resume.
3154          */
3155         r = rs_check_takeover(rs);
3156         if (r)
3157             goto bad;
3158 
3159         r = rs_setup_takeover(rs);
3160         if (r)
3161             goto bad;
3162 
3163         set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3164         /* Takeover ain't recovery, so disable recovery */
3165         rs_setup_recovery(rs, MaxSector);
3166         rs_set_new(rs);
3167     } else if (rs_reshape_requested(rs)) {
3168         /* Only request grow on raid set size extensions, not on reshapes. */
3169         clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3170 
3171         /*
3172          * No need to check for 'ongoing' takeover here, because takeover
3173          * is an instant operation as oposed to an ongoing reshape.
3174          */
3175 
3176         /* We can't reshape a journaled raid4/5/6 */
3177         if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3178             ti->error = "Can't reshape a journaled raid4/5/6 set";
3179             r = -EPERM;
3180             goto bad;
3181         }
3182 
3183         /* Out-of-place space has to be available to allow for a reshape unless raid1! */
3184         if (reshape_sectors || rs_is_raid1(rs)) {
3185             /*
3186               * We can only prepare for a reshape here, because the
3187               * raid set needs to run to provide the repective reshape
3188               * check functions via its MD personality instance.
3189               *
3190               * So do the reshape check after md_run() succeeded.
3191               */
3192             r = rs_prepare_reshape(rs);
3193             if (r)
3194                 goto bad;
3195 
3196             /* Reshaping ain't recovery, so disable recovery */
3197             rs_setup_recovery(rs, MaxSector);
3198         }
3199         rs_set_cur(rs);
3200     } else {
3201 size_check:
3202         /* May not set recovery when a device rebuild is requested */
3203         if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3204             clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3205             set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3206             rs_setup_recovery(rs, MaxSector);
3207         } else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3208             /*
3209              * Set raid set to current size, i.e. size as of
3210              * superblocks to grow to larger size in preresume.
3211              */
3212             r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false);
3213             if (r)
3214                 goto bad;
3215 
3216             rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors);
3217         } else {
3218             /* This is no size change or it is shrinking, update size and record in superblocks */
3219             r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3220             if (r)
3221                 goto bad;
3222 
3223             if (sb_array_sectors > rs->array_sectors)
3224                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3225         }
3226         rs_set_cur(rs);
3227     }
3228 
3229     /* If constructor requested it, change data and new_data offsets */
3230     r = rs_adjust_data_offsets(rs);
3231     if (r)
3232         goto bad;
3233 
3234     /* Catch any inconclusive reshape superblock content. */
3235     rs_reset_inconclusive_reshape(rs);
3236 
3237     /* Start raid set read-only and assumed clean to change in raid_resume() */
3238     rs->md.ro = 1;
3239     rs->md.in_sync = 1;
3240 
3241     /* Keep array frozen until resume. */
3242     set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
3243 
3244     /* Has to be held on running the array */
3245     mddev_lock_nointr(&rs->md);
3246     r = md_run(&rs->md);
3247     rs->md.in_sync = 0; /* Assume already marked dirty */
3248     if (r) {
3249         ti->error = "Failed to run raid array";
3250         mddev_unlock(&rs->md);
3251         goto bad;
3252     }
3253 
3254     r = md_start(&rs->md);
3255     if (r) {
3256         ti->error = "Failed to start raid array";
3257         mddev_unlock(&rs->md);
3258         goto bad_md_start;
3259     }
3260 
3261     /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */
3262     if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
3263         r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode);
3264         if (r) {
3265             ti->error = "Failed to set raid4/5/6 journal mode";
3266             mddev_unlock(&rs->md);
3267             goto bad_journal_mode_set;
3268         }
3269     }
3270 
3271     mddev_suspend(&rs->md);
3272     set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags);
3273 
3274     /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
3275     if (rs_is_raid456(rs)) {
3276         r = rs_set_raid456_stripe_cache(rs);
3277         if (r)
3278             goto bad_stripe_cache;
3279     }
3280 
3281     /* Now do an early reshape check */
3282     if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3283         r = rs_check_reshape(rs);
3284         if (r)
3285             goto bad_check_reshape;
3286 
3287         /* Restore new, ctr requested layout to perform check */
