Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Main bcache entry point - handle a read or a write request and decide what to
0004  * do with it; the make_request functions are called by the block layer.
0005  *
0006  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
0007  * Copyright 2012 Google, Inc.
0008  */
0009 
0010 #include "bcache.h"
0011 #include "btree.h"
0012 #include "debug.h"
0013 #include "request.h"
0014 #include "writeback.h"
0015 
0016 #include <linux/module.h>
0017 #include <linux/hash.h>
0018 #include <linux/random.h>
0019 #include <linux/backing-dev.h>
0020 
0021 #include <trace/events/bcache.h>
0022 
0023 #define CUTOFF_CACHE_ADD    95
0024 #define CUTOFF_CACHE_READA  90
0025 
0026 struct kmem_cache *bch_search_cache;
0027 
0028 static void bch_data_insert_start(struct closure *cl);
0029 
0030 static unsigned int cache_mode(struct cached_dev *dc)
0031 {
0032     return BDEV_CACHE_MODE(&dc->sb);
0033 }
0034 
0035 static bool verify(struct cached_dev *dc)
0036 {
0037     return dc->verify;
0038 }
0039 
0040 static void bio_csum(struct bio *bio, struct bkey *k)
0041 {
0042     struct bio_vec bv;
0043     struct bvec_iter iter;
0044     uint64_t csum = 0;
0045 
0046     bio_for_each_segment(bv, bio, iter) {
0047         void *d = bvec_kmap_local(&bv);
0048 
0049         csum = crc64_be(csum, d, bv.bv_len);
0050         kunmap_local(d);
0051     }
0052 
0053     k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
0054 }
0055 
0056 /* Insert data into cache */
0057 
0058 static void bch_data_insert_keys(struct closure *cl)
0059 {
0060     struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
0061     atomic_t *journal_ref = NULL;
0062     struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
0063     int ret;
0064 
0065     if (!op->replace)
0066         journal_ref = bch_journal(op->c, &op->insert_keys,
0067                       op->flush_journal ? cl : NULL);
0068 
0069     ret = bch_btree_insert(op->c, &op->insert_keys,
0070                    journal_ref, replace_key);
0071     if (ret == -ESRCH) {
0072         op->replace_collision = true;
0073     } else if (ret) {
0074         op->status      = BLK_STS_RESOURCE;
0075         op->insert_data_done    = true;
0076     }
0077 
0078     if (journal_ref)
0079         atomic_dec_bug(journal_ref);
0080 
0081     if (!op->insert_data_done) {
0082         continue_at(cl, bch_data_insert_start, op->wq);
0083         return;
0084     }
0085 
0086     bch_keylist_free(&op->insert_keys);
0087     closure_return(cl);
0088 }
0089 
0090 static int bch_keylist_realloc(struct keylist *l, unsigned int u64s,
0091                    struct cache_set *c)
0092 {
0093     size_t oldsize = bch_keylist_nkeys(l);
0094     size_t newsize = oldsize + u64s;
0095 
0096     /*
0097      * The journalling code doesn't handle the case where the keys to insert
0098      * is bigger than an empty write: If we just return -ENOMEM here,
0099      * bch_data_insert_keys() will insert the keys created so far
0100      * and finish the rest when the keylist is empty.
0101      */
0102     if (newsize * sizeof(uint64_t) > block_bytes(c->cache) - sizeof(struct jset))
0103         return -ENOMEM;
0104 
0105     return __bch_keylist_realloc(l, u64s);
0106 }
0107 
0108 static void bch_data_invalidate(struct closure *cl)
0109 {
0110     struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
0111     struct bio *bio = op->bio;
0112 
0113     pr_debug("invalidating %i sectors from %llu\n",
0114          bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
0115 
0116     while (bio_sectors(bio)) {
0117         unsigned int sectors = min(bio_sectors(bio),
0118                        1U << (KEY_SIZE_BITS - 1));
0119 
0120         if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
0121             goto out;
0122 
0123         bio->bi_iter.bi_sector  += sectors;
0124         bio->bi_iter.bi_size    -= sectors << 9;
0125 
0126         bch_keylist_add(&op->insert_keys,
0127                 &KEY(op->inode,
0128                      bio->bi_iter.bi_sector,
0129                      sectors));
0130     }
0131 
0132     op->insert_data_done = true;
0133     /* get in bch_data_insert() */
0134     bio_put(bio);
0135 out:
0136     continue_at(cl, bch_data_insert_keys, op->wq);
0137 }
0138 
0139 static void bch_data_insert_error(struct closure *cl)
0140 {
0141     struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
0142 
0143     /*
0144      * Our data write just errored, which means we've got a bunch of keys to
0145      * insert that point to data that wasn't successfully written.
0146      *
0147      * We don't have to insert those keys but we still have to invalidate
0148      * that region of the cache - so, if we just strip off all the pointers
0149      * from the keys we'll accomplish just that.
0150      */
0151 
0152     struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
0153 
0154     while (src != op->insert_keys.top) {
0155         struct bkey *n = bkey_next(src);
0156 
0157         SET_KEY_PTRS(src, 0);
0158         memmove(dst, src, bkey_bytes(src));
0159 
0160         dst = bkey_next(dst);
0161         src = n;
0162     }
0163 
0164     op->insert_keys.top = dst;
0165 
0166     bch_data_insert_keys(cl);
0167 }
0168 
0169 static void bch_data_insert_endio(struct bio *bio)
0170 {
0171     struct closure *cl = bio->bi_private;
0172     struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
0173 
0174     if (bio->bi_status) {
0175         /* TODO: We could try to recover from this. */
0176         if (op->writeback)
0177             op->status = bio->bi_status;
0178         else if (!op->replace)
0179             set_closure_fn(cl, bch_data_insert_error, op->wq);
0180         else
0181             set_closure_fn(cl, NULL, NULL);
0182     }
0183 
0184     bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
0185 }
0186 
0187 static void bch_data_insert_start(struct closure *cl)
0188 {
0189     struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
0190     struct bio *bio = op->bio, *n;
0191 
0192     if (op->bypass)
0193         return bch_data_invalidate(cl);
0194 
0195     if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
0196         wake_up_gc(op->c);
0197 
0198     /*
0199      * Journal writes are marked REQ_PREFLUSH; if the original write was a
0200      * flush, it'll wait on the journal write.
