Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright (C) 2003 Jana Saout <jana@saout.de>
0003  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
0004  * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
0005  * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
0006  *
0007  * This file is released under the GPL.
0008  */
0009 
0010 #include <linux/completion.h>
0011 #include <linux/err.h>
0012 #include <linux/module.h>
0013 #include <linux/init.h>
0014 #include <linux/kernel.h>
0015 #include <linux/key.h>
0016 #include <linux/bio.h>
0017 #include <linux/blkdev.h>
0018 #include <linux/blk-integrity.h>
0019 #include <linux/mempool.h>
0020 #include <linux/slab.h>
0021 #include <linux/crypto.h>
0022 #include <linux/workqueue.h>
0023 #include <linux/kthread.h>
0024 #include <linux/backing-dev.h>
0025 #include <linux/atomic.h>
0026 #include <linux/scatterlist.h>
0027 #include <linux/rbtree.h>
0028 #include <linux/ctype.h>
0029 #include <asm/page.h>
0030 #include <asm/unaligned.h>
0031 #include <crypto/hash.h>
0032 #include <crypto/md5.h>
0033 #include <crypto/algapi.h>
0034 #include <crypto/skcipher.h>
0035 #include <crypto/aead.h>
0036 #include <crypto/authenc.h>
0037 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
0038 #include <linux/key-type.h>
0039 #include <keys/user-type.h>
0040 #include <keys/encrypted-type.h>
0041 #include <keys/trusted-type.h>
0042 
0043 #include <linux/device-mapper.h>
0044 
0045 #include "dm-audit.h"
0046 
0047 #define DM_MSG_PREFIX "crypt"
0048 
0049 /*
0050  * context holding the current state of a multi-part conversion
0051  */
0052 struct convert_context {
0053     struct completion restart;
0054     struct bio *bio_in;
0055     struct bio *bio_out;
0056     struct bvec_iter iter_in;
0057     struct bvec_iter iter_out;
0058     u64 cc_sector;
0059     atomic_t cc_pending;
0060     union {
0061         struct skcipher_request *req;
0062         struct aead_request *req_aead;
0063     } r;
0064 
0065 };
0066 
0067 /*
0068  * per bio private data
0069  */
0070 struct dm_crypt_io {
0071     struct crypt_config *cc;
0072     struct bio *base_bio;
0073     u8 *integrity_metadata;
0074     bool integrity_metadata_from_pool;
0075     struct work_struct work;
0076     struct tasklet_struct tasklet;
0077 
0078     struct convert_context ctx;
0079 
0080     atomic_t io_pending;
0081     blk_status_t error;
0082     sector_t sector;
0083 
0084     struct rb_node rb_node;
0085 } CRYPTO_MINALIGN_ATTR;
0086 
0087 struct dm_crypt_request {
0088     struct convert_context *ctx;
0089     struct scatterlist sg_in[4];
0090     struct scatterlist sg_out[4];
0091     u64 iv_sector;
0092 };
0093 
0094 struct crypt_config;
0095 
0096 struct crypt_iv_operations {
0097     int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
0098            const char *opts);
0099     void (*dtr)(struct crypt_config *cc);
0100     int (*init)(struct crypt_config *cc);
0101     int (*wipe)(struct crypt_config *cc);
0102     int (*generator)(struct crypt_config *cc, u8 *iv,
0103              struct dm_crypt_request *dmreq);
0104     int (*post)(struct crypt_config *cc, u8 *iv,
0105             struct dm_crypt_request *dmreq);
0106 };
0107 
0108 struct iv_benbi_private {
0109     int shift;
0110 };
0111 
0112 #define LMK_SEED_SIZE 64 /* hash + 0 */
0113 struct iv_lmk_private {
0114     struct crypto_shash *hash_tfm;
0115     u8 *seed;
0116 };
0117 
0118 #define TCW_WHITENING_SIZE 16
0119 struct iv_tcw_private {
0120     struct crypto_shash *crc32_tfm;
0121     u8 *iv_seed;
0122     u8 *whitening;
0123 };
0124 
0125 #define ELEPHANT_MAX_KEY_SIZE 32
0126 struct iv_elephant_private {
0127     struct crypto_skcipher *tfm;
0128 };
0129 
0130 /*
0131  * Crypt: maps a linear range of a block device
0132  * and encrypts / decrypts at the same time.
0133  */
0134 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
0135          DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
0136          DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
0137          DM_CRYPT_WRITE_INLINE };
0138 
0139 enum cipher_flags {
0140     CRYPT_MODE_INTEGRITY_AEAD,  /* Use authenticated mode for cipher */
0141     CRYPT_IV_LARGE_SECTORS,     /* Calculate IV from sector_size, not 512B sectors */
0142     CRYPT_ENCRYPT_PREPROCESS,   /* Must preprocess data for encryption (elephant) */
0143 };
0144 
0145 /*
0146  * The fields in here must be read only after initialization.
0147  */
0148 struct crypt_config {
0149     struct dm_dev *dev;
0150     sector_t start;
0151 
0152     struct percpu_counter n_allocated_pages;
0153 
0154     struct workqueue_struct *io_queue;
0155     struct workqueue_struct *crypt_queue;
0156 
0157     spinlock_t write_thread_lock;
0158     struct task_struct *write_thread;
0159     struct rb_root write_tree;
0160 
0161     char *cipher_string;
0162     char *cipher_auth;
0163     char *key_string;
0164 
0165     const struct crypt_iv_operations *iv_gen_ops;
0166     union {
0167         struct iv_benbi_private benbi;
0168         struct iv_lmk_private lmk;
0169         struct iv_tcw_private tcw;
0170         struct iv_elephant_private elephant;
0171     } iv_gen_private;
0172     u64 iv_offset;
0173     unsigned int iv_size;
0174     unsigned short int sector_size;
0175     unsigned char sector_shift;
0176 
0177     union {
0178         struct crypto_skcipher **tfms;
0179         struct crypto_aead **tfms_aead;
0180     } cipher_tfm;
0181     unsigned tfms_count;
0182     unsigned long cipher_flags;
0183 
0184     /*
0185      * Layout of each crypto request:
0186      *
0187      *   struct skcipher_request
0188      *      context
0189      *      padding
0190      *   struct dm_crypt_request
0191      *      padding
0192      *   IV
0193      *
0194      * The padding is added so that dm_crypt_request and the IV are
0195      * correctly aligned.
0196      */
0197     unsigned int dmreq_start;
0198 
0199     unsigned int per_bio_data_size;
0200 
0201     unsigned long flags;
0202     unsigned int key_size;
0203     unsigned int key_parts;      /* independent parts in key buffer */
0204     unsigned int key_extra_size; /* additional keys length */
0205     unsigned int key_mac_size;   /* MAC key size for authenc(...) */
0206 
0207     unsigned int integrity_tag_size;
0208     unsigned int integrity_iv_size;
0209     unsigned int on_disk_tag_size;
0210 
0211     /*
0212      * pool for per bio private data, crypto requests,
0213      * encryption requeusts/buffer pages and integrity tags
0214      */
0215     unsigned tag_pool_max_sectors;
0216     mempool_t tag_pool;
0217     mempool_t req_pool;
0218     mempool_t page_pool;
0219 
0220     struct bio_set bs;
0221     struct mutex bio_alloc_lock;
0222 
0223     u8 *authenc_key; /* space for keys in authenc() format (if used) */
0224     u8 key[];
0225 };
0226 
0227 #define MIN_IOS     64
0228 #define MAX_TAG_SIZE    480
0229 #define POOL_ENTRY_SIZE 512
0230 
0231 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
0232 static unsigned dm_crypt_clients_n = 0;
0233 static volatile unsigned long dm_crypt_pages_per_client;
0234 #define DM_CRYPT_MEMORY_PERCENT         2
0235 #define DM_CRYPT_MIN_PAGES_PER_CLIENT       (BIO_MAX_VECS * 16)
0236 
0237 static void crypt_endio(struct bio *clone);
0238 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
0239 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
0240                          struct scatterlist *sg);
0241 
0242 static bool crypt_integrity_aead(struct crypt_config *cc);
0243 
0244 /*
0245  * Use this to access cipher attributes that are independent of the key.
0246  */
0247 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
0248 {
0249     return cc->cipher_tfm.tfms[0];
0250 }
0251 
0252 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
0253 {
0254     return cc->cipher_tfm.tfms_aead[0];
0255 }
0256 
0257 /*
0258  * Different IV generation algorithms:
0259  *
0260  * plain: the initial vector is the 32-bit little-endian version of the sector
0261  *        number, padded with zeros if necessary.
0262  *
0263  * plain64: the initial vector is the 64-bit little-endian version of the sector
0264  *        number, padded with zeros if necessary.
0265  *
0266  * plain64be: the initial vector is the 64-bit big-endian version of the sector
0267  *        number, padded with zeros if necessary.
0268  *
0269  * essiv: "encrypted sector|salt initial vector", the sector number is
0270  *        encrypted with the bulk cipher using a salt as key. The salt
0271  *        should be derived from the bulk cipher's key via hashing.
0272  *
0273  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
0274  *        (needed for LRW-32-AES and possible other narrow block modes)
0275  *
0276  * null: the initial vector is always zero.  Provides compatibility with
0277  *       obsolete loop_fish2 devices.  Do not use for new devices.
0278  *
0279  * lmk:  Compatible implementation of the block chaining mode used
0280  *       by the Loop-AES block device encryption system
0281  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
0282  *       It operates on full 512 byte sectors and uses CBC
0283  *       with an IV derived from the sector number, the data and
0284  *       optionally extra IV seed.
0285  *       This means that after decryption the first block
0286  *       of sector must be tweaked according to decrypted data.
0287  *       Loop-AES can use three encryption schemes:
0288  *         version 1: is plain aes-cbc mode
0289  *         version 2: uses 64 multikey scheme with lmk IV generator
0290  *         version 3: the same as version 2 with additional IV seed
0291  *                   (it uses 65 keys, last key is used as IV seed)
0292  *
0293  * tcw:  Compatible implementation of the block chaining mode used
0294  *       by the TrueCrypt device encryption system (prior to version 4.1).
0295  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
0296  *       It operates on full 512 byte sectors and uses CBC
0297  *       with an IV derived from initial key and the sector number.
0298  *       In addition, whitening value is applied on every sector, whitening
0299  *       is calculated from initial key, sector number and mixed using CRC32.
0300  *       Note that this encryption scheme is vulnerable to watermarking attacks
0301  *       and should be used for old compatible containers access only.
0302  *
0303  * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
0304  *        The IV is encrypted little-endian byte-offset (with the same key
0305  *        and cipher as the volume).
0306  *
0307  * elephant: The extended version of eboiv with additional Elephant diffuser
0308  *           used with Bitlocker CBC mode.
0309  *           This mode was used in older Windows systems
0310  *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
0311  */
0312 
0313 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
0314                   struct dm_crypt_request *dmreq)
0315 {
0316     memset(iv, 0, cc->iv_size);
0317     *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
0318 
0319     return 0;
0320 }
0321 
0322 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
0323                 struct dm_crypt_request *dmreq)
0324 {
0325     memset(iv, 0, cc->iv_size);
0326     *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
0327 
0328     return 0;
0329 }
0330 
0331 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
0332                   struct dm_crypt_request *dmreq)
0333 {
0334     memset(iv, 0, cc->iv_size);
0335     /* iv_size is at least of size u64; usually it is 16 bytes */
0336     *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
0337 
0338     return 0;
0339 }
0340 
0341 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
0342                   struct dm_crypt_request *dmreq)
0343 {
0344     /*
0345      * ESSIV encryption of the IV is now handled by the crypto API,
0346      * so just pass the plain sector number here.