3288         rs_config_restore(rs, &rs_layout);
3289 
3290         if (rs->md.pers->start_reshape) {
3291             r = rs->md.pers->check_reshape(&rs->md);
3292             if (r) {
3293                 ti->error = "Reshape check failed";
3294                 goto bad_check_reshape;
3295             }
3296         }
3297     }
3298 
3299     /* Disable/enable discard support on raid set. */
3300     configure_discard_support(rs);
3301 
3302     mddev_unlock(&rs->md);
3303     return 0;
3304 
3305 bad_md_start:
3306 bad_journal_mode_set:
3307 bad_stripe_cache:
3308 bad_check_reshape:
3309     md_stop(&rs->md);
3310 bad:
3311     raid_set_free(rs);
3312 
3313     return r;
3314 }
3315 
3316 static void raid_dtr(struct dm_target *ti)
3317 {
3318     struct raid_set *rs = ti->private;
3319 
3320     md_stop(&rs->md);
3321     raid_set_free(rs);
3322 }
3323 
3324 static int raid_map(struct dm_target *ti, struct bio *bio)
3325 {
3326     struct raid_set *rs = ti->private;
3327     struct mddev *mddev = &rs->md;
3328 
3329     /*
3330      * If we're reshaping to add disk(s)), ti->len and
3331      * mddev->array_sectors will differ during the process
3332      * (ti->len > mddev->array_sectors), so we have to requeue
3333      * bios with addresses > mddev->array_sectors here or
3334      * there will occur accesses past EOD of the component
3335      * data images thus erroring the raid set.
3336      */
3337     if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
3338         return DM_MAPIO_REQUEUE;
3339 
3340     md_handle_request(mddev, bio);
3341 
3342     return DM_MAPIO_SUBMITTED;
3343 }
3344 
3345 /* Return sync state string for @state */
3346 enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle };
3347 static const char *sync_str(enum sync_state state)
3348 {
3349     /* Has to be in above sync_state order! */
3350     static const char *sync_strs[] = {
3351         "frozen",
3352         "reshape",
3353         "resync",
3354         "check",
3355         "repair",
3356         "recover",
3357         "idle"
3358     };
3359 
3360     return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef";
3361 };
3362 
3363 /* Return enum sync_state for @mddev derived from @recovery flags */
3364 static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery)
3365 {
3366     if (test_bit(MD_RECOVERY_FROZEN, &recovery))
3367         return st_frozen;
3368 
3369     /* The MD sync thread can be done with io or be interrupted but still be running */
3370     if (!test_bit(MD_RECOVERY_DONE, &recovery) &&
3371         (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
3372          (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) {
3373         if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
3374             return st_reshape;
3375 
3376         if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
3377             if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
3378                 return st_resync;
3379             if (test_bit(MD_RECOVERY_CHECK, &recovery))
3380                 return st_check;
3381             return st_repair;
3382         }
3383 
3384         if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3385             return st_recover;
3386 
3387         if (mddev->reshape_position != MaxSector)
3388             return st_reshape;
3389     }
3390 
3391     return st_idle;
3392 }
3393 
3394 /*
3395  * Return status string for @rdev
3396  *
3397  * Status characters:
3398  *
3399  *  'D' = Dead/Failed raid set component or raid4/5/6 journal device
3400  *  'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device
3401  *  'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device
3402  *  '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
3403  */
3404 static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev)
3405 {
3406     if (!rdev->bdev)
3407         return "-";
3408     else if (test_bit(Faulty, &rdev->flags))
3409         return "D";
3410     else if (test_bit(Journal, &rdev->flags))
3411         return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a";
3412     else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) ||
3413          (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) &&
3414           !test_bit(In_sync, &rdev->flags)))
3415         return "a";
3416     else
3417         return "A";
3418 }
3419 
3420 /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */
3421 static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery,
3422                 enum sync_state state, sector_t resync_max_sectors)
3423 {
3424     sector_t r;
3425     struct mddev *mddev = &rs->md;
3426 
3427     clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3428     clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3429 
3430     if (rs_is_raid0(rs)) {
3431         r = resync_max_sectors;
3432         set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3433 
3434     } else {
3435         if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery))
3436             r = mddev->recovery_cp;
3437         else
3438             r = mddev->curr_resync_completed;
3439 
3440         if (state == st_idle && r >= resync_max_sectors) {
3441             /*
3442              * Sync complete.