0201      */
0202     bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
0203 
0204     do {
0205         unsigned int i;
0206         struct bkey *k;
0207         struct bio_set *split = &op->c->bio_split;
0208 
0209         /* 1 for the device pointer and 1 for the chksum */
0210         if (bch_keylist_realloc(&op->insert_keys,
0211                     3 + (op->csum ? 1 : 0),
0212                     op->c)) {
0213             continue_at(cl, bch_data_insert_keys, op->wq);
0214             return;
0215         }
0216 
0217         k = op->insert_keys.top;
0218         bkey_init(k);
0219         SET_KEY_INODE(k, op->inode);
0220         SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
0221 
0222         if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
0223                        op->write_point, op->write_prio,
0224                        op->writeback))
0225             goto err;
0226 
0227         n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
0228 
0229         n->bi_end_io    = bch_data_insert_endio;
0230         n->bi_private   = cl;
0231 
0232         if (op->writeback) {
0233             SET_KEY_DIRTY(k, true);
0234 
0235             for (i = 0; i < KEY_PTRS(k); i++)
0236                 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
0237                         GC_MARK_DIRTY);
0238         }
0239 
0240         SET_KEY_CSUM(k, op->csum);
0241         if (KEY_CSUM(k))
0242             bio_csum(n, k);
0243 
0244         trace_bcache_cache_insert(k);
0245         bch_keylist_push(&op->insert_keys);
0246 
0247         bio_set_op_attrs(n, REQ_OP_WRITE, 0);
0248         bch_submit_bbio(n, op->c, k, 0);
0249     } while (n != bio);
0250 
0251     op->insert_data_done = true;
0252     continue_at(cl, bch_data_insert_keys, op->wq);
0253     return;
0254 err:
0255     /* bch_alloc_sectors() blocks if s->writeback = true */
0256     BUG_ON(op->writeback);
0257 
0258     /*
0259      * But if it's not a writeback write we'd rather just bail out if
0260      * there aren't any buckets ready to write to - it might take awhile and
0261      * we might be starving btree writes for gc or something.
0262      */
0263 
0264     if (!op->replace) {
0265         /*
0266          * Writethrough write: We can't complete the write until we've
0267          * updated the index. But we don't want to delay the write while
0268          * we wait for buckets to be freed up, so just invalidate the
0269          * rest of the write.
0270          */
0271         op->bypass = true;
0272         return bch_data_invalidate(cl);
0273     } else {
0274         /*
0275          * From a cache miss, we can just insert the keys for the data
0276          * we have written or bail out if we didn't do anything.
0277          */
0278         op->insert_data_done = true;
0279         bio_put(bio);
0280 
0281         if (!bch_keylist_empty(&op->insert_keys))
0282             continue_at(cl, bch_data_insert_keys, op->wq);
0283         else
0284             closure_return(cl);
0285     }
0286 }
0287 
0288 /**
0289  * bch_data_insert - stick some data in the cache
0290  * @cl: closure pointer.
0291  *
0292  * This is the starting point for any data to end up in a cache device; it could
0293  * be from a normal write, or a writeback write, or a write to a flash only
0294  * volume - it's also used by the moving garbage collector to compact data in
0295  * mostly empty buckets.
0296  *
0297  * It first writes the data to the cache, creating a list of keys to be inserted
0298  * (if the data had to be fragmented there will be multiple keys); after the
0299  * data is written it calls bch_journal, and after the keys have been added to
0300  * the next journal write they're inserted into the btree.
0301  *
0302  * It inserts the data in op->bio; bi_sector is used for the key offset,
0303  * and op->inode is used for the key inode.
0304  *
0305  * If op->bypass is true, instead of inserting the data it invalidates the
0306  * region of the cache represented by op->bio and op->inode.
0307  */
0308 void bch_data_insert(struct closure *cl)
0309 {
0310     struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
0311 
0312     trace_bcache_write(op->c, op->inode, op->bio,
0313                op->writeback, op->bypass);
0314 
0315     bch_keylist_init(&op->insert_keys);
0316     bio_get(op->bio);
0317     bch_data_insert_start(cl);
0318 }
0319 
0320 /*
0321  * Congested?  Return 0 (not congested) or the limit (in sectors)
0322  * beyond which we should bypass the cache due to congestion.