0347      */
0348     memset(iv, 0, cc->iv_size);
0349     *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
0350 
0351     return 0;
0352 }
0353 
0354 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
0355                   const char *opts)
0356 {
0357     unsigned bs;
0358     int log;
0359 
0360     if (crypt_integrity_aead(cc))
0361         bs = crypto_aead_blocksize(any_tfm_aead(cc));
0362     else
0363         bs = crypto_skcipher_blocksize(any_tfm(cc));
0364     log = ilog2(bs);
0365 
0366     /* we need to calculate how far we must shift the sector count
0367      * to get the cipher block count, we use this shift in _gen */
0368 
0369     if (1 << log != bs) {
0370         ti->error = "cypher blocksize is not a power of 2";
0371         return -EINVAL;
0372     }
0373 
0374     if (log > 9) {
0375         ti->error = "cypher blocksize is > 512";
0376         return -EINVAL;
0377     }
0378 
0379     cc->iv_gen_private.benbi.shift = 9 - log;
0380 
0381     return 0;
0382 }
0383 
0384 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
0385 {
0386 }
0387 
0388 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
0389                   struct dm_crypt_request *dmreq)
0390 {
0391     __be64 val;
0392 
0393     memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
0394 
0395     val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
0396     put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
0397 
0398     return 0;
0399 }
0400 
0401 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
0402                  struct dm_crypt_request *dmreq)
0403 {
0404     memset(iv, 0, cc->iv_size);
0405 
0406     return 0;
0407 }
0408 
0409 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
0410 {
0411     struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
0412 
0413     if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
0414         crypto_free_shash(lmk->hash_tfm);
0415     lmk->hash_tfm = NULL;
0416 
0417     kfree_sensitive(lmk->seed);
0418     lmk->seed = NULL;
0419 }
0420 
0421 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
0422                 const char *opts)
0423 {
0424     struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
0425 
0426     if (cc->sector_size != (1 << SECTOR_SHIFT)) {
0427         ti->error = "Unsupported sector size for LMK";
0428         return -EINVAL;
0429     }
0430 
0431     lmk->hash_tfm = crypto_alloc_shash("md5", 0,
0432                        CRYPTO_ALG_ALLOCATES_MEMORY);
0433     if (IS_ERR(lmk->hash_tfm)) {
0434         ti->error = "Error initializing LMK hash";
0435         return PTR_ERR(lmk->hash_tfm);
0436     }
0437 
0438     /* No seed in LMK version 2 */
0439     if (cc->key_parts == cc->tfms_count) {
0440         lmk->seed = NULL;
0441         return 0;
0442     }
0443 
0444     lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
0445     if (!lmk->seed) {
0446         crypt_iv_lmk_dtr(cc);
0447         ti->error = "Error kmallocing seed storage in LMK";
0448         return -ENOMEM;
0449     }
0450 
0451     return 0;
0452 }
0453 
0454 static int crypt_iv_lmk_init(struct crypt_config *cc)
0455 {
0456     struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
0457     int subkey_size = cc->key_size / cc->key_parts;
0458 
0459     /* LMK seed is on the position of LMK_KEYS + 1 key */
0460     if (lmk->seed)
0461         memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
0462                crypto_shash_digestsize(lmk->hash_tfm));
0463 
0464     return 0;
0465 }
0466 
0467 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
0468 {
0469     struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
0470 
0471     if (lmk->seed)
0472         memset(lmk->seed, 0, LMK_SEED_SIZE);
0473 
0474     return 0;
0475 }
0476 
0477 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
0478                 struct dm_crypt_request *dmreq,
0479                 u8 *data)
0480 {
0481     struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
0482     SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
0483     struct md5_state md5state;
0484     __le32 buf[4];
0485     int i, r;
0486 
0487     desc->tfm = lmk->hash_tfm;
0488 
0489     r = crypto_shash_init(desc);
0490     if (r)
0491         return r;
0492 
0493     if (lmk->seed) {
0494         r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
0495         if (r)
0496             return r;
0497     }
0498 
0499     /* Sector is always 512B, block size 16, add data of blocks 1-31 */
0500     r = crypto_shash_update(desc, data + 16, 16 * 31);
0501     if (r)
0502         return r;
0503 
0504     /* Sector is cropped to 56 bits here */
0505     buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
0506     buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
0507     buf[2] = cpu_to_le32(4024);
0508     buf[3] = 0;
0509     r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
0510     if (r)
0511         return r;
0512 
0513     /* No MD5 padding here */
0514     r = crypto_shash_export(desc, &md5state);
0515     if (r)
0516         return r;
0517 
0518     for (i = 0; i < MD5_HASH_WORDS; i++)
0519         __cpu_to_le32s(&md5state.hash[i]);
0520     memcpy(iv, &md5state.hash, cc->iv_size);
0521 
0522     return 0;
0523 }
0524 
0525 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
0526                 struct dm_crypt_request *dmreq)
0527 {
0528     struct scatterlist *sg;
0529     u8 *src;
0530     int r = 0;
0531 
0532     if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
0533         sg = crypt_get_sg_data(cc, dmreq->sg_in);
0534         src = kmap_atomic(sg_page(sg));
0535         r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
0536         kunmap_atomic(src);
0537     } else
0538         memset(iv, 0, cc->iv_size);
0539 
0540     return r;
0541 }
0542 
0543 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
0544                  struct dm_crypt_request *dmreq)
0545 {
0546     struct scatterlist *sg;
0547     u8 *dst;
0548     int r;
0549 
0550     if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
0551         return 0;
0552 
0553     sg = crypt_get_sg_data(cc, dmreq->sg_out);
0554     dst = kmap_atomic(sg_page(sg));
0555     r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
0556 
0557     /* Tweak the first block of plaintext sector */
0558     if (!r)
0559         crypto_xor(dst + sg->offset, iv, cc->iv_size);
0560 
0561     kunmap_atomic(dst);
0562     return r;
0563 }
0564 
0565 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
0566 {
0567     struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
0568 
0569     kfree_sensitive(tcw->iv_seed);
0570     tcw->iv_seed = NULL;
0571     kfree_sensitive(tcw->whitening);
0572     tcw->whitening = NULL;
0573 
0574     if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
0575         crypto_free_shash(tcw->crc32_tfm);
0576     tcw->crc32_tfm = NULL;
0577 }
0578 
0579 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
0580                 const char *opts)
0581 {
0582     struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
0583 
0584     if (cc->sector_size != (1 << SECTOR_SHIFT)) {
0585         ti->error = "Unsupported sector size for TCW";
0586         return -EINVAL;
0587     }
0588 
0589     if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
0590         ti->error = "Wrong key size for TCW";
0591         return -EINVAL;
0592     }
0593 
0594     tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
0595                         CRYPTO_ALG_ALLOCATES_MEMORY);
0596     if (IS_ERR(tcw->crc32_tfm)) {
0597         ti->error = "Error initializing CRC32 in TCW";
0598         return PTR_ERR(tcw->crc32_tfm);
0599     }
0600 
0601     tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
0602     tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
0603     if (!tcw->iv_seed || !tcw->whitening) {
0604         crypt_iv_tcw_dtr(cc);
0605         ti->error = "Error allocating seed storage in TCW";
0606         return -ENOMEM;
0607     }
0608 
0609     return 0;
0610 }
0611 
0612 static int crypt_iv_tcw_init(struct crypt_config *cc)
0613 {
0614     struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
0615     int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
0616 
0617     memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
0618     memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
0619            TCW_WHITENING_SIZE);
0620 
0621     return 0;
0622 }
0623 
0624 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
0625 {
0626     struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
0627 
0628     memset(tcw->iv_seed, 0, cc->iv_size);
0629     memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
0630 
0631     return 0;
0632 }
0633 
0634 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
0635                   struct dm_crypt_request *dmreq,
0636                   u8 *data)
0637 {
0638     struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
0639     __le64 sector = cpu_to_le64(dmreq->iv_sector);
0640     u8 buf[TCW_WHITENING_SIZE];
0641     SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
0642     int i, r;
0643 
0644     /* xor whitening with sector number */
0645     crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
0646     crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
0647 
0648     /* calculate crc32 for every 32bit part and xor it */
0649     desc->tfm = tcw->crc32_tfm;
0650     for (i = 0; i < 4; i++) {
0651         r = crypto_shash_init(desc);
0652         if (r)
0653             goto out;
0654         r = crypto_shash_update(desc, &buf[i * 4], 4);
0655         if (r)
0656             goto out;
0657         r = crypto_shash_final(desc, &buf[i * 4]);
0658         if (r)
0659             goto out;
0660     }
0661     crypto_xor(&buf[0], &buf[12], 4);
0662     crypto_xor(&buf[4], &buf[8], 4);
0663 
0664     /* apply whitening (8 bytes) to whole sector */
0665     for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
0666         crypto_xor(data + i * 8, buf, 8);
0667 out:
0668     memzero_explicit(buf, sizeof(buf));
0669     return r;
0670 }
0671 
0672 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
0673                 struct dm_crypt_request *dmreq)
0674 {
0675     struct scatterlist *sg;
0676     struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
0677     __le64 sector = cpu_to_le64(dmreq->iv_sector);
0678     u8 *src;
0679     int r = 0;
0680 
0681     /* Remove whitening from ciphertext */
0682     if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
0683         sg = crypt_get_sg_data(cc, dmreq->sg_in);
0684         src = kmap_atomic(sg_page(sg));
0685         r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
0686         kunmap_atomic(src);
0687     }
0688 
0689     /* Calculate IV */
0690     crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
0691     if (cc->iv_size > 8)
0692         crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
0693                    cc->iv_size - 8);
0694 
0695     return r;
0696 }
0697 
0698 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
0699                  struct dm_crypt_request *dmreq)
0700 {
0701     struct scatterlist *sg;
0702     u8 *dst;
0703     int r;
0704 
0705     if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
0706         return 0;
0707 
0708     /* Apply whitening on ciphertext */
0709     sg = crypt_get_sg_data(cc, dmreq->sg_out);
0710     dst = kmap_atomic(sg_page(sg));
0711     r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
0712     kunmap_atomic(dst);
0713 
0714     return r;
0715 }
0716 
0717 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
0718                 struct dm_crypt_request *dmreq)
0719 {
0720     /* Used only for writes, there must be an additional space to store IV */
0721     get_random_bytes(iv, cc->iv_size);
0722     return 0;
0723 }
0724 
0725 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
0726                 const char *opts)
0727 {
0728     if (crypt_integrity_aead(cc)) {
0729         ti->error = "AEAD transforms not supported for EBOIV";
0730         return -EINVAL;
0731     }
0732 
0733     if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
0734         ti->error = "Block size of EBOIV cipher does "
0735                 "not match IV size of block cipher";
0736         return -EINVAL;
0737     }
0738 
0739     return 0;
0740 }
0741 
0742 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
0743                 struct dm_crypt_request *dmreq)
0744 {
0745     u8 buf[MAX_CIPHER_BLOCKSIZE] __aligned(__alignof__(__le64));
0746     struct skcipher_request *req;
0747     struct scatterlist src, dst;
0748     DECLARE_CRYPTO_WAIT(wait);
0749     int err;
0750 
0751     req = skcipher_request_alloc(any_tfm(cc), GFP_NOIO);
0752     if (!req)
0753         return -ENOMEM;
0754 
0755     memset(buf, 0, cc->iv_size);
0756     *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
0757 
0758     sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
0759     sg_init_one(&dst, iv, cc->iv_size);
0760     skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
0761     skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
0762     err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
0763     skcipher_request_free(req);
0764 
0765     return err;
0766 }
0767 
0768 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
0769 {
0770     struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
0771 
0772     crypto_free_skcipher(elephant->tfm);
0773     elephant->tfm = NULL;
0774 }
0775 
0776 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
0777                 const char *opts)
0778 {
0779     struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
0780     int r;
0781 
0782     elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
0783                           CRYPTO_ALG_ALLOCATES_MEMORY);
0784     if (IS_ERR(elephant->tfm)) {
0785         r = PTR_ERR(elephant->tfm);
0786         elephant->tfm = NULL;
0787         return r;
0788     }
0789 
0790     r = crypt_iv_eboiv_ctr(cc, ti, NULL);
0791     if (r)
0792         crypt_iv_elephant_dtr(cc);
0793     return r;
0794 }
0795 
0796 static void diffuser_disk_to_cpu(u32 *d, size_t n)
0797 {
0798 #ifndef __LITTLE_ENDIAN
0799     int i;
0800 
0801     for (i = 0; i < n; i++)
0802         d[i] = le32_to_cpu((__le32)d[i]);
0803 #endif
0804 }
0805 
0806 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
0807 {
0808 #ifndef __LITTLE_ENDIAN
0809     int i;
0810 
0811     for (i = 0; i < n; i++)
0812         d[i] = cpu_to_le32((u32)d[i]);
0813 #endif
0814 }
0815 
0816 static void diffuser_a_decrypt(u32 *d, size_t n)
0817 {
0818     int i, i1, i2, i3;
0819 
0820     for (i = 0; i < 5; i++) {
0821         i1 = 0;
0822         i2 = n - 2;
0823         i3 = n - 5;
0824 
0825         while (i1 < (n - 1)) {
0826             d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
0827             i1++; i2++; i3++;
0828 
0829             if (i3 >= n)
0830                 i3 -= n;
0831 
0832             d[i1] += d[i2] ^ d[i3];
0833             i1++; i2++; i3++;
0834 
0835             if (i2 >= n)
0836                 i2 -= n;
0837 
0838             d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
0839             i1++; i2++; i3++;
0840 
0841             d[i1] += d[i2] ^ d[i3];
0842             i1++; i2++; i3++;
0843         }
0844     }
0845 }
0846 
0847 static void diffuser_a_encrypt(u32 *d, size_t n)
0848 {
0849     int i, i1, i2, i3;
0850 
0851     for (i = 0; i < 5; i++) {
0852         i1 = n - 1;
0853         i2 = n - 2 - 1;
0854         i3 = n - 5 - 1;
0855 
0856         while (i1 > 0) {
0857             d[i1] -= d[i2] ^ d[i3];
0858             i1--; i2--; i3--;
0859 
0860             d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
0861             i1--; i2--; i3--;
0862 
0863             if (i2 < 0)
0864                 i2 += n;
0865 
0866             d[i1] -= d[i2] ^ d[i3];
0867             i1--; i2--; i3--;
0868 
0869             if (i3 < 0)
0870                 i3 += n;
0871 
0872             d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
0873             i1--; i2--; i3--;
0874         }
0875     }
0876 }
0877 
0878 static void diffuser_b_decrypt(u32 *d, size_t n)
0879 {
0880     int i, i1, i2, i3;
0881 
0882     for (i = 0; i < 3; i++) {
0883         i1 = 0;
0884         i2 = 2;
0885         i3 = 5;
0886 
0887         while (i1 < (n - 1)) {
0888             d[i1] += d[i2] ^ d[i3];
0889             i1++; i2++; i3++;
0890 
0891             d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
0892             i1++; i2++; i3++;
0893 
0894             if (i2 >= n)
0895                 i2 -= n;
0896 
0897             d[i1] += d[i2] ^ d[i3];
0898             i1++; i2++; i3++;
0899 
0900             if (i3 >= n)
0901                 i3 -= n;
0902 
0903             d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
0904             i1++; i2++; i3++;
0905         }
0906     }
0907 }
0908 
0909 static void diffuser_b_encrypt(u32 *d, size_t n)
0910 {
0911     int i, i1, i2, i3;
0912 
0913     for (i = 0; i < 3; i++) {
0914         i1 = n - 1;
0915         i2 = 2 - 1;
0916         i3 = 5 - 1;
0917 
0918         while (i1 > 0) {
0919             d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
0920             i1--; i2--; i3--;
0921 
0922             if (i3 < 0)
0923                 i3 += n;
0924 
0925             d[i1] -= d[i2] ^ d[i3];
0926             i1--; i2--; i3--;
0927 
0928             if (i2 < 0)
0929                 i2 += n;
0930 
0931             d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
0932             i1--; i2--; i3--;
0933 
0934             d[i1] -= d[i2] ^ d[i3];
0935             i1--; i2--; i3--;
0936         }
0937     }
0938 }
0939 
0940 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
0941 {
0942     struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
0943     u8 *es, *ks, *data, *data2, *data_offset;
0944     struct skcipher_request *req;
0945     struct scatterlist *sg, *sg2, src, dst;
0946     DECLARE_CRYPTO_WAIT(wait);
0947     int i, r;
0948 
0949     req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
0950     es = kzalloc(16, GFP_NOIO); /* Key for AES */
0951     ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
0952 
0953     if (!req || !es || !ks) {
0954         r = -ENOMEM;
0955         goto out;
0956     }
0957 
0958     *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
0959 
0960     /* E(Ks, e(s)) */
0961     sg_init_one(&src, es, 16);
0962     sg_init_one(&dst, ks, 16);
0963     skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
0964     skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
0965     r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
