0001
0002
0003
0004
0005
0006
0007
0008
0009
0010 #include "bcache.h"
0011 #include "btree.h"
0012 #include "debug.h"
0013 #include "writeback.h"
0014
0015 #include <linux/delay.h>
0016 #include <linux/kthread.h>
0017 #include <linux/sched/clock.h>
0018 #include <trace/events/bcache.h>
0019
0020 static void update_gc_after_writeback(struct cache_set *c)
0021 {
0022 if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
0023 c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
0024 return;
0025
0026 c->gc_after_writeback |= BCH_DO_AUTO_GC;
0027 }
0028
0029
0030 static uint64_t __calc_target_rate(struct cached_dev *dc)
0031 {
0032 struct cache_set *c = dc->disk.c;
0033
0034
0035
0036
0037
0038 uint64_t cache_sectors = c->nbuckets * c->cache->sb.bucket_size -
0039 atomic_long_read(&c->flash_dev_dirty_sectors);
0040
0041
0042
0043
0044
0045
0046
0047 uint32_t bdev_share =
0048 div64_u64(bdev_nr_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
0049 c->cached_dev_sectors);
0050
0051 uint64_t cache_dirty_target =
0052 div_u64(cache_sectors * dc->writeback_percent, 100);
0053
0054
0055 if (bdev_share < 1)
0056 bdev_share = 1;
0057
0058 return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
0059 }
0060
0061 static void __update_writeback_rate(struct cached_dev *dc)
0062 {
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083 int64_t target = __calc_target_rate(dc);
0084 int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
0085 int64_t error = dirty - target;
0086 int64_t proportional_scaled =
0087 div_s64(error, dc->writeback_rate_p_term_inverse);
0088 int64_t integral_scaled;
0089 uint32_t new_rate;
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101 struct cache_set *c = dc->disk.c;
0102
0103 int64_t dirty_buckets = c->nbuckets - c->avail_nbuckets;
0104
0105 if (dc->writeback_consider_fragment &&
0106 c->gc_stats.in_use > BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW && dirty > 0) {
0107 int64_t fragment =
0108 div_s64((dirty_buckets * c->cache->sb.bucket_size), dirty);
0109 int64_t fp_term;
0110 int64_t fps;
0111
0112 if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID) {
0113 fp_term = (int64_t)dc->writeback_rate_fp_term_low *
0114 (c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW);
0115 } else if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH) {
0116 fp_term = (int64_t)dc->writeback_rate_fp_term_mid *
0117 (c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID);
0118 } else {
0119 fp_term = (int64_t)dc->writeback_rate_fp_term_high *
0120 (c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH);
0121 }
0122 fps = div_s64(dirty, dirty_buckets) * fp_term;
0123 if (fragment > 3 && fps > proportional_scaled) {
0124
0125 proportional_scaled = fps;
0126 }
0127 }
0128
0129 if ((error < 0 && dc->writeback_rate_integral > 0) ||
0130 (error > 0 && time_before64(local_clock(),
0131 dc->writeback_rate.next + NSEC_PER_MSEC))) {
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142 dc->writeback_rate_integral += error *
0143 dc->writeback_rate_update_seconds;
0144 }
0145
0146 integral_scaled = div_s64(dc->writeback_rate_integral,
0147 dc->writeback_rate_i_term_inverse);
0148
0149 new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
0150 dc->writeback_rate_minimum, NSEC_PER_SEC);
0151
0152 dc->writeback_rate_proportional = proportional_scaled;
0153 dc->writeback_rate_integral_scaled = integral_scaled;
0154 dc->writeback_rate_change = new_rate -