0323  */
0324 unsigned int bch_get_congested(const struct cache_set *c)
0325 {
0326     int i;
0327 
0328     if (!c->congested_read_threshold_us &&
0329         !c->congested_write_threshold_us)
0330         return 0;
0331 
0332     i = (local_clock_us() - c->congested_last_us) / 1024;
0333     if (i < 0)
0334         return 0;
0335 
0336     i += atomic_read(&c->congested);
0337     if (i >= 0)
0338         return 0;
0339 
0340     i += CONGESTED_MAX;
0341 
0342     if (i > 0)
0343         i = fract_exp_two(i, 6);
0344 
0345     i -= hweight32(get_random_u32());
0346 
0347     return i > 0 ? i : 1;
0348 }
0349 
0350 static void add_sequential(struct task_struct *t)
0351 {
0352     ewma_add(t->sequential_io_avg,
0353          t->sequential_io, 8, 0);
0354 
0355     t->sequential_io = 0;
0356 }
0357 
0358 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
0359 {
0360     return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
0361 }
0362 
0363 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
0364 {
0365     struct cache_set *c = dc->disk.c;
0366     unsigned int mode = cache_mode(dc);
0367     unsigned int sectors, congested;
0368     struct task_struct *task = current;
0369     struct io *i;
0370 
0371     if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
0372         c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
0373         (bio_op(bio) == REQ_OP_DISCARD))
0374         goto skip;
0375 
0376     if (mode == CACHE_MODE_NONE ||
0377         (mode == CACHE_MODE_WRITEAROUND &&
0378          op_is_write(bio_op(bio))))
0379         goto skip;
0380 
0381     /*
0382      * If the bio is for read-ahead or background IO, bypass it or
0383      * not depends on the following situations,
0384      * - If the IO is for meta data, always cache it and no bypass
0385      * - If the IO is not meta data, check dc->cache_reada_policy,
0386      *      BCH_CACHE_READA_ALL: cache it and not bypass
0387      *      BCH_CACHE_READA_META_ONLY: not cache it and bypass
0388      * That is, read-ahead request for metadata always get cached
0389      * (eg, for gfs2 or xfs).
0390      */
0391     if ((bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND))) {
0392         if (!(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
0393             (dc->cache_readahead_policy != BCH_CACHE_READA_ALL))
0394             goto skip;
0395     }
0396 
0397     if (bio->bi_iter.bi_sector & (c->cache->sb.block_size - 1) ||
0398         bio_sectors(bio) & (c->cache->sb.block_size - 1)) {
0399         pr_debug("skipping unaligned io\n");
0400         goto skip;
0401     }
0402 
0403     if (bypass_torture_test(dc)) {
0404         if ((get_random_int() & 3) == 3)
0405             goto skip;
0406         else
0407             goto rescale;
0408     }
0409 
0410     congested = bch_get_congested(c);
0411     if (!congested && !dc->sequential_cutoff)
0412         goto rescale;
0413 
0414     spin_lock(&dc->io_lock);
0415 
0416     hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
0417         if (i->last == bio->bi_iter.bi_sector &&
0418             time_before(jiffies, i->jiffies))
0419             goto found;
0420 
0421     i = list_first_entry(&dc->io_lru, struct io, lru);
0422 
0423     add_sequential(task);
0424     i->sequential = 0;
0425 found:
0426     if (i->sequential + bio->bi_iter.bi_size > i->sequential)
0427         i->sequential   += bio->bi_iter.bi_size;
0428 
0429     i->last          = bio_end_sector(bio);
0430     i->jiffies       = jiffies + msecs_to_jiffies(5000);
0431     task->sequential_io  = i->sequential;
0432 
0433     hlist_del(&i->hash);
0434     hlist_add_head(&i->hash, iohash(dc, i->last));
0435     list_move_tail(&i->lru, &dc->io_lru);
0436 
0437     spin_unlock(&dc->io_lock);
0438 
0439     sectors = max(task->sequential_io,
0440               task->sequential_io_avg) >> 9;
0441 
0442     if (dc->sequential_cutoff &&
0443         sectors >= dc->sequential_cutoff >> 9) {
0444         trace_bcache_bypass_sequential(bio);
0445         goto skip;
0446     }
0447 
0448     if (congested && sectors >= congested) {
0449         trace_bcache_bypass_congested(bio);
0450         goto skip;
0451     }
0452 
0453 rescale:
0454     bch_rescale_priorities(c, bio_sectors(bio));
0455     return false;
0456 skip:
0457     bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
0458     return true;
0459 }
0460 
0461 /* Cache lookup */
0462 
0463 struct search {
0464     /* Stack frame for bio_complete */
0465     struct closure      cl;
0466 
0467     struct bbio     bio;
0468     struct bio      *orig_bio;
0469     struct bio      *cache_miss;
0470     struct bcache_device    *d;
0471 
0472     unsigned int        insert_bio_sectors;
0473     unsigned int        recoverable:1;
0474     unsigned int        write:1;
0475     unsigned int        read_dirty_data:1;
0476     unsigned int        cache_missed:1;
0477 
0478     struct block_device *orig_bdev;
0479     unsigned long       start_time;
0480 
0481     struct btree_op     op;
0482     struct data_insert_op   iop;
0483 };
0484 
0485 static void bch_cache_read_endio(struct bio *bio)
0486 {
0487     struct bbio *b = container_of(bio, struct bbio, bio);
0488     struct closure *cl = bio->bi_private;
0489     struct search *s = container_of(cl, struct search, cl);
0490 
0491     /*
0492      * If the bucket was reused while our bio was in flight, we might have
0493      * read the wrong data. Set s->error but not error so it doesn't get
0494      * counted against the cache device, but we'll still reread the data
0495      * from the backing device.