0966     if (r)
0967         goto out;
0968 
0969     /* E(Ks, e'(s)) */
0970     es[15] = 0x80;
0971     sg_init_one(&dst, &ks[16], 16);
0972     r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
0973     if (r)
0974         goto out;
0975 
0976     sg = crypt_get_sg_data(cc, dmreq->sg_out);
0977     data = kmap_atomic(sg_page(sg));
0978     data_offset = data + sg->offset;
0979 
0980     /* Cannot modify original bio, copy to sg_out and apply Elephant to it */
0981     if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
0982         sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
0983         data2 = kmap_atomic(sg_page(sg2));
0984         memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
0985         kunmap_atomic(data2);
0986     }
0987 
0988     if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
0989         diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
0990         diffuser_b_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
0991         diffuser_a_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
0992         diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
0993     }
0994 
0995     for (i = 0; i < (cc->sector_size / 32); i++)
0996         crypto_xor(data_offset + i * 32, ks, 32);
0997 
0998     if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
0999         diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
1000         diffuser_a_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
1001         diffuser_b_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
1002         diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
1003     }
1004 
1005     kunmap_atomic(data);
1006 out:
1007     kfree_sensitive(ks);
1008     kfree_sensitive(es);
1009     skcipher_request_free(req);
1010     return r;
1011 }
1012 
1013 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1014                 struct dm_crypt_request *dmreq)
1015 {
1016     int r;
1017 
1018     if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1019         r = crypt_iv_elephant(cc, dmreq);
1020         if (r)
1021             return r;
1022     }
1023 
1024     return crypt_iv_eboiv_gen(cc, iv, dmreq);
1025 }
1026 
1027 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1028                   struct dm_crypt_request *dmreq)
1029 {
1030     if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1031         return crypt_iv_elephant(cc, dmreq);
1032 
1033     return 0;
1034 }
1035 
1036 static int crypt_iv_elephant_init(struct crypt_config *cc)
1037 {
1038     struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1039     int key_offset = cc->key_size - cc->key_extra_size;
1040 
1041     return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1042 }
1043 
1044 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1045 {
1046     struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1047     u8 key[ELEPHANT_MAX_KEY_SIZE];
1048 
1049     memset(key, 0, cc->key_extra_size);
1050     return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1051 }
1052 
1053 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1054     .generator = crypt_iv_plain_gen
1055 };
1056 
1057 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1058     .generator = crypt_iv_plain64_gen
1059 };
1060 
1061 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1062     .generator = crypt_iv_plain64be_gen
1063 };
1064 
1065 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1066     .generator = crypt_iv_essiv_gen
1067 };
1068 
1069 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1070     .ctr       = crypt_iv_benbi_ctr,
1071     .dtr       = crypt_iv_benbi_dtr,
1072     .generator = crypt_iv_benbi_gen
1073 };
1074 
1075 static const struct crypt_iv_operations crypt_iv_null_ops = {
1076     .generator = crypt_iv_null_gen
1077 };
1078 
1079 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1080     .ctr       = crypt_iv_lmk_ctr,
1081     .dtr       = crypt_iv_lmk_dtr,
1082     .init      = crypt_iv_lmk_init,
1083     .wipe      = crypt_iv_lmk_wipe,
1084     .generator = crypt_iv_lmk_gen,
1085     .post      = crypt_iv_lmk_post
1086 };
1087 
1088 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1089     .ctr       = crypt_iv_tcw_ctr,
1090     .dtr       = crypt_iv_tcw_dtr,
1091     .init      = crypt_iv_tcw_init,
1092     .wipe      = crypt_iv_tcw_wipe,
1093     .generator = crypt_iv_tcw_gen,
1094     .post      = crypt_iv_tcw_post
1095 };
1096 
1097 static const struct crypt_iv_operations crypt_iv_random_ops = {
1098     .generator = crypt_iv_random_gen
1099 };
1100 
1101 static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1102     .ctr       = crypt_iv_eboiv_ctr,
1103     .generator = crypt_iv_eboiv_gen
1104 };
1105 
1106 static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1107     .ctr       = crypt_iv_elephant_ctr,
1108     .dtr       = crypt_iv_elephant_dtr,
1109     .init      = crypt_iv_elephant_init,
1110     .wipe      = crypt_iv_elephant_wipe,
1111     .generator = crypt_iv_elephant_gen,
1112     .post      = crypt_iv_elephant_post
1113 };
1114 
1115 /*
1116  * Integrity extensions
1117  */
1118 static bool crypt_integrity_aead(struct crypt_config *cc)
1119 {
1120     return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1121 }
1122 
1123 static bool crypt_integrity_hmac(struct crypt_config *cc)
1124 {
1125     return crypt_integrity_aead(cc) && cc->key_mac_size;
1126 }
1127 
1128 /* Get sg containing data */
1129 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1130                          struct scatterlist *sg)
1131 {
1132     if (unlikely(crypt_integrity_aead(cc)))
1133         return &sg[2];
1134 
1135     return sg;
1136 }
1137 
1138 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1139 {
1140     struct bio_integrity_payload *bip;
1141     unsigned int tag_len;
1142     int ret;
1143 
1144     if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1145         return 0;
1146 
1147     bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1148     if (IS_ERR(bip))
1149         return PTR_ERR(bip);
1150 
1151     tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1152 
1153     bip->bip_iter.bi_size = tag_len;
1154     bip->bip_iter.bi_sector = io->cc->start + io->sector;
1155 
1156     ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1157                      tag_len, offset_in_page(io->integrity_metadata));
1158     if (unlikely(ret != tag_len))
1159         return -ENOMEM;
1160 
1161     return 0;
1162 }
1163 
1164 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1165 {
1166 #ifdef CONFIG_BLK_DEV_INTEGRITY
1167     struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1168     struct mapped_device *md = dm_table_get_md(ti->table);
1169 
1170     /* From now we require underlying device with our integrity profile */
1171     if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1172         ti->error = "Integrity profile not supported.";
1173         return -EINVAL;
1174     }
1175 
1176     if (bi->tag_size != cc->on_disk_tag_size ||
1177         bi->tuple_size != cc->on_disk_tag_size) {
1178         ti->error = "Integrity profile tag size mismatch.";
1179         return -EINVAL;
1180     }
1181     if (1 << bi->interval_exp != cc->sector_size) {
1182         ti->error = "Integrity profile sector size mismatch.";
1183         return -EINVAL;
1184     }
1185 
1186     if (crypt_integrity_aead(cc)) {
1187         cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1188         DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1189                cc->integrity_tag_size, cc->integrity_iv_size);
1190 
1191         if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1192             ti->error = "Integrity AEAD auth tag size is not supported.";
1193             return -EINVAL;
1194         }
1195     } else if (cc->integrity_iv_size)
1196         DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1197                cc->integrity_iv_size);
1198 
1199     if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1200         ti->error = "Not enough space for integrity tag in the profile.";
1201         return -EINVAL;
1202     }
1203 
1204     return 0;
1205 #else
1206     ti->error = "Integrity profile not supported.";
1207     return -EINVAL;
1208 #endif
1209 }
1210 
1211 static void crypt_convert_init(struct crypt_config *cc,
1212                    struct convert_context *ctx,
1213                    struct bio *bio_out, struct bio *bio_in,
1214                    sector_t sector)
1215 {
1216     ctx->bio_in = bio_in;
1217     ctx->bio_out = bio_out;
1218     if (bio_in)
1219         ctx->iter_in = bio_in->bi_iter;
1220     if (bio_out)
1221         ctx->iter_out = bio_out->bi_iter;
1222     ctx->cc_sector = sector + cc->iv_offset;
1223     init_completion(&ctx->restart);
1224 }
1225 
1226 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1227                          void *req)
1228 {
1229     return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1230 }
1231 
1232 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1233 {
1234     return (void *)((char *)dmreq - cc->dmreq_start);
1235 }
1236 
1237 static u8 *iv_of_dmreq(struct crypt_config *cc,
1238                struct dm_crypt_request *dmreq)
1239 {
1240     if (crypt_integrity_aead(cc))
1241         return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1242             crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1243     else
1244         return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1245             crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1246 }
1247 
1248 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1249                struct dm_crypt_request *dmreq)
1250 {
1251     return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1252 }
1253 
1254 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1255                struct dm_crypt_request *dmreq)
1256 {
1257     u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1258     return (__le64 *) ptr;
1259 }
1260 
1261 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1262                struct dm_crypt_request *dmreq)
1263 {
1264     u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1265           cc->iv_size + sizeof(uint64_t);
1266     return (unsigned int*)ptr;
1267 }
1268 
1269 static void *tag_from_dmreq(struct crypt_config *cc,
1270                 struct dm_crypt_request *dmreq)
1271 {
1272     struct convert_context *ctx = dmreq->ctx;
1273     struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1274 
1275     return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1276         cc->on_disk_tag_size];
1277 }
1278 
1279 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1280                    struct dm_crypt_request *dmreq)
1281 {
1282     return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1283 }
1284 
1285 static int crypt_convert_block_aead(struct crypt_config *cc,
1286                      struct convert_context *ctx,
1287                      struct aead_request *req,
1288                      unsigned int tag_offset)
1289 {
1290     struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1291     struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1292     struct dm_crypt_request *dmreq;
1293     u8 *iv, *org_iv, *tag_iv, *tag;
1294     __le64 *sector;
1295     int r = 0;
1296 
1297     BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1298 
1299     /* Reject unexpected unaligned bio. */
1300     if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1301         return -EIO;
1302 
1303     dmreq = dmreq_of_req(cc, req);
1304     dmreq->iv_sector = ctx->cc_sector;
1305     if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1306         dmreq->iv_sector >>= cc->sector_shift;
1307     dmreq->ctx = ctx;
1308 
1309     *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1310 
1311     sector = org_sector_of_dmreq(cc, dmreq);
1312     *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1313 
1314     iv = iv_of_dmreq(cc, dmreq);
1315     org_iv = org_iv_of_dmreq(cc, dmreq);
1316     tag = tag_from_dmreq(cc, dmreq);
1317     tag_iv = iv_tag_from_dmreq(cc, dmreq);
1318 
1319     /* AEAD request:
1320      *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1321      *  | (authenticated) | (auth+encryption) |              |
1322      *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1323      */
1324     sg_init_table(dmreq->sg_in, 4);
1325     sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1326     sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1327     sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1328     sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1329 
1330     sg_init_table(dmreq->sg_out, 4);
1331     sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1332     sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1333     sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1334     sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1335 
1336     if (cc->iv_gen_ops) {
1337         /* For READs use IV stored in integrity metadata */
1338         if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1339             memcpy(org_iv, tag_iv, cc->iv_size);
1340         } else {
1341             r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1342             if (r < 0)
1343                 return r;
1344             /* Store generated IV in integrity metadata */
1345             if (cc->integrity_iv_size)
1346                 memcpy(tag_iv, org_iv, cc->iv_size);
1347         }
1348         /* Working copy of IV, to be modified in crypto API */
1349         memcpy(iv, org_iv, cc->iv_size);
1350     }
1351 
1352     aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1353     if (bio_data_dir(ctx->bio_in) == WRITE) {
1354         aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1355                        cc->sector_size, iv);
1356         r = crypto_aead_encrypt(req);
1357         if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1358             memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1359                    cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1360     } else {
1361         aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1362                        cc->sector_size + cc->integrity_tag_size, iv);
1363         r = crypto_aead_decrypt(req);
1364     }
1365 
1366     if (r == -EBADMSG) {
1367         sector_t s = le64_to_cpu(*sector);
1368 
1369         DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1370                 ctx->bio_in->bi_bdev, s);
1371         dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1372                  ctx->bio_in, s, 0);
1373     }
1374 
1375     if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1376         r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1377 
1378     bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1379     bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1380 
1381     return r;
1382 }
1383 
1384 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1385                     struct convert_context *ctx,
1386                     struct skcipher_request *req,
1387                     unsigned int tag_offset)
1388 {
1389     struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1390     struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1391     struct scatterlist *sg_in, *sg_out;
1392     struct dm_crypt_request *dmreq;
1393     u8 *iv, *org_iv, *tag_iv;
1394     __le64 *sector;
1395     int r = 0;
1396 
1397     /* Reject unexpected unaligned bio. */
1398     if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1399         return -EIO;
1400 
1401     dmreq = dmreq_of_req(cc, req);
1402     dmreq->iv_sector = ctx->cc_sector;
1403     if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1404         dmreq->iv_sector >>= cc->sector_shift;
1405     dmreq->ctx = ctx;
1406 
1407     *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1408 
1409     iv = iv_of_dmreq(cc, dmreq);
1410     org_iv = org_iv_of_dmreq(cc, dmreq);
1411     tag_iv = iv_tag_from_dmreq(cc, dmreq);
1412 
1413     sector = org_sector_of_dmreq(cc, dmreq);
1414     *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1415 
1416     /* For skcipher we use only the first sg item */
1417     sg_in  = &dmreq->sg_in[0];
1418     sg_out = &dmreq->sg_out[0];
1419 
1420     sg_init_table(sg_in, 1);
1421     sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1422 
1423     sg_init_table(sg_out, 1);
1424     sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1425 
1426     if (cc->iv_gen_ops) {
1427         /* For READs use IV stored in integrity metadata */
1428         if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1429             memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1430         } else {
1431             r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1432             if (r < 0)
1433                 return r;
1434             /* Data can be already preprocessed in generator */
1435             if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1436                 sg_in = sg_out;
1437             /* Store generated IV in integrity metadata */
1438             if (cc->integrity_iv_size)
1439                 memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1440         }
1441         /* Working copy of IV, to be modified in crypto API */
1442         memcpy(iv, org_iv, cc->iv_size);
1443     }
1444 
1445     skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1446 
1447     if (bio_data_dir(ctx->bio_in) == WRITE)
1448         r = crypto_skcipher_encrypt(req);
1449     else
1450         r = crypto_skcipher_decrypt(req);
1451 
1452     if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1453         r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1454 
1455     bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1456     bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1457 
1458     return r;
1459 }
1460 
1461 static void kcryptd_async_done(struct crypto_async_request *async_req,
1462                    int error);
1463 
1464 static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1465                      struct convert_context *ctx)
1466 {
1467     unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1468 
1469     if (!ctx->r.req) {
1470         ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1471         if (!ctx->r.req)
1472             return -ENOMEM;
1473     }
1474 
1475     skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1476 
1477     /*
1478      * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1479      * requests if driver request queue is full.
