Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright (C) 2009-2011 Red Hat, Inc.
0003  *
0004  * Author: Mikulas Patocka <mpatocka@redhat.com>
0005  *
0006  * This file is released under the GPL.
0007  */
0008 
0009 #include <linux/dm-bufio.h>
0010 
0011 #include <linux/device-mapper.h>
0012 #include <linux/dm-io.h>
0013 #include <linux/slab.h>
0014 #include <linux/sched/mm.h>
0015 #include <linux/jiffies.h>
0016 #include <linux/vmalloc.h>
0017 #include <linux/shrinker.h>
0018 #include <linux/module.h>
0019 #include <linux/rbtree.h>
0020 #include <linux/stacktrace.h>
0021 #include <linux/jump_label.h>
0022 
0023 #define DM_MSG_PREFIX "bufio"
0024 
0025 /*
0026  * Memory management policy:
0027  *  Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
0028  *  or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
0029  *  Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
0030  *  Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
0031  *  dirty buffers.
0032  */
0033 #define DM_BUFIO_MIN_BUFFERS        8
0034 
0035 #define DM_BUFIO_MEMORY_PERCENT     2
0036 #define DM_BUFIO_VMALLOC_PERCENT    25
0037 #define DM_BUFIO_WRITEBACK_RATIO    3
0038 #define DM_BUFIO_LOW_WATERMARK_RATIO    16
0039 
0040 /*
0041  * Check buffer ages in this interval (seconds)
0042  */
0043 #define DM_BUFIO_WORK_TIMER_SECS    30
0044 
0045 /*
0046  * Free buffers when they are older than this (seconds)
0047  */
0048 #define DM_BUFIO_DEFAULT_AGE_SECS   300
0049 
0050 /*
0051  * The nr of bytes of cached data to keep around.
0052  */
0053 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
0054 
0055 /*
0056  * Align buffer writes to this boundary.
0057  * Tests show that SSDs have the highest IOPS when using 4k writes.
0058  */
0059 #define DM_BUFIO_WRITE_ALIGN        4096
0060 
0061 /*
0062  * dm_buffer->list_mode
0063  */
0064 #define LIST_CLEAN  0
0065 #define LIST_DIRTY  1
0066 #define LIST_SIZE   2
0067 
0068 /*
0069  * Linking of buffers:
0070  *  All buffers are linked to buffer_tree with their node field.
0071  *
0072  *  Clean buffers that are not being written (B_WRITING not set)
0073  *  are linked to lru[LIST_CLEAN] with their lru_list field.
0074  *
0075  *  Dirty and clean buffers that are being written are linked to
0076  *  lru[LIST_DIRTY] with their lru_list field. When the write
0077  *  finishes, the buffer cannot be relinked immediately (because we
0078  *  are in an interrupt context and relinking requires process
0079  *  context), so some clean-not-writing buffers can be held on
0080  *  dirty_lru too.  They are later added to lru in the process
0081  *  context.
0082  */
0083 struct dm_bufio_client {
0084     struct mutex lock;
0085     spinlock_t spinlock;
0086     bool no_sleep;
0087 
0088     struct list_head lru[LIST_SIZE];
0089     unsigned long n_buffers[LIST_SIZE];
0090 
0091     struct block_device *bdev;
0092     unsigned block_size;
0093     s8 sectors_per_block_bits;
0094     void (*alloc_callback)(struct dm_buffer *);
0095     void (*write_callback)(struct dm_buffer *);
0096     struct kmem_cache *slab_buffer;
0097     struct kmem_cache *slab_cache;
0098     struct dm_io_client *dm_io;
0099 
0100     struct list_head reserved_buffers;
0101     unsigned need_reserved_buffers;
0102 
0103     unsigned minimum_buffers;
0104 
0105     struct rb_root buffer_tree;
0106     wait_queue_head_t free_buffer_wait;
0107 
0108     sector_t start;
0109 
0110     int async_write_error;
0111 
0112     struct list_head client_list;
0113 
0114     struct shrinker shrinker;
0115     struct work_struct shrink_work;
0116     atomic_long_t need_shrink;
0117 };
0118 
0119 /*
0120  * Buffer state bits.
0121  */
0122 #define B_READING   0
0123 #define B_WRITING   1
0124 #define B_DIRTY     2
0125 
0126 /*
0127  * Describes how the block was allocated:
0128  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
0129  * See the comment at alloc_buffer_data.
0130  */
0131 enum data_mode {
0132     DATA_MODE_SLAB = 0,
0133     DATA_MODE_GET_FREE_PAGES = 1,
0134     DATA_MODE_VMALLOC = 2,
0135     DATA_MODE_LIMIT = 3
0136 };
0137 
0138 struct dm_buffer {
0139     struct rb_node node;
0140     struct list_head lru_list;
0141     struct list_head global_list;
0142     sector_t block;
0143     void *data;
0144     unsigned char data_mode;        /* DATA_MODE_* */
0145     unsigned char list_mode;        /* LIST_* */
0146     blk_status_t read_error;
0147     blk_status_t write_error;
0148     unsigned accessed;
0149     unsigned hold_count;
0150     unsigned long state;
0151     unsigned long last_accessed;
0152     unsigned dirty_start;
0153     unsigned dirty_end;
0154     unsigned write_start;
0155     unsigned write_end;
0156     struct dm_bufio_client *c;
0157     struct list_head write_list;
0158     void (*end_io)(struct dm_buffer *, blk_status_t);
0159 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
0160 #define MAX_STACK 10
0161     unsigned int stack_len;
0162     unsigned long stack_entries[MAX_STACK];
0163 #endif
0164 };
0165 
0166 static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled);
0167 
0168 /*----------------------------------------------------------------*/
0169 
0170 #define dm_bufio_in_request()   (!!current->bio_list)
0171 
0172 static void dm_bufio_lock(struct dm_bufio_client *c)
0173 {
0174     if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
0175         spin_lock_bh(&c->spinlock);
0176     else
0177         mutex_lock_nested(&c->lock, dm_bufio_in_request());
0178 }
0179 
0180 static int dm_bufio_trylock(struct dm_bufio_client *c)
0181 {
0182     if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
0183         return spin_trylock_bh(&c->spinlock);
0184     else
0185         return mutex_trylock(&c->lock);
0186 }
0187 
0188 static void dm_bufio_unlock(struct dm_bufio_client *c)
0189 {
0190     if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
0191         spin_unlock_bh(&c->spinlock);
0192     else
0193         mutex_unlock(&c->lock);
0194 }
0195 
0196 /*----------------------------------------------------------------*/
0197 
0198 /*
0199  * Default cache size: available memory divided by the ratio.
0200  */
0201 static unsigned long dm_bufio_default_cache_size;
0202 
0203 /*
0204  * Total cache size set by the user.
0205  */
0206 static unsigned long dm_bufio_cache_size;
0207 
0208 /*
0209  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
0210  * at any time.  If it disagrees, the user has changed cache size.
0211  */
0212 static unsigned long dm_bufio_cache_size_latch;
0213 
0214 static DEFINE_SPINLOCK(global_spinlock);
0215 
0216 static LIST_HEAD(global_queue);
0217 
0218 static unsigned long global_num = 0;
0219 
0220 /*
0221  * Buffers are freed after this timeout
0222  */
0223 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
0224 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
0225 
0226 static unsigned long dm_bufio_peak_allocated;
0227 static unsigned long dm_bufio_allocated_kmem_cache;
0228 static unsigned long dm_bufio_allocated_get_free_pages;
0229 static unsigned long dm_bufio_allocated_vmalloc;
0230 static unsigned long dm_bufio_current_allocated;
0231 
0232 /*----------------------------------------------------------------*/
0233 
0234 /*
0235  * The current number of clients.
0236  */
0237 static int dm_bufio_client_count;
0238 
0239 /*
0240  * The list of all clients.
0241  */
0242 static LIST_HEAD(dm_bufio_all_clients);
0243 
0244 /*
0245  * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
0246  */
0247 static DEFINE_MUTEX(dm_bufio_clients_lock);
0248 
0249 static struct workqueue_struct *dm_bufio_wq;
0250 static struct delayed_work dm_bufio_cleanup_old_work;
0251 static struct work_struct dm_bufio_replacement_work;
0252 
0253 
0254 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
0255 static void buffer_record_stack(struct dm_buffer *b)
0256 {
0257     b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
0258 }
0259 #endif
0260 
0261 /*----------------------------------------------------------------
0262  * A red/black tree acts as an index for all the buffers.