0155 atomic_long_read(&dc->writeback_rate.rate);
0156 atomic_long_set(&dc->writeback_rate.rate, new_rate);
0157 dc->writeback_rate_target = target;
0158 }
0159
0160 static bool set_at_max_writeback_rate(struct cache_set *c,
0161 struct cached_dev *dc)
0162 {
0163
0164 if (!c->idle_max_writeback_rate_enabled)
0165 return false;
0166
0167
0168 if (!c->gc_mark_valid)
0169 return false;
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183 if (atomic_inc_return(&c->idle_counter) <
0184 atomic_read(&c->attached_dev_nr) * 6)
0185 return false;
0186
0187 if (atomic_read(&c->at_max_writeback_rate) != 1)
0188 atomic_set(&c->at_max_writeback_rate, 1);
0189
0190 atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
0191
0192
0193 dc->writeback_rate_proportional = 0;
0194 dc->writeback_rate_integral_scaled = 0;
0195 dc->writeback_rate_change = 0;
0196
0197
0198
0199
0200
0201
0202
0203 if ((atomic_read(&c->idle_counter) <
0204 atomic_read(&c->attached_dev_nr) * 6) ||
0205 !atomic_read(&c->at_max_writeback_rate))
0206 return false;
0207
0208 return true;
0209 }
0210
0211 static void update_writeback_rate(struct work_struct *work)
0212 {
0213 struct cached_dev *dc = container_of(to_delayed_work(work),
0214 struct cached_dev,
0215 writeback_rate_update);
0216 struct cache_set *c = dc->disk.c;
0217
0218
0219
0220
0221
0222 set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
0223
0224 smp_mb__after_atomic();
0225
0226
0227
0228
0229
0230 if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
0231 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
0232 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
0233
0234 smp_mb__after_atomic();
0235 return;
0236 }
0237
0238
0239
0240
0241
0242
0243
0244 if (atomic_read(&dc->has_dirty) && dc->writeback_percent &&
0245 !set_at_max_writeback_rate(c, dc)) {
0246 do {
0247 if (!down_read_trylock((&dc->writeback_lock))) {
0248 dc->rate_update_retry++;
0249 if (dc->rate_update_retry <=
0250 BCH_WBRATE_UPDATE_MAX_SKIPS)
0251 break;
0252 down_read(&dc->writeback_lock);
0253 dc->rate_update_retry = 0;
0254 }
0255 __update_writeback_rate(dc);
0256 update_gc_after_writeback(c);
0257 up_read(&dc->writeback_lock);
0258 } while (0);
0259 }
0260
0261
0262
0263
0264
0265
0266 if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
0267 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
0268 schedule_delayed_work(&dc->writeback_rate_update,
0269 dc->writeback_rate_update_seconds * HZ);
0270 }
0271
0272
0273
0274
0275
0276 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
0277
0278 smp_mb__after_atomic();
0279 }
0280
0281 static unsigned int writeback_delay(struct cached_dev *dc,
0282 unsigned int sectors)
0283 {
0284 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
0285 !dc->writeback_percent)
0286 return 0;
0287
0288 return bch_next_delay(&dc->writeback_rate, sectors);
0289 }
0290
0291 struct dirty_io {
0292 struct closure cl;
0293 struct cached_dev *dc;
0294 uint16_t sequence;
0295 struct bio bio;
0296 };
0297
0298 static void dirty_init(struct keybuf_key *w)
0299 {
0300 struct dirty_io *io = w->private;
0301 struct bio *bio = &io->bio;
0302
0303 bio_init(bio, NULL, bio->bi_inline_vecs,
0304 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS), 0);
0305 if (!io->dc->writeback_percent)
0306 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
0307
0308 bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9;
0309 bio->bi_private = w;
0310 bch_bio_map(bio, NULL);
0311 }
0312