1480      */
1481     skcipher_request_set_callback(ctx->r.req,
1482         CRYPTO_TFM_REQ_MAY_BACKLOG,
1483         kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1484 
1485     return 0;
1486 }
1487 
1488 static int crypt_alloc_req_aead(struct crypt_config *cc,
1489                  struct convert_context *ctx)
1490 {
1491     if (!ctx->r.req_aead) {
1492         ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1493         if (!ctx->r.req_aead)
1494             return -ENOMEM;
1495     }
1496 
1497     aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1498 
1499     /*
1500      * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1501      * requests if driver request queue is full.
1502      */
1503     aead_request_set_callback(ctx->r.req_aead,
1504         CRYPTO_TFM_REQ_MAY_BACKLOG,
1505         kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1506 
1507     return 0;
1508 }
1509 
1510 static int crypt_alloc_req(struct crypt_config *cc,
1511                 struct convert_context *ctx)
1512 {
1513     if (crypt_integrity_aead(cc))
1514         return crypt_alloc_req_aead(cc, ctx);
1515     else
1516         return crypt_alloc_req_skcipher(cc, ctx);
1517 }
1518 
1519 static void crypt_free_req_skcipher(struct crypt_config *cc,
1520                     struct skcipher_request *req, struct bio *base_bio)
1521 {
1522     struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1523 
1524     if ((struct skcipher_request *)(io + 1) != req)
1525         mempool_free(req, &cc->req_pool);
1526 }
1527 
1528 static void crypt_free_req_aead(struct crypt_config *cc,
1529                 struct aead_request *req, struct bio *base_bio)
1530 {
1531     struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1532 
1533     if ((struct aead_request *)(io + 1) != req)
1534         mempool_free(req, &cc->req_pool);
1535 }
1536 
1537 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1538 {
1539     if (crypt_integrity_aead(cc))
1540         crypt_free_req_aead(cc, req, base_bio);
1541     else
1542         crypt_free_req_skcipher(cc, req, base_bio);
1543 }
1544 
1545 /*
1546  * Encrypt / decrypt data from one bio to another one (can be the same one)
1547  */
1548 static blk_status_t crypt_convert(struct crypt_config *cc,
1549              struct convert_context *ctx, bool atomic, bool reset_pending)
1550 {
1551     unsigned int tag_offset = 0;
1552     unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1553     int r;
1554 
1555     /*
1556      * if reset_pending is set we are dealing with the bio for the first time,
1557      * else we're continuing to work on the previous bio, so don't mess with
1558      * the cc_pending counter
1559      */
1560     if (reset_pending)
1561         atomic_set(&ctx->cc_pending, 1);
1562 
1563     while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1564 
1565         r = crypt_alloc_req(cc, ctx);
1566         if (r) {
1567             complete(&ctx->restart);
1568             return BLK_STS_DEV_RESOURCE;
1569         }
1570 
1571         atomic_inc(&ctx->cc_pending);
1572 
1573         if (crypt_integrity_aead(cc))
1574             r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1575         else
1576             r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1577 
1578         switch (r) {
1579         /*
1580          * The request was queued by a crypto driver
1581          * but the driver request queue is full, let's wait.
1582          */
1583         case -EBUSY:
1584             if (in_interrupt()) {
1585                 if (try_wait_for_completion(&ctx->restart)) {
1586                     /*
1587                      * we don't have to block to wait for completion,
1588                      * so proceed
1589                      */
1590                 } else {
1591                     /*
1592                      * we can't wait for completion without blocking
1593                      * exit and continue processing in a workqueue
1594                      */
1595                     ctx->r.req = NULL;
1596                     ctx->cc_sector += sector_step;
1597                     tag_offset++;
1598                     return BLK_STS_DEV_RESOURCE;
1599                 }
1600             } else {
1601                 wait_for_completion(&ctx->restart);
1602             }
1603             reinit_completion(&ctx->restart);
1604             fallthrough;
1605         /*
1606          * The request is queued and processed asynchronously,
1607          * completion function kcryptd_async_done() will be called.
1608          */
1609         case -EINPROGRESS:
1610             ctx->r.req = NULL;
1611             ctx->cc_sector += sector_step;
1612             tag_offset++;
1613             continue;
1614         /*
1615          * The request was already processed (synchronously).
1616          */
1617         case 0:
1618             atomic_dec(&ctx->cc_pending);
1619             ctx->cc_sector += sector_step;
1620             tag_offset++;
1621             if (!atomic)
1622                 cond_resched();
1623             continue;
1624         /*
1625          * There was a data integrity error.
1626          */
1627         case -EBADMSG:
1628             atomic_dec(&ctx->cc_pending);
1629             return BLK_STS_PROTECTION;
1630         /*
1631          * There was an error while processing the request.
1632          */
1633         default:
1634             atomic_dec(&ctx->cc_pending);
1635             return BLK_STS_IOERR;
1636         }
1637     }
1638 
1639     return 0;
1640 }
1641 
1642 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1643 
1644 /*
1645  * Generate a new unfragmented bio with the given size
1646  * This should never violate the device limitations (but only because
1647  * max_segment_size is being constrained to PAGE_SIZE).
1648  *
1649  * This function may be called concurrently. If we allocate from the mempool
1650  * concurrently, there is a possibility of deadlock. For example, if we have
1651  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1652  * the mempool concurrently, it may deadlock in a situation where both processes
1653  * have allocated 128 pages and the mempool is exhausted.
1654  *
1655  * In order to avoid this scenario we allocate the pages under a mutex.
1656  *
1657  * In order to not degrade performance with excessive locking, we try
1658  * non-blocking allocations without a mutex first but on failure we fallback
1659  * to blocking allocations with a mutex.
1660  */
1661 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1662 {
1663     struct crypt_config *cc = io->cc;
1664     struct bio *clone;
1665     unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1666     gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1667     unsigned i, len, remaining_size;
1668     struct page *page;
1669 
1670 retry:
1671     if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1672         mutex_lock(&cc->bio_alloc_lock);
1673 
1674     clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1675                  GFP_NOIO, &cc->bs);
1676     clone->bi_private = io;
1677     clone->bi_end_io = crypt_endio;
1678 
1679     remaining_size = size;
1680 
1681     for (i = 0; i < nr_iovecs; i++) {
1682         page = mempool_alloc(&cc->page_pool, gfp_mask);
1683         if (!page) {
1684             crypt_free_buffer_pages(cc, clone);
1685             bio_put(clone);
1686             gfp_mask |= __GFP_DIRECT_RECLAIM;
1687             goto retry;
1688         }
1689 
1690         len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1691 
1692         bio_add_page(clone, page, len, 0);
1693 
1694         remaining_size -= len;
1695     }
1696 
1697     /* Allocate space for integrity tags */
1698     if (dm_crypt_integrity_io_alloc(io, clone)) {
1699         crypt_free_buffer_pages(cc, clone);
1700         bio_put(clone);
1701         clone = NULL;
1702     }
1703 
1704     if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1705         mutex_unlock(&cc->bio_alloc_lock);
1706 
1707     return clone;
1708 }
1709 
1710 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1711 {
1712     struct bio_vec *bv;
1713     struct bvec_iter_all iter_all;
1714 
1715     bio_for_each_segment_all(bv, clone, iter_all) {
1716         BUG_ON(!bv->bv_page);
1717         mempool_free(bv->bv_page, &cc->page_pool);
1718     }
1719 }
1720 
1721 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1722               struct bio *bio, sector_t sector)
1723 {
1724     io->cc = cc;
1725     io->base_bio = bio;
1726     io->sector = sector;
1727     io->error = 0;
1728     io->ctx.r.req = NULL;
1729     io->integrity_metadata = NULL;
1730     io->integrity_metadata_from_pool = false;
1731     atomic_set(&io->io_pending, 0);
1732 }
1733 
1734 static void crypt_inc_pending(struct dm_crypt_io *io)
1735 {
1736     atomic_inc(&io->io_pending);
1737 }
1738 
1739 static void kcryptd_io_bio_endio(struct work_struct *work)
1740 {
1741     struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1742     bio_endio(io->base_bio);
1743 }
1744 
1745 /*
1746  * One of the bios was finished. Check for completion of
1747  * the whole request and correctly clean up the buffer.
1748  */
1749 static void crypt_dec_pending(struct dm_crypt_io *io)
1750 {
1751     struct crypt_config *cc = io->cc;
1752     struct bio *base_bio = io->base_bio;
1753     blk_status_t error = io->error;
1754 
1755     if (!atomic_dec_and_test(&io->io_pending))
1756         return;
1757 
1758     if (io->ctx.r.req)
1759         crypt_free_req(cc, io->ctx.r.req, base_bio);
1760 
1761     if (unlikely(io->integrity_metadata_from_pool))
1762         mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1763     else
1764         kfree(io->integrity_metadata);
1765 
1766     base_bio->bi_status = error;
1767 
1768     /*
1769      * If we are running this function from our tasklet,
1770      * we can't call bio_endio() here, because it will call
1771      * clone_endio() from dm.c, which in turn will
1772      * free the current struct dm_crypt_io structure with
1773      * our tasklet. In this case we need to delay bio_endio()
1774      * execution to after the tasklet is done and dequeued.
1775      */
1776     if (tasklet_trylock(&io->tasklet)) {
1777         tasklet_unlock(&io->tasklet);
1778         bio_endio(base_bio);
1779         return;
1780     }
1781 
1782     INIT_WORK(&io->work, kcryptd_io_bio_endio);
1783     queue_work(cc->io_queue, &io->work);
1784 }
1785 
1786 /*
1787  * kcryptd/kcryptd_io:
1788  *
1789  * Needed because it would be very unwise to do decryption in an
1790  * interrupt context.
1791  *
1792  * kcryptd performs the actual encryption or decryption.
1793  *
1794  * kcryptd_io performs the IO submission.
1795  *
1796  * They must be separated as otherwise the final stages could be
1797  * starved by new requests which can block in the first stages due
1798  * to memory allocation.
1799  *
1800  * The work is done per CPU global for all dm-crypt instances.
1801  * They should not depend on each other and do not block.
1802  */
1803 static void crypt_endio(struct bio *clone)
1804 {
1805     struct dm_crypt_io *io = clone->bi_private;
1806     struct crypt_config *cc = io->cc;
1807     unsigned rw = bio_data_dir(clone);
1808     blk_status_t error;
1809 
1810     /*
1811      * free the processed pages
1812      */
1813     if (rw == WRITE)
1814         crypt_free_buffer_pages(cc, clone);
1815 
1816     error = clone->bi_status;
1817     bio_put(clone);
1818 
1819     if (rw == READ && !error) {
1820         kcryptd_queue_crypt(io);
1821         return;
1822     }
1823 
1824     if (unlikely(error))
1825         io->error = error;
1826 
1827     crypt_dec_pending(io);
1828 }
1829 
1830 #define CRYPT_MAP_READ_GFP GFP_NOWAIT
1831 
1832 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1833 {
1834     struct crypt_config *cc = io->cc;
1835     struct bio *clone;
1836 
1837     /*
1838      * We need the original biovec array in order to decrypt the whole bio
1839      * data *afterwards* -- thanks to immutable biovecs we don't need to
1840      * worry about the block layer modifying the biovec array; so leverage
1841      * bio_alloc_clone().