3443              */
3444             /* In case we have finished recovering, the array is in sync. */
3445             if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3446                 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3447 
3448         } else if (state == st_recover)
3449             /*
3450              * In case we are recovering, the array is not in sync
3451              * and health chars should show the recovering legs.
3452              *
3453              * Already retrieved recovery offset from curr_resync_completed above.
3454              */
3455             ;
3456 
3457         else if (state == st_resync || state == st_reshape)
3458             /*
3459              * If "resync/reshape" is occurring, the raid set
3460              * is or may be out of sync hence the health
3461              * characters shall be 'a'.
3462              */
3463             set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3464 
3465         else if (state == st_check || state == st_repair)
3466             /*
3467              * If "check" or "repair" is occurring, the raid set has
3468              * undergone an initial sync and the health characters
3469              * should not be 'a' anymore.
3470              */
3471             set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3472 
3473         else if (test_bit(MD_RECOVERY_NEEDED, &recovery))
3474             /*
3475              * We are idle and recovery is needed, prevent 'A' chars race
3476              * caused by components still set to in-sync by constructor.
3477              */
3478             set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3479 
3480         else {
3481             /*
3482              * We are idle and the raid set may be doing an initial
3483              * sync, or it may be rebuilding individual components.
3484              * If all the devices are In_sync, then it is the raid set
3485              * that is being initialized.
3486              */
3487             struct md_rdev *rdev;
3488 
3489             set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3490             rdev_for_each(rdev, mddev)
3491                 if (!test_bit(Journal, &rdev->flags) &&
3492                     !test_bit(In_sync, &rdev->flags)) {
3493                     clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3494                     break;
3495                 }
3496         }
3497     }
3498 
3499     return min(r, resync_max_sectors);
3500 }
3501 
3502 /* Helper to return @dev name or "-" if !@dev */
3503 static const char *__get_dev_name(struct dm_dev *dev)
3504 {
3505     return dev ? dev->name : "-";
3506 }
3507 
3508 static void raid_status(struct dm_target *ti, status_type_t type,
3509             unsigned int status_flags, char *result, unsigned int maxlen)
3510 {
3511     struct raid_set *rs = ti->private;
3512     struct mddev *mddev = &rs->md;
3513     struct r5conf *conf = rs_is_raid456(rs) ? mddev->private : NULL;
3514     int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3515     unsigned long recovery;
3516     unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3517     unsigned int sz = 0;
3518     unsigned int rebuild_writemostly_count = 0;
3519     sector_t progress, resync_max_sectors, resync_mismatches;
3520     enum sync_state state;
3521     struct raid_type *rt;
3522 
3523     switch (type) {
3524     case STATUSTYPE_INFO:
3525         /* *Should* always succeed */
3526         rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3527         if (!rt)
3528             return;
3529 
3530         DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3531 
3532         /* Access most recent mddev properties for status output */
3533         smp_rmb();
3534         /* Get sensible max sectors even if raid set not yet started */
3535         resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3536                       mddev->resync_max_sectors : mddev->dev_sectors;
3537         recovery = rs->md.recovery;
3538         state = decipher_sync_action(mddev, recovery);
3539         progress = rs_get_progress(rs, recovery, state, resync_max_sectors);
3540         resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3541                     atomic64_read(&mddev->resync_mismatches) : 0;
3542 
3543         /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
3544         for (i = 0; i < rs->raid_disks; i++)
3545             DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3546 
3547         /*
3548          * In-sync/Reshape ratio:
3549          *  The in-sync ratio shows the progress of:
3550          *   - Initializing the raid set
3551          *   - Rebuilding a subset of devices of the raid set
3552          *  The user can distinguish between the two by referring
3553          *  to the status characters.
3554          *
3555          *  The reshape ratio shows the progress of
3556          *  changing the raid layout or the number of
3557          *  disks of a raid set
3558          */
3559         DMEMIT(" %llu/%llu", (unsigned long long) progress,
3560                      (unsigned long long) resync_max_sectors);
3561 
3562         /*
3563          * v1.5.0+:
3564          *
3565          * Sync action:
3566          *   See Documentation/admin-guide/device-mapper/dm-raid.rst for
3567          *   information on each of these states.
3568          */
3569         DMEMIT(" %s", sync_str(state));
3570 
3571         /*
3572          * v1.5.0+:
3573          *
3574          * resync_mismatches/mismatch_cnt
3575          *   This field shows the number of discrepancies found when
3576          *   performing a "check" of the raid set.