0496      */
0497 
0498     if (bio->bi_status)
0499         s->iop.status = bio->bi_status;
0500     else if (!KEY_DIRTY(&b->key) &&
0501          ptr_stale(s->iop.c, &b->key, 0)) {
0502         atomic_long_inc(&s->iop.c->cache_read_races);
0503         s->iop.status = BLK_STS_IOERR;
0504     }
0505 
0506     bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
0507 }
0508 
0509 /*
0510  * Read from a single key, handling the initial cache miss if the key starts in
0511  * the middle of the bio
0512  */
0513 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
0514 {
0515     struct search *s = container_of(op, struct search, op);
0516     struct bio *n, *bio = &s->bio.bio;
0517     struct bkey *bio_key;
0518     unsigned int ptr;
0519 
0520     if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
0521         return MAP_CONTINUE;
0522 
0523     if (KEY_INODE(k) != s->iop.inode ||
0524         KEY_START(k) > bio->bi_iter.bi_sector) {
0525         unsigned int bio_sectors = bio_sectors(bio);
0526         unsigned int sectors = KEY_INODE(k) == s->iop.inode
0527             ? min_t(uint64_t, INT_MAX,
0528                 KEY_START(k) - bio->bi_iter.bi_sector)
0529             : INT_MAX;
0530         int ret = s->d->cache_miss(b, s, bio, sectors);
0531 
0532         if (ret != MAP_CONTINUE)
0533             return ret;
0534 
0535         /* if this was a complete miss we shouldn't get here */
0536         BUG_ON(bio_sectors <= sectors);
0537     }
0538 
0539     if (!KEY_SIZE(k))
0540         return MAP_CONTINUE;
0541 
0542     /* XXX: figure out best pointer - for multiple cache devices */
0543     ptr = 0;
0544 
0545     PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
0546 
0547     if (KEY_DIRTY(k))
0548         s->read_dirty_data = true;
0549 
0550     n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
0551                       KEY_OFFSET(k) - bio->bi_iter.bi_sector),
0552                GFP_NOIO, &s->d->bio_split);
0553 
0554     bio_key = &container_of(n, struct bbio, bio)->key;
0555     bch_bkey_copy_single_ptr(bio_key, k, ptr);
0556 
0557     bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
0558     bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
0559 
0560     n->bi_end_io    = bch_cache_read_endio;
0561     n->bi_private   = &s->cl;
0562 
0563     /*
0564      * The bucket we're reading from might be reused while our bio
0565      * is in flight, and we could then end up reading the wrong
0566      * data.
0567      *
0568      * We guard against this by checking (in cache_read_endio()) if
0569      * the pointer is stale again; if so, we treat it as an error
0570      * and reread from the backing device (but we don't pass that
0571      * error up anywhere).
0572      */
0573 
0574     __bch_submit_bbio(n, b->c);
0575     return n == bio ? MAP_DONE : MAP_CONTINUE;
0576 }
0577 
0578 static void cache_lookup(struct closure *cl)
0579 {
0580     struct search *s = container_of(cl, struct search, iop.cl);
0581     struct bio *bio = &s->bio.bio;
0582     struct cached_dev *dc;
0583     int ret;
0584 
0585     bch_btree_op_init(&s->op, -1);
0586 
0587     ret = bch_btree_map_keys(&s->op, s->iop.c,
0588                  &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
0589                  cache_lookup_fn, MAP_END_KEY);
0590     if (ret == -EAGAIN) {
0591         continue_at(cl, cache_lookup, bcache_wq);
0592         return;
0593     }
0594 
0595     /*
0596      * We might meet err when searching the btree, If that happens, we will
0597      * get negative ret, in this scenario we should not recover data from
0598      * backing device (when cache device is dirty) because we don't know
0599      * whether bkeys the read request covered are all clean.
0600      *
0601      * And after that happened, s->iop.status is still its initial value
0602      * before we submit s->bio.bio
0603      */
0604     if (ret < 0) {
0605         BUG_ON(ret == -EINTR);
0606         if (s->d && s->d->c &&
0607                 !UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
0608             dc = container_of(s->d, struct cached_dev, disk);
0609             if (dc && atomic_read(&dc->has_dirty))
0610                 s->recoverable = false;
0611         }
0612         if (!s->iop.status)
0613             s->iop.status = BLK_STS_IOERR;
0614     }
0615 
0616     closure_return(cl);
0617 }
0618 
0619 /* Common code for the make_request functions */
0620 
0621 static void request_endio(struct bio *bio)
0622 {
0623     struct closure *cl = bio->bi_private;
0624 
0625     if (bio->bi_status) {
0626         struct search *s = container_of(cl, struct search, cl);
0627 
0628         s->iop.status = bio->bi_status;
0629         /* Only cache read errors are recoverable */
0630         s->recoverable = false;
0631     }
0632 
0633     bio_put(bio);
0634     closure_put(cl);
0635 }
0636 
0637 static void backing_request_endio(struct bio *bio)
0638 {
0639     struct closure *cl = bio->bi_private;
0640 
0641     if (bio->bi_status) {
0642         struct search *s = container_of(cl, struct search, cl);
0643         struct cached_dev *dc = container_of(s->d,
0644                              struct cached_dev, disk);
0645         /*
0646          * If a bio has REQ_PREFLUSH for writeback mode, it is
0647          * speically assembled in cached_dev_write() for a non-zero
0648          * write request which has REQ_PREFLUSH. we don't set
0649          * s->iop.status by this failure, the status will be decided
0650          * by result of bch_data_insert() operation.