0313 static void dirty_io_destructor(struct closure *cl)
0314 {
0315 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
0316
0317 kfree(io);
0318 }
0319
0320 static void write_dirty_finish(struct closure *cl)
0321 {
0322 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
0323 struct keybuf_key *w = io->bio.bi_private;
0324 struct cached_dev *dc = io->dc;
0325
0326 bio_free_pages(&io->bio);
0327
0328
0329 if (KEY_DIRTY(&w->key)) {
0330 int ret;
0331 unsigned int i;
0332 struct keylist keys;
0333
0334 bch_keylist_init(&keys);
0335
0336 bkey_copy(keys.top, &w->key);
0337 SET_KEY_DIRTY(keys.top, false);
0338 bch_keylist_push(&keys);
0339
0340 for (i = 0; i < KEY_PTRS(&w->key); i++)
0341 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
0342
0343 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
0344
0345 if (ret)
0346 trace_bcache_writeback_collision(&w->key);
0347
0348 atomic_long_inc(ret
0349 ? &dc->disk.c->writeback_keys_failed
0350 : &dc->disk.c->writeback_keys_done);
0351 }
0352
0353 bch_keybuf_del(&dc->writeback_keys, w);
0354 up(&dc->in_flight);
0355
0356 closure_return_with_destructor(cl, dirty_io_destructor);
0357 }
0358
0359 static void dirty_endio(struct bio *bio)
0360 {
0361 struct keybuf_key *w = bio->bi_private;
0362 struct dirty_io *io = w->private;
0363
0364 if (bio->bi_status) {
0365 SET_KEY_DIRTY(&w->key, false);
0366 bch_count_backing_io_errors(io->dc, bio);
0367 }
0368
0369 closure_put(&io->cl);
0370 }
0371
0372 static void write_dirty(struct closure *cl)
0373 {
0374 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
0375 struct keybuf_key *w = io->bio.bi_private;
0376 struct cached_dev *dc = io->dc;
0377
0378 uint16_t next_sequence;
0379
0380 if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
0381
0382 closure_wait(&dc->writeback_ordering_wait, cl);
0383
0384 if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
0385
0386
0387
0388
0389 closure_wake_up(&dc->writeback_ordering_wait);
0390 }
0391
0392 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
0393 return;
0394 }
0395
0396 next_sequence = io->sequence + 1;
0397
0398
0399
0400
0401
0402
0403
0404 if (KEY_DIRTY(&w->key)) {
0405 dirty_init(w);
0406 bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
0407 io->bio.bi_iter.bi_sector = KEY_START(&w->key);
0408 bio_set_dev(&io->bio, io->dc->bdev);
0409 io->bio.bi_end_io = dirty_endio;
0410
0411
0412 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
0413 }
0414
0415 atomic_set(&dc->writeback_sequence_next, next_sequence);
0416 closure_wake_up(&dc->writeback_ordering_wait);
0417
0418 continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
0419 }
0420
0421 static void read_dirty_endio(struct bio *bio)
0422 {
0423 struct keybuf_key *w = bio->bi_private;
0424 struct dirty_io *io = w->private;
0425
0426
0427 bch_count_io_errors(io->dc->disk.c->cache,
0428 bio->bi_status, 1,
0429 "reading dirty data from cache");
0430
0431 dirty_endio(bio);
0432 }
0433
0434 static void read_dirty_submit(struct closure *cl)
0435 {
0436 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
0437
0438 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
0439
0440 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
0441 }
0442
0443 static void read_dirty(struct cached_dev *dc)
0444 {
0445 unsigned int delay = 0;
0446 struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
0447 size_t size;
0448 int nk, i;
0449 struct dirty_io *io;
0450 struct closure cl;
0451 uint16_t sequence = 0;