0263  *--------------------------------------------------------------*/
0264 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
0265 {
0266     struct rb_node *n = c->buffer_tree.rb_node;
0267     struct dm_buffer *b;
0268 
0269     while (n) {
0270         b = container_of(n, struct dm_buffer, node);
0271 
0272         if (b->block == block)
0273             return b;
0274 
0275         n = block < b->block ? n->rb_left : n->rb_right;
0276     }
0277 
0278     return NULL;
0279 }
0280 
0281 static struct dm_buffer *__find_next(struct dm_bufio_client *c, sector_t block)
0282 {
0283     struct rb_node *n = c->buffer_tree.rb_node;
0284     struct dm_buffer *b;
0285     struct dm_buffer *best = NULL;
0286 
0287     while (n) {
0288         b = container_of(n, struct dm_buffer, node);
0289 
0290         if (b->block == block)
0291             return b;
0292 
0293         if (block <= b->block) {
0294             n = n->rb_left;
0295             best = b;
0296         } else {
0297             n = n->rb_right;
0298         }
0299     }
0300 
0301     return best;
0302 }
0303 
0304 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
0305 {
0306     struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
0307     struct dm_buffer *found;
0308 
0309     while (*new) {
0310         found = container_of(*new, struct dm_buffer, node);
0311 
0312         if (found->block == b->block) {
0313             BUG_ON(found != b);
0314             return;
0315         }
0316 
0317         parent = *new;
0318         new = b->block < found->block ?
0319             &found->node.rb_left : &found->node.rb_right;
0320     }
0321 
0322     rb_link_node(&b->node, parent, new);
0323     rb_insert_color(&b->node, &c->buffer_tree);
0324 }
0325 
0326 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
0327 {
0328     rb_erase(&b->node, &c->buffer_tree);
0329 }
0330 
0331 /*----------------------------------------------------------------*/
0332 
0333 static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
0334 {
0335     unsigned char data_mode;
0336     long diff;
0337 
0338     static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
0339         &dm_bufio_allocated_kmem_cache,
0340         &dm_bufio_allocated_get_free_pages,
0341         &dm_bufio_allocated_vmalloc,
0342     };
0343 
0344     data_mode = b->data_mode;
0345     diff = (long)b->c->block_size;
0346     if (unlink)
0347         diff = -diff;
0348 
0349     spin_lock(&global_spinlock);
0350 
0351     *class_ptr[data_mode] += diff;
0352 
0353     dm_bufio_current_allocated += diff;
0354 
0355     if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
0356         dm_bufio_peak_allocated = dm_bufio_current_allocated;
0357 
0358     b->accessed = 1;
0359 
0360     if (!unlink) {
0361         list_add(&b->global_list, &global_queue);
0362         global_num++;
0363         if (dm_bufio_current_allocated > dm_bufio_cache_size)
0364             queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
0365     } else {
0366         list_del(&b->global_list);
0367         global_num--;
0368     }
0369 
0370     spin_unlock(&global_spinlock);
0371 }
0372 
0373 /*
0374  * Change the number of clients and recalculate per-client limit.
0375  */
0376 static void __cache_size_refresh(void)
0377 {
0378     BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
0379     BUG_ON(dm_bufio_client_count < 0);
0380 
0381     dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
0382 
0383     /*
0384      * Use default if set to 0 and report the actual cache size used.
0385      */
0386     if (!dm_bufio_cache_size_latch) {
0387         (void)cmpxchg(&dm_bufio_cache_size, 0,
0388                   dm_bufio_default_cache_size);
0389         dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
0390     }
0391 }
0392 
0393 /*
0394  * Allocating buffer data.
0395  *
0396  * Small buffers are allocated with kmem_cache, to use space optimally.
0397  *
0398  * For large buffers, we choose between get_free_pages and vmalloc.
0399  * Each has advantages and disadvantages.
0400  *
0401  * __get_free_pages can randomly fail if the memory is fragmented.
0402  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
0403  * as low as 128M) so using it for caching is not appropriate.
0404  *
0405  * If the allocation may fail we use __get_free_pages. Memory fragmentation
0406  * won't have a fatal effect here, but it just causes flushes of some other
0407  * buffers and more I/O will be performed. Don't use __get_free_pages if it
0408  * always fails (i.e. order >= MAX_ORDER).
0409  *
0410  * If the allocation shouldn't fail we use __vmalloc. This is only for the
0411  * initial reserve allocation, so there's no risk of wasting all vmalloc
0412  * space.
0413  */
0414 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
0415                    unsigned char *data_mode)
0416 {
0417     if (unlikely(c->slab_cache != NULL)) {
0418         *data_mode = DATA_MODE_SLAB;
0419         return kmem_cache_alloc(c->slab_cache, gfp_mask);
0420     }
0421 
0422     if (c->block_size <= KMALLOC_MAX_SIZE &&
0423         gfp_mask & __GFP_NORETRY) {
0424         *data_mode = DATA_MODE_GET_FREE_PAGES;
0425         return (void *)__get_free_pages(gfp_mask,
0426                         c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
0427     }
0428 
0429     *data_mode = DATA_MODE_VMALLOC;
0430 
0431     /*
0432      * __vmalloc allocates the data pages and auxiliary structures with
0433      * gfp_flags that were specified, but pagetables are always allocated
0434      * with GFP_KERNEL, no matter what was specified as gfp_mask.
0435      *
0436      * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
0437      * all allocations done by this process (including pagetables) are done
0438      * as if GFP_NOIO was specified.
0439      */
0440     if (gfp_mask & __GFP_NORETRY) {
0441         unsigned noio_flag = memalloc_noio_save();
0442         void *ptr = __vmalloc(c->block_size, gfp_mask);
0443 
0444         memalloc_noio_restore(noio_flag);
0445         return ptr;
0446     }
0447 
0448     return __vmalloc(c->block_size, gfp_mask);
0449 }
0450 
0451 /*
0452  * Free buffer's data.
0453  */
0454 static void free_buffer_data(struct dm_bufio_client *c,
0455                  void *data, unsigned char data_mode)
0456 {
0457     switch (data_mode) {
0458     case DATA_MODE_SLAB:
0459         kmem_cache_free(c->slab_cache, data);
0460         break;
0461 
0462     case DATA_MODE_GET_FREE_PAGES:
0463         free_pages((unsigned long)data,
0464                c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
0465         break;
0466 
0467     case DATA_MODE_VMALLOC:
0468         vfree(data);
0469         break;
0470 
0471     default:
0472         DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
0473                data_mode);
0474         BUG();
0475     }
0476 }
0477 
0478 /*
0479  * Allocate buffer and its data.
0480  */
0481 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
0482 {
0483     struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
0484 
0485     if (!b)
0486         return NULL;
0487 
0488     b->c = c;
0489 
0490     b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
0491     if (!b->data) {
0492         kmem_cache_free(c->slab_buffer, b);
0493         return NULL;
0494     }
0495 
0496 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
0497     b->stack_len = 0;
0498 #endif
0499     return b;
0500 }
0501 
0502 /*
0503  * Free buffer and its data.
0504  */
0505 static void free_buffer(struct dm_buffer *b)
0506 {
0507     struct dm_bufio_client *c = b->c;
0508 
0509     free_buffer_data(c, b->data, b->data_mode);
0510     kmem_cache_free(c->slab_buffer, b);
0511 }
0512 
0513 /*
0514  * Link buffer to the buffer tree and clean or dirty queue.
0515  */
0516 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
0517 {
0518     struct dm_bufio_client *c = b->c;
0519 
0520     c->n_buffers[dirty]++;
0521     b->block = block;
0522     b->list_mode = dirty;
0523     list_add(&b->lru_list, &c->lru[dirty]);
0524     __insert(b->c, b);
0525     b->last_accessed = jiffies;
0526 
0527     adjust_total_allocated(b, false);
0528 }
0529 
0530 /*
0531  * Unlink buffer from the buffer tree and dirty or clean queue.