3577          */
3578         DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3579 
3580         /*
3581          * v1.9.0+:
3582          *
3583          * data_offset (needed for out of space reshaping)
3584          *   This field shows the data offset into the data
3585          *   image LV where the first stripes data starts.
3586          *
3587          * We keep data_offset equal on all raid disks of the set,
3588          * so retrieving it from the first raid disk is sufficient.
3589          */
3590         DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3591 
3592         /*
3593          * v1.10.0+:
3594          */
3595         DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ?
3596                   __raid_dev_status(rs, &rs->journal_dev.rdev) : "-");
3597         break;
3598 
3599     case STATUSTYPE_TABLE:
3600         /* Report the table line string you would use to construct this raid set */
3601 
3602         /*
3603          * Count any rebuild or writemostly argument pairs and subtract the
3604          * hweight count being added below of any rebuild and writemostly ctr flags.
3605          */
3606         for (i = 0; i < rs->raid_disks; i++) {
3607             rebuild_writemostly_count += (test_bit(i, (void *) rs->rebuild_disks) ? 2 : 0) +
3608                              (test_bit(WriteMostly, &rs->dev[i].rdev.flags) ? 2 : 0);
3609         }
3610         rebuild_writemostly_count -= (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) ? 2 : 0) +
3611                          (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags) ? 2 : 0);
3612         /* Calculate raid parameter count based on ^ rebuild/writemostly argument counts and ctr flags set. */
3613         raid_param_cnt += rebuild_writemostly_count +
3614                   hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3615                   hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3616         /* Emit table line */
3617         /* This has to be in the documented order for userspace! */
3618         DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3619         if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3620             DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3621         if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3622             DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3623         if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags))
3624             for (i = 0; i < rs->raid_disks; i++)
3625                 if (test_bit(i, (void *) rs->rebuild_disks))
3626                     DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), i);
3627         if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3628             DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3629                       mddev->bitmap_info.daemon_sleep);
3630         if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3631             DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3632                      mddev->sync_speed_min);
3633         if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3634             DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3635                      mddev->sync_speed_max);
3636         if (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags))
3637             for (i = 0; i < rs->raid_disks; i++)
3638                 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3639                     DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3640                            rs->dev[i].rdev.raid_disk);
3641         if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3642             DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3643                       mddev->bitmap_info.max_write_behind);
3644         if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3645             DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3646                      max_nr_stripes);
3647         if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3648             DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3649                        (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3650         if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3651             DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3652                      raid10_md_layout_to_copies(mddev->layout));
3653         if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3654             DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3655                      raid10_md_layout_to_format(mddev->layout));
3656         if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3657             DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3658                      max(rs->delta_disks, mddev->delta_disks));
3659         if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3660             DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3661                        (unsigned long long) rs->data_offset);
3662         if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags))
3663             DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV),
3664                     __get_dev_name(rs->journal_dev.dev));
3665         if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags))
3666             DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE),
3667                      md_journal_mode_to_dm_raid(rs->journal_dev.mode));
3668         DMEMIT(" %d", rs->raid_disks);
3669         for (i = 0; i < rs->raid_disks; i++)
3670             DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3671                      __get_dev_name(rs->dev[i].data_dev));
3672         break;
3673 
3674     case STATUSTYPE_IMA:
3675         rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3676         if (!rt)
3677             return;
3678 
3679         DMEMIT_TARGET_NAME_VERSION(ti->type);
3680         DMEMIT(",raid_type=%s,raid_disks=%d", rt->name, mddev->raid_disks);
3681 
3682         /* Access most recent mddev properties for status output */
3683         smp_rmb();
3684         recovery = rs->md.recovery;