0452
0453 BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
0454 atomic_set(&dc->writeback_sequence_next, sequence);
0455 closure_init_stack(&cl);
0456
0457
0458
0459
0460
0461
0462 next = bch_keybuf_next(&dc->writeback_keys);
0463
0464 while (!kthread_should_stop() &&
0465 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
0466 next) {
0467 size = 0;
0468 nk = 0;
0469
0470 do {
0471 BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
0472
0473
0474
0475
0476
0477 if (nk >= MAX_WRITEBACKS_IN_PASS)
0478 break;
0479
0480
0481
0482
0483
0484 if (size >= MAX_WRITESIZE_IN_PASS)
0485 break;
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496 if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
0497 &START_KEY(&next->key)))
0498 break;
0499
0500 size += KEY_SIZE(&next->key);
0501 keys[nk++] = next;
0502 } while ((next = bch_keybuf_next(&dc->writeback_keys)));
0503
0504
0505 for (i = 0; i < nk; i++) {
0506 w = keys[i];
0507
0508 io = kzalloc(struct_size(io, bio.bi_inline_vecs,
0509 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)),
0510 GFP_KERNEL);
0511 if (!io)
0512 goto err;
0513
0514 w->private = io;
0515 io->dc = dc;
0516 io->sequence = sequence++;
0517
0518 dirty_init(w);
0519 bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
0520 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
0521 bio_set_dev(&io->bio, dc->disk.c->cache->bdev);
0522 io->bio.bi_end_io = read_dirty_endio;
0523
0524 if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
0525 goto err_free;
0526
0527 trace_bcache_writeback(&w->key);
0528
0529 down(&dc->in_flight);
0530
0531
0532
0533
0534
0535
0536 closure_call(&io->cl, read_dirty_submit, NULL, &cl);
0537 }
0538
0539 delay = writeback_delay(dc, size);
0540
0541 while (!kthread_should_stop() &&
0542 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
0543 delay) {
0544 schedule_timeout_interruptible(delay);
0545 delay = writeback_delay(dc, 0);
0546 }
0547 }
0548
0549 if (0) {
0550 err_free:
0551 kfree(w->private);
0552 err:
0553 bch_keybuf_del(&dc->writeback_keys, w);
0554 }
0555
0556
0557
0558
0559
0560 closure_sync(&cl);
0561 }
0562
0563
0564
0565 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
0566 uint64_t offset, int nr_sectors)
0567 {
0568 struct bcache_device *d = c->devices[inode];
0569 unsigned int stripe_offset, sectors_dirty;
0570 int stripe;
0571
0572 if (!d)
0573 return;
0574
0575 stripe = offset_to_stripe(d, offset);
0576 if (stripe < 0)
0577 return;
0578
0579 if (UUID_FLASH_ONLY(&c->uuids[inode]))
0580 atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
0581
0582 stripe_offset = offset & (d->stripe_size - 1);
0583
0584 while (nr_sectors) {
0585 int s = min_t(unsigned int, abs(nr_sectors),
0586 d->stripe_size - stripe_offset);
0587
0588 if (nr_sectors < 0)
0589 s = -s;
0590
0591 if (stripe >= d->nr_stripes)
0592 return;
0593
0594 sectors_dirty = atomic_add_return(s,
0595 d->stripe_sectors_dirty + stripe);
0596 if (sectors_dirty == d->stripe_size) {
0597 if (!test_bit(stripe, d->full_dirty_stripes))
0598 set_bit(stripe, d->full_dirty_stripes);
0599 } else {
0600 if (test_bit(stripe, d->full_dirty_stripes))
0601 clear_bit(stripe, d->full_dirty_stripes);
0602 }
0603
0604 nr_sectors -= s;
0605 stripe_offset = 0;
0606 stripe++;
0607 }
0608 }
0609
0610 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
0611 {
0612 struct cached_dev *dc = container_of(buf,
0613 struct cached_dev,
0614 writeback_keys);
0615
0616 BUG_ON(KEY_INODE(k) != dc->disk.id);