0651          */
0652         if (unlikely(s->iop.writeback &&
0653                  bio->bi_opf & REQ_PREFLUSH)) {
0654             pr_err("Can't flush %pg: returned bi_status %i\n",
0655                 dc->bdev, bio->bi_status);
0656         } else {
0657             /* set to orig_bio->bi_status in bio_complete() */
0658             s->iop.status = bio->bi_status;
0659         }
0660         s->recoverable = false;
0661         /* should count I/O error for backing device here */
0662         bch_count_backing_io_errors(dc, bio);
0663     }
0664 
0665     bio_put(bio);
0666     closure_put(cl);
0667 }
0668 
0669 static void bio_complete(struct search *s)
0670 {
0671     if (s->orig_bio) {
0672         /* Count on bcache device */
0673         bio_end_io_acct_remapped(s->orig_bio, s->start_time,
0674                      s->orig_bdev);
0675         trace_bcache_request_end(s->d, s->orig_bio);
0676         s->orig_bio->bi_status = s->iop.status;
0677         bio_endio(s->orig_bio);
0678         s->orig_bio = NULL;
0679     }
0680 }
0681 
0682 static void do_bio_hook(struct search *s,
0683             struct bio *orig_bio,
0684             bio_end_io_t *end_io_fn)
0685 {
0686     struct bio *bio = &s->bio.bio;
0687 
0688     bio_init_clone(orig_bio->bi_bdev, bio, orig_bio, GFP_NOIO);
0689     /*
0690      * bi_end_io can be set separately somewhere else, e.g. the
0691      * variants in,
0692      * - cache_bio->bi_end_io from cached_dev_cache_miss()
0693      * - n->bi_end_io from cache_lookup_fn()
0694      */
0695     bio->bi_end_io      = end_io_fn;
0696     bio->bi_private     = &s->cl;
0697 
0698     bio_cnt_set(bio, 3);
0699 }
0700 
0701 static void search_free(struct closure *cl)
0702 {
0703     struct search *s = container_of(cl, struct search, cl);
0704 
0705     atomic_dec(&s->iop.c->search_inflight);
0706 
0707     if (s->iop.bio)
0708         bio_put(s->iop.bio);
0709 
0710     bio_complete(s);
0711     closure_debug_destroy(cl);
0712     mempool_free(s, &s->iop.c->search);
0713 }
0714 
0715 static inline struct search *search_alloc(struct bio *bio,
0716         struct bcache_device *d, struct block_device *orig_bdev,
0717         unsigned long start_time)
0718 {
0719     struct search *s;
0720 
0721     s = mempool_alloc(&d->c->search, GFP_NOIO);
0722 
0723     closure_init(&s->cl, NULL);
0724     do_bio_hook(s, bio, request_endio);
0725     atomic_inc(&d->c->search_inflight);
0726 
0727     s->orig_bio     = bio;
0728     s->cache_miss       = NULL;
0729     s->cache_missed     = 0;
0730     s->d            = d;
0731     s->recoverable      = 1;
0732     s->write        = op_is_write(bio_op(bio));
0733     s->read_dirty_data  = 0;
0734     /* Count on the bcache device */
0735     s->orig_bdev        = orig_bdev;
0736     s->start_time       = start_time;
0737     s->iop.c        = d->c;
0738     s->iop.bio      = NULL;
0739     s->iop.inode        = d->id;
0740     s->iop.write_point  = hash_long((unsigned long) current, 16);
0741     s->iop.write_prio   = 0;
0742     s->iop.status       = 0;
0743     s->iop.flags        = 0;
0744     s->iop.flush_journal    = op_is_flush(bio->bi_opf);
0745     s->iop.wq       = bcache_wq;
0746 
0747     return s;
0748 }
0749 
0750 /* Cached devices */
0751 
0752 static void cached_dev_bio_complete(struct closure *cl)
0753 {
0754     struct search *s = container_of(cl, struct search, cl);
0755     struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
0756 
0757     cached_dev_put(dc);
0758     search_free(cl);
0759 }
0760 
0761 /* Process reads */
0762 
0763 static void cached_dev_read_error_done(struct closure *cl)
0764 {
0765     struct search *s = container_of(cl, struct search, cl);
0766 
0767     if (s->iop.replace_collision)
0768         bch_mark_cache_miss_collision(s->iop.c, s->d);
0769 
0770     if (s->iop.bio)
0771         bio_free_pages(s->iop.bio);
0772 
0773     cached_dev_bio_complete(cl);
0774 }
0775 
0776 static void cached_dev_read_error(struct closure *cl)
0777 {
0778     struct search *s = container_of(cl, struct search, cl);
0779     struct bio *bio = &s->bio.bio;
0780 
0781     /*
0782      * If read request hit dirty data (s->read_dirty_data is true),
0783      * then recovery a failed read request from cached device may
0784      * get a stale data back. So read failure recovery is only
0785      * permitted when read request hit clean data in cache device,
0786      * or when cache read race happened.
0787      */
0788     if (s->recoverable && !s->read_dirty_data) {
0789         /* Retry from the backing device: */
0790         trace_bcache_read_retry(s->orig_bio);
0791 
0792         s->iop.status = 0;
0793         do_bio_hook(s, s->orig_bio, backing_request_endio);
0794 
0795         /* XXX: invalidate cache */
0796 
0797         /* I/O request sent to backing device */
0798         closure_bio_submit(s->iop.c, bio, cl);
0799     }
0800 
0801     continue_at(cl, cached_dev_read_error_done, NULL);
0802 }
0803 
0804 static void cached_dev_cache_miss_done(struct closure *cl)
0805 {
0806     struct search *s = container_of(cl, struct search, cl);
0807     struct bcache_device *d = s->d;
0808 
0809     if (s->iop.replace_collision)
0810         bch_mark_cache_miss_collision(s->iop.c, s->d);
0811 
0812     if (s->iop.bio)
0813         bio_free_pages(s->iop.bio);
0814 
0815     cached_dev_bio_complete(cl);
0816     closure_put(&d->cl);
0817 }
0818 
0819 static void cached_dev_read_done(struct closure *cl)
0820 {
0821     struct search *s = container_of(cl, struct search, cl);
0822     struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
0823 
0824     /*
0825      * We had a cache miss; cache_bio now contains data ready to be inserted
0826      * into the cache.