0532  */
0533 static void __unlink_buffer(struct dm_buffer *b)
0534 {
0535     struct dm_bufio_client *c = b->c;
0536 
0537     BUG_ON(!c->n_buffers[b->list_mode]);
0538 
0539     c->n_buffers[b->list_mode]--;
0540     __remove(b->c, b);
0541     list_del(&b->lru_list);
0542 
0543     adjust_total_allocated(b, true);
0544 }
0545 
0546 /*
0547  * Place the buffer to the head of dirty or clean LRU queue.
0548  */
0549 static void __relink_lru(struct dm_buffer *b, int dirty)
0550 {
0551     struct dm_bufio_client *c = b->c;
0552 
0553     b->accessed = 1;
0554 
0555     BUG_ON(!c->n_buffers[b->list_mode]);
0556 
0557     c->n_buffers[b->list_mode]--;
0558     c->n_buffers[dirty]++;
0559     b->list_mode = dirty;
0560     list_move(&b->lru_list, &c->lru[dirty]);
0561     b->last_accessed = jiffies;
0562 }
0563 
0564 /*----------------------------------------------------------------
0565  * Submit I/O on the buffer.
0566  *
0567  * Bio interface is faster but it has some problems:
0568  *  the vector list is limited (increasing this limit increases
0569  *  memory-consumption per buffer, so it is not viable);
0570  *
0571  *  the memory must be direct-mapped, not vmalloced;
0572  *
0573  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
0574  * it is not vmalloced, try using the bio interface.
0575  *
0576  * If the buffer is big, if it is vmalloced or if the underlying device
0577  * rejects the bio because it is too large, use dm-io layer to do the I/O.
0578  * The dm-io layer splits the I/O into multiple requests, avoiding the above
0579  * shortcomings.
0580  *--------------------------------------------------------------*/
0581 
0582 /*
0583  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
0584  * that the request was handled directly with bio interface.
0585  */
0586 static void dmio_complete(unsigned long error, void *context)
0587 {
0588     struct dm_buffer *b = context;
0589 
0590     b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
0591 }
0592 
0593 static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector,
0594              unsigned n_sectors, unsigned offset)
0595 {
0596     int r;
0597     struct dm_io_request io_req = {
0598         .bi_opf = op,
0599         .notify.fn = dmio_complete,
0600         .notify.context = b,
0601         .client = b->c->dm_io,
0602     };
0603     struct dm_io_region region = {
0604         .bdev = b->c->bdev,
0605         .sector = sector,
0606         .count = n_sectors,
0607     };
0608 
0609     if (b->data_mode != DATA_MODE_VMALLOC) {
0610         io_req.mem.type = DM_IO_KMEM;
0611         io_req.mem.ptr.addr = (char *)b->data + offset;
0612     } else {
0613         io_req.mem.type = DM_IO_VMA;
0614         io_req.mem.ptr.vma = (char *)b->data + offset;
0615     }
0616 
0617     r = dm_io(&io_req, 1, &region, NULL);
0618     if (unlikely(r))
0619         b->end_io(b, errno_to_blk_status(r));
0620 }
0621 
0622 static void bio_complete(struct bio *bio)
0623 {
0624     struct dm_buffer *b = bio->bi_private;
0625     blk_status_t status = bio->bi_status;
0626     bio_uninit(bio);
0627     kfree(bio);
0628     b->end_io(b, status);
0629 }
0630 
0631 static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector,
0632             unsigned n_sectors, unsigned offset)
0633 {
0634     struct bio *bio;
0635     char *ptr;
0636     unsigned vec_size, len;
0637 
0638     vec_size = b->c->block_size >> PAGE_SHIFT;
0639     if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT))
0640         vec_size += 2;
0641 
0642     bio = bio_kmalloc(vec_size, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN);
0643     if (!bio) {
0644 dmio:
0645         use_dmio(b, op, sector, n_sectors, offset);
0646         return;
0647     }
0648     bio_init(bio, b->c->bdev, bio->bi_inline_vecs, vec_size, op);
0649     bio->bi_iter.bi_sector = sector;
0650     bio->bi_end_io = bio_complete;
0651     bio->bi_private = b;
0652 
0653     ptr = (char *)b->data + offset;
0654     len = n_sectors << SECTOR_SHIFT;
0655 
0656     do {
0657         unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
0658         if (!bio_add_page(bio, virt_to_page(ptr), this_step,
0659                   offset_in_page(ptr))) {
0660             bio_put(bio);
0661             goto dmio;
0662         }
0663 
0664         len -= this_step;
0665         ptr += this_step;
0666     } while (len > 0);
0667 
0668     submit_bio(bio);
0669 }
0670 
0671 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
0672 {
0673     sector_t sector;
0674 
0675     if (likely(c->sectors_per_block_bits >= 0))
0676         sector = block << c->sectors_per_block_bits;
0677     else
0678         sector = block * (c->block_size >> SECTOR_SHIFT);
0679     sector += c->start;
0680 
0681     return sector;
0682 }
0683 
0684 static void submit_io(struct dm_buffer *b, enum req_op op,
0685               void (*end_io)(struct dm_buffer *, blk_status_t))
0686 {
0687     unsigned n_sectors;
0688     sector_t sector;
0689     unsigned offset, end;
0690 
0691     b->end_io = end_io;
0692 
0693     sector = block_to_sector(b->c, b->block);
0694 
0695     if (op != REQ_OP_WRITE) {
0696         n_sectors = b->c->block_size >> SECTOR_SHIFT;
0697         offset = 0;
0698     } else {
0699         if (b->c->write_callback)
0700             b->c->write_callback(b);
0701         offset = b->write_start;
0702         end = b->write_end;
0703         offset &= -DM_BUFIO_WRITE_ALIGN;
0704         end += DM_BUFIO_WRITE_ALIGN - 1;
0705         end &= -DM_BUFIO_WRITE_ALIGN;
0706         if (unlikely(end > b->c->block_size))
0707             end = b->c->block_size;
0708 
0709         sector += offset >> SECTOR_SHIFT;
0710         n_sectors = (end - offset) >> SECTOR_SHIFT;
0711     }
0712 
0713     if (b->data_mode != DATA_MODE_VMALLOC)
0714         use_bio(b, op, sector, n_sectors, offset);
0715     else
0716         use_dmio(b, op, sector, n_sectors, offset);
0717 }
0718 
0719 /*----------------------------------------------------------------
0720  * Writing dirty buffers
0721  *--------------------------------------------------------------*/
0722 
0723 /*
0724  * The endio routine for write.
0725  *
0726  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
0727  * it.
0728  */
0729 static void write_endio(struct dm_buffer *b, blk_status_t status)
0730 {
0731     b->write_error = status;
0732     if (unlikely(status)) {
0733         struct dm_bufio_client *c = b->c;
0734 
0735         (void)cmpxchg(&c->async_write_error, 0,
0736                 blk_status_to_errno(status));
0737     }
0738 
0739     BUG_ON(!test_bit(B_WRITING, &b->state));
0740 
0741     smp_mb__before_atomic();
0742     clear_bit(B_WRITING, &b->state);
0743     smp_mb__after_atomic();
0744 
0745     wake_up_bit(&b->state, B_WRITING);
0746 }
0747 
0748 /*
0749  * Initiate a write on a dirty buffer, but don't wait for it.
0750  *
0751  * - If the buffer is not dirty, exit.
0752  * - If there some previous write going on, wait for it to finish (we can't
0753  *   have two writes on the same buffer simultaneously).
0754  * - Submit our write and don't wait on it. We set B_WRITING indicating
0755  *   that there is a write in progress.
0756  */
0757 static void __write_dirty_buffer(struct dm_buffer *b,
0758                  struct list_head *write_list)
0759 {
0760     if (!test_bit(B_DIRTY, &b->state))
0761         return;
0762 
0763     clear_bit(B_DIRTY, &b->state);
0764     wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
0765 
0766     b->write_start = b->dirty_start;
0767     b->write_end = b->dirty_end;
0768 
0769     if (!write_list)
0770         submit_io(b, REQ_OP_WRITE, write_endio);
0771     else
0772         list_add_tail(&b->write_list, write_list);
0773 }
0774 
0775 static void __flush_write_list(struct list_head *write_list)
0776 {
0777     struct blk_plug plug;
0778     blk_start_plug(&plug);
0779     while (!list_empty(write_list)) {
0780         struct dm_buffer *b =
0781             list_entry(write_list->next, struct dm_buffer, write_list);
0782         list_del(&b->write_list);
0783         submit_io(b, REQ_OP_WRITE, write_endio);
0784         cond_resched();
0785     }
0786     blk_finish_plug(&plug);
0787 }
0788 
0789 /*
0790  * Wait until any activity on the buffer finishes.  Possibly write the
0791  * buffer if it is dirty.  When this function finishes, there is no I/O
0792  * running on the buffer and the buffer is not dirty.