1842      */
1843     clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1844     if (!clone)
1845         return 1;
1846     clone->bi_private = io;
1847     clone->bi_end_io = crypt_endio;
1848 
1849     crypt_inc_pending(io);
1850 
1851     clone->bi_iter.bi_sector = cc->start + io->sector;
1852 
1853     if (dm_crypt_integrity_io_alloc(io, clone)) {
1854         crypt_dec_pending(io);
1855         bio_put(clone);
1856         return 1;
1857     }
1858 
1859     dm_submit_bio_remap(io->base_bio, clone);
1860     return 0;
1861 }
1862 
1863 static void kcryptd_io_read_work(struct work_struct *work)
1864 {
1865     struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1866 
1867     crypt_inc_pending(io);
1868     if (kcryptd_io_read(io, GFP_NOIO))
1869         io->error = BLK_STS_RESOURCE;
1870     crypt_dec_pending(io);
1871 }
1872 
1873 static void kcryptd_queue_read(struct dm_crypt_io *io)
1874 {
1875     struct crypt_config *cc = io->cc;
1876 
1877     INIT_WORK(&io->work, kcryptd_io_read_work);
1878     queue_work(cc->io_queue, &io->work);
1879 }
1880 
1881 static void kcryptd_io_write(struct dm_crypt_io *io)
1882 {
1883     struct bio *clone = io->ctx.bio_out;
1884 
1885     dm_submit_bio_remap(io->base_bio, clone);
1886 }
1887 
1888 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1889 
1890 static int dmcrypt_write(void *data)
1891 {
1892     struct crypt_config *cc = data;
1893     struct dm_crypt_io *io;
1894 
1895     while (1) {
1896         struct rb_root write_tree;
1897         struct blk_plug plug;
1898 
1899         spin_lock_irq(&cc->write_thread_lock);
1900 continue_locked:
1901 
1902         if (!RB_EMPTY_ROOT(&cc->write_tree))
1903             goto pop_from_list;
1904 
1905         set_current_state(TASK_INTERRUPTIBLE);
1906 
1907         spin_unlock_irq(&cc->write_thread_lock);
1908 
1909         if (unlikely(kthread_should_stop())) {
1910             set_current_state(TASK_RUNNING);
1911             break;
1912         }
1913 
1914         schedule();
1915 
1916         set_current_state(TASK_RUNNING);
1917         spin_lock_irq(&cc->write_thread_lock);
1918         goto continue_locked;
1919 
1920 pop_from_list:
1921         write_tree = cc->write_tree;
1922         cc->write_tree = RB_ROOT;
1923         spin_unlock_irq(&cc->write_thread_lock);
1924 
1925         BUG_ON(rb_parent(write_tree.rb_node));
1926 
1927         /*
1928          * Note: we cannot walk the tree here with rb_next because
1929          * the structures may be freed when kcryptd_io_write is called.
1930          */
1931         blk_start_plug(&plug);
1932         do {
1933             io = crypt_io_from_node(rb_first(&write_tree));
1934             rb_erase(&io->rb_node, &write_tree);
1935             kcryptd_io_write(io);
1936         } while (!RB_EMPTY_ROOT(&write_tree));
1937         blk_finish_plug(&plug);
1938     }
1939     return 0;
1940 }
1941 
1942 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1943 {
1944     struct bio *clone = io->ctx.bio_out;
1945     struct crypt_config *cc = io->cc;
1946     unsigned long flags;
1947     sector_t sector;
1948     struct rb_node **rbp, *parent;
1949 
1950     if (unlikely(io->error)) {
1951         crypt_free_buffer_pages(cc, clone);
1952         bio_put(clone);
1953         crypt_dec_pending(io);
1954         return;
1955     }
1956 
1957     /* crypt_convert should have filled the clone bio */
1958     BUG_ON(io->ctx.iter_out.bi_size);
1959 
1960     clone->bi_iter.bi_sector = cc->start + io->sector;
1961 
1962     if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
1963         test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
1964         dm_submit_bio_remap(io->base_bio, clone);
1965         return;
1966     }
1967 
1968     spin_lock_irqsave(&cc->write_thread_lock, flags);
1969     if (RB_EMPTY_ROOT(&cc->write_tree))
1970         wake_up_process(cc->write_thread);
1971     rbp = &cc->write_tree.rb_node;
1972     parent = NULL;
1973     sector = io->sector;
1974     while (*rbp) {
1975         parent = *rbp;
1976         if (sector < crypt_io_from_node(parent)->sector)
1977             rbp = &(*rbp)->rb_left;
1978         else
1979             rbp = &(*rbp)->rb_right;
1980     }
1981     rb_link_node(&io->rb_node, parent, rbp);
1982     rb_insert_color(&io->rb_node, &cc->write_tree);
1983     spin_unlock_irqrestore(&cc->write_thread_lock, flags);
1984 }
1985 
1986 static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
1987                        struct convert_context *ctx)
1988 
1989 {
1990     if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
1991         return false;
1992 
1993     /*
1994      * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
1995      * constraints so they do not need to be issued inline by
1996      * kcryptd_crypt_write_convert().
1997      */
1998     switch (bio_op(ctx->bio_in)) {
1999     case REQ_OP_WRITE:
2000     case REQ_OP_WRITE_ZEROES:
2001         return true;
2002     default:
2003         return false;
2004     }
2005 }
2006 
2007 static void kcryptd_crypt_write_continue(struct work_struct *work)
2008 {
2009     struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2010     struct crypt_config *cc = io->cc;
2011     struct convert_context *ctx = &io->ctx;
2012     int crypt_finished;
2013     sector_t sector = io->sector;
2014     blk_status_t r;
2015 
2016     wait_for_completion(&ctx->restart);
2017     reinit_completion(&ctx->restart);
2018 
2019     r = crypt_convert(cc, &io->ctx, true, false);
2020     if (r)
2021         io->error = r;
2022     crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2023     if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2024         /* Wait for completion signaled by kcryptd_async_done() */
2025         wait_for_completion(&ctx->restart);
2026         crypt_finished = 1;
2027     }
2028 
2029     /* Encryption was already finished, submit io now */
2030     if (crypt_finished) {
2031         kcryptd_crypt_write_io_submit(io, 0);
2032         io->sector = sector;
2033     }
2034 
2035     crypt_dec_pending(io);
2036 }
2037 
2038 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2039 {
2040     struct crypt_config *cc = io->cc;
2041     struct convert_context *ctx = &io->ctx;
2042     struct bio *clone;
2043     int crypt_finished;
2044     sector_t sector = io->sector;
2045     blk_status_t r;
2046 
2047     /*
2048      * Prevent io from disappearing until this function completes.
2049      */
2050     crypt_inc_pending(io);
2051     crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
2052 
2053     clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2054     if (unlikely(!clone)) {
2055         io->error = BLK_STS_IOERR;
2056         goto dec;
2057     }
2058 
2059     io->ctx.bio_out = clone;
2060     io->ctx.iter_out = clone->bi_iter;
2061 
2062     sector += bio_sectors(clone);
2063 
2064     crypt_inc_pending(io);
2065     r = crypt_convert(cc, ctx,
2066               test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2067     /*
2068      * Crypto API backlogged the request, because its queue was full
2069      * and we're in softirq context, so continue from a workqueue
2070      * (TODO: is it actually possible to be in softirq in the write path?)
2071      */
2072     if (r == BLK_STS_DEV_RESOURCE) {
2073         INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2074         queue_work(cc->crypt_queue, &io->work);
2075         return;
2076     }
2077     if (r)
2078         io->error = r;
2079     crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2080     if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2081         /* Wait for completion signaled by kcryptd_async_done() */
2082         wait_for_completion(&ctx->restart);
2083         crypt_finished = 1;
2084     }
2085 
2086     /* Encryption was already finished, submit io now */
2087     if (crypt_finished) {
2088         kcryptd_crypt_write_io_submit(io, 0);
2089         io->sector = sector;
2090     }
2091 
2092 dec:
2093     crypt_dec_pending(io);
2094 }
2095 
2096 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2097 {
2098     crypt_dec_pending(io);
2099 }
2100 
2101 static void kcryptd_crypt_read_continue(struct work_struct *work)
2102 {
2103     struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2104     struct crypt_config *cc = io->cc;
2105     blk_status_t r;
2106 
2107     wait_for_completion(&io->ctx.restart);
2108     reinit_completion(&io->ctx.restart);
2109 
2110     r = crypt_convert(cc, &io->ctx, true, false);
2111     if (r)
2112         io->error = r;
2113 
2114     if (atomic_dec_and_test(&io->ctx.cc_pending))
2115         kcryptd_crypt_read_done(io);
2116 
2117     crypt_dec_pending(io);
2118 }
2119 
2120 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2121 {
2122     struct crypt_config *cc = io->cc;
2123     blk_status_t r;
2124 
2125     crypt_inc_pending(io);
2126 
2127     crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2128                io->sector);
2129 
2130     r = crypt_convert(cc, &io->ctx,
2131               test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2132     /*
2133      * Crypto API backlogged the request, because its queue was full
2134      * and we're in softirq context, so continue from a workqueue
2135      */
2136     if (r == BLK_STS_DEV_RESOURCE) {
2137         INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2138         queue_work(cc->crypt_queue, &io->work);
2139         return;
2140     }
2141     if (r)
2142         io->error = r;
2143 
2144     if (atomic_dec_and_test(&io->ctx.cc_pending))
2145         kcryptd_crypt_read_done(io);
2146 
2147     crypt_dec_pending(io);
2148 }
2149 
2150 static void kcryptd_async_done(struct crypto_async_request *async_req,
2151                    int error)
2152 {
2153     struct dm_crypt_request *dmreq = async_req->data;
2154     struct convert_context *ctx = dmreq->ctx;
2155     struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2156     struct crypt_config *cc = io->cc;
2157 
2158     /*
2159      * A request from crypto driver backlog is going to be processed now,
2160      * finish the completion and continue in crypt_convert().
2161      * (Callback will be called for the second time for this request.)
2162      */
2163     if (error == -EINPROGRESS) {
2164         complete(&ctx->restart);
2165         return;
2166     }
2167 
2168     if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2169         error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2170 
2171     if (error == -EBADMSG) {
2172         sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2173 
2174         DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2175                 ctx->bio_in->bi_bdev, s);
2176         dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2177                  ctx->bio_in, s, 0);
2178         io->error = BLK_STS_PROTECTION;
2179     } else if (error < 0)
2180         io->error = BLK_STS_IOERR;
2181 
2182     crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2183 
2184     if (!atomic_dec_and_test(&ctx->cc_pending))
2185         return;
2186 
2187     /*
2188      * The request is fully completed: for inline writes, let
2189      * kcryptd_crypt_write_convert() do the IO submission.
2190      */
2191     if (bio_data_dir(io->base_bio) == READ) {
2192         kcryptd_crypt_read_done(io);
2193         return;
2194     }
2195 
2196     if (kcryptd_crypt_write_inline(cc, ctx)) {
2197         complete(&ctx->restart);
2198         return;
2199     }
2200 
2201     kcryptd_crypt_write_io_submit(io, 1);
2202 }
2203 
2204 static void kcryptd_crypt(struct work_struct *work)
2205 {
2206     struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2207 
2208     if (bio_data_dir(io->base_bio) == READ)
2209         kcryptd_crypt_read_convert(io);
2210     else
2211         kcryptd_crypt_write_convert(io);
2212 }
2213 
2214 static void kcryptd_crypt_tasklet(unsigned long work)
2215 {
2216     kcryptd_crypt((struct work_struct *)work);
2217 }
2218 
2219 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2220 {
2221     struct crypt_config *cc = io->cc;
2222 
2223     if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2224         (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2225         /*
2226          * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2227          * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2228          * it is being executed with irqs disabled.
2229          */
2230         if (in_hardirq() || irqs_disabled()) {
2231             tasklet_init(&io->tasklet, kcryptd_crypt_tasklet, (unsigned long)&io->work);
2232             tasklet_schedule(&io->tasklet);
2233             return;
2234         }
2235 
2236         kcryptd_crypt(&io->work);
2237         return;
2238     }
2239 
2240     INIT_WORK(&io->work, kcryptd_crypt);
2241     queue_work(cc->crypt_queue, &io->work);
2242 }
2243 
2244 static void crypt_free_tfms_aead(struct crypt_config *cc)
2245 {
2246     if (!cc->cipher_tfm.tfms_aead)
2247         return;
2248 
2249     if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2250         crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2251         cc->cipher_tfm.tfms_aead[0] = NULL;
2252     }
2253 
2254     kfree(cc->cipher_tfm.tfms_aead);
2255     cc->cipher_tfm.tfms_aead = NULL;
2256 }
2257 
2258 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2259 {
2260     unsigned i;
2261 
2262     if (!cc->cipher_tfm.tfms)
2263         return;
2264 
2265     for (i = 0; i < cc->tfms_count; i++)
2266         if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2267             crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2268             cc->cipher_tfm.tfms[i] = NULL;
2269         }
2270 
2271     kfree(cc->cipher_tfm.tfms);
2272     cc->cipher_tfm.tfms = NULL;
2273 }
2274 
2275 static void crypt_free_tfms(struct crypt_config *cc)
2276 {
2277     if (crypt_integrity_aead(cc))
2278         crypt_free_tfms_aead(cc);
2279     else
2280         crypt_free_tfms_skcipher(cc);
2281 }
2282 
2283 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2284 {
2285     unsigned i;
2286     int err;
2287 
2288     cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2289                       sizeof(struct crypto_skcipher *),
2290                       GFP_KERNEL);
2291     if (!cc->cipher_tfm.tfms)
2292         return -ENOMEM;
2293 
2294     for (i = 0; i < cc->tfms_count; i++) {
2295         cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2296                         CRYPTO_ALG_ALLOCATES_MEMORY);
2297         if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2298             err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2299             crypt_free_tfms(cc);
2300             return err;
2301         }
2302     }
2303 
2304     /*
2305      * dm-crypt performance can vary greatly depending on which crypto
2306      * algorithm implementation is used.  Help people debug performance
2307      * problems by logging the ->cra_driver_name.