0827      *
0828      * First, we copy the data we just read from cache_bio's bounce buffers
0829      * to the buffers the original bio pointed to:
0830      */
0831 
0832     if (s->iop.bio) {
0833         bio_reset(s->iop.bio, s->cache_miss->bi_bdev, REQ_OP_READ);
0834         s->iop.bio->bi_iter.bi_sector =
0835             s->cache_miss->bi_iter.bi_sector;
0836         s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
0837         bio_clone_blkg_association(s->iop.bio, s->cache_miss);
0838         bch_bio_map(s->iop.bio, NULL);
0839 
0840         bio_copy_data(s->cache_miss, s->iop.bio);
0841 
0842         bio_put(s->cache_miss);
0843         s->cache_miss = NULL;
0844     }
0845 
0846     if (verify(dc) && s->recoverable && !s->read_dirty_data)
0847         bch_data_verify(dc, s->orig_bio);
0848 
0849     closure_get(&dc->disk.cl);
0850     bio_complete(s);
0851 
0852     if (s->iop.bio &&
0853         !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
0854         BUG_ON(!s->iop.replace);
0855         closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
0856     }
0857 
0858     continue_at(cl, cached_dev_cache_miss_done, NULL);
0859 }
0860 
0861 static void cached_dev_read_done_bh(struct closure *cl)
0862 {
0863     struct search *s = container_of(cl, struct search, cl);
0864     struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
0865 
0866     bch_mark_cache_accounting(s->iop.c, s->d,
0867                   !s->cache_missed, s->iop.bypass);
0868     trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass);
0869 
0870     if (s->iop.status)
0871         continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
0872     else if (s->iop.bio || verify(dc))
0873         continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
0874     else
0875         continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
0876 }
0877 
0878 static int cached_dev_cache_miss(struct btree *b, struct search *s,
0879                  struct bio *bio, unsigned int sectors)
0880 {
0881     int ret = MAP_CONTINUE;
0882     struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
0883     struct bio *miss, *cache_bio;
0884     unsigned int size_limit;
0885 
0886     s->cache_missed = 1;
0887 
0888     if (s->cache_miss || s->iop.bypass) {
0889         miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
0890         ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
0891         goto out_submit;
0892     }
0893 
0894     /* Limitation for valid replace key size and cache_bio bvecs number */
0895     size_limit = min_t(unsigned int, BIO_MAX_VECS * PAGE_SECTORS,
0896                (1 << KEY_SIZE_BITS) - 1);
0897     s->insert_bio_sectors = min3(size_limit, sectors, bio_sectors(bio));
0898 
0899     s->iop.replace_key = KEY(s->iop.inode,
0900                  bio->bi_iter.bi_sector + s->insert_bio_sectors,
0901                  s->insert_bio_sectors);
0902 
0903     ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
0904     if (ret)
0905         return ret;
0906 
0907     s->iop.replace = true;
0908 
0909     miss = bio_next_split(bio, s->insert_bio_sectors, GFP_NOIO,
0910                   &s->d->bio_split);
0911 
0912     /* btree_search_recurse()'s btree iterator is no good anymore */
0913     ret = miss == bio ? MAP_DONE : -EINTR;
0914 
0915     cache_bio = bio_alloc_bioset(miss->bi_bdev,
0916             DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
0917             0, GFP_NOWAIT, &dc->disk.bio_split);
0918     if (!cache_bio)
0919         goto out_submit;
0920 
0921     cache_bio->bi_iter.bi_sector    = miss->bi_iter.bi_sector;
0922     cache_bio->bi_iter.bi_size  = s->insert_bio_sectors << 9;
0923 
0924     cache_bio->bi_end_io    = backing_request_endio;
0925     cache_bio->bi_private   = &s->cl;
0926 
0927     bch_bio_map(cache_bio, NULL);
0928     if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
0929         goto out_put;
0930 
0931     s->cache_miss   = miss;
0932     s->iop.bio  = cache_bio;
0933     bio_get(cache_bio);
0934     /* I/O request sent to backing device */
0935     closure_bio_submit(s->iop.c, cache_bio, &s->cl);
0936 
0937     return ret;
0938 out_put:
0939     bio_put(cache_bio);
0940 out_submit:
0941     miss->bi_end_io     = backing_request_endio;
0942     miss->bi_private    = &s->cl;
0943     /* I/O request sent to backing device */
0944     closure_bio_submit(s->iop.c, miss, &s->cl);
0945     return ret;
0946 }
0947 
0948 static void cached_dev_read(struct cached_dev *dc, struct search *s)
0949 {
0950     struct closure *cl = &s->cl;
0951 
0952     closure_call(&s->iop.cl, cache_lookup, NULL, cl);
0953     continue_at(cl, cached_dev_read_done_bh, NULL);
0954 }
0955 
0956 /* Process writes */
0957 
0958 static void cached_dev_write_complete(struct closure *cl)
0959 {
0960     struct search *s = container_of(cl, struct search, cl);
0961     struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
0962 
0963     up_read_non_owner(&dc->writeback_lock);
0964     cached_dev_bio_complete(cl);
0965 }
0966 
0967 static void cached_dev_write(struct cached_dev *dc, struct search *s)
0968 {
0969     struct closure *cl = &s->cl;
0970     struct bio *bio = &s->bio.bio;
0971     struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
0972     struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
0973 
0974     bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
0975 
0976     down_read_non_owner(&dc->writeback_lock);
0977     if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
0978         /*
0979          * We overlap with some dirty data undergoing background
0980          * writeback, force this write to writeback
0981          */
0982         s->iop.bypass = false;
0983         s->iop.writeback = true;
0984     }
0985 
0986     /*
0987      * Discards aren't _required_ to do anything, so skipping if
0988      * check_overlapping returned true is ok
0989      *
0990      * But check_overlapping drops dirty keys for which io hasn't started,
0991      * so we still want to call it.
0992      */
0993     if (bio_op(bio) == REQ_OP_DISCARD)
0994         s->iop.bypass = true;
0995 
0996     if (should_writeback(dc, s->orig_bio,
0997                  cache_mode(dc),
0998                  s->iop.bypass)) {
0999         s->iop.bypass = false;
1000         s->iop.writeback = true;
1001     }
1002 
1003     if (s->iop.bypass) {
1004         s->iop.bio = s->orig_bio;
1005         bio_get(s->iop.bio);
1006 
1007         if (bio_op(bio) == REQ_OP_DISCARD &&
1008             !bdev_max_discard_sectors(dc->bdev))
1009             goto insert_data;
1010 
1011         /* I/O request sent to backing device */
1012         bio->bi_end_io = backing_request_endio;
1013         closure_bio_submit(s->iop.c, bio, cl);
1014 
1015     } else if (s->iop.writeback) {
1016         bch_writeback_add(dc);
1017         s->iop.bio = bio;
1018 
1019         if (bio->bi_opf & REQ_PREFLUSH) {
1020             /*
1021              * Also need to send a flush to the backing
1022              * device.