0793  */
0794 static void __make_buffer_clean(struct dm_buffer *b)
0795 {
0796     BUG_ON(b->hold_count);
0797 
0798     if (!b->state)  /* fast case */
0799         return;
0800 
0801     wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
0802     __write_dirty_buffer(b, NULL);
0803     wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
0804 }
0805 
0806 /*
0807  * Find some buffer that is not held by anybody, clean it, unlink it and
0808  * return it.
0809  */
0810 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
0811 {
0812     struct dm_buffer *b;
0813 
0814     list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
0815         BUG_ON(test_bit(B_WRITING, &b->state));
0816         BUG_ON(test_bit(B_DIRTY, &b->state));
0817 
0818         if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep &&
0819             unlikely(test_bit(B_READING, &b->state)))
0820             continue;
0821 
0822         if (!b->hold_count) {
0823             __make_buffer_clean(b);
0824             __unlink_buffer(b);
0825             return b;
0826         }
0827         cond_resched();
0828     }
0829 
0830     if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
0831         return NULL;
0832 
0833     list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
0834         BUG_ON(test_bit(B_READING, &b->state));
0835 
0836         if (!b->hold_count) {
0837             __make_buffer_clean(b);
0838             __unlink_buffer(b);
0839             return b;
0840         }
0841         cond_resched();
0842     }
0843 
0844     return NULL;
0845 }
0846 
0847 /*
0848  * Wait until some other threads free some buffer or release hold count on
0849  * some buffer.
0850  *
0851  * This function is entered with c->lock held, drops it and regains it
0852  * before exiting.
0853  */
0854 static void __wait_for_free_buffer(struct dm_bufio_client *c)
0855 {
0856     DECLARE_WAITQUEUE(wait, current);
0857 
0858     add_wait_queue(&c->free_buffer_wait, &wait);
0859     set_current_state(TASK_UNINTERRUPTIBLE);
0860     dm_bufio_unlock(c);
0861 
0862     io_schedule();
0863 
0864     remove_wait_queue(&c->free_buffer_wait, &wait);
0865 
0866     dm_bufio_lock(c);
0867 }
0868 
0869 enum new_flag {
0870     NF_FRESH = 0,
0871     NF_READ = 1,
0872     NF_GET = 2,
0873     NF_PREFETCH = 3
0874 };
0875 
0876 /*
0877  * Allocate a new buffer. If the allocation is not possible, wait until
0878  * some other thread frees a buffer.
0879  *
0880  * May drop the lock and regain it.
0881  */
0882 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
0883 {
0884     struct dm_buffer *b;
0885     bool tried_noio_alloc = false;
0886 
0887     /*
0888      * dm-bufio is resistant to allocation failures (it just keeps
0889      * one buffer reserved in cases all the allocations fail).
0890      * So set flags to not try too hard:
0891      *  GFP_NOWAIT: don't wait; if we need to sleep we'll release our
0892      *          mutex and wait ourselves.
0893      *  __GFP_NORETRY: don't retry and rather return failure
0894      *  __GFP_NOMEMALLOC: don't use emergency reserves
0895      *  __GFP_NOWARN: don't print a warning in case of failure
0896      *
0897      * For debugging, if we set the cache size to 1, no new buffers will
0898      * be allocated.
0899      */
0900     while (1) {
0901         if (dm_bufio_cache_size_latch != 1) {
0902             b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
0903             if (b)
0904                 return b;
0905         }
0906 
0907         if (nf == NF_PREFETCH)
0908             return NULL;
0909 
0910         if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
0911             dm_bufio_unlock(c);
0912             b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
0913             dm_bufio_lock(c);
0914             if (b)
0915                 return b;
0916             tried_noio_alloc = true;
0917         }
0918 
0919         if (!list_empty(&c->reserved_buffers)) {
0920             b = list_entry(c->reserved_buffers.next,
0921                        struct dm_buffer, lru_list);
0922             list_del(&b->lru_list);
0923             c->need_reserved_buffers++;
0924 
0925             return b;
0926         }
0927 
0928         b = __get_unclaimed_buffer(c);
0929         if (b)
0930             return b;
0931 
0932         __wait_for_free_buffer(c);
0933     }
0934 }
0935 
0936 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
0937 {
0938     struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
0939 
0940     if (!b)
0941         return NULL;
0942 
0943     if (c->alloc_callback)
0944         c->alloc_callback(b);
0945 
0946     return b;
0947 }
0948 
0949 /*
0950  * Free a buffer and wake other threads waiting for free buffers.
0951  */
0952 static void __free_buffer_wake(struct dm_buffer *b)
0953 {
0954     struct dm_bufio_client *c = b->c;
0955 
0956     if (!c->need_reserved_buffers)
0957         free_buffer(b);
0958     else {
0959         list_add(&b->lru_list, &c->reserved_buffers);
0960         c->need_reserved_buffers--;
0961     }
0962 
0963     wake_up(&c->free_buffer_wait);
0964 }
0965 
0966 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
0967                     struct list_head *write_list)
0968 {
0969     struct dm_buffer *b, *tmp;
0970 
0971     list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
0972         BUG_ON(test_bit(B_READING, &b->state));
0973 
0974         if (!test_bit(B_DIRTY, &b->state) &&
0975             !test_bit(B_WRITING, &b->state)) {
0976             __relink_lru(b, LIST_CLEAN);
0977             continue;
0978         }
0979 
0980         if (no_wait && test_bit(B_WRITING, &b->state))
0981             return;
0982 
0983         __write_dirty_buffer(b, write_list);
0984         cond_resched();
0985     }
0986 }
0987 
0988 /*
0989  * Check if we're over watermark.
0990  * If we are over threshold_buffers, start freeing buffers.
0991  * If we're over "limit_buffers", block until we get under the limit.
0992  */
0993 static void __check_watermark(struct dm_bufio_client *c,
0994                   struct list_head *write_list)
0995 {
0996     if (c->n_buffers[LIST_DIRTY] > c->n_buffers[LIST_CLEAN] * DM_BUFIO_WRITEBACK_RATIO)
0997         __write_dirty_buffers_async(c, 1, write_list);
0998 }
0999 
1000 /*----------------------------------------------------------------
1001  * Getting a buffer
1002  *--------------------------------------------------------------*/
1003 
1004 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
1005                      enum new_flag nf, int *need_submit,
1006                      struct list_head *write_list)
1007 {
1008     struct dm_buffer *b, *new_b = NULL;
1009 
1010     *need_submit = 0;
1011 
1012     b = __find(c, block);
1013     if (b)
1014         goto found_buffer;
1015 
1016     if (nf == NF_GET)
1017         return NULL;
1018 
1019     new_b = __alloc_buffer_wait(c, nf);
1020     if (!new_b)
1021         return NULL;
1022 
1023     /*
1024      * We've had a period where the mutex was unlocked, so need to
1025      * recheck the buffer tree.
1026      */
1027     b = __find(c, block);
1028     if (b) {
1029         __free_buffer_wake(new_b);
1030         goto found_buffer;
1031     }
1032 
1033     __check_watermark(c, write_list);
1034 
1035     b = new_b;
1036     b->hold_count = 1;
1037     b->read_error = 0;
1038     b->write_error = 0;
1039     __link_buffer(b, block, LIST_CLEAN);
1040 
1041     if (nf == NF_FRESH) {
1042         b->state = 0;
1043         return b;
1044     }
1045 
1046     b->state = 1 << B_READING;
1047     *need_submit = 1;
1048 
1049     return b;
1050 
1051 found_buffer:
1052     if (nf == NF_PREFETCH)
1053         return NULL;
1054     /*
1055      * Note: it is essential that we don't wait for the buffer to be
1056      * read if dm_bufio_get function is used. Both dm_bufio_get and
1057      * dm_bufio_prefetch can be used in the driver request routine.