2308      */
2309     DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2310            crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2311     return 0;
2312 }
2313 
2314 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2315 {
2316     int err;
2317 
2318     cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2319     if (!cc->cipher_tfm.tfms)
2320         return -ENOMEM;
2321 
2322     cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2323                         CRYPTO_ALG_ALLOCATES_MEMORY);
2324     if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2325         err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2326         crypt_free_tfms(cc);
2327         return err;
2328     }
2329 
2330     DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2331            crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2332     return 0;
2333 }
2334 
2335 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2336 {
2337     if (crypt_integrity_aead(cc))
2338         return crypt_alloc_tfms_aead(cc, ciphermode);
2339     else
2340         return crypt_alloc_tfms_skcipher(cc, ciphermode);
2341 }
2342 
2343 static unsigned crypt_subkey_size(struct crypt_config *cc)
2344 {
2345     return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2346 }
2347 
2348 static unsigned crypt_authenckey_size(struct crypt_config *cc)
2349 {
2350     return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2351 }
2352 
2353 /*
2354  * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2355  * the key must be for some reason in special format.
2356  * This funcion converts cc->key to this special format.
2357  */
2358 static void crypt_copy_authenckey(char *p, const void *key,
2359                   unsigned enckeylen, unsigned authkeylen)
2360 {
2361     struct crypto_authenc_key_param *param;
2362     struct rtattr *rta;
2363 
2364     rta = (struct rtattr *)p;
2365     param = RTA_DATA(rta);
2366     param->enckeylen = cpu_to_be32(enckeylen);
2367     rta->rta_len = RTA_LENGTH(sizeof(*param));
2368     rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2369     p += RTA_SPACE(sizeof(*param));
2370     memcpy(p, key + enckeylen, authkeylen);
2371     p += authkeylen;
2372     memcpy(p, key, enckeylen);
2373 }
2374 
2375 static int crypt_setkey(struct crypt_config *cc)
2376 {
2377     unsigned subkey_size;
2378     int err = 0, i, r;
2379 
2380     /* Ignore extra keys (which are used for IV etc) */
2381     subkey_size = crypt_subkey_size(cc);
2382 
2383     if (crypt_integrity_hmac(cc)) {
2384         if (subkey_size < cc->key_mac_size)
2385             return -EINVAL;
2386 
2387         crypt_copy_authenckey(cc->authenc_key, cc->key,
2388                       subkey_size - cc->key_mac_size,
2389                       cc->key_mac_size);
2390     }
2391 
2392     for (i = 0; i < cc->tfms_count; i++) {
2393         if (crypt_integrity_hmac(cc))
2394             r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2395                 cc->authenc_key, crypt_authenckey_size(cc));
2396         else if (crypt_integrity_aead(cc))
2397             r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2398                            cc->key + (i * subkey_size),
2399                            subkey_size);
2400         else
2401             r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2402                            cc->key + (i * subkey_size),
2403                            subkey_size);
2404         if (r)
2405             err = r;
2406     }
2407 
2408     if (crypt_integrity_hmac(cc))
2409         memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2410 
2411     return err;
2412 }
2413 
2414 #ifdef CONFIG_KEYS
2415 
2416 static bool contains_whitespace(const char *str)
2417 {
2418     while (*str)
2419         if (isspace(*str++))
2420             return true;
2421     return false;
2422 }
2423 
2424 static int set_key_user(struct crypt_config *cc, struct key *key)
2425 {
2426     const struct user_key_payload *ukp;
2427 
2428     ukp = user_key_payload_locked(key);
2429     if (!ukp)
2430         return -EKEYREVOKED;
2431 
2432     if (cc->key_size != ukp->datalen)
2433         return -EINVAL;
2434 
2435     memcpy(cc->key, ukp->data, cc->key_size);
2436 
2437     return 0;
2438 }
2439 
2440 static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2441 {
2442     const struct encrypted_key_payload *ekp;
2443 
2444     ekp = key->payload.data[0];
2445     if (!ekp)
2446         return -EKEYREVOKED;
2447 
2448     if (cc->key_size != ekp->decrypted_datalen)
2449         return -EINVAL;
2450 
2451     memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2452 
2453     return 0;
2454 }
2455 
2456 static int set_key_trusted(struct crypt_config *cc, struct key *key)
2457 {
2458     const struct trusted_key_payload *tkp;
2459 
2460     tkp = key->payload.data[0];
2461     if (!tkp)
2462         return -EKEYREVOKED;
2463 
2464     if (cc->key_size != tkp->key_len)
2465         return -EINVAL;
2466 
2467     memcpy(cc->key, tkp->key, cc->key_size);
2468 
2469     return 0;
2470 }
2471 
2472 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2473 {
2474     char *new_key_string, *key_desc;
2475     int ret;
2476     struct key_type *type;
2477     struct key *key;
2478     int (*set_key)(struct crypt_config *cc, struct key *key);
2479 
2480     /*
2481      * Reject key_string with whitespace. dm core currently lacks code for
2482      * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2483      */
2484     if (contains_whitespace(key_string)) {
2485         DMERR("whitespace chars not allowed in key string");
2486         return -EINVAL;
2487     }
2488 
2489     /* look for next ':' separating key_type from key_description */
2490     key_desc = strpbrk(key_string, ":");
2491     if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2492         return -EINVAL;
2493 
2494     if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2495         type = &key_type_logon;
2496         set_key = set_key_user;
2497     } else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2498         type = &key_type_user;
2499         set_key = set_key_user;
2500     } else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2501            !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2502         type = &key_type_encrypted;
2503         set_key = set_key_encrypted;
2504     } else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2505                !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2506         type = &key_type_trusted;
2507         set_key = set_key_trusted;
2508     } else {
2509         return -EINVAL;
2510     }
2511 
2512     new_key_string = kstrdup(key_string, GFP_KERNEL);
2513     if (!new_key_string)
2514         return -ENOMEM;
2515 
2516     key = request_key(type, key_desc + 1, NULL);
2517     if (IS_ERR(key)) {
2518         kfree_sensitive(new_key_string);
2519         return PTR_ERR(key);
2520     }
2521 
2522     down_read(&key->sem);
2523 
2524     ret = set_key(cc, key);
2525     if (ret < 0) {
2526         up_read(&key->sem);
2527         key_put(key);
2528         kfree_sensitive(new_key_string);
2529         return ret;
2530     }
2531 
2532     up_read(&key->sem);
2533     key_put(key);
2534 
2535     /* clear the flag since following operations may invalidate previously valid key */
2536     clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2537 
2538     ret = crypt_setkey(cc);
2539 
2540     if (!ret) {
2541         set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2542         kfree_sensitive(cc->key_string);
2543         cc->key_string = new_key_string;
2544     } else
2545         kfree_sensitive(new_key_string);
2546 
2547     return ret;
2548 }
2549 
2550 static int get_key_size(char **key_string)
2551 {
2552     char *colon, dummy;
2553     int ret;
2554 
2555     if (*key_string[0] != ':')
2556         return strlen(*key_string) >> 1;
2557 
2558     /* look for next ':' in key string */
2559     colon = strpbrk(*key_string + 1, ":");
2560     if (!colon)
2561         return -EINVAL;
2562 
2563     if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2564         return -EINVAL;
2565 
2566     *key_string = colon;
2567 
2568     /* remaining key string should be :<logon|user>:<key_desc> */
2569 
2570     return ret;
2571 }
2572 
2573 #else
2574 
2575 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2576 {
2577     return -EINVAL;
2578 }
2579 
2580 static int get_key_size(char **key_string)
2581 {
2582     return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2583 }
2584 
2585 #endif /* CONFIG_KEYS */
2586 
2587 static int crypt_set_key(struct crypt_config *cc, char *key)
2588 {
2589     int r = -EINVAL;
2590     int key_string_len = strlen(key);
2591 
2592     /* Hyphen (which gives a key_size of zero) means there is no key. */
2593     if (!cc->key_size && strcmp(key, "-"))
2594         goto out;
2595 
2596     /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2597     if (key[0] == ':') {
2598         r = crypt_set_keyring_key(cc, key + 1);
2599         goto out;
2600     }
2601 
2602     /* clear the flag since following operations may invalidate previously valid key */
2603     clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2604 
2605     /* wipe references to any kernel keyring key */
2606     kfree_sensitive(cc->key_string);
2607     cc->key_string = NULL;
2608 
2609     /* Decode key from its hex representation. */
2610     if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2611         goto out;
2612 
2613     r = crypt_setkey(cc);
2614     if (!r)
2615         set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2616 
2617 out:
2618     /* Hex key string not needed after here, so wipe it. */
2619     memset(key, '0', key_string_len);
2620 
2621     return r;
2622 }
2623 
2624 static int crypt_wipe_key(struct crypt_config *cc)
2625 {
2626     int r;
2627 
2628     clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2629     get_random_bytes(&cc->key, cc->key_size);
2630 
2631     /* Wipe IV private keys */
2632     if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2633         r = cc->iv_gen_ops->wipe(cc);
2634         if (r)
2635             return r;
2636     }
2637 
2638     kfree_sensitive(cc->key_string);
2639     cc->key_string = NULL;
2640     r = crypt_setkey(cc);
2641     memset(&cc->key, 0, cc->key_size * sizeof(u8));
2642 
2643     return r;
2644 }
2645 
2646 static void crypt_calculate_pages_per_client(void)
2647 {
2648     unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2649 
2650     if (!dm_crypt_clients_n)
2651         return;
2652 
2653     pages /= dm_crypt_clients_n;
2654     if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2655         pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2656     dm_crypt_pages_per_client = pages;
2657 }
2658 
2659 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2660 {
2661     struct crypt_config *cc = pool_data;
2662     struct page *page;
2663 
2664     /*
2665      * Note, percpu_counter_read_positive() may over (and under) estimate
2666      * the current usage by at most (batch - 1) * num_online_cpus() pages,
2667      * but avoids potential spinlock contention of an exact result.
2668      */
2669     if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2670         likely(gfp_mask & __GFP_NORETRY))
2671         return NULL;
2672 
2673     page = alloc_page(gfp_mask);
2674     if (likely(page != NULL))
2675         percpu_counter_add(&cc->n_allocated_pages, 1);
2676 
2677     return page;
2678 }
2679 
2680 static void crypt_page_free(void *page, void *pool_data)
2681 {
2682     struct crypt_config *cc = pool_data;
2683 
2684     __free_page(page);
2685     percpu_counter_sub(&cc->n_allocated_pages, 1);
2686 }
2687 
2688 static void crypt_dtr(struct dm_target *ti)
2689 {
2690     struct crypt_config *cc = ti->private;
2691 
2692     ti->private = NULL;
2693 
2694     if (!cc)
2695         return;
2696 
2697     if (cc->write_thread)
2698         kthread_stop(cc->write_thread);
2699 
2700     if (cc->io_queue)
2701         destroy_workqueue(cc->io_queue);
2702     if (cc->crypt_queue)
2703         destroy_workqueue(cc->crypt_queue);
2704 
2705     crypt_free_tfms(cc);
2706 
2707     bioset_exit(&cc->bs);
2708 
2709     mempool_exit(&cc->page_pool);
2710     mempool_exit(&cc->req_pool);
2711     mempool_exit(&cc->tag_pool);
2712 
2713     WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2714     percpu_counter_destroy(&cc->n_allocated_pages);
2715 
2716     if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2717         cc->iv_gen_ops->dtr(cc);
2718 
2719     if (cc->dev)
2720         dm_put_device(ti, cc->dev);
2721 
2722     kfree_sensitive(cc->cipher_string);
2723     kfree_sensitive(cc->key_string);
2724     kfree_sensitive(cc->cipher_auth);
2725     kfree_sensitive(cc->authenc_key);
2726 
2727     mutex_destroy(&cc->bio_alloc_lock);
2728 
2729     /* Must zero key material before freeing */
2730     kfree_sensitive(cc);
2731 
2732     spin_lock(&dm_crypt_clients_lock);
2733     WARN_ON(!dm_crypt_clients_n);
2734     dm_crypt_clients_n--;
2735     crypt_calculate_pages_per_client();
2736     spin_unlock(&dm_crypt_clients_lock);
2737 
2738     dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2739 }
2740 
2741 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2742 {
2743     struct crypt_config *cc = ti->private;
2744 
2745     if (crypt_integrity_aead(cc))
2746         cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2747     else
2748         cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2749 
2750     if (cc->iv_size)
2751         /* at least a 64 bit sector number should fit in our buffer */
2752         cc->iv_size = max(cc->iv_size,
2753                   (unsigned int)(sizeof(u64) / sizeof(u8)));
2754     else if (ivmode) {
2755         DMWARN("Selected cipher does not support IVs");
2756         ivmode = NULL;
2757     }
2758 
2759     /* Choose ivmode, see comments at iv code. */
2760     if (ivmode == NULL)
2761         cc->iv_gen_ops = NULL;
2762     else if (strcmp(ivmode, "plain") == 0)
2763         cc->iv_gen_ops = &crypt_iv_plain_ops;
2764     else if (strcmp(ivmode, "plain64") == 0)
2765         cc->iv_gen_ops = &crypt_iv_plain64_ops;
2766     else if (strcmp(ivmode, "plain64be") == 0)
2767         cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2768     else if (strcmp(ivmode, "essiv") == 0)
2769         cc->iv_gen_ops = &crypt_iv_essiv_ops;
2770     else if (strcmp(ivmode, "benbi") == 0)
2771         cc->iv_gen_ops = &crypt_iv_benbi_ops;
2772     else if (strcmp(ivmode, "null") == 0)
2773         cc->iv_gen_ops = &crypt_iv_null_ops;
2774     else if (strcmp(ivmode, "eboiv") == 0)
2775         cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2776     else if (strcmp(ivmode, "elephant") == 0) {
2777         cc->iv_gen_ops = &crypt_iv_elephant_ops;
2778         cc->key_parts = 2;
2779         cc->key_extra_size = cc->key_size / 2;
2780         if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2781             return -EINVAL;
2782         set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2783     } else if (strcmp(ivmode, "lmk") == 0) {
2784         cc->iv_gen_ops = &crypt_iv_lmk_ops;
2785         /*
2786          * Version 2 and 3 is recognised according
2787          * to length of provided multi-key string.