3685         state = decipher_sync_action(mddev, recovery);
3686         DMEMIT(",raid_state=%s", sync_str(state));
3687 
3688         for (i = 0; i < rs->raid_disks; i++) {
3689             DMEMIT(",raid_device_%d_status=", i);
3690             DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3691         }
3692 
3693         if (rt_is_raid456(rt)) {
3694             DMEMIT(",journal_dev_mode=");
3695             switch (rs->journal_dev.mode) {
3696             case R5C_JOURNAL_MODE_WRITE_THROUGH:
3697                 DMEMIT("%s",
3698                        _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_THROUGH].param);
3699                 break;
3700             case R5C_JOURNAL_MODE_WRITE_BACK:
3701                 DMEMIT("%s",
3702                        _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_BACK].param);
3703                 break;
3704             default:
3705                 DMEMIT("invalid");
3706                 break;
3707             }
3708         }
3709         DMEMIT(";");
3710         break;
3711     }
3712 }
3713 
3714 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv,
3715             char *result, unsigned maxlen)
3716 {
3717     struct raid_set *rs = ti->private;
3718     struct mddev *mddev = &rs->md;
3719 
3720     if (!mddev->pers || !mddev->pers->sync_request)
3721         return -EINVAL;
3722 
3723     if (!strcasecmp(argv[0], "frozen"))
3724         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3725     else
3726         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3727 
3728     if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3729         if (mddev->sync_thread) {
3730             set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3731             md_unregister_thread(&mddev->sync_thread);
3732             md_reap_sync_thread(mddev);
3733         }
3734     } else if (decipher_sync_action(mddev, mddev->recovery) != st_idle)
3735         return -EBUSY;
3736     else if (!strcasecmp(argv[0], "resync"))
3737         ; /* MD_RECOVERY_NEEDED set below */
3738     else if (!strcasecmp(argv[0], "recover"))
3739         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3740     else {
3741         if (!strcasecmp(argv[0], "check")) {
3742             set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3743             set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3744             set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3745         } else if (!strcasecmp(argv[0], "repair")) {
3746             set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3747             set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3748         } else
3749             return -EINVAL;
3750     }
3751     if (mddev->ro == 2) {
3752         /* A write to sync_action is enough to justify
3753          * canceling read-auto mode
3754          */
3755         mddev->ro = 0;
3756         if (!mddev->suspended && mddev->sync_thread)
3757             md_wakeup_thread(mddev->sync_thread);
3758     }
3759     set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3760     if (!mddev->suspended && mddev->thread)
3761         md_wakeup_thread(mddev->thread);
3762 
3763     return 0;
3764 }
3765 
3766 static int raid_iterate_devices(struct dm_target *ti,
3767                 iterate_devices_callout_fn fn, void *data)
3768 {
3769     struct raid_set *rs = ti->private;
3770     unsigned int i;
3771     int r = 0;
3772 
3773     for (i = 0; !r && i < rs->raid_disks; i++) {
3774         if (rs->dev[i].data_dev) {
3775             r = fn(ti, rs->dev[i].data_dev,
3776                    0, /* No offset on data devs */
3777                    rs->md.dev_sectors, data);
3778         }
3779     }
3780 
3781     return r;
3782 }
3783 
3784 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3785 {
3786     struct raid_set *rs = ti->private;
3787     unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors);
3788 
3789     blk_limits_io_min(limits, chunk_size_bytes);
3790     blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs));
3791 }
3792 
3793 static void raid_postsuspend(struct dm_target *ti)
3794 {
3795     struct raid_set *rs = ti->private;
3796 
3797     if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
3798         /* Writes have to be stopped before suspending to avoid deadlocks. */
3799         if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery))
3800             md_stop_writes(&rs->md);
3801 
3802         mddev_lock_nointr(&rs->md);
3803         mddev_suspend(&rs->md);
3804         mddev_unlock(&rs->md);
3805     }
3806 }
3807 
3808 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3809 {
3810     int i;
3811     uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3812     unsigned long flags;
3813     bool cleared = false;
3814     struct dm_raid_superblock *sb;
3815     struct mddev *mddev = &rs->md;
3816     struct md_rdev *r;
3817 
3818     /* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3819     if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3820         return;
3821 
3822     memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3823 
3824     for (i = 0; i < rs->raid_disks; i++) {
3825         r = &rs->dev[i].rdev;
3826         /* HM FIXME: enhance journal device recovery processing */
3827         if (test_bit(Journal, &r->flags))
3828             continue;
3829 
3830         if (test_bit(Faulty, &r->flags) &&
3831             r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) {
3832             DMINFO("Faulty %s device #%d has readable super block."
3833                    "  Attempting to revive it.",
3834                    rs->raid_type->name, i);
3835 
3836             /*
3837              * Faulty bit may be set, but sometimes the array can
3838              * be suspended before the personalities can respond
3839              * by removing the device from the array (i.e. calling
3840              * 'hot_remove_disk').  If they haven't yet removed
3841              * the failed device, its 'raid_disk' number will be
3842              * '>= 0' - meaning we must call this function
3843              * ourselves.