1023              */
1024             struct bio *flush;
1025 
1026             flush = bio_alloc_bioset(bio->bi_bdev, 0,
1027                          REQ_OP_WRITE | REQ_PREFLUSH,
1028                          GFP_NOIO, &dc->disk.bio_split);
1029             if (!flush) {
1030                 s->iop.status = BLK_STS_RESOURCE;
1031                 goto insert_data;
1032             }
1033             flush->bi_end_io = backing_request_endio;
1034             flush->bi_private = cl;
1035             /* I/O request sent to backing device */
1036             closure_bio_submit(s->iop.c, flush, cl);
1037         }
1038     } else {
1039         s->iop.bio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1040                          &dc->disk.bio_split);
1041         /* I/O request sent to backing device */
1042         bio->bi_end_io = backing_request_endio;
1043         closure_bio_submit(s->iop.c, bio, cl);
1044     }
1045 
1046 insert_data:
1047     closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1048     continue_at(cl, cached_dev_write_complete, NULL);
1049 }
1050 
1051 static void cached_dev_nodata(struct closure *cl)
1052 {
1053     struct search *s = container_of(cl, struct search, cl);
1054     struct bio *bio = &s->bio.bio;
1055 
1056     if (s->iop.flush_journal)
1057         bch_journal_meta(s->iop.c, cl);
1058 
1059     /* If it's a flush, we send the flush to the backing device too */
1060     bio->bi_end_io = backing_request_endio;
1061     closure_bio_submit(s->iop.c, bio, cl);
1062 
1063     continue_at(cl, cached_dev_bio_complete, NULL);
1064 }
1065 
1066 struct detached_dev_io_private {
1067     struct bcache_device    *d;
1068     unsigned long       start_time;
1069     bio_end_io_t        *bi_end_io;
1070     void            *bi_private;
1071     struct block_device *orig_bdev;
1072 };
1073 
1074 static void detached_dev_end_io(struct bio *bio)
1075 {
1076     struct detached_dev_io_private *ddip;
1077 
1078     ddip = bio->bi_private;
1079     bio->bi_end_io = ddip->bi_end_io;
1080     bio->bi_private = ddip->bi_private;
1081 
1082     /* Count on the bcache device */
1083     bio_end_io_acct_remapped(bio, ddip->start_time, ddip->orig_bdev);
1084 
1085     if (bio->bi_status) {
1086         struct cached_dev *dc = container_of(ddip->d,
1087                              struct cached_dev, disk);
1088         /* should count I/O error for backing device here */
1089         bch_count_backing_io_errors(dc, bio);
1090     }
1091 
1092     kfree(ddip);
1093     bio->bi_end_io(bio);
1094 }
1095 
1096 static void detached_dev_do_request(struct bcache_device *d, struct bio *bio,
1097         struct block_device *orig_bdev, unsigned long start_time)
1098 {
1099     struct detached_dev_io_private *ddip;
1100     struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1101 
1102     /*
1103      * no need to call closure_get(&dc->disk.cl),
1104      * because upper layer had already opened bcache device,
1105      * which would call closure_get(&dc->disk.cl)
1106      */
1107     ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
1108     if (!ddip) {
1109         bio->bi_status = BLK_STS_RESOURCE;
1110         bio->bi_end_io(bio);
1111         return;
1112     }
1113 
1114     ddip->d = d;
1115     /* Count on the bcache device */
1116     ddip->orig_bdev = orig_bdev;
1117     ddip->start_time = start_time;
1118     ddip->bi_end_io = bio->bi_end_io;
1119     ddip->bi_private = bio->bi_private;
1120     bio->bi_end_io = detached_dev_end_io;
1121     bio->bi_private = ddip;
1122 
1123     if ((bio_op(bio) == REQ_OP_DISCARD) &&
1124         !bdev_max_discard_sectors(dc->bdev))
1125         bio->bi_end_io(bio);
1126     else
1127         submit_bio_noacct(bio);
1128 }
1129 
1130 static void quit_max_writeback_rate(struct cache_set *c,
1131                     struct cached_dev *this_dc)
1132 {
1133     int i;
1134     struct bcache_device *d;
1135     struct cached_dev *dc;
1136 
1137     /*
1138      * mutex bch_register_lock may compete with other parallel requesters,
1139      * or attach/detach operations on other backing device. Waiting to
1140      * the mutex lock may increase I/O request latency for seconds or more.
1141      * To avoid such situation, if mutext_trylock() failed, only writeback
1142      * rate of current cached device is set to 1, and __update_write_back()
1143      * will decide writeback rate of other cached devices (remember now
1144      * c->idle_counter is 0 already).
1145      */
1146     if (mutex_trylock(&bch_register_lock)) {
1147         for (i = 0; i < c->devices_max_used; i++) {
1148             if (!c->devices[i])
1149                 continue;
1150 
1151             if (UUID_FLASH_ONLY(&c->uuids[i]))
1152                 continue;
1153 
1154             d = c->devices[i];
1155             dc = container_of(d, struct cached_dev, disk);
1156             /*
1157              * set writeback rate to default minimum value,
1158              * then let update_writeback_rate() to decide the
1159              * upcoming rate.