2788          * If present (version 3), last key is used as IV seed.
2789          * All keys (including IV seed) are always the same size.
2790          */
2791         if (cc->key_size % cc->key_parts) {
2792             cc->key_parts++;
2793             cc->key_extra_size = cc->key_size / cc->key_parts;
2794         }
2795     } else if (strcmp(ivmode, "tcw") == 0) {
2796         cc->iv_gen_ops = &crypt_iv_tcw_ops;
2797         cc->key_parts += 2; /* IV + whitening */
2798         cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2799     } else if (strcmp(ivmode, "random") == 0) {
2800         cc->iv_gen_ops = &crypt_iv_random_ops;
2801         /* Need storage space in integrity fields. */
2802         cc->integrity_iv_size = cc->iv_size;
2803     } else {
2804         ti->error = "Invalid IV mode";
2805         return -EINVAL;
2806     }
2807 
2808     return 0;
2809 }
2810 
2811 /*
2812  * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2813  * The HMAC is needed to calculate tag size (HMAC digest size).
2814  * This should be probably done by crypto-api calls (once available...)
2815  */
2816 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2817 {
2818     char *start, *end, *mac_alg = NULL;
2819     struct crypto_ahash *mac;
2820 
2821     if (!strstarts(cipher_api, "authenc("))
2822         return 0;
2823 
2824     start = strchr(cipher_api, '(');
2825     end = strchr(cipher_api, ',');
2826     if (!start || !end || ++start > end)
2827         return -EINVAL;
2828 
2829     mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2830     if (!mac_alg)
2831         return -ENOMEM;
2832     strncpy(mac_alg, start, end - start);
2833 
2834     mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2835     kfree(mac_alg);
2836 
2837     if (IS_ERR(mac))
2838         return PTR_ERR(mac);
2839 
2840     cc->key_mac_size = crypto_ahash_digestsize(mac);
2841     crypto_free_ahash(mac);
2842 
2843     cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2844     if (!cc->authenc_key)
2845         return -ENOMEM;
2846 
2847     return 0;
2848 }
2849 
2850 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2851                 char **ivmode, char **ivopts)
2852 {
2853     struct crypt_config *cc = ti->private;
2854     char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2855     int ret = -EINVAL;
2856 
2857     cc->tfms_count = 1;
2858 
2859     /*
2860      * New format (capi: prefix)
2861      * capi:cipher_api_spec-iv:ivopts
2862      */
2863     tmp = &cipher_in[strlen("capi:")];
2864 
2865     /* Separate IV options if present, it can contain another '-' in hash name */
2866     *ivopts = strrchr(tmp, ':');
2867     if (*ivopts) {
2868         **ivopts = '\0';
2869         (*ivopts)++;
2870     }
2871     /* Parse IV mode */
2872     *ivmode = strrchr(tmp, '-');
2873     if (*ivmode) {
2874         **ivmode = '\0';
2875         (*ivmode)++;
2876     }
2877     /* The rest is crypto API spec */
2878     cipher_api = tmp;
2879 
2880     /* Alloc AEAD, can be used only in new format. */
2881     if (crypt_integrity_aead(cc)) {
2882         ret = crypt_ctr_auth_cipher(cc, cipher_api);
2883         if (ret < 0) {
2884             ti->error = "Invalid AEAD cipher spec";
2885             return -ENOMEM;
2886         }
2887     }
2888 
2889     if (*ivmode && !strcmp(*ivmode, "lmk"))
2890         cc->tfms_count = 64;
2891 
2892     if (*ivmode && !strcmp(*ivmode, "essiv")) {
2893         if (!*ivopts) {
2894             ti->error = "Digest algorithm missing for ESSIV mode";
2895             return -EINVAL;
2896         }
2897         ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2898                    cipher_api, *ivopts);
2899         if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2900             ti->error = "Cannot allocate cipher string";
2901             return -ENOMEM;
2902         }
2903         cipher_api = buf;
2904     }
2905 
2906     cc->key_parts = cc->tfms_count;
2907 
2908     /* Allocate cipher */
2909     ret = crypt_alloc_tfms(cc, cipher_api);
2910     if (ret < 0) {
2911         ti->error = "Error allocating crypto tfm";
2912         return ret;
2913     }
2914 
2915     if (crypt_integrity_aead(cc))
2916         cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2917     else
2918         cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2919 
2920     return 0;
2921 }
2922 
2923 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2924                 char **ivmode, char **ivopts)
2925 {
2926     struct crypt_config *cc = ti->private;
2927     char *tmp, *cipher, *chainmode, *keycount;
2928     char *cipher_api = NULL;
2929     int ret = -EINVAL;
2930     char dummy;
2931 
2932     if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2933         ti->error = "Bad cipher specification";
2934         return -EINVAL;
2935     }
2936 
2937     /*
2938      * Legacy dm-crypt cipher specification
2939      * cipher[:keycount]-mode-iv:ivopts
2940      */
2941     tmp = cipher_in;
2942     keycount = strsep(&tmp, "-");
2943     cipher = strsep(&keycount, ":");
2944 
2945     if (!keycount)
2946         cc->tfms_count = 1;
2947     else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2948          !is_power_of_2(cc->tfms_count)) {
2949         ti->error = "Bad cipher key count specification";
2950         return -EINVAL;
2951     }
2952     cc->key_parts = cc->tfms_count;
2953 
2954     chainmode = strsep(&tmp, "-");
2955     *ivmode = strsep(&tmp, ":");
2956     *ivopts = tmp;
2957 
2958     /*
2959      * For compatibility with the original dm-crypt mapping format, if
2960      * only the cipher name is supplied, use cbc-plain.
2961      */
2962     if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2963         chainmode = "cbc";
2964         *ivmode = "plain";
2965     }
2966 
2967     if (strcmp(chainmode, "ecb") && !*ivmode) {
2968         ti->error = "IV mechanism required";
2969         return -EINVAL;
2970     }
2971 
2972     cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2973     if (!cipher_api)
2974         goto bad_mem;
2975 
2976     if (*ivmode && !strcmp(*ivmode, "essiv")) {
2977         if (!*ivopts) {
2978             ti->error = "Digest algorithm missing for ESSIV mode";
2979             kfree(cipher_api);
2980             return -EINVAL;
2981         }
2982         ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2983                    "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
2984     } else {
2985         ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2986                    "%s(%s)", chainmode, cipher);
2987     }
2988     if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2989         kfree(cipher_api);
2990         goto bad_mem;
2991     }
2992 
2993     /* Allocate cipher */
2994     ret = crypt_alloc_tfms(cc, cipher_api);
2995     if (ret < 0) {
2996         ti->error = "Error allocating crypto tfm";
2997         kfree(cipher_api);
2998         return ret;
2999     }
3000     kfree(cipher_api);
3001 
3002     return 0;
3003 bad_mem:
3004     ti->error = "Cannot allocate cipher strings";
3005     return -ENOMEM;
3006 }
3007 
3008 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3009 {
3010     struct crypt_config *cc = ti->private;
3011     char *ivmode = NULL, *ivopts = NULL;
3012     int ret;
3013 
3014     cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3015     if (!cc->cipher_string) {
3016         ti->error = "Cannot allocate cipher strings";
3017         return -ENOMEM;
3018     }
3019 
3020     if (strstarts(cipher_in, "capi:"))
3021         ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3022     else
3023         ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3024     if (ret)
3025         return ret;
3026 
3027     /* Initialize IV */
3028     ret = crypt_ctr_ivmode(ti, ivmode);
3029     if (ret < 0)
3030         return ret;
3031 
3032     /* Initialize and set key */
3033     ret = crypt_set_key(cc, key);
3034     if (ret < 0) {
3035         ti->error = "Error decoding and setting key";
3036         return ret;
3037     }
3038 
3039     /* Allocate IV */
3040     if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3041         ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3042         if (ret < 0) {
3043             ti->error = "Error creating IV";
3044             return ret;
3045         }
3046     }
3047 
3048     /* Initialize IV (set keys for ESSIV etc) */
3049     if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3050         ret = cc->iv_gen_ops->init(cc);
3051         if (ret < 0) {
3052             ti->error = "Error initialising IV";
3053             return ret;
3054         }
3055     }
3056 
3057     /* wipe the kernel key payload copy */
3058     if (cc->key_string)
3059         memset(cc->key, 0, cc->key_size * sizeof(u8));
3060 
3061     return ret;
3062 }
3063 
3064 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3065 {
3066     struct crypt_config *cc = ti->private;
3067     struct dm_arg_set as;
3068     static const struct dm_arg _args[] = {
3069         {0, 8, "Invalid number of feature args"},
3070     };
3071     unsigned int opt_params, val;
3072     const char *opt_string, *sval;
3073     char dummy;
3074     int ret;
3075 
3076     /* Optional parameters */
3077     as.argc = argc;
3078     as.argv = argv;
3079 
3080     ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3081     if (ret)
3082         return ret;
3083 
3084     while (opt_params--) {
3085         opt_string = dm_shift_arg(&as);
3086         if (!opt_string) {
3087             ti->error = "Not enough feature arguments";
3088             return -EINVAL;
3089         }
3090 
3091         if (!strcasecmp(opt_string, "allow_discards"))
3092             ti->num_discard_bios = 1;
3093 
3094         else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3095             set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3096 
3097         else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3098             set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3099         else if (!strcasecmp(opt_string, "no_read_workqueue"))
3100             set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3101         else if (!strcasecmp(opt_string, "no_write_workqueue"))
3102             set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3103         else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3104             if (val == 0 || val > MAX_TAG_SIZE) {
3105                 ti->error = "Invalid integrity arguments";
3106                 return -EINVAL;
3107             }
3108             cc->on_disk_tag_size = val;
3109             sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3110             if (!strcasecmp(sval, "aead")) {
3111                 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3112             } else  if (strcasecmp(sval, "none")) {
3113                 ti->error = "Unknown integrity profile";
3114                 return -EINVAL;
3115             }
3116 
3117             cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3118             if (!cc->cipher_auth)
3119                 return -ENOMEM;
3120         } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3121             if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3122                 cc->sector_size > 4096 ||
3123                 (cc->sector_size & (cc->sector_size - 1))) {
3124                 ti->error = "Invalid feature value for sector_size";
3125                 return -EINVAL;
3126             }
3127             if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3128                 ti->error = "Device size is not multiple of sector_size feature";
3129                 return -EINVAL;
3130             }
3131             cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3132         } else if (!strcasecmp(opt_string, "iv_large_sectors"))
3133             set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3134         else {
3135             ti->error = "Invalid feature arguments";
3136             return -EINVAL;
3137         }
3138     }
3139 
3140     return 0;
3141 }
3142 
3143 #ifdef CONFIG_BLK_DEV_ZONED
3144 static int crypt_report_zones(struct dm_target *ti,
3145         struct dm_report_zones_args *args, unsigned int nr_zones)
3146 {
3147     struct crypt_config *cc = ti->private;
3148 
3149     return dm_report_zones(cc->dev->bdev, cc->start,
3150             cc->start + dm_target_offset(ti, args->next_sector),
3151             args, nr_zones);
3152 }
3153 #else
3154 #define crypt_report_zones NULL
3155 #endif
3156 
3157 /*
3158  * Construct an encryption mapping:
3159  * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3160  */
3161 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3162 {
3163     struct crypt_config *cc;
3164     const char *devname = dm_table_device_name(ti->table);
3165     int key_size;
3166     unsigned int align_mask;
3167     unsigned long long tmpll;
3168     int ret;
3169     size_t iv_size_padding, additional_req_size;
3170     char dummy;
3171 
3172     if (argc < 5) {
3173         ti->error = "Not enough arguments";
3174         return -EINVAL;
3175     }
3176 
3177     key_size = get_key_size(&argv[1]);
3178     if (key_size < 0) {
3179         ti->error = "Cannot parse key size";
3180         return -EINVAL;
3181     }
3182 
3183     cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3184     if (!cc) {
3185         ti->error = "Cannot allocate encryption context";
3186         return -ENOMEM;
3187     }
3188     cc->key_size = key_size;
3189     cc->sector_size = (1 << SECTOR_SHIFT);
3190     cc->sector_shift = 0;
3191 
3192     ti->private = cc;
3193 
3194     spin_lock(&dm_crypt_clients_lock);
3195     dm_crypt_clients_n++;
3196     crypt_calculate_pages_per_client();
3197     spin_unlock(&dm_crypt_clients_lock);
3198 
3199     ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3200     if (ret < 0)
3201         goto bad;
3202 
3203     /* Optional parameters need to be read before cipher constructor */
3204     if (argc > 5) {
3205         ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3206         if (ret)
3207             goto bad;
3208     }
3209 
3210     ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3211     if (ret < 0)
3212         goto bad;
3213 
3214     if (crypt_integrity_aead(cc)) {
3215         cc->dmreq_start = sizeof(struct aead_request);
3216         cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3217         align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3218     } else {
3219         cc->dmreq_start = sizeof(struct skcipher_request);
3220         cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3221         align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3222     }
3223     cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3224 
3225     if (align_mask < CRYPTO_MINALIGN) {
3226         /* Allocate the padding exactly */
3227         iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3228                 & align_mask;
3229     } else {
3230         /*
3231          * If the cipher requires greater alignment than kmalloc
3232          * alignment, we don't know the exact position of the
3233          * initialization vector. We must assume worst case.