3844              */
3845             flags = r->flags;
3846             clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
3847             if (r->raid_disk >= 0) {
3848                 if (mddev->pers->hot_remove_disk(mddev, r)) {
3849                     /* Failed to revive this device, try next */
3850                     r->flags = flags;
3851                     continue;
3852                 }
3853             } else
3854                 r->raid_disk = r->saved_raid_disk = i;
3855 
3856             clear_bit(Faulty, &r->flags);
3857             clear_bit(WriteErrorSeen, &r->flags);
3858 
3859             if (mddev->pers->hot_add_disk(mddev, r)) {
3860                 /* Failed to revive this device, try next */
3861                 r->raid_disk = r->saved_raid_disk = -1;
3862                 r->flags = flags;
3863             } else {
3864                 clear_bit(In_sync, &r->flags);
3865                 r->recovery_offset = 0;
3866                 set_bit(i, (void *) cleared_failed_devices);
3867                 cleared = true;
3868             }
3869         }
3870     }
3871 
3872     /* If any failed devices could be cleared, update all sbs failed_devices bits */
3873     if (cleared) {
3874         uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3875 
3876         rdev_for_each(r, &rs->md) {
3877             if (test_bit(Journal, &r->flags))
3878                 continue;
3879 
3880             sb = page_address(r->sb_page);
3881             sb_retrieve_failed_devices(sb, failed_devices);
3882 
3883             for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3884                 failed_devices[i] &= ~cleared_failed_devices[i];
3885 
3886             sb_update_failed_devices(sb, failed_devices);
3887         }
3888     }
3889 }
3890 
3891 static int __load_dirty_region_bitmap(struct raid_set *rs)
3892 {
3893     int r = 0;
3894 
3895     /* Try loading the bitmap unless "raid0", which does not have one */
3896     if (!rs_is_raid0(rs) &&
3897         !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3898         r = md_bitmap_load(&rs->md);
3899         if (r)
3900             DMERR("Failed to load bitmap");
3901     }
3902 
3903     return r;
3904 }
3905 
3906 /* Enforce updating all superblocks */
3907 static void rs_update_sbs(struct raid_set *rs)
3908 {
3909     struct mddev *mddev = &rs->md;
3910     int ro = mddev->ro;
3911 
3912     set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3913     mddev->ro = 0;
3914     md_update_sb(mddev, 1);
3915     mddev->ro = ro;
3916 }
3917 
3918 /*
3919  * Reshape changes raid algorithm of @rs to new one within personality
3920  * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3921  * disks from a raid set thus growing/shrinking it or resizes the set
3922  *
3923  * Call mddev_lock_nointr() before!
3924  */
3925 static int rs_start_reshape(struct raid_set *rs)
3926 {
3927     int r;
3928     struct mddev *mddev = &rs->md;
3929     struct md_personality *pers = mddev->pers;
3930 
3931     /* Don't allow the sync thread to work until the table gets reloaded. */
3932     set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
3933 
3934     r = rs_setup_reshape(rs);
3935     if (r)
3936         return r;
3937 
3938     /*
3939      * Check any reshape constraints enforced by the personalility
3940      *
3941      * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3942      */
3943     r = pers->check_reshape(mddev);
3944     if (r) {
3945         rs->ti->error = "pers->check_reshape() failed";
3946         return r;
3947     }
3948 
3949     /*
3950      * Personality may not provide start reshape method in which
3951      * case check_reshape above has already covered everything
3952      */
3953     if (pers->start_reshape) {
3954         r = pers->start_reshape(mddev);
3955         if (r) {
3956             rs->ti->error = "pers->start_reshape() failed";
3957             return r;
3958         }
3959     }
3960 
3961     /*
3962      * Now reshape got set up, update superblocks to
3963      * reflect the fact so that a table reload will
3964      * access proper superblock content in the ctr.
3965      */
3966     rs_update_sbs(rs);
3967 
3968     return 0;
3969 }
3970 
3971 static int raid_preresume(struct dm_target *ti)
3972 {
3973     int r;
3974     struct raid_set *rs = ti->private;
3975     struct mddev *mddev = &rs->md;
3976 
3977     /* This is a resume after a suspend of the set -> it's already started. */
3978     if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3979         return 0;
3980 
3981     /*
3982      * The superblocks need to be updated on disk if the
3983      * array is new or new devices got added (thus zeroed
3984      * out by userspace) or __load_dirty_region_bitmap
3985      * will overwrite them in core with old data or fail.