0617
0618 return KEY_DIRTY(k);
0619 }
0620
0621 static void refill_full_stripes(struct cached_dev *dc)
0622 {
0623 struct keybuf *buf = &dc->writeback_keys;
0624 unsigned int start_stripe, next_stripe;
0625 int stripe;
0626 bool wrapped = false;
0627
0628 stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
0629 if (stripe < 0)
0630 stripe = 0;
0631
0632 start_stripe = stripe;
0633
0634 while (1) {
0635 stripe = find_next_bit(dc->disk.full_dirty_stripes,
0636 dc->disk.nr_stripes, stripe);
0637
0638 if (stripe == dc->disk.nr_stripes)
0639 goto next;
0640
0641 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
0642 dc->disk.nr_stripes, stripe);
0643
0644 buf->last_scanned = KEY(dc->disk.id,
0645 stripe * dc->disk.stripe_size, 0);
0646
0647 bch_refill_keybuf(dc->disk.c, buf,
0648 &KEY(dc->disk.id,
0649 next_stripe * dc->disk.stripe_size, 0),
0650 dirty_pred);
0651
0652 if (array_freelist_empty(&buf->freelist))
0653 return;
0654
0655 stripe = next_stripe;
0656 next:
0657 if (wrapped && stripe > start_stripe)
0658 return;
0659
0660 if (stripe == dc->disk.nr_stripes) {
0661 stripe = 0;
0662 wrapped = true;
0663 }
0664 }
0665 }
0666
0667
0668
0669
0670 static bool refill_dirty(struct cached_dev *dc)
0671 {
0672 struct keybuf *buf = &dc->writeback_keys;
0673 struct bkey start = KEY(dc->disk.id, 0, 0);
0674 struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
0675 struct bkey start_pos;
0676
0677
0678
0679
0680
0681
0682 if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
0683 bkey_cmp(&buf->last_scanned, &end) > 0)
0684 buf->last_scanned = start;
0685
0686 if (dc->partial_stripes_expensive) {
0687 refill_full_stripes(dc);
0688 if (array_freelist_empty(&buf->freelist))
0689 return false;
0690 }
0691
0692 start_pos = buf->last_scanned;
0693 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
0694
0695 if (bkey_cmp(&buf->last_scanned, &end) < 0)
0696 return false;
0697
0698
0699
0700
0701
0702 buf->last_scanned = start;
0703 bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
0704
0705 return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
0706 }
0707
0708 static int bch_writeback_thread(void *arg)
0709 {
0710 struct cached_dev *dc = arg;
0711 struct cache_set *c = dc->disk.c;
0712 bool searched_full_index;
0713
0714 bch_ratelimit_reset(&dc->writeback_rate);
0715
0716 while (!kthread_should_stop() &&
0717 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
0718 down_write(&dc->writeback_lock);
0719 set_current_state(TASK_INTERRUPTIBLE);
0720
0721
0722
0723
0724
0725
0726
0727 if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
0728 (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
0729 up_write(&dc->writeback_lock);
0730
0731 if (kthread_should_stop() ||
0732 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
0733 set_current_state(TASK_RUNNING);
0734 break;
0735 }
0736
0737 schedule();
0738 continue;
0739 }
0740 set_current_state(TASK_RUNNING);
0741
0742 searched_full_index = refill_dirty(dc);
0743
0744 if (searched_full_index &&
0745 RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
0746 atomic_set(&dc->has_dirty, 0);
0747 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
0748 bch_write_bdev_super(dc, NULL);
0749
0750
0751
0752
0753
0754
0755 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
0756 struct closure cl;
0757
0758 closure_init_stack(&cl);
0759 memset(&dc->sb.set_uuid, 0, 16);
0760 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
0761