1058      * If the user called both dm_bufio_prefetch and dm_bufio_get on
1059      * the same buffer, it would deadlock if we waited.
1060      */
1061     if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1062         return NULL;
1063 
1064     b->hold_count++;
1065     __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1066              test_bit(B_WRITING, &b->state));
1067     return b;
1068 }
1069 
1070 /*
1071  * The endio routine for reading: set the error, clear the bit and wake up
1072  * anyone waiting on the buffer.
1073  */
1074 static void read_endio(struct dm_buffer *b, blk_status_t status)
1075 {
1076     b->read_error = status;
1077 
1078     BUG_ON(!test_bit(B_READING, &b->state));
1079 
1080     smp_mb__before_atomic();
1081     clear_bit(B_READING, &b->state);
1082     smp_mb__after_atomic();
1083 
1084     wake_up_bit(&b->state, B_READING);
1085 }
1086 
1087 /*
1088  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1089  * functions is similar except that dm_bufio_new doesn't read the
1090  * buffer from the disk (assuming that the caller overwrites all the data
1091  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1092  */
1093 static void *new_read(struct dm_bufio_client *c, sector_t block,
1094               enum new_flag nf, struct dm_buffer **bp)
1095 {
1096     int need_submit;
1097     struct dm_buffer *b;
1098 
1099     LIST_HEAD(write_list);
1100 
1101     dm_bufio_lock(c);
1102     b = __bufio_new(c, block, nf, &need_submit, &write_list);
1103 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1104     if (b && b->hold_count == 1)
1105         buffer_record_stack(b);
1106 #endif
1107     dm_bufio_unlock(c);
1108 
1109     __flush_write_list(&write_list);
1110 
1111     if (!b)
1112         return NULL;
1113 
1114     if (need_submit)
1115         submit_io(b, REQ_OP_READ, read_endio);
1116 
1117     wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1118 
1119     if (b->read_error) {
1120         int error = blk_status_to_errno(b->read_error);
1121 
1122         dm_bufio_release(b);
1123 
1124         return ERR_PTR(error);
1125     }
1126 
1127     *bp = b;
1128 
1129     return b->data;
1130 }
1131 
1132 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1133            struct dm_buffer **bp)
1134 {
1135     return new_read(c, block, NF_GET, bp);
1136 }
1137 EXPORT_SYMBOL_GPL(dm_bufio_get);
1138 
1139 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1140             struct dm_buffer **bp)
1141 {
1142     BUG_ON(dm_bufio_in_request());
1143 
1144     return new_read(c, block, NF_READ, bp);
1145 }
1146 EXPORT_SYMBOL_GPL(dm_bufio_read);
1147 
1148 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1149            struct dm_buffer **bp)
1150 {
1151     BUG_ON(dm_bufio_in_request());
1152 
1153     return new_read(c, block, NF_FRESH, bp);
1154 }
1155 EXPORT_SYMBOL_GPL(dm_bufio_new);
1156 
1157 void dm_bufio_prefetch(struct dm_bufio_client *c,
1158                sector_t block, unsigned n_blocks)
1159 {
1160     struct blk_plug plug;
1161 
1162     LIST_HEAD(write_list);
1163 
1164     BUG_ON(dm_bufio_in_request());
1165 
1166     blk_start_plug(&plug);
1167     dm_bufio_lock(c);
1168 
1169     for (; n_blocks--; block++) {
1170         int need_submit;
1171         struct dm_buffer *b;
1172         b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1173                 &write_list);
1174         if (unlikely(!list_empty(&write_list))) {
1175             dm_bufio_unlock(c);
1176             blk_finish_plug(&plug);
1177             __flush_write_list(&write_list);
1178             blk_start_plug(&plug);
1179             dm_bufio_lock(c);
1180         }
1181         if (unlikely(b != NULL)) {
1182             dm_bufio_unlock(c);
1183 
1184             if (need_submit)
1185                 submit_io(b, REQ_OP_READ, read_endio);
1186             dm_bufio_release(b);
1187 
1188             cond_resched();
1189 
1190             if (!n_blocks)
1191                 goto flush_plug;
1192             dm_bufio_lock(c);
1193         }
1194     }
1195 
1196     dm_bufio_unlock(c);
1197 
1198 flush_plug:
1199     blk_finish_plug(&plug);
1200 }
1201 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1202 
1203 void dm_bufio_release(struct dm_buffer *b)
1204 {
1205     struct dm_bufio_client *c = b->c;
1206 
1207     dm_bufio_lock(c);
1208 
1209     BUG_ON(!b->hold_count);
1210 
1211     b->hold_count--;
1212     if (!b->hold_count) {
1213         wake_up(&c->free_buffer_wait);
1214 
1215         /*
1216          * If there were errors on the buffer, and the buffer is not
1217          * to be written, free the buffer. There is no point in caching
1218          * invalid buffer.
1219          */
1220         if ((b->read_error || b->write_error) &&
1221             !test_bit(B_READING, &b->state) &&
1222             !test_bit(B_WRITING, &b->state) &&
1223             !test_bit(B_DIRTY, &b->state)) {
1224             __unlink_buffer(b);
1225             __free_buffer_wake(b);
1226         }
1227     }
1228 
1229     dm_bufio_unlock(c);
1230 }
1231 EXPORT_SYMBOL_GPL(dm_bufio_release);
1232 
1233 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1234                     unsigned start, unsigned end)
1235 {
1236     struct dm_bufio_client *c = b->c;
1237 
1238     BUG_ON(start >= end);
1239     BUG_ON(end > b->c->block_size);
1240 
1241     dm_bufio_lock(c);
1242 
1243     BUG_ON(test_bit(B_READING, &b->state));
1244 
1245     if (!test_and_set_bit(B_DIRTY, &b->state)) {
1246         b->dirty_start = start;
1247         b->dirty_end = end;
1248         __relink_lru(b, LIST_DIRTY);
1249     } else {
1250         if (start < b->dirty_start)
1251             b->dirty_start = start;
1252         if (end > b->dirty_end)
1253             b->dirty_end = end;
1254     }
1255 
1256     dm_bufio_unlock(c);
1257 }
1258 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1259 
1260 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1261 {
1262     dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1263 }
1264 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1265 
1266 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1267 {
1268     LIST_HEAD(write_list);
1269 
1270     BUG_ON(dm_bufio_in_request());
1271 
1272     dm_bufio_lock(c);
1273     __write_dirty_buffers_async(c, 0, &write_list);
1274     dm_bufio_unlock(c);
1275     __flush_write_list(&write_list);
1276 }
1277 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1278 
1279 /*
1280  * For performance, it is essential that the buffers are written asynchronously
1281  * and simultaneously (so that the block layer can merge the writes) and then
1282  * waited upon.
1283  *
1284  * Finally, we flush hardware disk cache.
1285  */
1286 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1287 {
1288     int a, f;
1289     unsigned long buffers_processed = 0;
1290     struct dm_buffer *b, *tmp;
1291 
1292     LIST_HEAD(write_list);
1293 
1294     dm_bufio_lock(c);
1295     __write_dirty_buffers_async(c, 0, &write_list);
1296     dm_bufio_unlock(c);
1297     __flush_write_list(&write_list);
1298     dm_bufio_lock(c);
1299 
1300 again:
1301     list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1302         int dropped_lock = 0;
1303 
1304         if (buffers_processed < c->n_buffers[LIST_DIRTY])
1305             buffers_processed++;
1306 
1307         BUG_ON(test_bit(B_READING, &b->state));
1308 
1309         if (test_bit(B_WRITING, &b->state)) {
1310             if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1311                 dropped_lock = 1;
1312                 b->hold_count++;
1313                 dm_bufio_unlock(c);
1314                 wait_on_bit_io(&b->state, B_WRITING,
1315                            TASK_UNINTERRUPTIBLE);
1316                 dm_bufio_lock(c);
1317                 b->hold_count--;
1318             } else
1319                 wait_on_bit_io(&b->state, B_WRITING,
1320                            TASK_UNINTERRUPTIBLE);
1321         }
1322 
1323         if (!test_bit(B_DIRTY, &b->state) &&
1324             !test_bit(B_WRITING, &b->state))
1325             __relink_lru(b, LIST_CLEAN);
1326 
1327         cond_resched();
1328 
1329         /*
1330          * If we dropped the lock, the list is no longer consistent,
1331          * so we must restart the search.