3234          */
3235         iv_size_padding = align_mask;
3236     }
3237 
3238     /*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3239     additional_req_size = sizeof(struct dm_crypt_request) +
3240         iv_size_padding + cc->iv_size +
3241         cc->iv_size +
3242         sizeof(uint64_t) +
3243         sizeof(unsigned int);
3244 
3245     ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3246     if (ret) {
3247         ti->error = "Cannot allocate crypt request mempool";
3248         goto bad;
3249     }
3250 
3251     cc->per_bio_data_size = ti->per_io_data_size =
3252         ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3253               ARCH_KMALLOC_MINALIGN);
3254 
3255     ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3256     if (ret) {
3257         ti->error = "Cannot allocate page mempool";
3258         goto bad;
3259     }
3260 
3261     ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3262     if (ret) {
3263         ti->error = "Cannot allocate crypt bioset";
3264         goto bad;
3265     }
3266 
3267     mutex_init(&cc->bio_alloc_lock);
3268 
3269     ret = -EINVAL;
3270     if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3271         (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3272         ti->error = "Invalid iv_offset sector";
3273         goto bad;
3274     }
3275     cc->iv_offset = tmpll;
3276 
3277     ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3278     if (ret) {
3279         ti->error = "Device lookup failed";
3280         goto bad;
3281     }
3282 
3283     ret = -EINVAL;
3284     if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3285         ti->error = "Invalid device sector";
3286         goto bad;
3287     }
3288     cc->start = tmpll;
3289 
3290     if (bdev_is_zoned(cc->dev->bdev)) {
3291         /*
3292          * For zoned block devices, we need to preserve the issuer write
3293          * ordering. To do so, disable write workqueues and force inline
3294          * encryption completion.
3295          */
3296         set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3297         set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3298 
3299         /*
3300          * All zone append writes to a zone of a zoned block device will
3301          * have the same BIO sector, the start of the zone. When the
3302          * cypher IV mode uses sector values, all data targeting a
3303          * zone will be encrypted using the first sector numbers of the
3304          * zone. This will not result in write errors but will
3305          * cause most reads to fail as reads will use the sector values
3306          * for the actual data locations, resulting in IV mismatch.
3307          * To avoid this problem, ask DM core to emulate zone append
3308          * operations with regular writes.
3309          */
3310         DMDEBUG("Zone append operations will be emulated");
3311         ti->emulate_zone_append = true;
3312     }
3313 
3314     if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3315         ret = crypt_integrity_ctr(cc, ti);
3316         if (ret)
3317             goto bad;
3318 
3319         cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3320         if (!cc->tag_pool_max_sectors)
3321             cc->tag_pool_max_sectors = 1;
3322 
3323         ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3324             cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3325         if (ret) {
3326             ti->error = "Cannot allocate integrity tags mempool";
3327             goto bad;
3328         }
3329 
3330         cc->tag_pool_max_sectors <<= cc->sector_shift;
3331     }
3332 
3333     ret = -ENOMEM;
3334     cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
3335     if (!cc->io_queue) {
3336         ti->error = "Couldn't create kcryptd io queue";
3337         goto bad;
3338     }
3339 
3340     if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3341         cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3342                           1, devname);
3343     else
3344         cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3345                           WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3346                           num_online_cpus(), devname);
3347     if (!cc->crypt_queue) {
3348         ti->error = "Couldn't create kcryptd queue";
3349         goto bad;
3350     }
3351 
3352     spin_lock_init(&cc->write_thread_lock);
3353     cc->write_tree = RB_ROOT;
3354 
3355     cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3356     if (IS_ERR(cc->write_thread)) {
3357         ret = PTR_ERR(cc->write_thread);
3358         cc->write_thread = NULL;
3359         ti->error = "Couldn't spawn write thread";
3360         goto bad;
3361     }
3362 
3363     ti->num_flush_bios = 1;
3364     ti->limit_swap_bios = true;
3365     ti->accounts_remapped_io = true;
3366 
3367     dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3368     return 0;
3369 
3370 bad:
3371     dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3372     crypt_dtr(ti);
3373     return ret;
3374 }
3375 
3376 static int crypt_map(struct dm_target *ti, struct bio *bio)
3377 {
3378     struct dm_crypt_io *io;
3379     struct crypt_config *cc = ti->private;
3380 
3381     /*
3382      * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3383      * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3384      * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3385      */
3386     if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3387         bio_op(bio) == REQ_OP_DISCARD)) {
3388         bio_set_dev(bio, cc->dev->bdev);
3389         if (bio_sectors(bio))
3390             bio->bi_iter.bi_sector = cc->start +
3391                 dm_target_offset(ti, bio->bi_iter.bi_sector);
3392         return DM_MAPIO_REMAPPED;
3393     }
3394 
3395     /*
3396      * Check if bio is too large, split as needed.
3397      */
3398     if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3399         (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3400         dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3401 
3402     /*
3403      * Ensure that bio is a multiple of internal sector encryption size
3404      * and is aligned to this size as defined in IO hints.
3405      */
3406     if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3407         return DM_MAPIO_KILL;
3408 
3409     if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3410         return DM_MAPIO_KILL;
3411 
3412     io = dm_per_bio_data(bio, cc->per_bio_data_size);
3413     crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3414 
3415     if (cc->on_disk_tag_size) {
3416         unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3417 
3418         if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
3419             unlikely(!(io->integrity_metadata = kmalloc(tag_len,
3420                 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
3421             if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3422                 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3423             io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3424             io->integrity_metadata_from_pool = true;
3425         }
3426     }
3427 
3428     if (crypt_integrity_aead(cc))
3429         io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3430     else
3431         io->ctx.r.req = (struct skcipher_request *)(io + 1);
3432 
3433     if (bio_data_dir(io->base_bio) == READ) {
3434         if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3435             kcryptd_queue_read(io);
3436     } else
3437         kcryptd_queue_crypt(io);
3438 
3439     return DM_MAPIO_SUBMITTED;
3440 }
3441 
3442 static char hex2asc(unsigned char c)
3443 {
3444     return c + '0' + ((unsigned)(9 - c) >> 4 & 0x27);
3445 }
3446 
3447 static void crypt_status(struct dm_target *ti, status_type_t type,
3448              unsigned status_flags, char *result, unsigned maxlen)
3449 {
3450     struct crypt_config *cc = ti->private;
3451     unsigned i, sz = 0;
3452     int num_feature_args = 0;
3453 
3454     switch (type) {
3455     case STATUSTYPE_INFO:
3456         result[0] = '\0';
3457         break;
3458 
3459     case STATUSTYPE_TABLE:
3460         DMEMIT("%s ", cc->cipher_string);
3461 
3462         if (cc->key_size > 0) {
3463             if (cc->key_string)
3464                 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3465             else {
3466                 for (i = 0; i < cc->key_size; i++) {
3467                     DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3468                            hex2asc(cc->key[i] & 0xf));
3469                 }
3470             }
3471         } else
3472             DMEMIT("-");
3473 
3474         DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3475                 cc->dev->name, (unsigned long long)cc->start);
3476 
3477         num_feature_args += !!ti->num_discard_bios;
3478         num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3479         num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3480         num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3481         num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3482         num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3483         num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3484         if (cc->on_disk_tag_size)
3485             num_feature_args++;
3486         if (num_feature_args) {
3487             DMEMIT(" %d", num_feature_args);
3488             if (ti->num_discard_bios)
3489                 DMEMIT(" allow_discards");
3490             if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3491                 DMEMIT(" same_cpu_crypt");
3492             if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3493                 DMEMIT(" submit_from_crypt_cpus");
3494             if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3495                 DMEMIT(" no_read_workqueue");
3496             if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3497                 DMEMIT(" no_write_workqueue");
3498             if (cc->on_disk_tag_size)
3499                 DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3500             if (cc->sector_size != (1 << SECTOR_SHIFT))
3501                 DMEMIT(" sector_size:%d", cc->sector_size);
3502             if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3503                 DMEMIT(" iv_large_sectors");
3504         }
3505         break;
3506 
3507     case STATUSTYPE_IMA:
3508         DMEMIT_TARGET_NAME_VERSION(ti->type);
3509         DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3510         DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3511         DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3512                'y' : 'n');
3513         DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3514                'y' : 'n');
3515         DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3516                'y' : 'n');
3517         DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3518                'y' : 'n');
3519 
3520         if (cc->on_disk_tag_size)
3521             DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3522                    cc->on_disk_tag_size, cc->cipher_auth);
3523         if (cc->sector_size != (1 << SECTOR_SHIFT))
3524             DMEMIT(",sector_size=%d", cc->sector_size);
3525         if (cc->cipher_string)
3526             DMEMIT(",cipher_string=%s", cc->cipher_string);
3527 
3528         DMEMIT(",key_size=%u", cc->key_size);
3529         DMEMIT(",key_parts=%u", cc->key_parts);
3530         DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3531         DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3532         DMEMIT(";");
3533         break;
3534     }
3535 }
3536 
3537 static void crypt_postsuspend(struct dm_target *ti)
3538 {
3539     struct crypt_config *cc = ti->private;
3540 
3541     set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3542 }
3543 
3544 static int crypt_preresume(struct dm_target *ti)
3545 {
3546     struct crypt_config *cc = ti->private;
3547 
3548     if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3549         DMERR("aborting resume - crypt key is not set.");
3550         return -EAGAIN;
3551     }
3552 
3553     return 0;
3554 }
3555 
3556 static void crypt_resume(struct dm_target *ti)
3557 {
3558     struct crypt_config *cc = ti->private;
3559 
3560     clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3561 }
3562 
3563 /* Message interface
3564  *  key set <key>
3565  *  key wipe
3566  */
3567 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
3568              char *result, unsigned maxlen)
3569 {
3570     struct crypt_config *cc = ti->private;
3571     int key_size, ret = -EINVAL;
3572 
3573     if (argc < 2)
3574         goto error;
3575 
3576     if (!strcasecmp(argv[0], "key")) {
3577         if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3578             DMWARN("not suspended during key manipulation.");
3579             return -EINVAL;
3580         }
3581         if (argc == 3 && !strcasecmp(argv[1], "set")) {
3582             /* The key size may not be changed. */
3583             key_size = get_key_size(&argv[2]);
3584             if (key_size < 0 || cc->key_size != key_size) {
3585                 memset(argv[2], '0', strlen(argv[2]));
3586                 return -EINVAL;
3587             }
3588 
3589             ret = crypt_set_key(cc, argv[2]);
3590             if (ret)
3591                 return ret;
3592             if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3593                 ret = cc->iv_gen_ops->init(cc);
3594             /* wipe the kernel key payload copy */
3595             if (cc->key_string)
3596                 memset(cc->key, 0, cc->key_size * sizeof(u8));
3597             return ret;
3598         }
3599         if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3600             return crypt_wipe_key(cc);
3601     }
3602 
3603 error:
3604     DMWARN("unrecognised message received.");
3605     return -EINVAL;
3606 }
3607 
3608 static int crypt_iterate_devices(struct dm_target *ti,
3609                  iterate_devices_callout_fn fn, void *data)
3610 {
3611     struct crypt_config *cc = ti->private;
3612 
3613     return fn(ti, cc->dev, cc->start, ti->len, data);
3614 }
3615 
3616 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3617 {
3618     struct crypt_config *cc = ti->private;
3619 
3620     /*
3621      * Unfortunate constraint that is required to avoid the potential
3622      * for exceeding underlying device's max_segments limits -- due to
3623      * crypt_alloc_buffer() possibly allocating pages for the encryption
3624      * bio that are not as physically contiguous as the original bio.
3625      */
3626     limits->max_segment_size = PAGE_SIZE;
3627 
3628     limits->logical_block_size =
3629         max_t(unsigned, limits->logical_block_size, cc->sector_size);
3630     limits->physical_block_size =
3631         max_t(unsigned, limits->physical_block_size, cc->sector_size);
3632     limits->io_min = max_t(unsigned, limits->io_min, cc->sector_size);
3633 }
3634 
3635 static struct target_type crypt_target = {
3636     .name   = "crypt",
3637     .version = {1, 24, 0},
3638     .module = THIS_MODULE,
3639     .ctr    = crypt_ctr,
3640     .dtr    = crypt_dtr,
3641     .features = DM_TARGET_ZONED_HM,
3642     .report_zones = crypt_report_zones,
3643     .map    = crypt_map,
3644     .status = crypt_status,
3645     .postsuspend = crypt_postsuspend,
3646     .preresume = crypt_preresume,
3647     .resume = crypt_resume,
3648     .message = crypt_message,
3649     .iterate_devices = crypt_iterate_devices,
3650     .io_hints = crypt_io_hints,
3651 };
3652 
3653 static int __init dm_crypt_init(void)
3654 {
3655     int r;
3656 
3657     r = dm_register_target(&crypt_target);
3658     if (r < 0)
3659         DMERR("register failed %d", r);
3660 
3661     return r;
3662 }
3663 
3664 static void __exit dm_crypt_exit(void)
3665 {
3666     dm_unregister_target(&crypt_target);
3667 }
3668 
3669 module_init(dm_crypt_init);
3670 module_exit(dm_crypt_exit);
3671 
3672 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3673 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3674 MODULE_LICENSE("GPL");