0762 bch_write_bdev_super(dc, &cl);
0763 closure_sync(&cl);
0764
0765 up_write(&dc->writeback_lock);
0766 break;
0767 }
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780 if (c->gc_after_writeback ==
0781 (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
0782 c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
0783 force_wake_up_gc(c);
0784 }
0785 }
0786
0787 up_write(&dc->writeback_lock);
0788
0789 read_dirty(dc);
0790
0791 if (searched_full_index) {
0792 unsigned int delay = dc->writeback_delay * HZ;
0793
0794 while (delay &&
0795 !kthread_should_stop() &&
0796 !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
0797 !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
0798 delay = schedule_timeout_interruptible(delay);
0799
0800 bch_ratelimit_reset(&dc->writeback_rate);
0801 }
0802 }
0803
0804 if (dc->writeback_write_wq) {
0805 flush_workqueue(dc->writeback_write_wq);
0806 destroy_workqueue(dc->writeback_write_wq);
0807 }
0808 cached_dev_put(dc);
0809 wait_for_kthread_stop();
0810
0811 return 0;
0812 }
0813
0814
0815 #define INIT_KEYS_EACH_TIME 500000
0816
0817 struct sectors_dirty_init {
0818 struct btree_op op;
0819 unsigned int inode;
0820 size_t count;
0821 };
0822
0823 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
0824 struct bkey *k)
0825 {
0826 struct sectors_dirty_init *op = container_of(_op,
0827 struct sectors_dirty_init, op);
0828 if (KEY_INODE(k) > op->inode)
0829 return MAP_DONE;
0830
0831 if (KEY_DIRTY(k))
0832 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
0833 KEY_START(k), KEY_SIZE(k));
0834
0835 op->count++;
0836 if (!(op->count % INIT_KEYS_EACH_TIME))
0837 cond_resched();
0838
0839 return MAP_CONTINUE;
0840 }
0841
0842 static int bch_root_node_dirty_init(struct cache_set *c,
0843 struct bcache_device *d,
0844 struct bkey *k)
0845 {
0846 struct sectors_dirty_init op;
0847 int ret;
0848
0849 bch_btree_op_init(&op.op, -1);
0850 op.inode = d->id;
0851 op.count = 0;
0852
0853 ret = bcache_btree(map_keys_recurse,
0854 k,
0855 c->root,
0856 &op.op,
0857 &KEY(op.inode, 0, 0),
0858 sectors_dirty_init_fn,
0859 0);
0860 if (ret < 0)
0861 pr_warn("sectors dirty init failed, ret=%d!\n", ret);
0862
0863 return ret;
0864 }
0865
0866 static int bch_dirty_init_thread(void *arg)
0867 {
0868 struct dirty_init_thrd_info *info = arg;
0869 struct bch_dirty_init_state *state = info->state;
0870 struct cache_set *c = state->c;
0871 struct btree_iter iter;
0872 struct bkey *k, *p;
0873 int cur_idx, prev_idx, skip_nr;
0874
0875 k = p = NULL;
0876 cur_idx = prev_idx = 0;
0877
0878 bch_btree_iter_init(&c->root->keys, &iter, NULL);
0879 k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
0880 BUG_ON(!k);
0881
0882 p = k;
0883
0884 while (k) {
0885 spin_lock(&state->idx_lock);
0886 cur_idx = state->key_idx;
0887 state->key_idx++;
0888 spin_unlock(&state->idx_lock);
0889
0890 skip_nr = cur_idx - prev_idx;
0891
0892 while (skip_nr) {
0893 k = bch_btree_iter_next_filter(&iter,
0894 &c->root->keys,
0895 bch_ptr_bad);
0896 if (k)
0897 p = k;
0898 else {
0899 atomic_set(&state->enough, 1);
0900
0901 smp_mb__after_atomic();
0902 goto out;
0903 }
0904 skip_nr--;
0905 }
0906
0907 if (p) {
0908 if (bch_root_node_dirty_init(c, state->d, p) < 0)
0909 goto out;
0910 }
0911
0912 p = NULL;
0913 prev_idx = cur_idx;
0914 }
0915
0916 out:
0917
0918 smp_mb__before_atomic();
0919 if (atomic_dec_and_test(&state->started))
0920 wake_up(&state->wait);
0921
0922 return 0;
0923 }
0924