1160              */
1161             atomic_long_set(&dc->writeback_rate.rate, 1);
1162         }
1163         mutex_unlock(&bch_register_lock);
1164     } else
1165         atomic_long_set(&this_dc->writeback_rate.rate, 1);
1166 }
1167 
1168 /* Cached devices - read & write stuff */
1169 
1170 void cached_dev_submit_bio(struct bio *bio)
1171 {
1172     struct search *s;
1173     struct block_device *orig_bdev = bio->bi_bdev;
1174     struct bcache_device *d = orig_bdev->bd_disk->private_data;
1175     struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1176     unsigned long start_time;
1177     int rw = bio_data_dir(bio);
1178 
1179     if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
1180              dc->io_disable)) {
1181         bio->bi_status = BLK_STS_IOERR;
1182         bio_endio(bio);
1183         return;
1184     }
1185 
1186     if (likely(d->c)) {
1187         if (atomic_read(&d->c->idle_counter))
1188             atomic_set(&d->c->idle_counter, 0);
1189         /*
1190          * If at_max_writeback_rate of cache set is true and new I/O
1191          * comes, quit max writeback rate of all cached devices
1192          * attached to this cache set, and set at_max_writeback_rate
1193          * to false.
1194          */
1195         if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) {
1196             atomic_set(&d->c->at_max_writeback_rate, 0);
1197             quit_max_writeback_rate(d->c, dc);
1198         }
1199     }
1200 
1201     start_time = bio_start_io_acct(bio);
1202 
1203     bio_set_dev(bio, dc->bdev);
1204     bio->bi_iter.bi_sector += dc->sb.data_offset;
1205 
1206     if (cached_dev_get(dc)) {
1207         s = search_alloc(bio, d, orig_bdev, start_time);
1208         trace_bcache_request_start(s->d, bio);
1209 
1210         if (!bio->bi_iter.bi_size) {
1211             /*
1212              * can't call bch_journal_meta from under
1213              * submit_bio_noacct
1214              */
1215             continue_at_nobarrier(&s->cl,
1216                           cached_dev_nodata,
1217                           bcache_wq);
1218         } else {
1219             s->iop.bypass = check_should_bypass(dc, bio);
1220 
1221             if (rw)
1222                 cached_dev_write(dc, s);
1223             else
1224                 cached_dev_read(dc, s);
1225         }
1226     } else
1227         /* I/O request sent to backing device */
1228         detached_dev_do_request(d, bio, orig_bdev, start_time);
1229 }
1230 
1231 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1232                 unsigned int cmd, unsigned long arg)
1233 {
1234     struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1235 
1236     if (dc->io_disable)
1237         return -EIO;
1238     if (!dc->bdev->bd_disk->fops->ioctl)
1239         return -ENOTTY;
1240     return dc->bdev->bd_disk->fops->ioctl(dc->bdev, mode, cmd, arg);
1241 }
1242 
1243 void bch_cached_dev_request_init(struct cached_dev *dc)
1244 {
1245     dc->disk.cache_miss         = cached_dev_cache_miss;
1246     dc->disk.ioctl              = cached_dev_ioctl;
1247 }
1248 
1249 /* Flash backed devices */
1250 
1251 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1252                 struct bio *bio, unsigned int sectors)
1253 {
1254     unsigned int bytes = min(sectors, bio_sectors(bio)) << 9;
1255 
1256     swap(bio->bi_iter.bi_size, bytes);
1257     zero_fill_bio(bio);
1258     swap(bio->bi_iter.bi_size, bytes);
1259 
1260     bio_advance(bio, bytes);
1261 
1262     if (!bio->bi_iter.bi_size)
1263         return MAP_DONE;
1264 
1265     return MAP_CONTINUE;
1266 }
1267 
1268 static void flash_dev_nodata(struct closure *cl)
1269 {
1270     struct search *s = container_of(cl, struct search, cl);
1271 
1272     if (s->iop.flush_journal)
1273         bch_journal_meta(s->iop.c, cl);
1274 
1275     continue_at(cl, search_free, NULL);
1276 }
1277 
1278 void flash_dev_submit_bio(struct bio *bio)
1279 {
1280     struct search *s;
1281     struct closure *cl;
1282     struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1283 
1284     if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1285         bio->bi_status = BLK_STS_IOERR;
1286         bio_endio(bio);
1287         return;
1288     }
1289 
1290     s = search_alloc(bio, d, bio->bi_bdev, bio_start_io_acct(bio));
1291     cl = &s->cl;
1292     bio = &s->bio.bio;
1293 
1294     trace_bcache_request_start(s->d, bio);
1295 
1296     if (!bio->bi_iter.bi_size) {
1297         /*
1298          * can't call bch_journal_meta from under submit_bio_noacct
1299          */
1300         continue_at_nobarrier(&s->cl,
1301                       flash_dev_nodata,
1302                       bcache_wq);
1303         return;
1304     } else if (bio_data_dir(bio)) {
1305         bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1306                     &KEY(d->id, bio->bi_iter.bi_sector, 0),
1307                     &KEY(d->id, bio_end_sector(bio), 0));
1308 
1309         s->iop.bypass       = (bio_op(bio) == REQ_OP_DISCARD) != 0;
1310         s->iop.writeback    = true;
1311         s->iop.bio      = bio;
1312 
1313         closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1314     } else {
1315         closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1316     }
1317 
1318     continue_at(cl, search_free, NULL);
1319 }
1320 
1321 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1322                unsigned int cmd, unsigned long arg)
1323 {
1324     return -ENOTTY;
1325 }
1326 
1327 void bch_flash_dev_request_init(struct bcache_device *d)
1328 {
1329     d->cache_miss               = flash_dev_cache_miss;
1330     d->ioctl                = flash_dev_ioctl;
1331 }
1332 
1333 void bch_request_exit(void)
1334 {
1335     kmem_cache_destroy(bch_search_cache);
1336 }
1337 
1338 int __init bch_request_init(void)
1339 {
1340     bch_search_cache = KMEM_CACHE(search, 0);
1341     if (!bch_search_cache)
1342         return -ENOMEM;
1343 
1344     return 0;
1345 }