3986      */
3987     if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3988         rs_update_sbs(rs);
3989 
3990     /* Load the bitmap from disk unless raid0 */
3991     r = __load_dirty_region_bitmap(rs);
3992     if (r)
3993         return r;
3994 
3995     /* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */
3996     if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3997         mddev->array_sectors = rs->array_sectors;
3998         mddev->dev_sectors = rs->dev_sectors;
3999         rs_set_rdev_sectors(rs);
4000         rs_set_capacity(rs);
4001     }
4002 
4003     /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */
4004         if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap &&
4005         (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) ||
4006          (rs->requested_bitmap_chunk_sectors &&
4007            mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) {
4008         int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize;
4009 
4010         r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, chunksize, 0);
4011         if (r)
4012             DMERR("Failed to resize bitmap");
4013     }
4014 
4015     /* Check for any resize/reshape on @rs and adjust/initiate */
4016     /* Be prepared for mddev_resume() in raid_resume() */
4017     set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4018     if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
4019         set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4020         mddev->resync_min = mddev->recovery_cp;
4021         if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags))
4022             mddev->resync_max_sectors = mddev->dev_sectors;
4023     }
4024 
4025     /* Check for any reshape request unless new raid set */
4026     if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
4027         /* Initiate a reshape. */
4028         rs_set_rdev_sectors(rs);
4029         mddev_lock_nointr(mddev);
4030         r = rs_start_reshape(rs);
4031         mddev_unlock(mddev);
4032         if (r)
4033             DMWARN("Failed to check/start reshape, continuing without change");
4034         r = 0;
4035     }
4036 
4037     return r;
4038 }
4039 
4040 static void raid_resume(struct dm_target *ti)
4041 {
4042     struct raid_set *rs = ti->private;
4043     struct mddev *mddev = &rs->md;
4044 
4045     if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
4046         /*
4047          * A secondary resume while the device is active.
4048          * Take this opportunity to check whether any failed
4049          * devices are reachable again.
4050          */
4051         attempt_restore_of_faulty_devices(rs);
4052     }
4053 
4054     if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
4055         /* Only reduce raid set size before running a disk removing reshape. */
4056         if (mddev->delta_disks < 0)
4057             rs_set_capacity(rs);
4058 
4059         mddev_lock_nointr(mddev);
4060         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4061         mddev->ro = 0;
4062         mddev->in_sync = 0;
4063         mddev_resume(mddev);
4064         mddev_unlock(mddev);
4065     }
4066 }
4067 
4068 static struct target_type raid_target = {
4069     .name = "raid",
4070     .version = {1, 15, 1},
4071     .module = THIS_MODULE,
4072     .ctr = raid_ctr,
4073     .dtr = raid_dtr,
4074     .map = raid_map,
4075     .status = raid_status,
4076     .message = raid_message,
4077     .iterate_devices = raid_iterate_devices,
4078     .io_hints = raid_io_hints,
4079     .postsuspend = raid_postsuspend,
4080     .preresume = raid_preresume,
4081     .resume = raid_resume,
4082 };
4083 
4084 static int __init dm_raid_init(void)
4085 {
4086     DMINFO("Loading target version %u.%u.%u",
4087            raid_target.version[0],
4088            raid_target.version[1],
4089            raid_target.version[2]);
4090     return dm_register_target(&raid_target);
4091 }
4092 
4093 static void __exit dm_raid_exit(void)
4094 {
4095     dm_unregister_target(&raid_target);
4096 }
4097 
4098 module_init(dm_raid_init);
4099 module_exit(dm_raid_exit);
4100 
4101 module_param(devices_handle_discard_safely, bool, 0644);
4102 MODULE_PARM_DESC(devices_handle_discard_safely,
4103          "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
4104 
4105 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
4106 MODULE_ALIAS("dm-raid0");
4107 MODULE_ALIAS("dm-raid1");
4108 MODULE_ALIAS("dm-raid10");
4109 MODULE_ALIAS("dm-raid4");
4110 MODULE_ALIAS("dm-raid5");
4111 MODULE_ALIAS("dm-raid6");
4112 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
4113 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
4114 MODULE_LICENSE("GPL");