0925 static int bch_btre_dirty_init_thread_nr(void)
0926 {
0927 int n = num_online_cpus()/2;
0928
0929 if (n == 0)
0930 n = 1;
0931 else if (n > BCH_DIRTY_INIT_THRD_MAX)
0932 n = BCH_DIRTY_INIT_THRD_MAX;
0933
0934 return n;
0935 }
0936
0937 void bch_sectors_dirty_init(struct bcache_device *d)
0938 {
0939 int i;
0940 struct bkey *k = NULL;
0941 struct btree_iter iter;
0942 struct sectors_dirty_init op;
0943 struct cache_set *c = d->c;
0944 struct bch_dirty_init_state state;
0945
0946
0947 rw_lock(0, c->root, c->root->level);
0948 if (c->root->level == 0) {
0949 bch_btree_op_init(&op.op, -1);
0950 op.inode = d->id;
0951 op.count = 0;
0952
0953 for_each_key_filter(&c->root->keys,
0954 k, &iter, bch_ptr_invalid)
0955 sectors_dirty_init_fn(&op.op, c->root, k);
0956
0957 rw_unlock(0, c->root);
0958 return;
0959 }
0960
0961 memset(&state, 0, sizeof(struct bch_dirty_init_state));
0962 state.c = c;
0963 state.d = d;
0964 state.total_threads = bch_btre_dirty_init_thread_nr();
0965 state.key_idx = 0;
0966 spin_lock_init(&state.idx_lock);
0967 atomic_set(&state.started, 0);
0968 atomic_set(&state.enough, 0);
0969 init_waitqueue_head(&state.wait);
0970
0971 for (i = 0; i < state.total_threads; i++) {
0972
0973 smp_mb__before_atomic();
0974 if (atomic_read(&state.enough))
0975 break;
0976
0977 state.infos[i].state = &state;
0978 state.infos[i].thread =
0979 kthread_run(bch_dirty_init_thread, &state.infos[i],
0980 "bch_dirtcnt[%d]", i);
0981 if (IS_ERR(state.infos[i].thread)) {
0982 pr_err("fails to run thread bch_dirty_init[%d]\n", i);
0983 for (--i; i >= 0; i--)
0984 kthread_stop(state.infos[i].thread);
0985 goto out;
0986 }
0987 atomic_inc(&state.started);
0988 }
0989
0990 out:
0991
0992 wait_event(state.wait, atomic_read(&state.started) == 0);
0993 rw_unlock(0, c->root);
0994 }
0995
0996 void bch_cached_dev_writeback_init(struct cached_dev *dc)
0997 {
0998 sema_init(&dc->in_flight, 64);
0999 init_rwsem(&dc->writeback_lock);
1000 bch_keybuf_init(&dc->writeback_keys);
1001
1002 dc->writeback_metadata = true;
1003 dc->writeback_running = false;
1004 dc->writeback_consider_fragment = true;
1005 dc->writeback_percent = 10;
1006 dc->writeback_delay = 30;
1007 atomic_long_set(&dc->writeback_rate.rate, 1024);
1008 dc->writeback_rate_minimum = 8;
1009
1010 dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
1011 dc->writeback_rate_p_term_inverse = 40;
1012 dc->writeback_rate_fp_term_low = 1;
1013 dc->writeback_rate_fp_term_mid = 10;
1014 dc->writeback_rate_fp_term_high = 1000;
1015 dc->writeback_rate_i_term_inverse = 10000;
1016
1017
1018 dc->rate_update_retry = 0;
1019
1020 WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1021 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
1022 }
1023
1024 int bch_cached_dev_writeback_start(struct cached_dev *dc)
1025 {
1026 dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
1027 WQ_MEM_RECLAIM, 0);
1028 if (!dc->writeback_write_wq)
1029 return -ENOMEM;
1030
1031 cached_dev_get(dc);
1032 dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
1033 "bcache_writeback");
1034 if (IS_ERR(dc->writeback_thread)) {
1035 cached_dev_put(dc);
1036 destroy_workqueue(dc->writeback_write_wq);
1037 return PTR_ERR(dc->writeback_thread);
1038 }
1039 dc->writeback_running = true;
1040
1041 WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1042 schedule_delayed_work(&dc->writeback_rate_update,
1043 dc->writeback_rate_update_seconds * HZ);
1044
1045 bch_writeback_queue(dc);
1046
1047 return 0;
1048 }