1332          *
1333          * In the most common case, the buffer just processed is
1334          * relinked to the clean list, so we won't loop scanning the
1335          * same buffer again and again.
1336          *
1337          * This may livelock if there is another thread simultaneously
1338          * dirtying buffers, so we count the number of buffers walked
1339          * and if it exceeds the total number of buffers, it means that
1340          * someone is doing some writes simultaneously with us.  In
1341          * this case, stop, dropping the lock.
1342          */
1343         if (dropped_lock)
1344             goto again;
1345     }
1346     wake_up(&c->free_buffer_wait);
1347     dm_bufio_unlock(c);
1348 
1349     a = xchg(&c->async_write_error, 0);
1350     f = dm_bufio_issue_flush(c);
1351     if (a)
1352         return a;
1353 
1354     return f;
1355 }
1356 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1357 
1358 /*
1359  * Use dm-io to send an empty barrier to flush the device.
1360  */
1361 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1362 {
1363     struct dm_io_request io_req = {
1364         .bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1365         .mem.type = DM_IO_KMEM,
1366         .mem.ptr.addr = NULL,
1367         .client = c->dm_io,
1368     };
1369     struct dm_io_region io_reg = {
1370         .bdev = c->bdev,
1371         .sector = 0,
1372         .count = 0,
1373     };
1374 
1375     BUG_ON(dm_bufio_in_request());
1376 
1377     return dm_io(&io_req, 1, &io_reg, NULL);
1378 }
1379 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1380 
1381 /*
1382  * Use dm-io to send a discard request to flush the device.
1383  */
1384 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
1385 {
1386     struct dm_io_request io_req = {
1387         .bi_opf = REQ_OP_DISCARD | REQ_SYNC,
1388         .mem.type = DM_IO_KMEM,
1389         .mem.ptr.addr = NULL,
1390         .client = c->dm_io,
1391     };
1392     struct dm_io_region io_reg = {
1393         .bdev = c->bdev,
1394         .sector = block_to_sector(c, block),
1395         .count = block_to_sector(c, count),
1396     };
1397 
1398     BUG_ON(dm_bufio_in_request());
1399 
1400     return dm_io(&io_req, 1, &io_reg, NULL);
1401 }
1402 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
1403 
1404 /*
1405  * We first delete any other buffer that may be at that new location.
1406  *
1407  * Then, we write the buffer to the original location if it was dirty.
1408  *
1409  * Then, if we are the only one who is holding the buffer, relink the buffer
1410  * in the buffer tree for the new location.
1411  *
1412  * If there was someone else holding the buffer, we write it to the new
1413  * location but not relink it, because that other user needs to have the buffer
1414  * at the same place.
1415  */
1416 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1417 {
1418     struct dm_bufio_client *c = b->c;
1419     struct dm_buffer *new;
1420 
1421     BUG_ON(dm_bufio_in_request());
1422 
1423     dm_bufio_lock(c);
1424 
1425 retry:
1426     new = __find(c, new_block);
1427     if (new) {
1428         if (new->hold_count) {
1429             __wait_for_free_buffer(c);
1430             goto retry;
1431         }
1432 
1433         /*
1434          * FIXME: Is there any point waiting for a write that's going
1435          * to be overwritten in a bit?
1436          */
1437         __make_buffer_clean(new);
1438         __unlink_buffer(new);
1439         __free_buffer_wake(new);
1440     }
1441 
1442     BUG_ON(!b->hold_count);
1443     BUG_ON(test_bit(B_READING, &b->state));
1444 
1445     __write_dirty_buffer(b, NULL);
1446     if (b->hold_count == 1) {
1447         wait_on_bit_io(&b->state, B_WRITING,
1448                    TASK_UNINTERRUPTIBLE);
1449         set_bit(B_DIRTY, &b->state);
1450         b->dirty_start = 0;
1451         b->dirty_end = c->block_size;
1452         __unlink_buffer(b);
1453         __link_buffer(b, new_block, LIST_DIRTY);
1454     } else {
1455         sector_t old_block;
1456         wait_on_bit_lock_io(&b->state, B_WRITING,
1457                     TASK_UNINTERRUPTIBLE);
1458         /*
1459          * Relink buffer to "new_block" so that write_callback
1460          * sees "new_block" as a block number.
1461          * After the write, link the buffer back to old_block.
1462          * All this must be done in bufio lock, so that block number
1463          * change isn't visible to other threads.
1464          */
1465         old_block = b->block;
1466         __unlink_buffer(b);
1467         __link_buffer(b, new_block, b->list_mode);
1468         submit_io(b, REQ_OP_WRITE, write_endio);
1469         wait_on_bit_io(&b->state, B_WRITING,
1470                    TASK_UNINTERRUPTIBLE);
1471         __unlink_buffer(b);
1472         __link_buffer(b, old_block, b->list_mode);
1473     }
1474 
1475     dm_bufio_unlock(c);
1476     dm_bufio_release(b);
1477 }
1478 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1479 
1480 static void forget_buffer_locked(struct dm_buffer *b)
1481 {
1482     if (likely(!b->hold_count) && likely(!b->state)) {
1483         __unlink_buffer(b);
1484         __free_buffer_wake(b);
1485     }
1486 }
1487 
1488 /*
1489  * Free the given buffer.
1490  *
1491  * This is just a hint, if the buffer is in use or dirty, this function
1492  * does nothing.
1493  */
1494 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1495 {
1496     struct dm_buffer *b;
1497 
1498     dm_bufio_lock(c);
1499 
1500     b = __find(c, block);
1501     if (b)
1502         forget_buffer_locked(b);
1503 
1504     dm_bufio_unlock(c);
1505 }
1506 EXPORT_SYMBOL_GPL(dm_bufio_forget);
1507 
1508 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
1509 {
1510     struct dm_buffer *b;
1511     sector_t end_block = block + n_blocks;
1512 
1513     while (block < end_block) {
1514         dm_bufio_lock(c);
1515 
1516         b = __find_next(c, block);
1517         if (b) {
1518             block = b->block + 1;
1519             forget_buffer_locked(b);
1520         }
1521 
1522         dm_bufio_unlock(c);
1523 
1524         if (!b)
1525             break;
1526     }
1527 
1528 }
1529 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
1530 
1531 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1532 {
1533     c->minimum_buffers = n;
1534 }
1535 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
1536 
1537 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1538 {
1539     return c->block_size;
1540 }
1541 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1542 
1543 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1544 {
1545     sector_t s = bdev_nr_sectors(c->bdev);
1546     if (s >= c->start)
1547         s -= c->start;
1548     else
1549         s = 0;
1550     if (likely(c->sectors_per_block_bits >= 0))
1551         s >>= c->sectors_per_block_bits;
1552     else
1553         sector_div(s, c->block_size >> SECTOR_SHIFT);
1554     return s;
1555 }
1556 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1557 
1558 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
1559 {
1560     return c->dm_io;
1561 }
1562 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
1563 
1564 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1565 {
1566     return b->block;
1567 }
1568 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1569 
1570 void *dm_bufio_get_block_data(struct dm_buffer *b)
1571 {
1572     return b->data;
1573 }
1574 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1575 
1576 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1577 {
1578     return b + 1;
1579 }
1580 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1581 
1582 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1583 {
1584     return b->c;
1585 }
1586 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1587 
1588 static void drop_buffers(struct dm_bufio_client *c)
1589 {
1590     struct dm_buffer *b;
1591     int i;
1592     bool warned = false;
1593 
1594     BUG_ON(dm_bufio_in_request());
1595 
1596     /*
1597      * An optimization so that the buffers are not written one-by-one.
1598      */
1599     dm_bufio_write_dirty_buffers_async(c);
1600 
1601     dm_bufio_lock(c);
1602 
1603     while ((b = __get_unclaimed_buffer(c)))
1604         __free_buffer_wake(b);
1605 
1606     for (i = 0; i < LIST_SIZE; i++)
1607         list_for_each_entry(b, &c->lru[i], lru_list) {
1608             WARN_ON(!warned);
1609             warned = true;
1610             DMERR("leaked buffer %llx, hold count %u, list %d",
1611                   (unsigned long long)b->block, b->hold_count, i);
1612 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1613             stack_trace_print(b->stack_entries, b->stack_len, 1);
1614             /* mark unclaimed to avoid BUG_ON below */
1615             b->hold_count = 0;
1616 #endif
1617         }
1618 
1619 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1620     while ((b = __get_unclaimed_buffer(c)))
1621         __free_buffer_wake(b);
1622 #endif
1623 
1624     for (i = 0; i < LIST_SIZE; i++)
1625         BUG_ON(!list_empty(&c->lru[i]));
1626 
1627     dm_bufio_unlock(c);
1628 }
1629 
1630 /*
1631  * We may not be able to evict this buffer if IO pending or the client
1632  * is still using it.  Caller is expected to know buffer is too old.
1633  *
1634  * And if GFP_NOFS is used, we must not do any I/O because we hold
1635  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1636  * rerouted to different bufio client.
1637  */
1638 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1639 {
1640     if (!(gfp & __GFP_FS) ||
1641         (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) {
1642         if (test_bit(B_READING, &b->state) ||
1643             test_bit(B_WRITING, &b->state) ||
1644             test_bit(B_DIRTY, &b->state))
1645             return false;
1646     }
1647 
1648     if (b->hold_count)
1649         return false;
1650 
1651     __make_buffer_clean(b);
1652     __unlink_buffer(b);
1653     __free_buffer_wake(b);
1654 
1655     return true;
1656 }
1657 
1658 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1659 {
1660     unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
1661     if (likely(c->sectors_per_block_bits >= 0))
1662         retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
1663     else
1664         retain_bytes /= c->block_size;
1665     return retain_bytes;
1666 }
1667 
1668 static void __scan(struct dm_bufio_client *c)
1669 {
1670     int l;
1671     struct dm_buffer *b, *tmp;
1672     unsigned long freed = 0;
1673     unsigned long count = c->n_buffers[LIST_CLEAN] +
1674                   c->n_buffers[LIST_DIRTY];
1675     unsigned long retain_target = get_retain_buffers(c);
1676 
1677     for (l = 0; l < LIST_SIZE; l++) {
1678         list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1679             if (count - freed <= retain_target)
1680                 atomic_long_set(&c->need_shrink, 0);
1681             if (!atomic_long_read(&c->need_shrink))
1682                 return;
1683             if (__try_evict_buffer(b, GFP_KERNEL)) {
1684                 atomic_long_dec(&c->need_shrink);
1685                 freed++;
1686             }
1687             cond_resched();
1688         }
1689     }
1690 }
1691 
1692 static void shrink_work(struct work_struct *w)
1693 {
1694     struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
1695 
1696     dm_bufio_lock(c);
1697     __scan(c);
1698     dm_bufio_unlock(c);
1699 }
1700 
1701 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1702 {
1703     struct dm_bufio_client *c;
1704 
1705     c = container_of(shrink, struct dm_bufio_client, shrinker);
1706     atomic_long_add(sc->nr_to_scan, &c->need_shrink);
1707     queue_work(dm_bufio_wq, &c->shrink_work);
1708 
1709     return sc->nr_to_scan;
1710 }
1711 
1712 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1713 {
1714     struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1715     unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1716                   READ_ONCE(c->n_buffers[LIST_DIRTY]);
1717     unsigned long retain_target = get_retain_buffers(c);
1718     unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
1719 
1720     if (unlikely(count < retain_target))
1721         count = 0;
1722     else
1723         count -= retain_target;
1724 
1725     if (unlikely(count < queued_for_cleanup))
1726         count = 0;
1727     else
1728         count -= queued_for_cleanup;
1729 
1730     return count;
1731 }
1732 
1733 /*
1734  * Create the buffering interface
1735  */
1736 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1737                            unsigned reserved_buffers, unsigned aux_size,
1738                            void (*alloc_callback)(struct dm_buffer *),
1739                            void (*write_callback)(struct dm_buffer *),
1740                            unsigned int flags)
1741 {
1742     int r;
1743     struct dm_bufio_client *c;
1744     unsigned i;
1745     char slab_name[27];
1746 
1747     if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
1748         DMERR("%s: block size not specified or is not multiple of 512b", __func__);
1749         r = -EINVAL;
1750         goto bad_client;
1751     }
1752 
1753     c = kzalloc(sizeof(*c), GFP_KERNEL);
1754     if (!c) {
1755         r = -ENOMEM;
1756         goto bad_client;
1757     }
1758     c->buffer_tree = RB_ROOT;
1759 
1760     c->bdev = bdev;
1761     c->block_size = block_size;
1762     if (is_power_of_2(block_size))
1763         c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1764     else
1765         c->sectors_per_block_bits = -1;
1766 
1767     c->alloc_callback = alloc_callback;
1768     c->write_callback = write_callback;
1769 
1770     if (flags & DM_BUFIO_CLIENT_NO_SLEEP) {
1771         c->no_sleep = true;
1772         static_branch_inc(&no_sleep_enabled);
1773     }
1774 
1775     for (i = 0; i < LIST_SIZE; i++) {
1776         INIT_LIST_HEAD(&c->lru[i]);
1777         c->n_buffers[i] = 0;
1778     }
1779 
1780     mutex_init(&c->lock);
1781     spin_lock_init(&c->spinlock);
1782     INIT_LIST_HEAD(&c->reserved_buffers);
1783     c->need_reserved_buffers = reserved_buffers;
1784 
1785     dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
1786 
1787     init_waitqueue_head(&c->free_buffer_wait);
1788     c->async_write_error = 0;
1789 
1790     c->dm_io = dm_io_client_create();
1791     if (IS_ERR(c->dm_io)) {
1792         r = PTR_ERR(c->dm_io);
1793         goto bad_dm_io;
1794     }
1795 
1796     if (block_size <= KMALLOC_MAX_SIZE &&
1797         (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
1798         unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE);
1799         snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size);
1800         c->slab_cache = kmem_cache_create(slab_name, block_size, align,
1801                           SLAB_RECLAIM_ACCOUNT, NULL);
1802         if (!c->slab_cache) {
1803             r = -ENOMEM;
1804             goto bad;
1805         }
1806     }
1807     if (aux_size)
1808         snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size);
1809     else
1810         snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer");
1811     c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
1812                        0, SLAB_RECLAIM_ACCOUNT, NULL);
1813     if (!c->slab_buffer) {
1814         r = -ENOMEM;
1815         goto bad;
1816     }
1817 
1818     while (c->need_reserved_buffers) {
1819         struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1820 
1821         if (!b) {
1822             r = -ENOMEM;
1823             goto bad;
1824         }
1825         __free_buffer_wake(b);
1826     }
1827 
1828     INIT_WORK(&c->shrink_work, shrink_work);
1829     atomic_long_set(&c->need_shrink, 0);
1830 
1831     c->shrinker.count_objects = dm_bufio_shrink_count;
1832     c->shrinker.scan_objects = dm_bufio_shrink_scan;
1833     c->shrinker.seeks = 1;
1834     c->shrinker.batch = 0;
1835     r = register_shrinker(&c->shrinker, "md-%s:(%u:%u)", slab_name,
1836                   MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
1837     if (r)
1838         goto bad;
1839 
1840     mutex_lock(&dm_bufio_clients_lock);
1841     dm_bufio_client_count++;
1842     list_add(&c->client_list, &dm_bufio_all_clients);
1843     __cache_size_refresh();
1844     mutex_unlock(&dm_bufio_clients_lock);
1845 
1846     return c;
1847 
1848 bad:
1849     while (!list_empty(&c->reserved_buffers)) {
1850         struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1851                          struct dm_buffer, lru_list);
1852         list_del(&b->lru_list);
1853         free_buffer(b);
1854     }
1855     kmem_cache_destroy(c->slab_cache);
1856     kmem_cache_destroy(c->slab_buffer);
1857     dm_io_client_destroy(c->dm_io);
1858 bad_dm_io:
1859     mutex_destroy(&c->lock);
1860     kfree(c);
1861 bad_client:
1862     return ERR_PTR(r);
1863 }
1864 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1865 
1866 /*
1867  * Free the buffering interface.
1868  * It is required that there are no references on any buffers.
1869  */
1870 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1871 {
1872     unsigned i;
1873 
1874     drop_buffers(c);
1875 
1876     unregister_shrinker(&c->shrinker);
1877     flush_work(&c->shrink_work);
1878 
1879     mutex_lock(&dm_bufio_clients_lock);
1880 
1881     list_del(&c->client_list);
1882     dm_bufio_client_count--;
1883     __cache_size_refresh();
1884 
1885     mutex_unlock(&dm_bufio_clients_lock);
1886 
1887     BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1888     BUG_ON(c->need_reserved_buffers);
1889 
1890     while (!list_empty(&c->reserved_buffers)) {
1891         struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1892                          struct dm_buffer, lru_list);
1893         list_del(&b->lru_list);
1894         free_buffer(b);
1895     }
1896 
1897     for (i = 0; i < LIST_SIZE; i++)
1898         if (c->n_buffers[i])
1899             DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1900 
1901     for (i = 0; i < LIST_SIZE; i++)
1902         BUG_ON(c->n_buffers[i]);
1903 
1904     kmem_cache_destroy(c->slab_cache);
1905     kmem_cache_destroy(c->slab_buffer);
1906     dm_io_client_destroy(c->dm_io);
1907     mutex_destroy(&c->lock);
1908     if (c->no_sleep)
1909         static_branch_dec(&no_sleep_enabled);
1910     kfree(c);
1911 }
1912 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1913 
1914 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1915 {
1916     c->start = start;
1917 }
1918 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1919 
1920 static unsigned get_max_age_hz(void)
1921 {
1922     unsigned max_age = READ_ONCE(dm_bufio_max_age);
1923 
1924     if (max_age > UINT_MAX / HZ)
1925         max_age = UINT_MAX / HZ;
1926 
1927     return max_age * HZ;
1928 }
1929 
1930 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1931 {
1932     return time_after_eq(jiffies, b->last_accessed + age_hz);
1933 }
1934 
1935 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1936 {
1937     struct dm_buffer *b, *tmp;
1938     unsigned long retain_target = get_retain_buffers(c);
1939     unsigned long count;
1940     LIST_HEAD(write_list);
1941 
1942     dm_bufio_lock(c);
1943 
1944     __check_watermark(c, &write_list);
1945     if (unlikely(!list_empty(&write_list))) {
1946         dm_bufio_unlock(c);
1947         __flush_write_list(&write_list);
1948         dm_bufio_lock(c);
1949     }
1950 
1951     count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1952     list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1953         if (count <= retain_target)
1954             break;
1955 
1956         if (!older_than(b, age_hz))
1957             break;
1958 
1959         if (__try_evict_buffer(b, 0))
1960             count--;
1961 
1962         cond_resched();
1963     }
1964 
1965     dm_bufio_unlock(c);
1966 }
1967 
1968 static void do_global_cleanup(struct work_struct *w)
1969 {
1970     struct dm_bufio_client *locked_client = NULL;
1971     struct dm_bufio_client *current_client;
1972     struct dm_buffer *b;
1973     unsigned spinlock_hold_count;
1974     unsigned long threshold = dm_bufio_cache_size -
1975         dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
1976     unsigned long loops = global_num * 2;
1977 
1978     mutex_lock(&dm_bufio_clients_lock);
1979 
1980     while (1) {
1981         cond_resched();
1982 
1983         spin_lock(&global_spinlock);
1984         if (unlikely(dm_bufio_current_allocated <= threshold))
1985             break;
1986 
1987         spinlock_hold_count = 0;
1988 get_next:
1989         if (!loops--)
1990             break;
1991         if (unlikely(list_empty(&global_queue)))
1992             break;
1993         b = list_entry(global_queue.prev, struct dm_buffer, global_list);
1994 
1995         if (b->accessed) {
1996             b->accessed = 0;
1997             list_move(&b->global_list, &global_queue);
1998             if (likely(++spinlock_hold_count < 16))
1999                 goto get_next;
2000             spin_unlock(&global_spinlock);
2001             continue;
2002         }
2003 
2004         current_client = b->c;
2005         if (unlikely(current_client != locked_client)) {
2006             if (locked_client)
2007                 dm_bufio_unlock(locked_client);
2008 
2009             if (!dm_bufio_trylock(current_client)) {
2010                 spin_unlock(&global_spinlock);
2011                 dm_bufio_lock(current_client);
2012                 locked_client = current_client;
2013                 continue;
2014             }
2015 
2016             locked_client = current_client;
2017         }
2018 
2019         spin_unlock(&global_spinlock);
2020 
2021         if (unlikely(!__try_evict_buffer(b, GFP_KERNEL))) {
2022             spin_lock(&global_spinlock);
2023             list_move(&b->global_list, &global_queue);
2024             spin_unlock(&global_spinlock);
2025         }
2026     }
2027 
2028     spin_unlock(&global_spinlock);
2029 
2030     if (locked_client)
2031         dm_bufio_unlock(locked_client);
2032 
2033     mutex_unlock(&dm_bufio_clients_lock);
2034 }
2035 
2036 static void cleanup_old_buffers(void)
2037 {
2038     unsigned long max_age_hz = get_max_age_hz();
2039     struct dm_bufio_client *c;
2040 
2041     mutex_lock(&dm_bufio_clients_lock);
2042 
2043     __cache_size_refresh();
2044 
2045     list_for_each_entry(c, &dm_bufio_all_clients, client_list)
2046         __evict_old_buffers(c, max_age_hz);
2047 
2048     mutex_unlock(&dm_bufio_clients_lock);
2049 }
2050 
2051 static void work_fn(struct work_struct *w)
2052 {
2053     cleanup_old_buffers();
2054 
2055     queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2056                DM_BUFIO_WORK_TIMER_SECS * HZ);
2057 }
2058 
2059 /*----------------------------------------------------------------
2060  * Module setup
2061  *--------------------------------------------------------------*/
2062 
2063 /*
2064  * This is called only once for the whole dm_bufio module.
2065  * It initializes memory limit.
2066  */
2067 static int __init dm_bufio_init(void)
2068 {
2069     __u64 mem;
2070 
2071     dm_bufio_allocated_kmem_cache = 0;
2072     dm_bufio_allocated_get_free_pages = 0;
2073     dm_bufio_allocated_vmalloc = 0;
2074     dm_bufio_current_allocated = 0;
2075 
2076     mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2077                    DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2078 
2079     if (mem > ULONG_MAX)
2080         mem = ULONG_MAX;
2081 
2082 #ifdef CONFIG_MMU
2083     if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2084         mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2085 #endif
2086 
2087     dm_bufio_default_cache_size = mem;
2088 
2089     mutex_lock(&dm_bufio_clients_lock);
2090     __cache_size_refresh();
2091     mutex_unlock(&dm_bufio_clients_lock);
2092 
2093     dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
2094     if (!dm_bufio_wq)
2095         return -ENOMEM;
2096 
2097     INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
2098     INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2099     queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2100                DM_BUFIO_WORK_TIMER_SECS * HZ);
2101 
2102     return 0;
2103 }
2104 
2105 /*
2106  * This is called once when unloading the dm_bufio module.
2107  */
2108 static void __exit dm_bufio_exit(void)
2109 {
2110     int bug = 0;
2111 
2112     cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
2113     destroy_workqueue(dm_bufio_wq);
2114 
2115     if (dm_bufio_client_count) {
2116         DMCRIT("%s: dm_bufio_client_count leaked: %d",
2117             __func__, dm_bufio_client_count);
2118         bug = 1;
2119     }
2120 
2121     if (dm_bufio_current_allocated) {
2122         DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2123             __func__, dm_bufio_current_allocated);
2124         bug = 1;
2125     }
2126 
2127     if (dm_bufio_allocated_get_free_pages) {
2128         DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2129                __func__, dm_bufio_allocated_get_free_pages);
2130         bug = 1;
2131     }
2132 
2133     if (dm_bufio_allocated_vmalloc) {
2134         DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2135                __func__, dm_bufio_allocated_vmalloc);
2136         bug = 1;
2137     }
2138 
2139     BUG_ON(bug);
2140 }
2141 
2142 module_init(dm_bufio_init)
2143 module_exit(dm_bufio_exit)
2144 
2145 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
2146 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2147 
2148 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
2149 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2150 
2151 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
2152 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2153 
2154 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
2155 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2156 
2157 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
2158 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2159 
2160 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
2161 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2162 
2163 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
2164 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2165 
2166 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
2167 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2168 
2169 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2170 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2171 MODULE_LICENSE("GPL");